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Abstract

This thesis focuses on the inference of network connections from statistical physics point
of view. The reconstruction methods of the asynchronously updated kinetic Ising model with
an asymmetric Sherrington-Kirkpatrick (SK) model is studied theoretically. Both approximate
and exact learning rules for the couplings from the generated dynamical data are developed.
The approximate formulae are based on naive mean field (nMF) and Thouless-Anderson-
Palmer (TAP) equations respectively. The exact learning rules are derived for two cases: one
in which both the spin history and the update times are known and one in which only the spin
history. One can average over all possible choices of update times to obtain an averaged
learning rule that depends only on spin correlations. We studied all the learning rules
numerically. Good convergence is observed in accordance with the theoretical expectations.

The developed inference learning rules are applied to two data sets. One is spike trains
recorded from 20 retinal ganglion cells and the other is generated by transactions of 100 highly
traded stocks on the New York Stock Exchange (NYSE).

For the neuron data set, we compared the inferred asynchronous couplings with the
equilibrium ones. The results show that the inferred couplings from these two models are very
similar. This implies that real dynamical process of the neuron system satisfies the Gibbs
equilibrium conditions and that the final distribution of states is the Gibbs stationary
distribution.

For the financial data set, three inference methods are applied to reconstruct the coupling
matrices between traded stocks. They are equilibrium, synchronous and asynchronous
inference formula respectively. All of them are based on mean-field approximation.
Synchronous and asynchronous Ising inference methods give results which are coherent with
equilibrium case, but more detailed since the obtained interaction networks are directed.
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Chapter 1

Introduction

To deal with the massive data originating from high throughput technologies has
been a fascinating challenge in recent years in several research fields. Examples
are simultaneous recordings from large number of neurons (an illustration of
neural data is shown in Figure 1.1) and stock trading recordings for various
companies (the time series of stock trading volumes from Fannie Mae company
is presented in Figure 1.2).

Network theory provides a feasible way to extract useful information from such
data. The constituting elements of a system can be mapped to the vertices of
a network, and one can then focus on finding the functional connections in the
network under study. The hope is that such results can help us understand the
dynamics of the system. For instance, several kinds of neurons are identified in
the biological systems (place cells, retina cells, etc.). If one knows the couplings
between them, one may get better understanding about how they interact with
each other and how they produce the recorded experimental data[1].

We will be concerned with interaction when the behaviors of the elements in a
system can be described by two states. For example, for the time-binned spike
histories of neurons, if we assume that the firing rates are low enough that there
is at most one neuron spiking during one time bin. The state of a neuron can then
be described as firing / not firing in a certain time bin. Similarly, the activity of a
stock trades can also be described as active / not active patterns. This represen-
tation of data makes itself to formulate a simple statistical physical model: Ising
model. What we are interested is finding out the pair-wise interactions between
the elements of a system which produces the given data in the framework of the
Ising model.

In Chapter 2, both standard and kinetic Ising models are described. For an Ising
model composed by N binary spins s = {sq, ..., Sx }, each spin in the system
experiences an external field 6;, and the coupling between pairwise spins 7 and
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Fig. 1.1: A sample data for spike trains recorded from Salamander retina un-
der visual stimulation by a repeated 26.5-second movie clip. The original data
comes in the form of spike times. Here, the size of time bin is 4t = Ims. A +1
will put when there is a spike in a time bin. We continue setting +1 in to the
following bins for a period drawn from an exponential distribution with mean
10ms (a typical time scale which corresponds to the inverse of the width of the
auto correlation function for neural data) before setting a —1 for the following
bins if no other spikes were recorded. Data is provided by Michael Berry of
Princeton University through personal communication.
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Fig. 1.2: A sample of time series of stock trading volumes for Fannie Mae
(FNM), a company for secondary mortgage market, home loan and mortgage.
Data is provided by Matteo Marsili of ICTP through personal communication.

Jj is J;, the task is to find out the first moment (s;) (magnetization) and sec-
ond moment (s;s;) (correlation) etc., which can be measured by experiments.
The probability distribution of the Ising system to be in a certain configuration
at temperature 7, follows the Gibbs-Boltzmann equilibrium distribution. This
fact means that the standard Ising model has a close relation to the maximum
entropy model [2]. A closed macroscopic system is said to be in the state of ther-
mal equilibrium when the macroscopic physical quantities in any macroscopic
subsystem are to a high degree of accuracy equal to their mean values. Physical
systems in thermal equilibrium can be described by the Boltzmann distribution,
which has the maximum possible entropy if the average energy of the system is
given [3]. The relation between them will be further described in detail in this
chapter.

The standard Ising model does not include dynamics and is described by the
Gibbs-Boltzmann equilibrium distribution only. However, as the given data in,
say, biological system, financial system etc., is always a noisy dynamical one,
we will investigate a stochastic dynamical one. The Ising model can be given a
dynamics following Glauber [4]. We refer the Ising model with dynamics as the
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kinetic Ising model. The Glauber dynamics is described by a master equation as

dpEiStI, t) _ Zwi(_si)p(sh ey =Siy ey SN ) — Zwi(si)l)(s%t)v

where w;(s;) = (1 — s;tanh B(6; + Y, Jijs;)] is the flipping rate that the ith
spin flips from the value s; to —s;, while the others unchanged. The first term is
a gain function and contributes to the probability distribution from the flipping
of the opposite state and the second term is a loss function by flipping out of
the same state. This dynamics can also be described in an alternative way as
follows: each spin has a probability & ~dt to be updated in the infinitesimal
interval [¢, ¢ + dt), where -y has an inverse time scale. For a spin that is updated,
the total “field” is H;(t) = 6; + Zj Ji;8;(t), where 6; is the external field on
spin ¢ and J;; the pairwise coupling between spin 4 and j. The spin ¢ will take
its new value for time step ¢ + Jt with a probability of p(s;(t + 0t)|{s;(t)}) =
£ [1+ s;(t + 6t) tanh H,(t)], where the set of s;(¢) is the nearest neighbors of
i. If 0; is independent of ¢ and the matrix J is symmetric, then this model has
a stationary distribution which is the Gibbs-Boltzmann distribution. However,
when the 6; are time dependent or the coupling matrix J is not symmetric, a
stationary distribution may still exist, but in general, it may not have a simple
description. Such a state is not described by the Gibbs-Boltzmann distribution.

For the numerical simulation of Glauber dynamics, we discretize the time ¢ and
the system is updated in equal time intervals. Each time interval is divided into
N small time increments. During each time increment, only one spin is random-
ly selected to update. In this way, not every spin is guaranteed to be selected in
a time interval consisting of N spin updates. Some spins will be updated more
than once in the time interval. However, every spin is updated once per time
interval on average. We refer this update way of spins as asynchronous update.
On the other hand, if we update all spins in the system simultaneously at a time
interval, then we call this updating approach as synchronous update. In our
work, we are mainly focus on asynchronously updated case based on the fol-
lowing reasons: firstly, the asynchronous update will converge to the stationary
state which is Gibbs-Boltzmann distribution for a symmetric model, while this
may not true for synchronous case. Secondly, the possible applications are nat-
urally asynchronous. For instance, the expression of gene is not a synchronous
process, the transcription of DNA, the transport of enzymes, and degradation
can vary widely from gene to gene and may take from milliseconds up to a few
seconds [5]. More studies in [6, 7] expected that the biological systems do not
have a completely synchronous dynamics.

In Chapter 3, different inference methods for network couplings by using asyn-
chronously updated kinetic Ising model are presented. Both approximate meth-
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ods and learning methods are derived for inferring the connections. The approx-
imate methods are based on mean field equations, in which long time Monte
Carlo runs are avoided. This part of work appears in paper I Network infer-
ence using asynchronously updated kinetic Ising model. One is based on Curie-
Weiss mean-field equations which was first applied to magnetic systems and
thus we call the inference method as naive Mean field (nMF) approximation
inference method. The other is based on an improved equations by Onsager.
They were then applied to spin glasses by Thouless, Anderson and Palmer [8],
so nowadays, they are called TAP equations in statistical mechanics. The in-
ference method based on this is then called TAP approximation method. TAP
approximation adds simple corrections to the nMF approximation, taking into
account the effect of the focused spin on itself via its influence on other neigh-
boring spins. The input quantities of these two approximate inference methods
are magnetization and correlations, which could be observed from the spin his-
tories. For the inference effectiveness of these two mean-field based approaches,
the performance of TAP is somewhat expected to be better than nMF. However,
in most application scenarios, network inference using asynchronously updated
kinetic Ising models should work well enough using nMF reconstruction and
the further step to TAP reconstruction would not be needed.

When one further looks at the kinetic Ising model with asynchronous updates
closer, one will find it can be described as a double stochastic process: both
the spin history and the update times are stochastic variables. Two cases are
considered when inferring the network couplings. One in which one knows both
the spin history and the update times and one in which only the spin history. For
the first case, one can average over all possible choices of update times to obtain
a learning rule that depends only on spin correlations and can also be derived
from the equations of motion for the correlations. For the second case, the same
rule can be derived within a further decoupling approximation. Thus, the first
algorithm needs the full spin and update history and its average version needs
the spin correlations at and near ¢ = 0. The second case needs the spin history
only. The performance of these algorithms is promising in practical terms and
agree with the theoretical expectations. In particular, their performances are
better than the approximate methods based on mean-field found earlier. This
part of work corresponds to paper Il Maximum Likelihood Reconstruction for
Ising Models with Asynchronous Updates.

In chapter 4, we introduce L; regularization to the inferred interactions which
aims at eliminating the least important couplings in a system. This work refers
to paper Il L, Regularization for Reconstruction of a non-equilibrium Ising
Model. The idea is to minimize a cost function with respect to couplings J
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[9, 10, 11]
E = —L0+A E |Jij|,
ij

where the first term is the negative log-likelihood of spin history and the addi-
tional term the L; norm with ) the strength of L, penalty. In order to see how L
regularization works in detail, we use a simple gradient descent algorithm which
leads to an additional term —Asgn (J;;) in the learning rule for couplings. By
using this method, the L; term in the cost function is non-differentiable. We
deal with this problem by setting J;; = 0 by hand. The pruning process of
connections is tracked by increasing the A value from O to a large value. Some
insight into how this happens was made possible by using an approximation
scheme based on a quadratic expansion of the cost function around its min-
imum. Further approximation by neglecting the off-diagonals in the inverse
Fisher matrices behaviors worse than the one with whole elements, which im-
plies the off-diagonals play an important role in regularization. Both exact L
and approximate learning rules are performed on a simple and sparse network
model, where the connectivity c for each node in the network is much smaller
than the system size N. However, we hope the learning methods with/without
approximations will be useful in analyzing data from complex systems with s-
parse property.

The inference methods are firstly tested to reconstruct asymmetric Sherrington-
Kirkpatrick (aSK) theoretically, where the interactions are identically and inde-
pendently Gaussian variables. However, in Chapter 5, two examples are shown
for the applications of these inference methods to real data. The first one is: av-
eraged version of the learning rules which originating from maximizing the log
likelihood of the history are applied to spike trains from 20 retinal ganglion cells
to obtain couplings J;;s and fields 6;s. The raw spike trains are recorded from
salamander retina under visual stimulation by a repeated 26.5-second movie
clip. We considered spike trains of length of 3180 seconds for 20 neurons with
the highest firing rates in the data set. We extracted data as follows: the whole
data length are cut to fine time windows with a time bin of size 6t = 0.5ms. A
+1 is assigned in a time bin when there is a spike in the bin, we continued putting
+1 into the following bins for a period drawn from an exponential distribution
with mean 10ms before setting -1 for the subsequent bins if no other spikes
were recorded. We apply the asynchronous learning rule mentioned above to
the mapped data and obtain the functional connections. The resulting couplings
are quite similar to the Gibbs equilibrium ones except that self-connections are
missing for the latter inference method. This part of work corresponds to the re-
al application of the average algorithm which is presented in paper II Maximum
Likelihood Reconstruction for Ising Models with Asynchronous Updates.
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The second application example is the nMF approximation methods (equilib-
rium, synchronous and asynchronous version) applied to financial data on 100
highly traded stocks on the New York Stock Exchange. In order to use the infer-
ence methods, we extract data by considering the information of the trade time
and volumes. Here, the sliding time window of size At is used, with a shifting
constant As = 1 second. We use a threshold method to map the data into bi-
naries. For each stock i the sum of volumes Zi:; A Vi(t') traded in the time
bin of length At ending at time ¢ is compared with a given volume threshold

= xVi At, where V! is the average volume of the considered stock over
the whole data length, and x controls the volume threshold. If the sum of vol-
umes in the time bin with length At is not less than the threshold, then a +1 will
be assigned to that bin; otherwise, a -1 will be assigned. The resulting func-
tional connections given by these two nMF inference methods are coherent with
equilibrium ones, while more detailed as the obtained couplings in the inferred
network are directed. We find that the volume information of the stocks trans-
action is enough to obtain the collective behaviors in the stock market which are
usually observed through the price information. The details are shown in paper
IV Financial interaction networks inferred from traded volumes

Chapter 6 will present the further developments and conclusion.
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Chapter 2

Ising model

This chapter recalls the standard Ising model which is a mathematic model used
to describe the ferromagnetism in statistical mechanics. It is an easy model to
define while has wonderfully rich behaviors. Then we move to introducing the
kinetic Ising model which is further developed by taking into account Glauber
dynamics, where the states of spins in the system evolve with time ¢ and the cou-
plings can be either symmetric or asymmetric. Only the symmetric couplings
lead to stationary distributions which are the same with the equilibrium Ising
model.

2.1 The standard Ising model

2.1.1 Equilibrium Ising model

The conventional Ising model for ferromagnetism is consisted by N connected
spins which are usually located on a lattice, especially the square-lattice. Each
of them is connected to its nearest neighbors through an interaction matrix J;;.
The couplings J;;s imply the influences from spin j to spin <. A positive inter-
action J;; is called ferromagnetic, where the neighboring spin ¢ of spin j tends
to be with a same orientation while a negative J;; is antiferromagnetic where
the neighboring spins tend to have an opposite sign. Zero J;; means there is no
interactions between spin j and ¢. The spins in the system could be subjected
to an external field 6; which indicates how likely spin ¢ tends to be “up” in the
absence of the other spins. Positive field on spin ¢ tends to drive it to be “up”,
while negative one tends to let spin ¢ be “down”. Each spin in the system will
be in one of a binary states, +1 or -1. Thus there are 2%V possible configurations
s:{s;==+1,i=1,..., N} in total for an N spin system.

With the pairwise coupling matrix J between spins and external field 6; on each
individual spin, the Hamiltonian function or energy function of an N spin sys-

[
O
o
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tem in state s : {s; = +1,7 = 1...N} is defined as follows:

E(S) = — Z 9151 - Z Jijsisj7 (21)

1<j

where the first term is contributed by the external field and the second sum is
over each pairs of neighboring spins where every pair is counted only once.

The probability distribution of the system stays at configuration s at temperature
T,, follows Gibbs-Boltzmann equilibrium distribution, which is:

p(s) = Z(lTp) exp <_k§7(z )> , 2.2)

where kp is the Boltzmann constant. To simplify, 1@% is denoted as the inverse
p

temperature 3. Z, the partition function, which is a constant to make the above

equation (2.2) as a probability measure, is then defined as following:

Z(T,) =Y _exp(—BE(s)). (2.3)

where the sum is over all the spin configurations in the system. The partition
function Z is an important quantity. Say, if one has it, the negative free energy of
the system is obtained by log Z. However, this quantity is difficult to calculate
when the system size grows large because the sum is over all spin configurations.
For a system with N spins, the calculation is over 2V terms, which becomes
large and intractable when the system size N > 20.

The expectation values of the first and second moments under the distribution
shown in equation (2.2) (s;) and (s;s;) are called magnetizations and correla-
tions, denoted by m;, x;; respectively. These two moments are quantities which
can be measured in experiments. They are what the direct standard ferromagnet-
ic Ising model be concerned about. However, we focus on the inverse problem:
we are given the measured magnetizations and correlations, which could be cal-
culated from the data of spin states, and we want to find out the “bias” field
6; and the couplings J;; which can reproduce the observed values of (s;) and

(sisj)-

In standard Ising model, the temperature 7}, plays an important role. However,
for the inverse problem, 7}, plays the role of setting a common scale of inferred
J;; and 6;. So in some cases, we will take an assumption that 7}, = 1 which will
make the problem more clear.
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2.1.2 Relation to maximum entropy principle

We will see the relation between standard Ising model and maximum entropy
principle [2] in this section.

Suppose we are given a set of data, which originate from a same probability dis-
tribution. Then among all possible probability distributions that can reproduce
the data set, the one which best represents the data set has the maximum entropy.
This maximum entropy principle has a close connection to the Ising model in
statistical physics as shown below:

Assume the probability of a system in the state s is p(s), which is a discrete
probability, then the entropy of the system as given by Shannon in 1948 is:

S = Z—p )log (p(s)) - 2.4)

With the knowledge about the measured magnetizations m,; and correlations x;;
from the given data, Lagrange multipliers J;;, ¢; and A can be introduced to
build a model for probability distribution p(s). Then the following term need to
be maximized under constraints:

Z ( log + Z 9 <Z Slp 7ni>
I (Z 5i8;p(8) — Xij) 2.5)

+ A(Xs:p(s) - 1)

Use p(s) + dp(s) instead of p(s) in equation (2.5), and expand the log function
with respective to dp(s) to the first order, then keep only the variational terms,
we have the following equation:

Zép {logp _1+2951+Z‘]H$5ﬂ+)‘}+0(52())_0(2'6)

2

Thus, the maximization of equation (2.5) corresponds the following term equals
to zero.

—logp(s —1+2951+2sts]+)\—0
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Which leads to a probability distribution as:

i i,J

which is the same with equation (2.2) if 5 = 1 in that equation. This implies
that the Gibbs-Boltzmann equilibrium distribution has the maximum possible
entropy given the measured m; and ;. The maximum entropy probability dis-
tribution defines an energy function for the system, and energy function relevant
problem is an Ising model.

2.2 Kinetic Ising model

There is no dynamics in the original Ising model and thus the states of spins
are independent of time. Although the standard Ising model plays an important
and fundamental role in ferromagnetism systems, it is possible and natural to
introduce dynamics to spins in the system with the aim to generalize it and
apply to wider problems. We refer the Ising model as kinetic one if the states of
spins are dependent of time and follow a certain dynamics. This indicates that
the kinetic Ising model can be obtained by providing a transition rate to the Ising
model which allowing the spin system to hop between different configurations.
Both of equilibrium and kinetic Ising model have attracted long-term interest
which is partly because of the simplicity of the models and the wide applications
of them.

2.2.1 Reasons for moving to Kinetic spins

For the sake of our further investigations to biological, finance systems, etc., the
generalization of the standard Ising model is needed as both of the systems are
usually stochastic and dynamic. There are few other reasons to move to kinetic
Ising model:

* Gibbs-Boltzmann equilibrium distribution is unlikely to hold in, say, bio-
logical or finance systems. The systems are usually driven by the external
field which could be time dependent 0;(¢). And the real given data are al-
ways over time. Kinetic models have a bigger relevance to such systems.

* When the problem is posed as inferring the parameters of an equilibri-
um Gibbs distribution (2.2), the partition function Z in the distribution
will be difficult to calculate when the system size grows large. As for a
system size of [V, there are 2N microstates in all. Under such case, only
approximate methods are available.
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» For real applications, the given data length L may be not as long as 2V
when /N grows bigger. This implies that only part of the configuration are
known for the inference of the model parameters.

e The interaction matrix J shown in distribution (2.2) are not necessari-
ly symmetric outside the original equilibrium system. The influence be-
tween elements in a system could be unequal to each other in real systems,
ie., Jij # Jj. Itis not satisfy detailed balance when matrix J is asym-
metric. Applying equilibrium approaches to non-equilibrium cases, the
inferred couplings may have no obvious relationship to the real ones.

2.2.2 Sherrington-Kirkpatrick (SK) model

Unlike in the original ferromagnetic Ising model, the spins are only coupled with
the neighbors symmetrically in a short space, for kinetic version, spins could be
coupled in different ways. In the following, we will introduce the Sherrington-
Kirkpatrick (SK) model which meet this requirement. The standard SK model
[12] is a system of NV spins, which can be used to model /N spins or agents
with binary states 1. It is a fully connected graph, i.e., all elements have been
coupled to the others in the system. The interactions J;; between each pair of
elements can be extended to the asymmetric forms as follow [13]:

Jij = I+ kJ§

ij

k>0, 2.8)

where J;% and J%* are symmetric and asymmetric interaction respectively:

J5=J5,
(Z " as (29)
Jz‘j = _in

The parameter % in equation (2.8) measures the asymmetric degree of the inter-
actions J;;. With & = 0, J;;’s are a fully symmetric model while k£ # 0 means
the J;; and Jj; are uncorrelated quantities.

Both symmetric and asymmetric couplings are identically and independently
Gaussian distributed random variables with means zeros and variances as:

g 1

J52) = (Jos?y = L ) 2.10
< i > < i > N1 4 k2 ( )
This means the coupling matrix .J follows a Gaussian distribution
(Jij — n)’*
p(Jij) o< exp <—J202 (2.11)

with means 1 = 0 and variance 02 = g?/N.
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2.2.3 Glauber dynamics

With the definition of the underlying SK network model, which determines the
coupling approach between spins, we introduce dynamics to spins in the system.
Then the states of spins will be followed as function of time. Thus the general-
ized model we consider here is a stochastic one. The behaviors of IV spins are
stochastic function of time s;(¢) = +1,4 = 1,..., N. The state of a spin jumps
between 1 or -1 randomly. The hops are influenced by the interactions of spins
with an external field which is usually considered as a thermal bath. The transi-
tion probability of each spin is determined by the current values of its neighbors
and the influence from the heat bath. Thus it is possible that the correlations
could appear between spins because of the existence of interactions.

We start from introducing the master equation which describes the derivative of
the joint probability distribution p(sy, ..., sy; t) of spin states in system at time ¢
as follows::

%p(sl, SN t) = Zwi(—si)p(sl, ey =Siy ey SN ) — Z%(&')P(S; t),

' Z 2.12)
where w;(s;) is the flipping rate, i.e., the probability for the state of ith neuron
changes from s; to —s; per unit time while the other spins are momentarily un-
changed. Equation (2.12) shows that the configuration sy, ..., s is destroyed by
a flip of any spin s;, but it can also be created by the flip from any configuration
with the form sy, ... — s;, ..., Sn. The flipping rate of spin ¢ is given as follows:

wi(s;) = 1
1+ exp [2[352- (97; +>; Jijsj(f))}

(2.13)
1 — s; tanh </3 (9,— + Z Jij%‘(ﬂ))}
J

As mentioned above that the effective field on spin 7 is composed of the influence
from neighboring spins and the reservoir, which can be written as follows for the
sake of convenience:

7y

J

If the couplings are symmetric (i.e., k in equation (2.8) equals 0), then the steady
state of the dynamics given by equations (2.12) and (2.13) is:

(81, ..y SN) X €XD (ﬁZsi()i—l—ﬂZsistij> . (2.15)
i i
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which is the Gibbs-Boltzmann distribution as shown in equation (2.2). However,
when the couplings J are not symmetric anymore, then equations (2.12) and
(2.13) still have a steady state (under general condition), but this state does not
have a simple description.

The inverse temperature /3 could be set to 1, cause any effects of changing of it
in Glauber dynamics can be realized through changing the coupling strength ¢
which appears in the variance of Js. The effect can also be realized by changing
the field strengths 6;, however, it is set as a fixed and time-independent value in
the following work.

2.2.4 Numerical simulations

There is another way to describe the stochastic Glauber dynamics which is wide-
ly used for the numerical simulation. The basic idea is that we discretize the
time ¢ and the system is updated in equal time intervals. Each time interval is
divided into N small time increments. During each time increment, only one
spin is randomly selected to update. By this way, not every spin is guaranteed
to be selected in a time interval consisting of N spin updates. Some spins will
be updated more than once in the time interval. However, every spin is updated
once per time interval on average. How to choose spin to update is critical for
Glauber dynamics. We refer the update way of spins as asynchronous update if
only one spin is randomly selected to update. On the other hand, if we update all
spins in the system simultaneously at a time interval, then we call this updating
approach as synchronous update.

Asynchronous update

The following two schemes gives detailed descriptions of the asynchronous up-
date for Glauber dynamics casted on the original Ising model, this part of work
appears in paper II Maximum Likelihood Reconstruction for Ising Models with
Asynchronous Updates.

1. Consider a time discretization with a time step increment of d¢. At each
step, update a random chosen spin ¢ with a probability ~;dt, where ~; are
constants with dimension of inverse time. In our work, this parameter
is assumed to be a priori. In order to make the case simple, we assume
v; = « for all spins and we take v = 1. For the update of spin ¢, it will
take value s;(¢ + dt) as follows:

(t+6t) = +1  with probability 1/{1+ exp[—28H;(t)]}
Si | -1 with probability 1/{1+ exp[26H;(t)]}
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The new value of the updated spin ¢ may be equal to the old one; updating
does not necessarily mean flipping. Multiple spins can be updated in one
time step, but for §t < 1 in most steps at most one spin is updated.
When 74t = 1, the model will be in the synchronous case. Thus, one can
interpolate between the synchronous and asynchronous models by varying
the parameter . In this formulation, the asynchronous model is double
stochastic: the dynamics of one set of stochastic variables (the spins) are
conditional on the dynamics of the other (the updates).

2. Start from the Glauber master equation (2.12). Then at each time step
every spin is flipped with a probability v6t1 [1 — s;(t) tanh H,(t)]. Same
as in Scheme 1, multiple spins can flip in a single time step, but this hap-
pens with a probability of order (6¢)?. Thus, with 6t < 1, in most time
increment, at most only one spin is flipped.

The difference between these two schemes is that in scheme 1, two set of random
variables, the update times (which is denoted as 7; and the spin histories s;(t),
while in scheme 2 contains only the s;(¢). The update times 7; in scheme 1 can
be marginalizing out, which will lead the scheme 1 exactly to scheme 2, even
if ydt is not small. Nevertheless, knowing the “the history of the system” (i.e.,
a realization of its stochastic evolution) means something different in the two
schemes. In the first we know all the update times, while in the second we know
only those at which the updated spins flipped.

Synchronous dynamics

For synchronous updates, all spins will update simultaneously instead of ran-
domly asynchronous. By this way, the model will be easier to be applied to
time-binned data, which are always the case for neuron spiking trains. Roudi
and Hertz have made several contributions to the descriptions of synchronous
updates and have applied to neuron spiking data [14, 15]. With synchronously
updated Glauber dynamics, each spin has a probability o< vét to be updated in
a infinitesimal time interval [t,¢ 4 0t). For the sake of making model simpler,
the time increment in the simulation is chosen as «vd¢ = 1. This means the spin
updates are independent Poisson processes.

The time ¢ is discretized also for synchronous case. The initial spin configu-
ration is specified as as 1 or -1 randomly. Then at each discrete time step, the
spins are assigned with a new value according to the following distribution (with

v =1)

Vie{l,...,N}:p(si(t+1)==1) = % [1 £ tanh [SH;(1)]] (2.16)
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where the instantaneously total field on spin ¢ is:
Hi(t) = 0;+ > Jijs;(t — 1) (2.17)
J
we take 6; to be time-independent, however, it can be generalized to be time

dependent.

This Markov chain in equation (2.16) can also be described in terms of the
microscopic state probability p,(s), which indicates the probability of the spin
system in state s at each time ¢ [16]:

pi(s) = Z W, [s; S/] Ptﬂ(sl) (2.18)

With a transition probability IV, as:

o exp (Bs; H;(t — 1))
W, [Sv S} - H 2 cosh (/sz(t - 1))

i

; (2.19)
— H 3 [1+ s;tanh SH;(t — 1)]

With a finite 5 and NV, the process will evolves into a stationary distribution
which is an equilibrium state if matrix J is symmetric. In the detailed balance
case, the corresponding equilibrium probability has a Gibbs-Boltzmann form as
shown in equation (2.2) [17].

It is notable that the inverse temperature 3 controls the stochasticity of the dy-
namics. 8 = 0 corresponds to a fully random case while for 5 = oo, the pro-
cess is “frozen” as a deterministic case where the configurations of spins will
not change with time. As mentioned above, the effect of 3 can be realized by
changing the coupling strength parameter ¢ and the external field 6;.

Observable from kinetic Ising model

Based on the above two kinds of updating ways applied on Ising model, the spin
history s;(t) is obtained. With which we can naturally define the time dependent
means and connected correlations with time delay as follows:

Cii (1) = (si(t + 7)s;(t)) — mym;. (2.20)

An example of numerical calculation of the pair-wise correlation functions with
different time delays for the kinetic Ising model with asynchronous updates is
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Fig. 2.1: Cross correlations over different time delays for spin pair (5,18) and
(18,5). With asymmetric couplings, the correlations between them are not sym-
metric as Cy 13 # Cj 15. With longer time delay, both C5 ;5 and Cig 5 approach
to zero.

shown in Figure 2.1. The correlations between spin with index 5 and 18 with
a time delay denoted as 7 are calculated in this figure. Fully asymmetric SK
model is adopted for the simulation. The result shows that C 15(7) # Cis5(7).
The present results are based a data length of L = N x 10%. The correlations
C;;(7) approaches to zero with longer enough time delay.
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Chapter 3

Inference

This chapter describes the development of inference methods that are used to
find out the parameters of pairwise binary models first. Then we mainly focus
on the algorithms that are used to reconstruct the couplings and fields of the
asynchronously updated kinetic Ising model. The algorithms could be approxi-
mate which are based on mean-field equations or exact that start from maximiz-
ing the log likelihood of system histories. The performs of both approximate
and exact learning rules are presented for different values of parameters. With
the theoretical inference approaches, we will show how can they can be used to
study the connections from real data.

()
&
-
o
S
)
——
<

3.1 Development of pair-wise inference methods

Gibbs Equilibrium Model

In principle, it has been known for some time how to do the inference for the
couplings and fields with the given binary data, as been measured like, say,
Ising model or similar two-state systems. The implied assumption is that the
observed data could be sampled from a same probability distribution. With the
measured magnetization m;s and connected correlations Cj;s, one could find
that the possible distribution which has a maximum entropy will be familiar
with the Gibbs-Boltzmann equilibrium distribution, as shown in equation (2.2)
[1]. The parameters ¢; and J;; one wants to infer are Lagrange multipliers used
in the constrained maximization.

One can adjust the values of parameters J;; and §; to maximize the probability
distribution (2.2) with the given data. Then the learning rules are called Boltz-
mann machines in Neuroscience. The method is iterative but (when it converges)
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exact [18]:

36; = 1 ((8i) Data — (Si) Model) »
5Jij =7 (<5i5j>Data - <5isj>Model> .

7 is a learning rate which need to be chosen small enough to get convergence.
To estimate the second averages, one needs to perform Monte Carlo runs with
the current values of .J;; and ¢;. For large IV, these runs can be very time con-
suming. Besides, the learning will be slow when working for data with long
recordings. One likes to estimate the averages from the model as good as that
from the original data, then the length of Monte Carlo runs have to be equal
to the provided data length. This may take many iterations to obtain stationary
coupling and fields. As claimed by Hertz and his collaborators that the learning
rules are impractical to try to work with N' > 100.

3.D

Naive Mean Field approximation

To avoid long Monte Carlo runs, one can use mean field methods to get ap-
proximate algorithms. From the updating rules of Glauber dynamics, on knows
the exact value of m; which is conditioned on the neighboring s; through the
interaction matrix .J is follows:

m; =1 xp(s; =1]s;) — 1 x p(s; = —1|s;)
€9i+zj Jijsj _ 6—9«;—2]' Jijsj
6914—23 Jijsi e—éi—zj Jijs; (32)

tanh(@i + Z Jiij)

J

The mean field approximation is obtained by replacing s; inside the tanh func-
tion with its average m;:

J

which means spin ¢ only takes into account the influences from its nearest neigh-
bors. This is expected to be a good approximation when there are many spins
directly connected to spin ¢ and in which the interactions (the Js) are the same.

From equation (3.3), it is easy to write down the formula for field 6; as:

91' = tanhfl m; — Z szmj (34)

J
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The derivative of ; with respect to m; is the inverse susceptibility matrix which
equals to the inverse connected correlation matrix in terms of equilibrium statis-
tical mechanics.

o
amj
5

= 2
1—m;

(C™ i =
3.5

— Jij.

Thus, if one knows the correlation matrix, one has an inference algorithm based
on naive mean field approximation as (i # j):

Ji' = —(C_l)ij (36)

and 6; could be calculated by equation (3.4).

TAP approximation

When one takes into account the Onsager term, which takes away the contribu-
tion to the neighbor magnetization m; from the central unit s; when estimating
the field acting on s;, the TAP equation can be written as [8, 16]:

m; = tanh |6; + Z Jiimy — my Z ij(l — m?) (3.7
J J

TAP equations should be used in spin glasses where the couplings J;; are ran-
dom and with a very small mean as the Onsager term has the same order with
the naive mean field [8]. In [19], Plefka pointed out that equation (3.3) and (3.7)
are the first two terms in the sequence with better approximation which can be
derived systematically.

With equation (3.7), it is easy to write down the equation for the fields in the
following form:

0; = tanh ™t m; — Z Jiimj +m; Z Jizj(l - m?) (3.8)
J J

Then, perform similar derivative with respective to m; as in naive mean field
case, the inverse correlation matrix can be obtained as:

o8,
o 8mj
5,

=1 Jij = 2J5mim;.
K3

(C™h)i

(3.9)
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This means that if the correlation matrix is known, the couplings J;; can be
solved from above equation (3.9) with i # j [15, 16, 20, 21]:

(C™Nyy = —Jyj — 2T2mmy. (3.10)

One may note that for TAP case, there are N(N — 1)/2 independent quardratic
equations to be solved for coupling matrix J. This makes the TAP case more
complicated compared with the inference method with the naive mean field ap-
proximation.

For the above equilibrium inference methods, the self-couplings are equal to
zero by convention.

3.2 Learning from general to details (Kkinetic
models)

This section will cover the derivation of learning algorithms for parameters with
the asynchronous updated kinetic Ising model. We first derive the inference
equations for couplings and fields based on mean field equation and then move
to derive them by maximizing the log likelihood of the spin history.

3.2.1 Maean field approximation

This part of work refers to the derivation of inference equations in paper I Net-
work inference using asynchronously updated kinetic Ising model.

Similarly to the equilibrium case, we derive the inference formula with both
naive mean field equation and TAP equation in the frame of kinetic Ising model
with asynchronous updates.

With Glauber dynamics, the state of spin ¢ is time dependent s;(t). With this,
we can naturally define the time-dependent means and correlations as shown in
equation (2.20). With H;(t) = 0, + > ; Ji;8;(t), and from the master equation
(2.12) and the flipping rate (2.13), we have the equations of motion for means
and correlations as:

dm;
dt
d(si(t)s;(t))
dt

= —m,; + (tanh [H;(¢)]).
G.11)
= —(si(t)s;(to)) + (tanh [H;(t)s;(to)])-

For the second equation of equation (3.11), the term on the left-hand side and
the first term on the right-hand side can be solved based on the empirical data
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which could be produced by the Glauber dynamics. However, the calculation of
the second term involves all kinds of higher-order correlations and is therefore
not easily expressed only in terms of means and pairwise correlations. In or-
der to solve the second equation in (3.11), approximations of tanh function are
obviously needed. We use the nMF and TAP approximation to deal with this
problem.

Let
J

and rewrite H;(t) = 0; + > Jijs;(t) as

; -

with

Thus the terms in tanh function in the second equation of (3.11) are as follows:
H;(t)s;(to) = (b + > Judsi(t)) (m; + ds;(to)) (3.15)
k

Then expand the tanh function with respect to b;:

(si(t)s;(to)) + w =mym; + (1 —m?) (Z Jik<58k(t)58j(t0)>>
j (3.16)
with
Cij(t,to) = (9s5i(t)ds;(to)) = (si(t)s;(to)) — mim; 347
and defining
Dij(t,to) = Cyy(t, o) + W
(3.18)

= (1 - mf) Z JikC’kj(t, to)
k

In the limit ¢ — ¢,, we have the equation that need to infer the network connec-
tions:
J=A"'DC™, (3.19)

where A;; = 6;;(1 — m?).
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Equation (3.19) is a linear matrix equation with respect to J;;. We can solve it
for J;; directly. With the inferred J;;, the fields 6; can be solved by equation
(3.3).

Next, we derive the inference formula with TAP equation.

Similarly to the derivation of the inference formula with nMF approximation,
we start from the H;(¢) term in the tanh function as shown in the equation of
motion of correlations (3.11). It can be rewritten as follows:

Hi(t) =b; IFmZZ (1 —m2) +2Jkésk t). (3.20)
k#i

and the TAP equation
m,; = tanh | b, —m, Z Ja(1—md)|,

we expand the tanh function in the second equation of (3.11) with respect to
—m; Z (1-— m,g
k#1

to the third order and keep the terms only up to the third order of J. Then
the corresponding TAP inference formula for coupling .J;; is obtained, which is
formally the same as in the nMF approximation.

J=A"'DC™. (3.21)

However, matrix A in TAP formula is different
Aij = 0;(1—mj) |1 Z JE(1-m?)|. (3.22)

Equation (3.21) is a function of the couplings J, and therefore it is a nonlinear
equation for matrix J.

We try to solve equation (3.21) for J though two approaches. One way is to
solve it iteratively. We start from reasonable initial values .J;; 9 and insert them
in the right hand side of the formula. The resulting .J;; L is the solutlon after one
iteration. This can be again replaced in the right hand side to get the second
iteration results and etcetera ...

JH = A(JH T DC (3.23)
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An alternative way is solving it directly, as done for the synchronous update
model in [15], casting the inference formula to a set of cubic equations. For
equation (3.22), we denote

2{:(]2 1- (3.24)
and plug it into equation (3.21), and then obtain the following equation for J;;:

Vi,
JTAP _— 3.25
(= m)(i ) 02
where V;; = [DC™!];;. Inserting equation (3.25) into equation (3.24), we obtain
the cubic equation for F; as:
5, VA0 m?)
F(l-F)y?-=L2___ 7 _. 3.26
e (326)
With the obtained physical solution for F;, we get the reconstructed couplings
JTAP as

nMF
TAP __ Ji

e (3.27)

It is worth mentioning that for the cubic equation (3.25), we have three solutions
with possible imaginary parts. Here we study the real roots of the cubic equation
and ignore those solutions with imaginary parts. When three solutions are all
real ones, we take the smallest one.

3.2.2 Maximum likelihood reconstruction

This part corresponds to the derivation of inference formula derivation part
in paper Il Maximum Likelihood Reconstruction for Ising Models with Asyn-
chronous Updates.

For kinetic Ising model with asynchronous updates, the updating process can
be considered as a double stochastic process: the spin histories as well as the
update times of spins. Doubly stochastic processes are in fact abundant in real
life. An example is a securities market [22, 23] where traders place limit orders:
conditional offers to buy securities if their market price falls below a threshold,
or to sell if the market price rises above it. If offers are made, other traders
may respond or not; if they do, transactions take place. Whether or not limit
offers are placed define a first set of stochastic variables depending on which
transactions may or may not occur, defining a second set.

We recall the Glauber dynamics as presented in chapter 2. For an N spins
system s, = £1,7 = 1,..., N with coupling matrix J;; and field parameter 0;.
The dynamics can be described in either of the following two ways.
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(1) With a time discretization of size §¢, update spin ¢ with probability vdt. A
new value s;(¢ + dt) with probability exp(s;(t + 0t)H;(t))/2 cosh H;(t).
The new value, s;(t + dt) may be equal to the old one as updating does
not necessarily mean flipping. Multiple spins can be updated in one time
step, but for 0t < 1 (the limit we consider) in most steps at most one spin
is updated. In this formulation, the model is doubly stochastic: the dy-
namics of one set of stochastic variables (the spins) are conditional on the
dynamics of the other (the updates). Here the temperature in this model
equal to 1, because it can be absorbed into the definitions of the fields and
couplings.

(2) Start from the Glauber master equation (2.12). Then at every step every spin
is flipped with a probability vdt (1 — s;(t) tanh H;(t)) /2. As in scheme
(1), multiple spins can flip in a single time step, but this happens with
probability of order (6¢)2. Thus, §¢ < 1, in most time intervals at most
one spin is flipped.

The difference between the schemes is that in scheme (1) we have two sets of
random variables, the update times (which we denote by {;}) and the spin his-
tories {s;(t)}, while scheme (2) contains only the {s;(¢)}. One can easily show
that marginalizing out the {7;} in scheme (1) leads exactly to scheme (2), even if
~0t is not small. Thus, all averages over histories involving spins only (i.e., not
involving the update times) will be the same in the two schemes. Nevertheless,
knowing “the history of the system” (i.e., a realization of its stochastic evolu-
tion) means something different in the two schemes. In the first we know all
the update times, while in the second we only know those at which the updated
spins flipped.

Consider scheme (1) above. Suppose we are given a history of the system, i.e.,
the data s = {s;(t)} and 7 = {7}, of length L steps, and we are asked to
reconstruct the couplings and fields. We do this by maximizing the likelihood
P(s,7) = P(s|7)p(7) over these parameters. For each spin i, the 7; are a (dis-
cretized) Poisson process, i.e., every t has probability «dt of being a member of
the set 7. Thus the probability of the update history, p(7), is independent of the
model parameters, and we can take as objective function log P(s|7), i.e.,

Ly =Y [si(ri+ 6t)Hi(7:) — log 2 cosh Hy(7;)] .

This is just like the synchronous-update case except that the sum over times is
only over the update times. It leads to a learning rule

0Jij o gf; = Z[Si(ﬂ + 0t) — tanh(H;(7;))]s; (). (3.28)

Ti
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Defining J;o = 6;, so(t) = 1, this equation also includes the learning rule for 6.
We call this algorithm “spin- and update-history-based”, or “SUH”.

In scheme (2), we know only the spin history, not the update times. Since this
scheme is equivalent to the first one with the 7; marginalized out, we treat it by
maximizing P(s) = Y _P(S|7)p(r) [24], leading to

i (t+0t) Hi (1)

= 1 1 —7dt)d,, v t———
£2 Z 0og l:( Y ) si(t+6t),si(t) + v 2 COSh Hz(ﬁ)

it

as objective function. Separating terms with and without spin flips, the resulting
learning rules will be

0L,
ot
= Z (t + dt) — tanh(H,(t))]s;(t) + 77 Z qi(t)s;(t + ot)s;(t),
flips no flips

(3.29)

where ¢;(t) = [1 — tanh?(H,(t))], and it includes the rule for the 6; with the
convention J;g = 6;, so(t) = 1. We call this the “spin-history-only” (“SHO”)
algorithm.

Reconstruction errors for both algorithms can be calculated by analyzing the
Fisher information matrices. For SHO the Fisher matrix elements read

2L,
5zk Z QZ 5] 9l
R (3.30)

+ 2006t Y qi(t)si(t + 0t) tanh(H;(t))s; () si(t).

no flips

In the weak coupling limit, this matrix has nonzero elements only for j = [,
and the mean value of these non-zero elements yields the inverse of the mean
square reconstruction error (MSE). Without external fields, the second term in
equation (3.30) vanishes; thus, for a data set with length L, the MSE in this case
is 2/(Ldt~y), noting that the probability that a time step is a flip is vdt/2. For
SUH the calculation is analogous and for #; = 0 and weak couplings, the MSE
will be (Ldty)~1, i.e., a factor of two smaller than for SHO.

Next an algorithm by averaging the one for SUH in equation (3.28) over all
updating histories. Denoting C;(t) = (s;(t + to)s;(to)), the time derivative of
it can be written as
. it 5t’t 7}1't)'t
) = i S5 )s3(00)) = (slt)ss o))
5t—0 ot

(3.31)



28

Inference

where (...) means an average over all realizations of the stochastic dynamics.
Separating time steps into those at which an update occurred and those at which
no update occurred yields

Choft) = lim {75t<8i(n +0t)s;(to))r, — (si(7:)s;(to)) } . (3.32)

6t—0 ot

There is no contribution from steps with no flip because then s;(t 4 0t) = s;(t)
and the numerator would be zero. Thus we have expressed the average over
all realizations of the first term in equation (3.28) in terms of spin correlation
functions and their time derivatives:

In averaging the second term in equation (3.28), the average over {7;} can be
replaced by an average over all times, since the quantity tanh H;(¢)s;(¢) is in-
sensitive to whether an update is being made. Thus, averaging equation (3.28)
over all possible histories yields

We will refer to the update rule given by equation (3.34) as the averaged-SUH
rule, or “AVE” . This rule has the same structure as the one for the §ynchronous—
update model [15], with (s;(t + 1)s;(t)) replaced by C'(0) + ~~'C(0).

AVE requires knowing the equal-time correlations, their derivatives at t = 0,
and (tanh(H;(t))s;(t)). This latter quantity depends on the model parameter-
s (through H;(t)), so, in practice, estimating it at each learning step requires
knowing the entire spin history, the same data as SHO learning needs.

For SHO learning, when one performs the average over spin flip times, an algo-
rithm like equation (3.34) could be obtained. Denote the local fields at time ¢
generated by the true model (the one that generated the data) by H,L»(t), and, as
before, the local field calculated using the inferred parameters as H;(t). At each
time step ¢, then, the probability of flipping spin i is y0t[1 — s(t) tanh H;(t)] /2.
When one allots a weight 76t[1 — s(t) tanh H;(t)] /2 for the first term in equa-
tion (3.29) and the second a weight 1 — ~v6t[1 — s(t) tanh H;(t)]/2 ~ 1 getting

oL,

=L / dt[tanh H,(t) — tanh H;(t)] x [1 + s;(t) tanh H;(t)]s;(t).

2T
(3.35)



3.3. Performance of algorithms

29

The learning thus converges when the discrepancy tanh(H (¢)) — tanh(H (t))
is zero. Noting also that the arguments above leading to equation (3.33) yields
(tanh H(t)s;(t)): = v *C(0) + C(0), we write equation (3.35) as

8.Ji; o< 7 1Cy;(0) + C35(0) — (tanh Hy(t)s;(t)),

: (3.36)
+ ([tanh H;(t) — tanh H;(t)]s;(¢) tanh H;(t)s;(¢))e

The first line is identical to equation (3.34). We can obtain a learning rule heuris-
tically by an ad hoc factorization of the average in the second line as

([tanh H,(t) — tanh H,(t)]s;(t) tanh H;(t)s;(t));
‘(t

~ (tanh H;(t) — tanh H;(t)s;(t)):(s:(t) tanh H;(t));

yielding

0Jy; o [7’16"2-]-(0) + Cy;(0) — (tanh H;(t)s;(t))]
X {[1+ s;(t) tanh H;(t)]);. (3.37)

This just amounts to varying the learning rate in equation (3.34) proportional to
the time-averaged probability of not flipping according to the model. Thus we
arrive by a different route at the AVE rule, equation (3.34).

In this subsection, we start from two likelihood functions for the data producing
by Glauber dynamics, one in which update times are known, the other only the
spin history, we derive two different learning rules. These learning rules have
different precisions for inferring the couplings, and that they have a nontrivial
relation to each other: averaging over possible update times, they both lead to a
third one, but with different learning rates. Surprisingly, this third learning rule
can also be derived from the forward equations of motion for the correlations of
the asynchronous Ising model [4] and without appealing to a likelihood function.
This relates two previously unrelated approaches of learning the couplings.

3.3 Performance of algorithms

In this section, the performance of these five algorithms for reconstructing the
asynchronously updated kinetic Ising model are present. We compared the per-
formance of the algorithms SUH, SHO, and AVE to each other and to the
naive mean-field (nMF) and Thouless-Anderson-Palmer (TAP) approximations
to AVE investigated in [25] for fully asymmetric SK models [12]. The couplings
are zero-mean i.i.d. normal variables with variance g*/N (J;; is independent of
Jji). We study these for different values of g and 6, the system size N and the
data length L.
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As a performance measure, we use the mean square error (MSE) on the J;;.
The MSE is used to measure the difference between the reconstructed network
structure and the original true ones, which is

Zi;ﬁj(‘]ije - Jit;')ue)Q
NN-1)

where ij’" "¢ represents the true network couplings and J;* for the reconstructed
ones.

MSE = (3.38)

Figure 3.1 shows the performance of the algorithms. As anticipated above, the
error for SUH is half of that for SHO learning; see figure 3.1(a). The same
panel also shows that AVE and SHO appear to perform equally well for large
enough L. In retrospect, this is not surprising, since both algorithms effectively
use the same data (the spin history). For small L, the averaging that yields
AVE from SHO may be prone to fluctuations yielding the two learning rules
behaving differently. Figure 3.1(b) shows that the MSE for the exact algorithms
is insensitive to /N, while the approximate algorithms improve as N becomes
larger (note however the opposite trend in figure 3.1(a)); in these calculations,
the average numbers of updates and flips per spin were kept constant, taking
L = 5 x 10°N.) Figure 3.1(c) shows that the performance of the three exact
algorithms is also not sensitive at all to 6, while nMF and TAP work noticeably
less well with a non-zero . Finally, the effects of (inverse)g are depicted in
figure 3.1(d). For fixed L, all the algorithms do worse at strong couplings (large
g). The nMF and TAP do so in a much more clear fashion at smaller g, growing
approximately exponentially with g for g greater than ~ 0.2. In the weak-
coupling limit, all algorithms perform roughly similarly, except that SUH enjoys
its factor-2 advantage (conferred by knowledge of the update times), as already
seen in figure 3.1(a).

The approximate learning rules (nMF and TAP) are much faster in reconstruct-
ing the couplings while with worse accuracy compared with that of the exact
iterative learning rules (AVE, SHO and SUH).

3.4 Learning from data

The above mentioned algorithms, for both the ones based on mean field ap-
proximations and the ones relying on likelihoods, are tested on synthetic data
produced by Glauber dynamics with asymmetric SK model. However, the pur-
pose for us to study the learning algorithms is try to apply them to the recorded
data by experiments.

The essential part of the applications for these algorithms contains the mapping
of data. As the algorithms are derived from an Ising binary model, we should
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Fig. 3.1: Mean square error (MSE) versus (a) data length L, (b) system size
N, (c) external field ¢ and (d) temperature 1/g. Black squares show nMF, red
circles, TAP, blue up triangle SHO, pink down triangle AVE and green diamond
SUH, respectively. The parameters are g = 0.3, N = 20, § = 0, L=10" except
when varied in a panel.

start from the notation of the data. Usually, the given data is dependent of time.
Thus, we can bin the time of the data with an assumption that the active rates are
low enough that there is at most only one event per time bin. By this way, time
is discretized in the units of the bin size. Then, the state of element 7 at time ¢ is
denoted as s;(t), with s;(¢) = +1 if it is active and s;(t) = —1 if it does not.

This representation of data leads itself to be described in terms of Ising model.
And the algorithms we derived in the above sections could be applied to infer the
functional connections between elements. We first apply the AVE algorithm to
spike trains from 20 retinal ganglion cells. The inferred couplings are compara-
ble with that obtained from the Gibbs equilibrium model. The second example is
applying non-equilibrium nMF inference formula to New York Stock Exchange
(NYSE) data based on the information of transaction time and volumes to get
some sight of the connections between different stocks. The details about the
applications to real data will be presented in the following chapter 5.
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Chapter 4

L, Regularization

4.1 Introduction

This chapter refers to paper Il L, Regularization for Reconstruction of a Non-
equilibrium Ising Model.

The part of work is an extension of the derived learning rules for asynchronous
kinetic Ising model. Be different from the recent work in which the L, regular-
izer has been taken into account [26, 27] to infer the couplings more efficient-
ly, we focused on its application of non-equilibrium models as the equilibrium
ones are not the ideal choice for network reconstruction in many practical ap-
plications. Several recent studies have moved to kinetic models, using exact
and approximate learnings for reconstructing the couplings in non-equilibrium
models [15, 25, 28, 29]. This part of work has not yet exploited the potential
power of L, regularization in inferring the connections. Thus, we introduced
L, regularization to infer the couplings in a sparse asymmetric, asynchronously
updated kinetic Ising model as it tends to produce sparse models.
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The idea of L, regularization is simply to minimize a cost function which is
composed of negative log likelihood and L; norm. However, the L; norm is
not differentiable with respective to the couplings. When they approach to ze-
ro, we need to deal with them by hand or taking approximations to avoid the
problem. In our work, we do the calculations in several ways: (1) by iterative
minimization of the cost function, which is referred as full L, regularization. (2)
approximate scheme based on a quadratic expansion of the cost function around
its minimum. (3) approximate method where the learning rule depends only on
the diagonals of Fisher information matrix. (4) approximate method where the
learning rule depends only on the initial slope of the inferred parameters without
regularization.
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We also tried to studying the consistency of L; regularization in logistic and lin-
ear regression problems [26, 30, 31]. Asymptotic analysis shows that increasing
correlations between input variables in a regression problem has a negative ef-
fect on the performance of L, for these problems [30, 31]. However, in the
asymmetric SK model, correlations between the spins are controlled by the mag-
nitude of the couplings. Larger couplings are in general easier to identify and
therefore, without L;, as we show, these competing factors result in a decrease
in reconstruction error when coupling strength is increased. We show that this
continues to be the case for both full and approximate L, regularization.

4.2 Dynamics and underlying network

We consider a kinetic Ising model endowed with the asynchronously updated
Glauber dynamics which has been introduced in section 2.2.3. The dynamics
are performed on a diluted binary asymmetric SK model: J;; is independent of
J;i, and the interactions vary only in sign, not in magnitude: each coupling has
the distribution

pI) = 56 (J— \%) + 5270 <J+ %) +(1-5)b6).  @n

where c is the average in-degree (and out-degree). We are interested in sparse
networks, i.e., ¢ < N. We use N = 40 and ¢ = 5 in our computations. Fur-
thermore, as mentioned above, we model asymmetrically coupled spins, taking
each J;; independent of J;;. This model can have a stationary distribution (and
does for the parameters we use here), but it is not of Gibbs-Boltzmann form,
and no simple expression for it is known.

4.3 Exact learning with L, regularization

As derived in chapter 3, the negative log likelihood of the spin history and up-
dating history can be written as follows:

Ly = Z Z [si(7; + 6t)H;(7;) — log 2 cosh H;(T;)] . 4.2)

We can maximize the log-likelihood by simple gradient descent with a learning
rate 7:

0Ly = UZ[SZ'(TZ' + 6t) — tanh H;(7;)]s;(7). (4.3)

Ti
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For the exact learning rule, we take the initial couplings input Ji(JQ) = 0 and

iterate equation (4.3), obtaining the corrections § Ji(jn+1>

Ji(fb) = J;;l*l) + 5Ji<;l) on the right-hand side. Inserting each .J(™ into equation

using the nth estimate

(4.2) gives £§,") at each iteration step n. If we find an increase in likelihood
£ — £ < 1075, we consider the iteration to be convergent and stop.

For finite data length L, this procedure will in general produce a fully connected
network. To sparsify it, L penalize term is introduced to the cost function as:

E=—Lo+AY |l 4.4)

ij

where the first term is the negative log-likelihood and the second term is the
L; norm. The minimization of equation (4.4) leads to an additional term in the
learning rule for couplings:

(SJij =" {Z [51(7—2 + 6t> — tanh HZ(T,)] Sj(Ti) — A sgn(Jij)} . (45)

i

The log-likelihood function L is smooth and convex as a function of .Js, so the
cost function is still concave but not smooth at the place where any J;; = 0.
This leads to complications in the minimization whenever a minimum of £ is
at J;; = 0: We deal with this problem by setting J;; = 0 whenever the change
(4.5) would cause J;; to change sign. Then, if the minimum of £ truly lies at this
Jij = 0, the estimated J;; will oscillate between zero and a small nonzero value
(using sgn(0) = 0). The size of these oscillations is proportional to the learning
rate 7, so a sufficiently small 7 ensures that these couplings can be pruned by
a simple rounding procedure, with a negligible chance of removing couplings
that are not truly zero at the minimum. In the case that J;; is not zero at the
minimum, its estimated value will continue to change and it will move toward
its optimal value after the step where it was set to zero.

For this learning algorithm with L; regularization, we take as initial couplings
the J;;s obtained as described above without regularization. Then, for each value
of A, we iterate equation (4.5) to obtain successive parameter estimates. At each
step 1, we computer the cost function £ using the current parameter estimates
and stop the iteration process if £("~1) — E(") < 107>, The resulting .Js are then
taken as the initial couplings for the next value of A. This procedure is carried
out for all the values of A for which we want to evaluate the cost function.
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4.4 Approximate learning schemes

We can get some insight into how the learning rule works with regularization by
expanding the cost function (4.4) to second order around its minimum J° when
A = 0. Up to a constant, we have

Z C]k ViV + A Z | -+ vy (4.6)
ijk
where v;; = Jj; JZOJ, T = L/N is the average number of updates per spin,
A=A/T,and
a1
C;k) =7 Z(l — tanh® H(7;))s;(1:) sk (), 4.7

i

where H(;) is H;(7;) evaluated with .J; = JJ).

Since the quantities in the sum in (4.7) are insensitive to whether spin ¢ is updat-
ed, the average over updates may safely be replace by an average over all times,

C3il = (1 — tanh® H(1))3(t)si(1)). “8)
the Fisher information matrix for spin ¢, which is a more robust quantity.

Minimizing (4.6), we get, to first order in A,
Z C](-Qvik = —Xsgn(J); 4 vy;) & —Asgn(J]). 4.9)
k
Solving this equation for v;;,we obtain:

;= —)\Z C(Z sgn 9). (4.10)

This equation shows how the regularization term shrinks the magnitudes of the
couplings.

In the weak coupling limit (small g) and with a uniform external field, J;; are just
shrunk in magnitude proportional to A until they reach zero and are pruned. This
is a trivial kind of regularization: couplings that survive the pruning procedure
the longest are simply the ones with the biggest initial absolute values. However,
at larger coupling this is not the case. Some J;; will be shrunk more rapidly than
others, depending on the size and signs of the terms in the sum in (4.10).

Based on the quadratic expansion (4.6), we can carry out the pruning in an ap-
proximate way. We start from Jioj and a small value of ), calculate the shifts v;;
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by (4.10) and remove any J;; that would go though zero. With the resulting new
J;;s (some of them now equal to zero), increase A, recalculate the Fisher infor-
mation matrix and calculate new shifts in the parameter values. Again remove
any couplings that change sign, and continue until the desired degree of prun-
ing has been achieved. This amounts to numerical integration of the differential
equation, describing how the regularization works under increasing .

%A@) ==Y [COW)], sen(Jn(N)- (4.11)

k

Note that now the matrix C”(\) depends on ), since it is computed in the
absence of the bonds that were removed at previous steps.

4.5 Performance of Algorithms

The problem we consider now becomes to identify the positive and negative
couplings in the network, i.e., correctly classifying every potential bond as +,
— or 0. With an interesting intermediate length of data as 7' of 200 realizes
and g = 1/+/2, the couplings Jijs without regularization (A = 0) are shown in
Fig. 4.1. The partial histograms from the zero and nonzero-J classes are partly
overlap to each other.

200 200

150 | @ 4 150

100 4 100

p(Jo)

50 41 50

0

Jo Jo

Fig. 4.1: Distribution of the inferred couplings without L, regularization, g =
1/+/2 with data lengths 7" = 200. The left panel shows a histogram of the .J;;
obtained, and the right panel shows these sorted according to whether the bond
was present (black) or absent (red) in the network that generated the data.

Based on Js inferred with Ay = 0 as shown in Fig. 4.1, four pruning methods
were employed. Fig. 4.2 shows how the .Js inferred by each method vary as
the regularization coefficient A is increased. Here, we only show positive Jgs.
Bonds actually present in the model are plotted in black and red for absents.



38

L; Regularization

Fig. 4.2a shows the Js inferred using exact learning with full L; regularization
(4.5). Itis apparent that the pruning process for the case shown here is not trivial:
Some true (black) bonds, for which rather small values were inferred at A = 0
because of insufficient data, are “rescued" (they fall off more slowly with A than
red ones with nearly the same initial inferred Js), and some spurious (red) bonds
with high inferred values at A = 0 are driven to zero faster than black ones with
the same initial inferred Js. Thus, as \ increases the red and black lines tend to
get separated, and one can do the pruning almost correctly just by turning A up
until the desired number of bonds have been removed.

We also studied three approximate methods. The first one infers Js using the
quadratic expansion of the cost function and performs the regularization follows
equation (4.11). We refer this as “approximation 1". The qualitative features
of Fig. 4.2a are apparently reproduced by this approximation. In the second
approximate learning, the off-diagonal elements of [C’(i)()\)]j_kl are ignored in
(4.11), which we refer as “approximation 2". As shown in Fig. 4.2c, the sepa-
ration of red and black curves is not as good that in Fig. 4.2b. It is evident that
the slopes of the J;;(\) curves vary rather slowly with X in 4.2c. Therefore, we
also tried a linear extrapolation based on the slopes of the curves in figure 4.2c
at A = 0. We denote this method as “approximation 3". One needs only to
do the learning at A = 0 (to get the J;;(\)) and calculate the Fisher matrices
(to get the d.J;;/d)). Fig. 4.2d shows the result of this minimal algorithm. For
approximation 3, the inferred Js that have been shrunk to zero are removed per-
manently. For the other three approaches, the inferred Js have a chance to be
“resurrected” with increasing A, though in the results presented here we haven’t
observed this.

In order to quantify the performance of these algorithms, the empirical classifi-
cation errors are computed. There are three kinds of bonds in the actual network,
negative (-), positive (+) and zero. And the errors could be false positive (FP)
(actual absent is predicted as present), true positive (TP) (actual present is iden-
tified as present). Then, the Receiver Operating Characteristic (ROC) curves are
calculated for them. For a given ), the false positive rate (FPR) and true positive
rate (TPR) are defined as:

TPR — N(TPs)
N (actual presents)
N(EPs) (4.12)
FPR =

N (actual zeros)

The ROC curve is a plot of TPR versus FPR. In Fig. 4.3, we plot the ROC curves
for all of our methods. We further measure the performance of the different
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Fig. 4.2: Inferred couplings as functions of regularization coefficient A for four
methods: (a) full L; regularization using (4.5), (b) integration of (4.11), (c¢)
integration of (4.11) with diagonal approximation of the inverse Fisher matrix,
(d) linear extrapolation in A of the curves in (c). Black lines represent bonds
actually presents, while red lines represent ones equal to zero in the network
used to generate the data. We show equal number of red and black ones.

methods quantitatively by defining an error measure, €:
€ = 1 — area under ROC curve. 4.13)

The values of € for full L; and approximations 1, 2, 3 are 0.03, 0.06, 0.08, 0.09
respectively. Which means full L, algorithm works best, followed by approxi-
mations 1, 2, 3.

We establish a baseline for the performance of the methods by performing a
simple pruning procedure that does not require any L; regularization calculation.
For a given cut value J, the bonds whose Js lie in the range [—j , j] as absent
and those outside that interval as present. The black Js in Fig. 4.1b which lie
within the interval are FNs and the red ones outside the interval are FPs. Varying
J, we obtain an ROC curve. We refer to this procedure as “JO-cut”. The curve
with light blue squares in Figure 3 is calculated using this method. It gives the
same value of € (0.09) as Approximation 3, and the ROC curves nearly coincide.
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Fig. 4.3: ROC curves for full L; regularization, Approximations 1, 2, 3, and the
JO-cut method are shown in red, green, blue, pink and light blue, respectively.

4.6 Effects of coupling strength g on L
regularization

A well known result about L; regularization is that the presence of correlations
between covariates in a regression model will have a negative effect on the con-
sistency of the reconstruction [30, 31]. Given the likelihood in equation (4.2),
the inference of the connections in the kinetic Ising model can be considered as
a regression problem, where the spin configurations at time ¢ are the predictors
of the values at time ¢ + 1. One can therefore naively expect that increasing the
strength of the connections, g, and thus the correlations between the covariates,
will have a negative effect on the L;-regularized inference. However, this is not
true in our case.

To study the effect of the couplings and correlations, we thus calculate the ROC
curves for full L, regularization and Approximation 1, respectively, for two oth-
er values of g = 0.5, 1.

Figure 4.4 shows how the ROC curves change as we change g for a fixed data
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Fig. 4.4: ROC curves for full L; regularization (left, solid lines) and Approx-
imations 1 (right, solid lines) with g = 0.5, 1/ V2,1 respectively. The green
lines for g = 0.5, red for g = 1/+/2 and black for ¢ = 1. Corresponding dashed
lines are for JO-cut method of these gs. The length of the data is L = 6730.

length. The first observation is that for the JO-cut, shown by dashed lines, in-
creasing g helps recovering the correct connections. We see the same trend for
the exact L, regularization as well as Approximation 1, shown by solid curves.
This can be understood intuitively in the following way. Increasing g has two
negative effects. First, it increases the equal time correlations, that is, thinking
about the problem as a regression problem, one would be dealing with more
correlated covariates. Second, increasing ¢ increases the correlation time and
therefore different data points will be more correlated and less informative about
the presence or absence of a connection. On the other hand, with larger g, the
parameters to be inferred are bigger and can be identified more easily. It is the
relative strength of these three factors that determine the net effect of increasing
g on the inference, and, as we see, the last of these wins out over the other two
for the coupling strengths we have studied. Thus, with stronger couplings, L;
regularization is able to provide increasingly more accurate network reconstruc-
tions and more benefit over an un-regularized reconstruction.

4.7 Conclusion

We have studied the reconstruction of sparse asynchronously updated kinetic
Ising networks with L; regularization. With smaller data length, simple max-
imization of the log likelihood of the system history will infer fully connect-
ed network where many bonds are actually not present. The histogram of the
couplings can overlap strongly, and nontrivial methods are required to perform
optimal pruning of the inferred coupling set. Here we used L, regularization to
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do this, minimizing a cost function that includes the L;-norm of the parameter
vector as a penalty term. We performed this minimization in four ways, one
exact and the other three involving various degrees of approximation.

Calculations on a model network at intermediate coupling strength revealed that
the full L; regularization classified the bonds significantly better than a naive
method based on retaining the strongest bonds. Approximation 1 was some-
what worse than the exact algorithm, but still significantly better than the naive
method. Our other two approximations, obtained by successive simplifications
of Approximation 1, however, did not perform measurably better than the naive
way, as measured by the areas under their ROC curves. These conclusions are
general with respect to the coupling strengths we used. The regularization helps
more with stronger coupling strengths.

This work is the first that we know of that takes a detailed look at how L; regular-
ization works in a non-equilibrium model, by studying how bonds are removed
successively as the regularization parameter A is increased. Some insight in-
to how this happens was made possible by studying the quadratic expansion of
the cost function about its minimum, which also led to the relatively successful
Approximation 1. The process would have been more transparent if we could
have made further simplifying approximations, as we did for Approximation 2,
where we neglected off-diagonal elements of the inverse Fisher matrices. The
fact that this approximation performed rather poorly (while Approximation 1
did quite well) indicates that the off-diagonal terms in (4.11) are necessary, and
we lack generic insight about them.

For the kinetic SK model, increasing the couplings and thus the correlations
helps the performance of L. This was true both for the exact L, solution and,
for small data length, Approximation 1. Although at a first look this might sound
inconsistent with the results of the regression studies with L, [30, 31], a closer
look shows that this is not the case. In regression problems, correlations between
the input covariates and the strength of the couplings between the inputs and the
output are independent parameters. While for the model studied here in which
these two effects covary in a way that is controlled by the magnitude of the
couplings and have opposing effects on network reconstruction.
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Chapter 5

Applications

This chapter refers to the applications of the derived algorithms to real recorded
experimental data. Two data sets are investigated. One is neuronal spike trains
and the other one is transaction data of stocks on financial market. The former
one corresponds to the application part of paper Il Maximum Likelihood Recon-
struction for Ising Models with Asynchronous Updates and the latter one appears
on paper IV Financial interaction networks inferred from traded volumes.

For the neuronal data, we use AVE learning rule in equation (3.34) to reconstruct
the asynchronous connections of the neuron network as well as Boltzmann ma-
chine learning to infer the equilibrium couplings. The asynchronous couplings
are comparable with the equilibrium ones. This implies that the dynamical pro-
cess of this neuron system satisfies the Gibbs equilibrium condition and the
parameters can be obtained by the maximum entropy model also. However,
the asynchronous model allows the inference of self-couplings which are not
presented in the equilibrium model. Furthermore, the equilibrium model needs
Monte Carlo samples which makes the inference slower than the asynchronous
model.

For the financial stock trades data, we use approximate inferring algorithms
which are based on mean-field equations to infer a financial network composed
by 100 traded stocks. By transforming the data of transaction times and vol-
umes to binary strings, three inference methods are used to reconstruct the net-
work. They are equilibrium, synchronous and asynchronous inference methods
respectively. On one hand, the synchronous and asynchronous algorithms pro-
duce comparable results with that from equilibrium inference. On the other
hand, the non-equilibrium models allow the inference of self-couplings (diago-
nal elements of the coupling matrix) and directed links which are not present in
the equilibrium model.
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5.1 Reconstruction of a neuron network

This section refers to the application part of paper Il Maximum Likelihood Re-
construction for Ising Models with Asynchronous Updates. In this work, we
extract information from the records of a neuron system. One way to decode the
experimental data from neurons is to learn the network of which these neurons
are part. With the model network, one can adjust the values of parameters of it
to produce data close to the original spike trains as much as possible. Then, the
couplings could explain the how neurons in the network produce the data and
how they influence each other. Here, we choose the simplest network model
as Ising model which deals with binary strings and infers the pairwise connec-
tions between neurons. Next, we show how to do it from the given data by the
asynchronous model.

5.1.1 Data description and representation of data

We considered neuronal spike trains from salamander retina under stimulations
by a repeated 26.5-second movie clip. The provided data set records the spiking
times for the neuron and has a data length of 3180 seconds (120 repetitions of
the movie clip). Here, we only focuses on NV = 20 neurons with the highest
firing rates in the data set. Data sets of this type have been studied previously
using equilibrium Ising model. The data has been binned with time windows of
10 ms or more. The reason for choosing this window size is that they are larger
than the typical temporal correlation width of the neurons (the typical time scale
of the autocorrelation function of a neuron). Here, since we are using the kinetic
model, we have the ability to study this data set using a much shorter time bin
which can make low enough firing rates there is (almost) never more than one
spike per bin. Then, the temporal correlations with time delays between neuron
pairs as well as the self-correlations become important.

For the asynchronous Ising model, the time bins are 6t = 1/(yN). For neural
data, v can be interpreted as the inverse of the time length of the autocorrelation
function which is typically 10 ms. To generate the binary spin history from
this spike train data set, we should therefore bin the spike trains into time bins
of length vt = 1/20. Which means the size of time bins should be chosen
as ot = 1/(20y) = 0.5 ms. We can just simply transform the spin trains in to
binaries in a common way as follows: a +1 is assigned to every time bin in which
there is a spike and a -1 when there is no spikes. However, this translation will
always end up with isolated instances of +1 while superfluous of -1s which is not
the expected case for asynchronous Ising model. Thus, we introduce memory
process for each neuron to the data set. It is a time period with an exponential
distribution with mean of 1/ in the data translation. Denote the total firing
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number of neuron 7 as F;, and t{ as the firing time of fth spike for neuron i,
where: = 1,...,Nand f = 1, ..., F; — 1, then the mapping of the spike history
is follows:

. fo - - -1
(1) _{ 1, if t € [t (7,62 + X)) with X ~ exp(y7) .1

—1, otherwise

where X is a period drawn from exponential distribution with mean 10 ms.
By this way, we obtain the asynchronous type of data that are needed for the
asynchronous model.

5.1.2 Inference methods for connections

We take the binary spin history that transformed from the original spiking trains
to infer the couplings with the asynchronous Ising model by using the “AVE”
learning rule in equation (3.34)

8.Ji; = n{y ' Ci(0) + Cy;(0) — (tanh(H;(t))s;())}.

With J;o = 6;, so(t) = 1, the above equation also includes the learning rule for
the field ;. Here, the learning rate is chosen as 7 = 0.5. The initial conditions
are zero couplings and the external fields are #; = tanh™" m, for the learning
iterations.

We also used the same spin history to fit an equilibrium Ising model by using
exact Boltzmann learning as shown in equation (3.1)

691 =n (<Si>Dat¢z - <Si>Model) )
j =1

0Jij (<5i5j>Data - <Si3j>Model) .

The learning rate 7 is 0.5 also and there are 100000 Monte Carlo steps per iter-
ation for the second term in the Boltzmann learning rule. The initial conditions
are same with that for asynchronous case.

5.1.3 Results

In the current inference of retina functional connections, the value of model pa-
rameters like window size dt, inverse time scale ~y are set as a priori according to
the previous studies on equilibrium Ising model. This avoids systematic studies
over the value of parameters.

As presented in Fig. 5.1, the inferred couplings by Gibbs equilibrium and asyn-
chronous kinetic Ising model are very close to each other. We also tested what
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Fig. 5.1: Inferred asynchronous versus equilibrium couplings for retinal data.
Red stars show the self-couplings which by convention are equal to zero for the
equilibrium model.

happens to the couplings of the asynchronous model if during learning we sym-
metrized the couplings matrix at each iteration by adding its transpose to itself
and dividing by two and also putting the self-couplings to zero. We find that the
resulting asynchronous couplings get even closer to the equilibrium ones.

However, the asynchronous model allows the inference of self-couplings (diag-
onal elements of the coupling matrix) which are not present in the equilibrium
model. As shown in Fig. 5.1, the diagonals from the equilibrium model equals
to zeros by convention and denoted by the red stars. Furthermore, to be differ-
ent from the symmetric couplings by the equilibrium model, the asynchronous
model provides more details as the inferred couplings are directed and asym-
metric.

This result provides a guide for the use of the maximum entropy equilibrium
Ising model: if the asynchronous couplings were far away form the equilibrium
ones, it would imply that the real dynamical process did not satisfy the Gibbs
equilibrium conditions and that the final distribution of states is not the Gibbs
equilibrium Ising model. Since inferring the equilibrium model is an exponen-
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tially difficult problem, requiring time consuming for Monte Carlo samplings
while the asynchronous approach does not. The asynchronous learning rules
thus allow the inference of functional connections that for the retinal data large-
ly agree with the maximum entropy equilibrium model, but the inference is
much faster.

5.2 Reconstruction of a finance network

This section refers to paper IV Financial interaction networks inferred from
traded volumes. In which we use three approximate inference methods based on
mean-field equation to infer a financial network from trade data of 100 stocks.
They are equilibrium, synchronous and asynchronous (non-equilibrium) ones
for Ising model respectively. The recorded data are transformed into binaries
by local averaging and thresholding. This introduces additional parameters that
have to be studied systematically to understand the behavior of the system. On
one hand, the inferred couplings from synchronous and asynchronous methods
are quite similar to the equilibrium ones. All produce network communities that
have close industrial features. On the other hand, the non-equilibrium ones are
more detailed as they are directed compared with that from the equilibrium ones.

5.2.1 Data description and representation

The recorded data was generated by transactions on the New York Stock Ex-
change (NYSE) over a few years, and each trade is characterized by a time, a
volume traded, and a price. We only focus on the trades for 100 trading days
between 02.01.2003 and 30.05.2003. However, we only use the information of
trading time and volume.

We study the 10* central seconds of each day to avoid the opening and closing
periods of the stock exchange, which is same with that in [32]. Two parameters
are introduced to the data transform as the sliding window are adopted. One is
the size of the sliding time window (denoted as At), the other one is the shifting
constant (which is As = 1 second, the time resolution of the data). This means
that the information contained in two mapped data points separated by a time
less than At is partly redundant. However, it also means that no information
from the original data is lost.

In the present work, only volume information of a trade is considered. For
each stock ¢, we consider the sum of the volumes V;(¢, At) traded in window
[t,t + At), and compare it to a given volume threshold V" = x V%" At, where
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V.# is the average (over the whole time series) volume of the considered stock
traded per second, and y a parameter governing our volume threshold:

_ 17 Zf V;(tv At) 2 tiz
s ={ 1y i an 2o 62
The parameters At and y will be explored systematically for the inference with
the goal that to find values of the parameters which yield inferred couplings
containing interesting information.

5.2.2 Inference methods for connections

With the transformed binaries, it is natural to define magnetization m,; and cor-
relations C;;(7) as shown in equation (2.20).

With them, we will use three different inference methods that are based on
mean-field approximation. The inference formula for couplings are different
for each method:

 Equilibrium inference (i # j), which only focuses on equal time correla-
tions [21]
-1
Jij = =C(0),;
» Synchronous inference is suitable for non-equilibrium inference, and con-
siders also time-lagged correlations with a time lag 7 in addition to equal
time correlations [15], which can be rewritten as:

1

1—m?

Ty =

—1

(Cre™),

* Asynchronous inference [25], also modeling non-equilibrium processes,
uses the derivative of the time-lagged correlations C;(7), as shown in
equation (3.19) and be rewritten as:

oo ! (dc(f)lT_OC(O)l)

71—m? dr

ij

The inference formula for fields is same for these three inferences, which can be
obtained from the mean-field approximation:

0; = arctanh m; — Z Jijm;.
J#i
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Fig. 5.2: Evolution with mapping parameters x and At of the magnetization and
the connected correlations, averaged over the whole dataset (all stocks or pairs
of stocks, and whole time period).

The main difference between the two last methods is that synchronous inference
assumes that all spins are proposed to update in parallel at a discrete time, while
asynchronous inference does not have a such assumption: update times them-
selves are stochastic variables. The asynchronous method is supposedly more
powerful, as it monitors the decay in time of all pair correlations.

It is noticeable that be different from equilibrium case, the synchronous and
asynchronous inference ones have an additional parameter 7 , which is the time-
lag of correlations. For the asynchronous case, this time scale does not appear
explicitly in the formula, but arises when the derivative is computed from the
data.

5.2.3 Results

We show the average magnetization and connected correlations as a function of
the window size At for several xs. As presented in Fig. 5.2, for short window
size, correlations are small at any volume scale x, which can be linked to the
fact that the average magnetization tends to -1. Correlations are small for long
window size with either small or big x because magnetization tends to be 1 or
-1 respectively.

The distributions of couplings for different values of the parameters are present-
ed in Fig. 5.3. For asynchronous inference, the derivative of the time-lagged
correlations C‘ij(r) is computed through a linear fitting of this function C;;(7)
using four points: C'(0), C(At/5), C'(2At/5) and C(3At/5). This explains
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Fig. 5.3: Histograms N(J) of inferred couplings. Upper panel has four log-
lin subplots with: upper left one, histogram of J,, with different time bins,

upper right N (J,,), using 7

At; bottom left N (J4sy,) and bottom right

N(Jsyn) with different values of 7. Bottom panel: couplings obtained by the
three inference methods. Jyy, and .J,,, are rescaled to have the same standard
deviation as N(J,,). For the three versions, x = 0.5 and At = 200 seconds,
and for synchronous inference 7 = At.
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Fig. 5.4: Histograms of the eigenvalues of the equal time connected correlation
matrix. Parameters: y = 0.5 and At = 100 seconds.

why the histogram of J,,,, becomes sharper when At is increased on the upper
panel of Fig. 5.3, as this parameter is then in the denominator of the derivative.

The bottom panel of Fig. 5.3 shows that the three inference methods give similar
distributions of couplings. For comparison, the distributions are rescaled on the
bottom panel so as to have the same standard deviation. The upper panel shows
how these distributions change with the parameters. It can be remarked that
for small time scales, they have a strictly positive mean and a long positive
tail. For higher time scales, the distributions are more centered around zero, but
they keep an asymmetry and a longer positive tail than the negative one. This
prevalence of positive couplings can intuitively be linked with the market mode
phenomenon [33, 34, 35, 36]: a large eigenvalue appears, corresponding to a
collective activity of all stocks, illustrated in Fig. 5.4.

With increasing values of At, the histograms of J., (and J,y, with 7 = At)
become broader, which implies larger interactions between stocks appears. The
last figure of the upper panel of Fig. 5.3 shows that the histogram of J,,, does
not change much with 7 for high values of this parameter, which indicates J5y,,
are insensitive to big values of 7.

To measure the similarity of interaction matrices J and J’ which inferred from
different inference methods, a similarity measurement () ; 5 is defined as:

Zi.j Jij‘]i/j
>y max(Jy;, J;)?

Qi = (5.3)
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Fig. 5.5: Similarity () between interaction matrices obtained with different
inference methods, versus window length At. The couplings are rescaled to
have the same mean. x = 0.5,7 = At for the synchronous inference, and the
same fitting as for Fig. 5.3 is used for the asynchronous inference.

This measurement compares elements of two matrices one by one and gives a
global similarity measure. It takes real values between 1 (when J;; = J;; forall i
and j) and -1 (J;; = —J] g for all ¢ and j), and values close to zero indicate uncor-
related couplings. The values of () is smaller than 0.02 in absolute value when
all elements of the vectors J;; and Jj; are drawn independently at random from
a same Gaussian distribution, of mean 0, and for different values of the stan-
dard deviation of this distribution. However, Fig. 5.5 displays high similarities
between couplings obtained from equilibrium, synchronous and asynchronous
inference. Synchronous and asynchronous inference give especially close re-
sults, while equilibrium inference gives couplings which differ more from the
other two methods. All similarities increase when At decreases, which is also
consistent with the Epps effect (the phenomenon that the empirical correlation
between the returns of two different stocks decreases as the sampling frequency
of data increases [37]) and the fact that the system becomes less interacting on
small time scales.
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Fig. 5.6: Inferred financial networks, showing only the largest interaction
strengths (proportional to the width of links and arrows). Colors are indica-
tive, and chosen by a modularity-based community detection algorithm [16].
Parameters: x = 0.5 and At = 100 seconds. Left panel: equilibrium inference.
Right panel: synchronous inference, with 7 = 20 seconds.

To show the statistical error of the inference methods, we perform the Glauber
dynamics with the inferred couplings and fields obtained from the inference
of the financial data. With the provided synthetic data, we perform inference
again. The agreement between two sets of couplings is very good, with the MSE
equals to 1.6 x 1075, The synchronous and asynchronous inference methods give
similar low inference errors when performing corresponding test.

5.2.4 Examples of inferred finance networks

As the inferred finance networks are densely connected, we focus only on the
largest couplings, which can be easily explained by closely related activities of
the considered stocks. The left panel of Fig. 5.6 shows that with equilibrium
inference, more than half the stocks in the data can be displayed on a network
where almost all links have simple economical interpretations.

The right panel of Fig. 5.6 presents the results of synchronous inference in the
same conditions. It shows that the results of equilibrium and synchronous in-
ference are consistent, and that synchronous inference provides additional in-
formation, as it infers an directed network (all this is also true for asynchronous
inference). For instance, GE is clearly a node which in influences others and is
not strongly influenced itself at this level of interaction, and the financial sector
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is a directed chain.

From the network samples, we have the following two basic conclusions. First,
they show market mode (most of the interaction strengths found are usually pos-
itive, which indicates that the financial market has a clear collective behavior)
[34, 35] even only trade and volume information is considered. Stocks tend to
be traded or not traded at the same time.

In addition, the strongest inferred interactions can be easily understood by sim-
ilarities in the industrial activities of the considered stocks. This means that
financial activity tends to concentrate on a certain activity sector at a certain
time. For price dynamics this phenomenon is well-known [33, 36, 38], but it is
more surprising that it appears also based on the information of traded volumes.

Symbol Name Description

ABT Abbott Laboratories Pharmaceutical

ADI Analog Devices Semiconductors

AFL Aflac Incorporated Insurance

AIG American International Group Insurance

ALL Allstate Co. Insurance

AVP Avon Products Personal care manufacturer
AXP American Express Co. Financial services

BAC Bank of America Co. Financial

BA The Boeing Co. Aerospace and defense
BAX Baxter International Pharmaceutical, health care
BBY Best Buy Co. Inc. Electronics retailer

BK The Bank of New York Mellon Co. Financial services

BLS BellSouth Telecommunications
BMY Bristol-Myers Squibb Company Pharmaceutical

BNI Burlington Northern Santa Fe Co. Railway, railroad

BSC Bear Stearns Investment bank

BSX Boston Scientific Co. Medical devices

BUD Anheuser-Busch InBev Beverages

CA CA Technologies Software corporation
CAG ConAgra Foods Inc. Packaged food

CAH Cardinal Health Inc. Pharmaceutical

CAT Caterpillar Inc. Machinery, financial
CCU Compania Cervecerias Unidas S.A. Beverages

CI CIGNA Co. Health care management
CL Colgate-Palmolive Company Health care

DD E. I. du Pont de Nemours and Company Chemical company

DE Deere and Company Heavy equipment

DHR Danaher Co. Conglomerate



5.2. Reconstruction of a finance network

55

Symbol Name Description

DIS The Walt Disney Company Mass media

DOW The Dow Chemical Company Chemicals

DUK Duke energy co. Energy

EMC EMC Co. Computer storage

EMR Emerson Electric Co. Electrical equipment

FDC First Data Co. Financial services

FNM Fannie Mae Home loan and mortgage
FON Fiber Optic Network Multimedia Communicator
FRE Freddie Mac Home loan and mortgage
GCI Gannett Co., Inc Media

G Genpact Management and Technology
GD General Dynamics Co. Aerospace

GDT Guidant Co. Designs and manufacture
GDW Golden West Financial Financial

GE General Electric Company Conglomerate

GIS General Mills Food

GM General Motors Company Automotive

GPS The Gap, Inc. Retail

HD The Home Depot, Inc. Retailing: home construction
HDI Harley-Davidson Inc Motorcycle manufacturers
IBM International Business Machines Co. IT services

IGT International Game Technology Gaming technology

1P International Paper Company Pulp and paper

IT™W llinois Tool Works Inc. Manufacturing

INJ Johnson and Johnson Medical and pharmaceutical
K Kellogg Company Food

KMB Kimberly-Clark Co. Personal care

KO The Coca-Cola Company Carbonated soft drink
KRB MBNA Co. Banking

KR The Kroger Co. Retail

KSS Kohl!’s Co. Retail

LEH Lehman Brothers Holdings Inc. Investment services

LLY Eli Lilly and Company Bio-pharmacy

LOW Lowe’s Companies Inc. Retailing

MCD McDonald’s Co. Restaurants

MDT Medtronic, Inc. Medical equipment

MEL mellon financial co. Financials

MER Merrill Lynch Wealth Management  Investment

MMC Marsh-McLennan Companies, Inc. Insurance brokers

MOT Motorola, Inc. Telecommunications
MRK Merck and Co. Inc. Bio-pharmacy
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Symbol Name Description
NCC National City Co. Banks
NEM Newmont Mining Co. Metals and mining
NOC Northrop Grumman Co. Aerospace-defense
OoMC Omnicom Group Inc. Communication
ONE Higher One Holdings, Inc. College business
0044 Occidental Petroleum Co. Oil and gas
PEP Pepsico Beverages
PFE Pfizer Inc. Pharmacy
PG The Procter and Gamble Company Consumer goods
PGR Progressive Co. Insurance
PNC The PNC Financial Services Group, Inc. Financial services
PPG PPG Industries Inc. Glass and Chemicals
RD Royal Dutch Shell gas and oil
SBC SBC Communications Inc. Telecommunication
SCH Charles Schwab Co. Brokerage and banking
S Sprint Co. Telecommunications
SGP Schering-Plough Co. pharmaceuticals
SLB Schlumberger Limited Oilfield services
SLE Chicago-based Sara Lee Co.. Consumer-goods
SO Southern Company Electric utility
STI SunTrust Banks, Inc. Banking
SYY Sysco Co. Food
TRB Tribune Company Multimedia corporation
TXN Texas Instruments Inc Semiconductor
TYC Tyco International Ltd. Security
UNP Union Pacific Co. Railroad
UTX United Technologies Co. Conglomerate
WAG Walgreen Co. Retailing
WEFC Wells Fargo and Company Banking, Financial
WLP WellPoint Inc. Managed health care
WMT = Wal-Mart Stores Inc Retailing
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Chapter 6

Conclusions

This thesis is composed by three parts: derivations of learning rules for asyn-
chronous updated kinetic Ising model (papers I and II) in chapter 3, L, regu-
larization (paper III) in chapter 4 and applications of learning rules to recorded
experimental data (paper II and paper IV) in chapter 5.

6.1 Learning rules for asynchronous Ising model

Both approximate and exact learning rules of asynchronously updated kinetic
Ising model have been derived in Chapter 3.

Two approximate learning rules are based on different levels of mean-field equa-
tions. One is based on the Curie-Weiss approximation applied to the magnetic
systems, which we refer as naive mean-field method (nMF). The other one is
on improved equations where the Onsager term has been considered. This one
is denoted as TAP inference. Both of them are starting from the equation of
motion for the correlations.

In addition, two exact learning rules are derived from maximizing two kinds of
log likelihoods. One in which both spin history and updating history of spins
are known. However, in the other case, only spin history is known. These t-
wo leaning rules are referred as SUH and SHO respectively. We also derived
average version of SUH over the update times, which is denoted as AVE and
surprisingly, it can also be derived from the equation of motion for the correla-
tions. This indicate that the nMF inference rule is not just heuristic: it can be
derived from the likelihood also.
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It is expected to develop new inference methods based on the out-of-equilibrium
properties of kinetic Ising model in the further research work. For instance, the
generalized fluctuation-dissipation theorem (FDT) can be investigated for the
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specific kinetic Ising model from the non-equilibrium statistical mechanics point
of view and then new inference method could be expected. These current de-
rived inference methods provide promising performance in practical terms. The
derivation of inference can be extended to different inverse statistical mechan-
ical problems which maybe beyond the particular case of kinetic Ising model
also.

6.2 L, regularization

L; regularization is applied to infer sparse asynchronous Ising model as it tend-
s to produce sparse model in Chapter 4. With the purpose of monitoring the
behavior of L, regularization, we only use simple gradient descent algorithm:
iteratively minimize a cost function equal to minus log likelihood of data and
plus an L; penalty norm. To heal the non-differentiability of the L; norm with
respect to the couplings, we put them to zeros by hand when they change their
signs during the minimization. We refer this as full L, regularization. We also
perform the approximate calculation which is based on a quadratic expansion of
the cost function around its minimum. The pruning of connections is tracked by
increasing the strength of L, penalty from zero to large values.

We find that increasing the coupling strength improves the reconstruction of
connections, which seems contrary to regression models which are typically
studied in the context of L; regularization. However, it is not the case. In re-
gression problems, correlations between the input covariates and the strength
of the couplings between the inputs and the output are independent parameters.
This is not the case for the model studied here or for many other kinetic models
in which these two effects covary in a way that is controlled by the magnitude
of the couplings and have opposing effects on network reconstruction.

The inferred couplings from the derived algorithms are fully connected. How-
ever, in real applications, some suspicious and spurious weak links need to be
eliminated. In such case, L; regularization should be added as it allows to sort
true small couplings from truly zero couplings. L; regularization is expected to
be applied in the network reconstruction from real experimental data for biolog-
ical system, financial system, etc.

6.3 Applications of learning rules
Two of the derived learning rules are applied to inferring interaction network

from the recorded experimental data in Chapter 5. The first case is applying
“AVE” learning rule to reconstruct the couplings between neurons from record-
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ed spike trains. The data are firstly transformed to binary strings with asyn-
chronous style by introducing memory effect to each neuron. On one hand, the
reconstructed couplings by asynchronous kinetic Ising model present very simi-
lar results comparing with that from Gibbs equilibrium model, as they are close
to each other on the scatter plot of them. On the other hand, the asynchronous
model allows the inference of self-couplings (diagonal elements of the coupling
matrix) which are not present in the equilibrium model.

The second case is to reconstruct a financial network from trades data of 100
stocks recorded from NYSE. With a sliding window of size At¢, we move the
time window with a sliding constant As = 1 second. We map the raw data to
binary strings by local averaging and thresholding. The interaction matrix of
the financial network is obtained by three inference methods which are all based
on mean-field equations. They are equilibrium, synchronous and asynchronous
methods respectively. On one hand, coupling matrices inferred by equilibrium
methods are quite close to that from synchronous and asynchronous methods,
on the other hand, the latter provide more details as the inferred couplings are
directed.

For the first data set, we are only focused the values of one set of parameters.
It is possible to investigate them systematically. Furthermore, we can also try
to infer the couplings by other asynchronous learning rule (say, SHO) or syn-
chronous model. For the second data set, we can perform different ways of data
mapping, in which the information of price can also be included. Additionally,
the current mapping are based thresholding of the average, for which we can
move to quantiles to avoid the heavy fluctuations in the system behaviors.






Bibliography

Bibliography

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

[9]

[10]

E. Schneidman, M. J. Berry, R. Segev, and W. Bialek. Weak pairwise cor-
relations imply strongly correlated network states in a neural population.
Nature 440, 1007 (2006).

C. E. Shannon. Mathematical theory of communication. Univ. of Illinois
Press, Bell System Technical Journal 207, 379 (1948).

L. Landau and E. Lifshitz. Statistical physics. Course of theoretical physic-
s, Pergamon International Library of Science, Technology, Engineering
and Social Studies, Oxford: Pergamon Press 1 (1980).

R. J. Glauber. Time-dependent statistics of the Ising model. Journal of
Mathematical Physics 4, 294 (1963).

M. Chaves, R. Albert, and E. D. Sontag. Robustness and fragility of
boolean models for genetic regulatory networks. Journal of theoretical
biology 23S, 431 (2005).

F. Greil and B. Drossel. Dynamics of critical Kauffman networks un-
der asynchronous stochastic update. Physical Review Letters 95, 048701
(2005).

K. Klemm, S. Bornholdt, and H. G. Schuster. Beyond Hebb: Exclusive-or
and biological learning. Physical Review Letters 84, 3013 (2000).

D. Thouless, P. Anderson, and R. Palmer. Solution of ‘solvable model of a
spin glass’. Philosophical Magazine 35, 593 (1977).

R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal
of the Royal Statistical Society. Series B (Methodological) 58, 267 (1996).

P. Ravikumar, M. J. Wainwright, and J. D. Lafferty. High-dimensional
Ising model selection using L,-regularized logistic regression. The Annals
of Statistics 38, 1287 (2010).



62

Bibliography

[11] J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for gener-
alized linear models via coordinate descent. Journal of Statistical Software
33,1 (2010).

[12] D. Sherrington and S. Kirkpatrick. Solvable model of a spin-glass. Physcal
Review Letters 35, 1792 (1975).

[13] A. Crisanti and H. Sompolinsky. Dynamics of spin systems with randomly
asymmetric bonds: Langevin dynamics and a spherical model. Physical
Review A 36, 4922 (1987).

[14] Y. Roudi, J. Tyrcha, and J. Hertz. Ising model for neural data: Model
quality and approximate methods for extracting functional connectivity.
Physical Review E 79, 051915 (2009).

[15] Y. Roudi and J. Hertz. Mean field theory for nonequilibrium network re-
construction. Physical Review Letters 106, 048702 (2011a).

[16] Y. RoudiandJ. Hertz. Dynamical TAP equations for non-equilibrium Ising
spin glasses. Journal of Statistical Mechanics: Theory and Experiment
P03031 (2011).

[17] P. Peretto. Collective properties of neural networks: a statistical physics
approach. Biological cybernetics 50, 51 (1984).

[18] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for
Boltzmann machines. Cognitive Science 9, 147 (1985).

[19] T. Plefka. Convergence condition of the TAP equation for the infinite-
ranged Ising spin glass model. Journal of Physics A: Mathematical and
General 15, 1971 (1982).

[20] T. Tanaka. Mean-field theory of Boltzmann machine learning. Physical
Review E 58, 2302 (1998).

[21] H. J. Kappen and F. Rodriguez. Efficient learning in Boltzmann machines
using linear response theory. Neural Computation 10, 1137 (1998).

[22] A. Ranaldo. Order aggressiveness in limit order book markets. Journal of
Financial Markets 7, 53 (2004).

[23] S. Maslov. Simple model of a limit order-driven market. Physica A: Sta-
tistical Mechanics and its Applications 278, 571 (2000).

[24] C. Kipnis and C. Landim. Scaling limits of interacting particle systems,
volume 320. Springer (1999).



Bibliography

63

[25] H.-L. Zeng, E. Aurell, M. Alava, and H. Mahmoudi. Network inference
using asynchronously updated kinetic Ising model. Physical Review E 83,
041135 (2011).

[26] M. J. Wainwright, P. Ravikumar, and J. D. Lafferty. High-dimensional
graphical model selection using Li-regularized logistic regression. Ad-
vances in Neural Information Processing Systems 19, 1465 (2007).

[27] E. Aurell and M. Ekeberg. Inverse Ising inference using all the data. Phys-
ical Review Letters 108, 090201 (2012).

[28] J. A. Hertz, Y. Roudi, A. Thorning, J. Tyrcha, E. Aurell, and H.-L. Zeng.
Inferring network connectivity using kinetic Ising models. BMC Neuro-
science 11, P51 (2010).

[29] H.-L. Zeng, M. Alava, E. Aurell, J. Hertz, and Y. Roudi. Maximum likeli-
hood reconstruction for Ising models with asynchronous updates. Physical
Review Letters 110, 210601 (2013).

[30] K. Knight and W. Fu. Asymptotics for Lasso-type estimators. Annals of
Statistics 1356—1378 (2000).

[31] P. Zhao and B. Yu. On model selection consistency of Lasso. The Journal
of Machine Learning Research 7, 2541 (2006).

[32] 1. Mastromatteo and M. Marsili. On the criticality of inferred models.
Journal of Statistical Mechanics: Theory and Experiment P10012 (2011).

[33] T. Bury. Statistical pairwise interaction model of stock market. The Euro-
pean Physical Journal B 86, 1 (2013).

[34] J.-P. Bouchaud and M. Potters. Theory of financial risk and derivative
pricing: from statistical physics to risk management. Cambridge university
press (2003).

[35] R. N. Mantegna and H. E. Stanley. An introduction to econophysics: cor-
relations and complexity in finance (2003).

[36] C. Biely and S. Thurner. Random matrix ensembles of time-lagged corre-
lation matrices: derivation of eigenvalue spectra and analysis of financial
time-series. Quantitative Finance 8, 705 (2008).

[37] T. W. Epps. Comovements in stock prices in the very short run. Journal of
the American Statistical Association 74, 291 (1979).



64

Bibliography

[38] L. Kullmann, J. Kertész, and K. Kaski. Time-dependent cross-correlations
between different stock returns: A directed network of influence. Physical

Review E 66, 026125 (2002).



O
©
O
a1
n
o
o
o1
©
o
N
w

ISBN 978-952-60-5802-3
ISBN 978-952-60-5803-0 (pdf)
ISSN-L 1799-4934

ISSN 1799-4934

ISSN 1799-4942 (pdf)

Aalto University
School of Science
Department of Applied Physics
www.aalto.fi

BUSINESS +
ECONOMY

LG
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <>
    /SKY <>
    /SLV <>
    /SVE <>
    /TUR <>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /SUO <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




