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Abstract 
Graphene is an effectively two-dimensional semimetallic material consisting of a sheet of 

carbon atoms arranged in a hexagonal lattice. Due to its high electron mobility and special 
electronic properties, it is considered to be a promising candidate for various future electronic 
applications. Freestanding graphene was discovered as late as in 2004, but since then it has 
become the focus of numerous studies, sparking not only scientific but also significant  
commercial interest. 

  
Realizing the potential of the material requires both theoretical, numerical, and experimental 

studies. An important computational model for studying the electronic properties of graphene 
is the so-called tight-binding (TB) model. In the TB model, the charge carriers of a material are 
described using effective parameters, which can be either derived from more complex models 
or fitted to experimental or computational results. 

  
In this Thesis, the TB model was used to study both the local density of states (LDOS) of 

graphene as well as electronic transport in graphene. Simulating the LDOS of graphene is 
important, since it may be more or less directly measured using scanning tunneling microscopy 
(STM), and is thus extremely helpful for characterizing the properties of nanometer-sized 
graphene samples. The results presented in this Thesis, which show good agreement between 
simulations and STM measurements, help to determine the electronic structure of graphene 
quantum dots on various substrates. 

  
Simulations of electronic transport aid in making graphene useful for semiconductor 

applications. Graphene may be turned semiconducting by various means, such as by cutting it 
into ribbons or by adding disorder. In this Thesis, it was showed how scaling theory can be 
utilized to obtain the conductance of a mesoscopically sized disordered graphene device using 
first-principles-based results and how the localization length of the charge carriers can be 
obtained effectively using the so-called Kubo-Greenwood method. The results aid in 
interpreting experimental conductance measurements and in estimating how strong disorder 
is required to turn graphene into an effective semiconductor.  
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Sammandrag 
Grafen är ett effektivt tvådimensionellt material som består av kolatomer arrangerade i ett 

hexagonalt gitter. Tack vare speciella elektroniska egenskaper, som laddningsbärarnas höga 
mobilitet, anses grafen vara en lovande kandidat för framtida elektroniska tillämpningar. 
Fristående grafen upptäktes så sent som 2004, men sedan dess har materialet blivit fokus för 
otaliga studier. Förutom ett vetenskapligt intresse, har grafen under den senaste tiden också 
skapat ett betydande kommersiellt intresse. 

  
För att förverkliga materialets potential krävs både teoretiska, numeriska och experimentella 

studier. Den så kallade starkbindningsmodellen är en viktig numerisk modell för simulering av 
grafen. I starkbindningsmodellen beskrivs laddningsbärarna med hjälp av effektiva parametrar, 
som kan härledas med hjälp av mera komplexa numeriska metoder eller genom att anpassa dem 
till experimentella resultat. 

  
I denna avhandling används starkbindningsmodellen till att simulera både lokal 

tillståndstäthet samt elektronisk transport i grafen. Att simulera lokal tillståndstäthet är 
viktigt, eftersom den kan mer eller mindre direkt mätas genom sveptunnelmikroskopi. Därmed 
är metoden extremt användbar för att karakterisera nanometerstora grafenflagor. Resultaten 
som presenteras i denna avhandling visar att simuleringarna stämmer bra överens med 
experimentella resultat. 

  
Simuleringar av elektronisk transport kan hjälpa med att få grafen användbart för 

halvledarapplikationer. Grafen kan fås till att bli en halvledare med olika metoder, till exempel 
genom att skära den i strimlor eller lägga till oordning i det annars perfekta gittret. I denna 
avhandling visas hur man kan använda ab initio -baserade metoder för att beräkna grafens 
konduktans och hur den så kallade Kubo-Greenwood-metoden kan användas till att beräkna 
laddningsbärarnas lokaliseringslängd. Dessa resultat hjälper att tolka experimentella 
mätresultat och att estimera hur stark oordning krävs för att ändra grafen till en effektiv 
halvledare. 
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1. Introduction

Graphene is an effectively two-dimensional material formed by a sheet of

carbon atoms arranged into a hexagonal lattice. As it exhibits very spe-

cial electronic and mechanical properties, an enormous scientific and com-

mercial interest has grown around the material during the recent years.

Freestanding graphene was discovered as recently as in 2004 by Andre

Geim and Konstantin Novoselov [1], which earned them the Nobel Prize

in Physics 2010. However, prior to this, graphene had already been syn-

thesized on top of various substrates [2, 3]. As it is closely related to

graphite, and due to its peculiar electronic properties, it had also been

studied theoretically and computationally already since 1947 [4].

In the graphene lattice, the four valence electrons of carbon are ar-

ranged into σ and π bonds [5]. The energy bands that correspond to the π

bonds intersect conically at the charge neutrality point, which gives rise

to unique electronic features, such as the half-integer quantum Hall ef-

fect [6, 7]. The conical intersections occur at the corners of the hexagonal

Brillouin zone, which leads to the formation of two inequivalent valleys

in the electronic band structure. The two fact that a hexagonal lattice

consists of two sublattices adds another degree of freedom for the charge

carriers. Such a system with two degrees of freedom and a linear disper-

sion relation can be modeled by a Dirac equation for massless fermions,

albeit with an effective velocity of light that equals the Fermi velocity of

graphene, i.e. ∼ 106 m/s [5]. The relativistic nature of the charge carriers

leads to phenomena such as Klein tunneling and Zitterbewegung [8, 9].

Graphene can be seen as the basic building block of a variety of materi-

als with different dimensionalities, such as quasi-one-dimensional nano-

ribbons or nanotubes, zero-dimensional fullerenes or three-dimensional

graphite [9]. Depending on the edge type, there are two basic kinds

of graphene nanoribbons (GNRs), called armchair-edged GNRs (AGNRs)
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Figure 1.1. Two different edge types of graphene. (a) shows an armchair-edged graphene
nanoribbon and (b) a zigzag-edged graphene nanoribbon.

and zigzag-edged GNRs (ZGNRs), while ribbons having intermediate edges

are called chiral. The edge types are presented in Fig. 1.1. The edge type

has a significant impact on the electronic properties of graphene, as a lo-

calized state is formed along the zigzag edge, whereas it is absent along

armchair edges [10]. According to computational simulations, the local-

ized edge state of the zigzag edge is susceptible to spin polarization, a

feature that has so far not been experimentally unambiguously observed.

Experiments have, on the other hand, shown that all GNRs tend to ex-

hibit a transport gap, inversely proportional to the width of the ribbon

[11]. The transport gap does usually not equal the band gap, and may

e.g. be caused by localization induced by edge disorder [12] or Coulomb

blockade [13] originating from a disordered potential background induced

by the substrate [14].

In this Thesis, focus is laid on computational simulation of the elec-

tronic and transport properties of graphene utilizing models based on

the tight-binding (TB) approximation. The parameters of the model are

acquired from fitting against first principles results. As shown by com-

parisons with scanning tunneling microscopy (STM) measurements, TB-

based simulations can reproduce experimental results very well, and TB

is thus very useful for interpreting various STM measurements. As the

main reason for charge carrier scattering in graphene is still debated,

TB-based transport simulations may help in interpretting experimental

transport measurements. Moreover, such simulations may aid in finding

methods to turn graphene into a semiconductor, which is essential for cre-

ating graphene-based electronic devices.

The Thesis is organized as follows. Chapter 2 presents the main numeri-

cal methods that have been used. In Chapter 3, the electronic structure of
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graphene is discussed. In Publication I, TB models for graphene are pre-

sented, suitable for both band structure and electronic transport calcula-

tions. In Publications II to V, both TB and density-functional-theory-based

results are compared against scanning tunneling microscopy measure-

ments of graphene-based systems. Chapter 4 deals with electronic trans-

port in graphene. In Publication VI, two TB-based methods for transport

calculations are compared, namely the Landauer-Büttiker and the Kubo-

Greenwood formalisms, and efficient methods to implement the Kubo-

Greenwood method on GPUs are presented. Publication VIII deals with

how the localization length of a mesoscopic conductor can be obtained us-

ing the Kubo-Greenwood formalism. In Publication VII, Fabry-Pérot in-

terference in a graphene device is studied both experimentally and com-

putationally. In Publication IX and Publication X an effective scattering

cross section formalism for transport calculations in graphene is studi-

ed. In Publication XI, electronic transport in the quantum Hall regime is

studied, and in Publication XII transport results for notched spin-polarized

ZGNRs are presented.
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2. Computational methods

2.1 The tight-binding model

The TB model is a very simple model for electronic structure calculations.

Its advantage over ab initio methods is its low computational cost, which

enables simulating systems that are large enough to contain even millions

of atoms. Despite the simplicity of the model, it is relatively accurate,

especially for carbon-based materials such as graphene.

In the TB model, the total wave function of a system is approximated to

be a linear combination of atomic orbitals centered on the atomic sites of

the lattice. The model can be further simplified by only simulating charge

carriers with energies close to the Fermi level. For example, each carbon

atom has four valence electrons, but in graphene they are arranged in

three planar σ bonds and a single π bond, distributed equally over the

neighbors. In graphene, the electronic states closest to the charge neu-

trality point (CNP) correspond to the π bonds, and thus it is sufficient to

model only a single π electron per atomic site [15].

The Hamiltonian for an electron occupying a lattice point can be written

as

H = Hat +ΔV (r), (2.1)

where Hat is the atomic Hamiltonian and ΔV (r) is the potential caused

by all the other ions of the lattice. Let ψn(r) denote an eigenstate of the

atomic Hamiltonian, i.e. an atomic orbital, thus satisfying

Hatψn(r) = Enψn(r). (2.2)

An electronic state Ψ(r) localized at the atomic site can be expressed as a

15
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linear combination of the atomic orbitals, according to

Ψ(r) =
∑
n

bnψn(r), (2.3)

where bn denotes the expansion coefficients. These electronic states can

further be expanded to form a Bloch wave that satisfies the periodicity of

the lattice, defined by the lattice vectors R,

Φ(r) =
∑
R

exp(ik · r)Ψ(r−R), (2.4)

where k is the crystal momentum. This can be taken to be the solution of

a Schrödinger equation with the Hamiltonian defined by Eq. 2.1, i.e.

HΦ(r) = HatΦ(r) + ΔV (r)Φ(r) = E(k)Φ(r). (2.5)

By multiplying with ψ∗(r) and integrating over r this turns into the ma-

trix equation ∑
n

A(k)mnbn = E(k)
∑
n

B(k)mnbn, (2.6)

where the matrices A and B are defined as

A(k)mn =
∑
R

exp(ik ·R)

∫
ψ∗
m(r)Hψn(r−R)dr (2.7)

and

B(k)mn =
∑
R

exp(ik ·R)

∫
ψ∗
m(r)ψn(r−R)dr. (2.8)

By inserting Eq. 2.1 and using the orthonormality of the atomic orbitals

an equivalent expression can be obtained, i.e.

∑
n

C(k)mnbm = (E(k)− Em)
∑
n

B(k)mnbn, (2.9)

where the elements of the matrix C(k) are defined as

C(k)mn =
∑
R

exp(ik ·R)

∫
ψ∗
m(r)ΔV (r)ψn(r−R)dr. (2.10)

As an abbreviation, the integrals can be denoted as

s(R) =

∫
ψ∗(r)ψ(r−R)dr (2.11)
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and

t(R) =

∫
ψ∗(r)ΔV (r)ψ(r−R)dr. (2.12)

The first integral is commonly called the overlap integral, and the second

the hopping integral, as it can be thought to represent the energy cost for

a charge carrier to hop from one lattice site to another. The values of both

t(R) and s(R) greatly depend on the discrete variable R. The wave func-

tion Ψ(r) decays exponentially away from the lattice site with R = 0, and

it is often approximated that s = 0 if R �= 0, which creates an orthogonal

TB model. If R = 0, s(R) = 1. In the simplest tight binding model, the

hopping integral is assumed to take nonzero values only between near-

est neighbors, but also further than nearest neighbor interactions may be

considered.

2.2 The Hubbard model

The basic TB model describes non-interacting particles. Thus, in order to

simulate phenomena like spin polarization, one may add an interaction

term into the Hamiltonian. The so-called Hubbard model provides one of

the simplest ways to implement this, by taking into account the Coulomb

repulsion of the electrons only in the case of the electrons occupying the

same lattice site. This allows the study of the basic magnetic properties of

graphene-based systems. In the second quantization notion, the Hubbard

Hamiltonian can be written as

H =
∑
i,j

ti,jcic
†
j + U

∑
i,σ

ni,σni,−σ, (2.13)

where c and c† are the electronic creation and annihilation operators, i

and j are site indices, and U is a parameter describing the strength of

the electronic on-site Coulomb repulsion. ni,σ and ni,−σ are the number

operators for the opposite spins σ and −σ. Despite the simplicity of the

Hubbard model, it can only be used to study systems that contain a hand-

ful of lattice sites, as the dimension of the many-body Hilbert space grows

roughly exponentially with system size. In order to study larger systems,

one may apply the mean field approximation, which effectively reduces

the interparticle interactions into interactions between a single particle

and and a field caused by all the other particles. It is derived as follows.

17



Computational methods

The fluctuation of the spin density from the mean value 〈ni,σ〉 is given by

Δni,σ = 〈ni,σ〉 − ni,σ, (2.14)

and the Hubbard term can thus be written as

U
∑
i,σ

(〈ni,σ〉 −Δni,σ)(〈ni,−σ〉 −Δni,−σ)

= U
∑
i,σ

(〈ni,σ〉〈ni,−σ〉 − 〈ni,σ〉Δni,−σ − 〈ni,−σ〉Δni,σ +Δni,σΔni,−σ).
(2.15)

If the fluctuations are assumed to be small, the last term can be ignored.

After re-insertion of Eq. 2.14, the final form of the mean field Hubbard

Hamiltonian is acquired

H =
∑
i,j

ti,jcic
†
j + U

∑
i,σ

(ni,σ〈ni,−σ〉+ ni,−σ〈ni,σ〉 − 〈ni,σ〉〈ni,−σ〉). (2.16)

As the Hamiltonian is needed to obtain the spin occupancies, it must be

solved self-consistently, starting with a randomly chosen spin distribu-

tion. As the converged result does not necessarily represent the ground

state, the computations need to be performed several times in order to

ensure that the ground state is found. After a converged ground state re-

sult has been acquired, the spin polarization pi at a lattice site i may be

calculated using the expression

pi =
〈ni,σ〉 − 〈ni,−σ〉
〈ni,σ〉+ 〈ni,−σ〉 . (2.17)

2.3 Density functional theory

The density functional theory (DFT) is an ab initio model that can be used

to compute the electronic structure of various systems. The foundations

of the DFT are laid by the two Hohenberg-Kohn theorems [16]. According

to the first one, the electronic density n uniquely determines the elec-

tronic properties of the system. Thus the number of degrees of freedom of

an N -particle system may be reduced from three times N to three. The

second Hohenberg-Kohn theorem states that the exact ground state min-

imizes the total energy, which is a functional of the electronic density.

In order to compute n, the so-called Kohn-Sham framework is used [17].

The framework is based on a Hamiltonian for non-interacting electrons,
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which move in an effective potential background that takes into account

electron-electron interactions. The potential background is a functional

of the electronic density, although the choice of the functional is not com-

pletely unambiguous.

The DFT is applied by constructing the Kohn-Sham (K-S) Hamiltonian

[17]. It can be used to solve the total energy of the system, as well as the

self-consistent electronic density. However, the physical meaning of the

individual K-S eigenvalues and eigenstates has not been rigorously jus-

tified, although the energy of the highest occupied eigenstate has been

shown to be related to the first ionization energy [18]. Nevertheless,

as comparisons with scanning tunneling microscopy measurements have

shown, the individual K-S eigenstates bear a clear similarity with exper-

imental dI/dV maps.

2.4 Methods for computing the local density of states

The local density of states (LDOS) is defined as the number of electronic

states per volume and energy element. Scanning tunneling microscopy

provides a method to measure the LDOS experimentally, and experimen-

tal results may be directly compared to the simulated LDOS maps. To

obtain the LDOS maps, one may compute the retarded Green’s function

for the system, i.e.

G(E) =
1

EI −H + iη
, (2.18)

where I is the identity matrix and η a small positive number, whose mag-

nitude determines the broadening of the states in energy. The LDOS at

atomic site i can be obtained from the diagonal elements of the Green’s

function using the expression

ρi(E) = − 1

π
Im Gii(E) (2.19)

Alternatively, if a finite or a periodic system is studied, one may directly

diagonalize the corresponding Hamiltonian. To compare the discrete eigen-

value spectrum obtained from diagonalization with experimental results,

each eigenvalue is be broadened using a Lorentzian function, which cre-

ates equivalent results compared with the Green’s function method. One

has to note that the experimentally measured values are affected by the

lifetime broadening of the charge carriers, as well as the layout of the

experimental setup, and the broadening parameter may simply be fitted
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with the experimental results. In the case of small finite systems, one

may obtain a local density of states by means of exact diagonalization of

a many-body Hamiltonian. In Publication II and Publication III, the local

densities of states for finite seven-atom wide AGNRs, given by the mean-

field Hubbard model, the full many-body Hubbard model, and the DFT,

are compared with experimental results.

In addition to the TB model, the LDOS can also be approximated using a

continuum model. In principle, the correct continuum model for graphene

is the Dirac equation, which takes into account all the degrees of freedom

of the charge carriers. However, it has been demonstrated that away from

the zigzag edges, the LDOS of a hexagonal graphene flake can be fairly

accurately estimated also using the scalar Klein-Gordon equation [19]

−v2F�
2∇2ψi = E2

i ψi, (2.20)

where vF is the Fermi velocity of graphene.

2.5 Methods for transport calculations

2.5.1 The Landauer-Büttiker formalism

The Landauer-Büttiker formalism is a very commonly used method to

compute the conductance of a device coupled to two or multiple contacts.

An introduction to the formalism can be found e.g. in Ref. [20]. In the

Landauer-Büttiker approach, the contacts are modeled as ballistic semi-

infinite leads. The conductance is obtained from the transmission func-

tion T (E), which for a single mode-system equals the probability of a

charge carrier to transmit from one contact to another. If there are several

transport modes involved, the transmission function equals the sum of the

transmission probabilities for the different modes. The retarded Green’s

function for a system attached to two leads is given by the expression

G(E) = [EI −H − ΣL(EL)− ΣR(ER)]
−1 , (2.21)

where I is the unit matrix and ΣL/R(EL/R) is the self-energy of the corre-

sponding lead. The Fermi energy EL/R of the leads can be set to the same

value as in the device, E, or to an arbitrary value. In this work, it is set

either to E or to a fixed value of 1.5 eV, which is used to simulate metallic
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contacts with a high number of propagating modes. The self energy mat-

rices may be obtained through different methods, e.g., using an iterative

method [21]. The matrices ΓL/R, that describe the coupling to the leads,

are obtained from

ΓL/R = i
[
ΣL/R − Σ†

L/R

]
, (2.22)

and the conductance is then computed using

G(E) = G0Tr
[
ΓRG(E)ΓLG†(E)

]
, (2.23)

where G0 ≡ 2e2/h is the quantum of conductance.

2.5.2 The Kubo-Greenwood method

The Kubo-Greenwood (KG) method is an alternative method to compute

the conductivity of a phase-coherent conductor [22, 23]. In the Kubo-

Greenwood formalism, the conductivity is acquired from the expectation

value of the mean square displacement (MSD) of the charge carriers.

Thus, as opposed to the Landauer-Büttiker formalism, contacts or leads

are not modeled. In Publication VI, it is presented how the KG method

can be implemented on graphics processing units, together with a com-

parison with results obtained using the Landauer-Büttiker approach.

The KG formalism is presented in detail in Publication VI, but below is

a short summary of the main methods. In the time-dependent Einstein

formula [24, 25, 26, 27, 28, 29, 30, 31], which can be derived from the KG

formula, the zero-temperature electrical conductivity at Fermi energy E

and correlation time t may be obtained as a time-derivative of the MSD

ΔX2(E, t), i.e.,

σ(E, t) = e2ρ(E)
d

2dt
ΔX2(E, t), (2.24)

where

ΔX2(E, t) =
Tr

[
2
Ωδ(E −H) (X(t)−X)2

]
Tr

[
2
Ωδ(E −H)

] , (2.25)

and

ρ(E) = Tr
[
2

Ω
δ(E −H)

]
(2.26)

is the density of states (DOS) with spin degeneracy included. X(t) =

exp(iHt/�)X exp(−iHt/�) is the position operator X given in the Heisen-

berg representation. In the case graphene simulations, Ω is the area of

the simulation cell.

The KG method has several advantages over the Landauer-Büttiker for-
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malism. Perhaps most importantly, one can achieve linear scaling of the

computational cost with regard to the simulation cell size, whereas in the

GF method the computational cost scales cubically with the width of the

system. On the other hand, the KG method has also some drawbacks. Ob-

viously one of them is that the effect of contacts cannot be modeled, only

the intrinsic properties of the material. Additionally, in a quasi-1D sys-

tem, the individual transmission values for different conduction channels

cannot be acquired.
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3. The electronic structure of graphene

3.1 Band structure

The π electron bands of two-dimensional graphene contain valleys hav-

ing linear dispersion and being located at the corners of the hexagonal

Brillouin zone. Two of the valleys are nonequivalent, creating a valley de-

gree of freedom for the charge carriers. Due to these features, the charge

carriers behave as massless Dirac fermions close to the CNP. Figure 3.1

shows the band structure of graphene given by a nearest-neighbor TB cal-

culation and Figure 3.2 shows a zoom-in on the band structure at one of

the valleys. The band structure of graphene can be simulated using the

DFT, and the TB parameters can then be optimized against the results.

In Publication I different sets of TB parameters are presented, suitable

for modeling both the band structure and electronic transport properties

of GNRs.

As shown in Publication I and Ref. [15], an extended TB model is able

to provide results that are very similar to those acquired from much more

time consuming ab initio calculations. The results still depend highly on

the parameters that have been selected, and different sets of parameters

can reproduce the band structure of AGNRs and ZGNRs with different de-

grees of accuracy. In Publication I also electronic transport results given

by TB and DFT are compared, more of which will be discussed in Chap-

ter 4.

If graphene is cut into ribbons, the 2D electronic bands become split into

sub-bands due to transverse quantization of the energy. In AGNRs, this

leads to the formation of a band gap that is inversely proportional to the

width of the ribbon [32]. This is illustrated in Fig. 3.3, which shows the

band structure of a 14-AGNR, as well as the band gaps of a range of AG-
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Figure 3.1. The valence band of 2D graphene, computed using a nearest-neighbor tight-
binding model.

Figure 3.2. A zoom-in on the band structure of graphene around one of the Dirac points.
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Figure 3.3. Comparison between DFT (gray) and TB (black) results for armchair
graphene nanoribbons. The left panel shows the band structure of a 14-
AGNR, and right panel a comparison of the calculated the band gaps of
narrow AGNRs of different widths. The upper panel compares a nearest-
neighbor orthogonal TB model results with the DFT results, and the lower
panel a third-nearest neighbor non-orthogonal TB model results with the
DFT results.

NRs with different widths. The gray bands and circles have been obtained

using DFT simulations, whereas the black ones are from TB calculations.

The upper row compares a nearest-neighbor orthogonal TB model with a

DFT result, whereas the lower row compares an optimized third-nearest

neighbor non-orthogonal TB model with the same DFT result. In the DFT

results, the local density approximation has been applied. The parame-

ters are given in Publication I. It can be seen that the nearest-neighbor

TB model predicts one third of the ribbons to be metallic, whereas a model

with hoppings up to third-nearest neighbors correctly predicts a gap for

all AGNRs.

In addition to a different quantization direction, ZGNRs differ from AG-

NRs by exhibiting a special localized edge state that arises due to the

edge topology. Computational results for ZGNRs are shown in Fig. 3.4,

where the black lines indicate results from a third-nearest neighbor non-

orthogonal mean-field Hubbard model. Interestingly, the localized edge

state is located at the CNP and causes all such ribbons to be metallic, in

the absence of electron-electron interactions. However, as the DFT or the

application of the mean-field Hubbard model show, a gap may open up.
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Figure 3.4. Comparison between DFT (gray) and TB (black) results for zigzag graphene
nanoribbons. The left panel shows the band structure of a 14-ZGNR, and
right panel a comparison of the calculated the band gaps of narrow ZGNRs
of different widths. The upper panel compares a nearest-neighbor orthogonal
TB model results with the DFT results, and the lower panel a third-nearest
neighbor non-orthogonal Hubbard model results with the DFT results.

The opening of the gap depends strongly on the doping of the ribbon, as

the simulations predict that only charge-neutral ribbons will have a gap.

Thus best comparison with DFT results can be achieved by including a

Hubbard mean-field and a parameter set covering electron hoppings and

overlaps up to third-nearest neighbors. However, as an overlap matrix

complicates the calculations and increases the number of free parame-

ters, without adding significant qualitative detail near the Fermi level,

it is not essential in a minimal model. On the other hand, second- and

third-nearest neighbor hoppings may be valuable additions in the model.

Second-nearest neighbor hopping results in electron-hole asymmetry as

well as increased trigonal warping of the conical band structure, whereas

third-nearest neighbor hopping causes a band gap in all AGNRs [33]. A

TB model with hoppings up to third-nearest neighbors thus is able to ac-

curately reproduce both the ab initio band structures and transmission

properties of GNRs. The addition Hubbard mean field is relevant mainly

for systems containing zigzag-shaped edges, as neither bulk graphene nor

armchair-shaped edges exhibit spin-polarization with reasonable values

of U .
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Ab initio results predict that in AGNRs the edge bond lengths are about

3.5 % shorter than those in the middle of the ribbon, leading to increased

overlap and hopping between the corresponding atomic sites. To take this

into account in the TB model, it has been proposed that t1 can be increased

by 6–12 % at the edges [32, 34]. The band gaps of AGNRs can be calcu-

lated with even better accuracy by taking into account edge relaxation. In

ZGNRs the edge relaxation is weaker and modifying the nearest neighbor

hopping values to take it into account causes only negligible changes in

the band structure.

3.2 Comparisons between simulations and scanning tunneling
microscopy results

In scanning tunneling microscopy (STM), an atomically sharp tip is placed

on top of a sample, and the electric current is measured after the appli-

cation of a bias voltage between the sample and the tip. Such a system

conducts through quantum-mechanical tunneling of charge carriers. The

measured results are affected by the finite lifetime of the charge carriers

in the sample, which causes a broadening in energy. In such a case, the

tunneling current is proportional to the LDOS of the sample close to the

tip. According to the Tersoff-Hamann theory of STM [35],

I ∝
∑
ν

|ψν(r0)|2 σ(Eν − EF ), (3.1)

where ψv(r0) is the amplitude of the νth eigenstate at r0 and Eν is the

corresponding energy eigenvalue. Thus STM provides a method to study

the electronic structure of a sample, as the measured dI/dV maps provide

an estimate for the local density of states at the tip position.

In Publication IV, the electronic structure of hexagonal graphene nano-

flakes on top of an Ir(111)-surface were studied through STM measure-

ments and computational simulations. The measurements yielded stand-

ing wave patterns, whose complexity increased with increasing energy, as

shown as in Fig. 3.5 (a). This indicates behavior analogous to a particle-in-

a-box-problem. To simulate the patterns, an atomistically exact TB-based

model was created, and the eigenstates were solved through exact diago-

nalization of the TB Hamiltonian. The results are presented in Fig. 3.5 (c),

whereas predictions from a simple continuum model based on the Klein-

Gordon equation are shown in Fig. 3.5 (d).
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Figure 3.5. (a) Atomically resolved image of a graphene flake on Ir(111). (b) STM maps
of graphene nanoflakes on Ir(111), taken at different bias voltages. (c) and (d)
show the corresponding TB and continuum model (based on the Klein-Gordon
equation) maps. (e) Correspondence between experimental bias voltages and
the energy values of the best fitting theoretical simulations.

Figure 3.6. Comparison of the low-energy eigenstates (left) and eigenvalues (right) of a
finite 7-atom wide AGNR obtained using three different methods. The differ-
ent markers link the eigenstates and the corresponding eigenvalues.
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Figure 3.7. Comparison between measured (top) and simulated (bottom) electronic states
of finite armchair-edged graphene nanoribbons. These simulations have been
performed using the density functional theory, although tight-binding simu-
lations yielded very similar results. In the simulations, the tip is assumed to
be a mix between a p-type and an s-type orbital.

Similar confined states have been found also in other studies [36, 37, 38].

In particular, Altenburg et al. [38] argued that the observed states may

be examples of confinement of the Ir(111) surface state. This view is sup-

ported by ab initio calculations, suggesting that the Ir edge state decays

slower in the perpendicular direction than bulk graphene states. This can

be explained by the fact that the Fermi surface of graphene is located in

the vicinity of the K points of the Brillouin zone, whereas the edge state

of Ir resides close to the Γ point. On the other hand, one has to note

that finite graphene flakes on the Ir(111) substrate were not simulated

in Ref. [38] and may exhibit different behavior, especially if their size is

small.

Computational results were compared against STM measurements also

in Publication II. Finite, seven dimer wide armchair nanoribbons were

formed from precursor molecules using a bottom-up technique presented

in Ref. [39]. STM imaging and scanning tunneling spectroscopy (STS)

measurements of the ribbons was performed, and compared against DFT

and Hubbard model results. It was noted that both ab initio and Hubbard

model calculations can reproduce the low-energy dI/dV maps, measured

using both s- and p-type tips. This is illustrated in Fig. 3.6, which com-

pares the theoretical results with each other, and in Fig. 3.7, which com-

pares DFT results with experimental measurements. The simulations are

discussed in more detail in Publication III. However, simulating the STS

spectra requires a model which takes into account phonon-assisted tun-

neling, more of which is discussed in Section 4.6.
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Figure 3.8. Comparison between a measured (left) and a simulated (right) STM map of
the graphene - hexagonal boron nitride interface state. The simulated image
has been calculated using a third-nearest neighbor TB model. The graphene
lattice is indicated by the hexagonal network, whereas the positions of the
boron atoms are indicated by orange circles and the positions of the nitrogen
atoms by blue circles.

In Publication V the interface between graphene and hexagonal boron

nitride (h-BN) was studied. STM measurements showed a series of ob-

long spots along the interface at low-bias measurements, a feature which

according to the simulations matches an interface where the boron and

carbon atoms are bonded together. A comparison of the experimental map

with a TB simulation is shown in Fig. 3.8. The orthogonal TB model in-

cludes hoppings up to third-nearest neighbors, with the hopping param-

eters being the same for both the graphene and h-BN lattices. h-BN is

simulated through onsite potentials on the B and N atoms. The hopping

parameters between the graphene and h-BN lattices have been reduced,

as this gives a best match with a DFT-based band structure. This is fur-

ther motivated by DFT predicting longer bond lengths between the two

different lattices compared to the intralattice bond lengths. According

to both DFT and TB simulations, an interface formed by nitrogen atoms

bonding to the graphene edge would look clearly different, as shown in

Publication V. Thus it was concluded that the observed interfaces are

formed by boron bonding with the carbon atoms along the edge of the

graphene lattice.
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4. Electronic transport in graphene

The conductance of a device is measured by attaching two or multiple

probes, and measuring the current as a function of bias voltage Vb. The

conductance is simply obtained from G = dI/dVb. In this Thesis, only

two-probe systems are considered. The properties of electronic transport

depend heavily on characteristic length scales of the system. The phase

coherence length determines the length scale for quantum-mechanical in-

terference phenomena. Scattering by defects with no internal degrees

of freedom is elastic, and results in the conservation of the phase of the

charge carriers. On the other hand, scattering by other charge carriers or

phonons can result in momentum transfer and phase decoherence. The

length that sets the scale between scattering events is called the mean

free path l, whereas the elastic mean free path le sets the scale between

elastic scattering events. When l is smaller than the phase coherence

length, the corresponding system can be called mesoscopic, and phenom-

ena due to quantum-mechanical interference can be observed. When the

size of the system is smaller or at most of the same order as l, the charge

carriers behave ballistically or quasi-ballistically.

4.1 Ballistic transport and Fabry-Pérot resonances

One of the most prominent features of graphene is the low amount of

disorder present in the material. This is especially true for exfoliated

graphene, which may exhibit charge carrier mobilities exceeding 100 000

Vs/cm2 [9] and ballistic transport in samples that are up to several micro-

meters long [40]. In 2D graphene, the conductivity σ of a ballistic device

is infinite, whereas in a two-terminal device, transverse quantization re-

sults in a finite number of transport modes that limit the conductance to

G = G0M , where M is the number of modes. The Landauer-Büttiker for-
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malism based on Green’s functions yields correctly the quantized conduc-

tance of a ballistic graphene device, whereas the Kubo-Greenwood method

experiences numerical inaccuracies, as discussed in Publication VI and

Ref. [28].

One of the peculiar features of graphene is that ballistic devices with

W 	 L exhibit a finite minimum conductivity, even at the Dirac point

where the density of states is zero. Theoretically, a minimum conductivity

of 4e2/πh can be derived, resulting from evanescent modes extending into

bulk graphene from the contacts [8, 41]. However, experimental results

have yielded larger values than this, which has been attributed to the

presence of long-ranged potential disorder due to the substrate [42].

In a ballistic device, scattering of charge carriers is mainly induced by

the edges of the sample and the device-contact interfaces. If the system

is sufficiently phase coherent, this leads to Fabry-Pérot-type interference

of the charge carriers. This was studied in Publication VII, where ex-

perimental and simulated results for a suspended graphene device con-

tacted to two metallic leads were compared. According to a particle-in-a-

box model for charge carriers with linear dispersion, the conductance of

a device with dimensions W × L should show resonances approximately

located at [43, 44]

EqL,qW
∼= ±

√
E2

L(qL + δL)
2 + E2

W (qW + δW )2, (4.1)

where EL ≡ hvF /2L and EW ≡ hvF /2W . The values of the constants

δL and δW depend on the details of the interfaces or edges [43], and the

quantum numbers qL and qW label longitudinal and transverse modes,

respectively. Therefore the resonances should roughly occur at intervals

of EL and EW , with the longitudinal resonances occurring due to bunching

of single-mode transverse resonances, thus being of a multimode nature.

Using a nearest-neighbor TB transport model, a device connected to two

semi-infinite graphene leads at a constant doping of 1.5 eV was simulated.

Figure 4.1 (a) shows the resulting conductance curve, (b) the correspond-

ing dG/dμ0 map and (c) its Fourier transform. Here μ0 is a zero-bias chem-

ical potential, roughly corresponding to the gate voltage of an experimen-

tal setup. The vertical lines in (a) indicate the positions of the resonances

given by Eq. 4.1, whereas the solid and dashed lines in (c) indicate the

locations of 1/2EL and W/L(1/2EL), respectively.

The experimentally measured dI/dV curve showed a similar behavior
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(b) (c)(a)
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Figure 4.1. (a) Simulated conductance curve, with the vertical lines indicating the posi-
tions of single-mode (solid) and multimode (dashed) Fabry-Pérot resonances.
(b) Simulated dG/dμ0 map. (c) Fourier transform of (b). (d) Experimental
device consisting of a graphene sample suspended between two metallic con-
tacts. (e) Measured dG/dμ0 map of the device. (f) Fourier transform of (e).

as the simulations. The resonances were studied quantitatively by con-

verting the gate voltage into a zero-bias chemical potential, after which

the plot was differentiated with respect to μ0 and a Fourier transform

was performed. Figures 4.1(d)-(f) show the main results of the analysis.

Fig. 4.1(d) shows the experimental setup, (e) the experimental dG/dμ0

map and (f) the Fourier transform of (b). As in (c), the solid and dashed

lines in (f) indicate the locations of 1/2EL and W/L(1/2EL), respectively.

The Fourier analysis was used to estimate the Fermi velocity in the sam-

ple, with a result of vF ≈ 2.4 × 106 m/s. The result is significantly higher

than what has been measured on a SiO2 substrate, i.e. roughly 1.4 ×106

m/s [45], or given by a standard DFT model, which is even lower. The dis-

crepancy is explained by electron-electron interactions, which are partly

screened on a substrate and not fully taken into account in a plain DFT

model. A previous measurement of the Fermi velocity of freestanding

graphene yielded a similar result, albeit using a rather different tech-

nique based on the cyclotron mass [46].

4.2 Transport in disordered graphene

Transport in disordered graphene is characterized by multiple scattering

events, which leads to a drift speed of the charge carriers that is much
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Figure 4.2. Comparison between Kubo-Greenwood and Landauer-Büttiker results. (a)
and (b) show exponential fits to the conductances calculated using the
Landauer-Büttiker formalism for a 35-atom and a 65-atom wide AGNR, re-
spectively. (c) and (d) show how the Kubo-Greenwood-based propagating
lengths (twice the MSD), divided by 2π, converge toward the localization
lengths obtained from the results shown in (a) and (b). (e) and (f) show com-
parisons between estimates for the localization given by the Kubo-Greenwood
and Landauer-Büttiker (here called NEGF) methods.

lower than the Fermi velocity. The length scale for this transport regime

is set by the electronic mean free path l, i.e. when the system is much

larger than l, the charge carriers propagate diffusively.

In the diffusive regime, a conductor follows the classical Ohm’s law, i.e.

the conductance is directly proportional to the width and inversely pro-

portional to the length of the conductor. However, as mentioned in the

previous section, the finite number of conduction channels adds a length-

independent resistance to the system, called the contact resistance and

equalling Rc = 1/MG0. Thus, in the diffusive regime, the total resistance

of the system is R = Rc + (L/W )ρ, where ρ is the resistivity, equalling the
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inverse of the conductivity σ. Alternatively, this may be written as [20]

R(L) = Rc +Rc
L

le
. (4.2)

In a diffusive system, the properties of the scatterers thus determine the

resistivity of the material.

In a mesoscopic system, corrections to the conductivity arise due to

quan-tum-mechanical interference phenomena. Depending on the mate-

rial and the type of scattering, interference can lead to either enhanced

or decreased backscattering due to constructive or destructive interfer-

ence between time-reversed propagation paths of the charge carriers. En-

hanced backscattering is called localization and decreased backscattering

antilocalization. In the presence of disorder that is able to cause scatter-

ing between the two independent valleys of the band structure, the charge

carriers experience localization, whereas when the disorder causes solely

intravalley scattering, the charge carriers experience antilocalization in-

stead. This is typical for graphene in the presence of long-ranged disorder,

and has been studied more extensively in e.g. Ref. [47]. Antilocalization

causes an increase of the conductivity, whereas localization causes a de-

crease. The sign of the localization correction to the conductance may be

probed using a weak magnetic field, as it will remove the time-reversal

symmetry and thus suppress quantum-mechanical interference.

When a phase-coherent system exhibiting localization is sufficiently long,

the charge carriers will become strongly localized. In the strongly local-

ized regime, the resistance grows exponentially instead of linearly with

the length of the system, i.e. R ∝ exp(L/ξ), with ξ being called the lo-

calization length. As a wave packet becomes localized, the mean square

displacement given by the KG method will converge to a finite value. In

Publication VIII it was shown that the converged MSD given by the Kubo-

Greenwood method is directly proportional to the localization length, with

the constant of proportionality being approximately 1/π. This is illus-

trated in Fig. 4.2, which compares KG results with those obtained using

Landauer-Büttiker calculations.

4.3 Effective scattering cross-section formalism

The scaling of the conductance of a mesoscopic conductor has been stud-

ied extensively for decades, see e.g. Ref. [20]. A useful quantity, called
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scattering or transport cross section, can be defined to characterize the

scatterers [48]. In Publication IX and Publication X an effective scatter-

ing cross section formalism was studied in order to test if single-defect

calculations may be used to predict the conductance of a mesoscopic sys-

tem with a large number of defects. This would enable one to directly

apply ab initio methods to compute the conductance of realistically sized

systems. The scattering cross section s is related to le and the concentra-

tion of impurities nimp through the relation

s(E) =
1

nimple(E)
. (4.3)

In case of scattering by multiple defect types, the scattering cross sections

may be combined based on Matthiessen’s rule, which relates the elastic

mean free path to the individual elastic mean free paths that correspond

to different types of scattering through the reciprocal relation

1

le
=

∑
i

1

le,i
(4.4)

In principle, Matthiessen’s rule could be utilized to also combine the effect

of inelastic scattering, but this does not necessarily lead to correct results,

as phonons may couple to the defects and impurities present in the lattice.

The mean free path may be used to obtain the conductance of a meso-

scopic quasi-1D system through scaling analysis. In the diffusive regime,

a relation between le and the transmission function can be derived [48]

using Eq. 4.2, i.e.

le(E) = d
N〈T (E)〉

T0(E)− 〈T (E)〉 , (4.5)

where N is the number of scatterers and d the average distance between

them. 〈T (E)〉 is the ensemble averaged transmission function in the pres-

ence of scatterers and T0(E) the ballistic transmission function (equalling

the number of conduction channels). Equation 4.5 may be used to derive

the expression

s(E) = W
T0(E)− 〈T (E)〉

N〈T (E)〉 , L � ξ(E), (4.6)

valid in the diffusive transport regime. In principle, with periodic bound-

ary conditions and transverse k-point sampling, one can compute s(E)

from single-defect calculations of systems that are small enough to be

simulated using the DFT. However, one has to be careful regarding the
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Figure 4.3. Comparison of the calculated and predicted transmission functions for a 30
nm wide and 1000 nm long graphene nanoribbon with a 1% concentration
of Stone-Wales defects, 555777 defects and vacancies each. The predicted
result is based on a scaling approach utilizing single-defect scattering cross
sections. The vertical bars divide the energy range into Ohmic (diffusive) and
localized regimes.

condition L � ξ(E), as L is not clearly defined in the case of a single-

defect calculation. In practice, one needs to construct an expression for

s(E) also when the system is in the localized regime. To achieve this,

one can approximate that the transmission function is given by Ttyp(E) �
T (E0) exp(−L/ξ(E)). This is valid when the contact resistance is negligi-

ble compared to the total resistance. Here Ttyp ≡ exp〈lnT (E)〉 is the typ-

ical transmission, which is computationally much easier to obtain than

the average transmission as the transmission values follow a log-normal

distribution in the localized regime [49]. The Thouless relation [50, 51],

i.e.

ξ(E) =
M + 1

2
le(E) (4.7)

relates ξ(E) length to le. Thus one can derive an expression for s(E) valid

in the localized regime:

s(E) =
W (T0(E) + 1)〈ln[T0(E)/T (E)]〉

2N
, L 	 ξ(E). (4.8)

In Publication IX, scattering cross sections were calculated using a third-

nearest neighbor orthogonal TB model for a Stone-Wales defect, a 555777

defect and a vacancy. A Stone-Wales defect and a 555777 defect are struc-

tural defects [52], with the Stone-Wales defect being essentially a bond

rotation by 90◦ resulting in two pentagons and two heptagons embedded

in the honeycomb lattice. A 555777 defect is a relaxed form of a divacancy,
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consisting of three pentagons and three heptagons. Using the scaling ap-

proach based on scattering cross sections, the conductance of a 30 nm wide

GNR with a 1% concentration of Stone-Wales defects, 555777 defects and

vacancies each was predicted. Applying Matthiessen’s rule, the predicted

average and typical conductances can be obtained from

〈T (E)〉 = T0(E)

1 + L
∑

i nisi(E)
, L � ξ(E) (4.9)

and

Ttyp(E) =
T0(E)

exp
[

2L
T0(E)+1

∑
i nisi(E)

] , L 	 ξ(E), (4.10)

respectively. A comparison of single-defect predictions with simulation

results for an ensemble of large systems is shown in Fig. 4.3.

The scattering cross section formalism may be connected to the semi-

classical Boltzmann theory of electronic transport. The scattering cross

section of a vacancy, or equivalently an infinite onsite potential, can be

directly derived from the Boltzmann theory, which predicts a conductance

equalling [53]

σ ≈ 2e2

h

2n

πnimp
ln2

∣∣∣∣ED
∣∣∣∣ , (4.11)

where D =
√
π�2v2F c, with c being the number of carbon atoms per unit

area. From Eq. 4.11 one can obtain

s(E) =
2D2

Ω�vF |E| ln
−2 (|E/D|) , (4.12)

where Ω is the area of the unit cell of the graphene lattice, i.e. Ω =

3a20 cos(π/6)/2. In Fig. 4.4 the analytical scattering cross section has been

compared against nearest-neighbor TB results for a system with k-point

sampled periodic transverse boundary conditions. One may obtain the

correct scattering cross section using Eqs. 4.6 and 4.8 only when the sys-

tem is purely diffusive or purely localized, respectively. In this case, re-

sults for both a diffusive and a localized system had to be used to obtain

good values for s(E) without the need of using excessive computational

power.

In Publication X, the DFT was applied to obtain ab initio scattering

cross section for hydrogen, hydroxyl, oxygen, and carbon impurity atoms

on graphene. Parametrized TB models for each defect type, optimized

against the DFT scattering cross section, were also constructed. Fig. 4.5

shows the results for oxygen (epoxy) and carbon impurities.
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Figure 4.5. Transport scattering cross sections for epoxy (a) and carbon impurities (b).
The tight-binding parameters have been optimized to reproduce the DFT re-
sult. The insets show the localization lengths as a function of impurity con-
centration.
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4.4 Electronic transport in a magnetic field

Transport in graphene in a magnetic field has been studied in several

recent works [54, 55, 56]. If a sufficiently strong external perpendicular

magnetic field is applied on a conductor, the system may enter the quan-

tum Hall regime. In the quantum Hall regime, the bulk electronic states

in the system become quantized into so-called Landau levels (LLs) [20].

The quantum Hall effect is characterized by the off-diagonal conductance

of a multiprobe setup acquiring quantized values, whereas the longitudi-

nal resistance takes non-zero values only at the Landau levels. This is due

to the formation of edge channels that propagate in different directions at

the opposite edges of the system. Backscattering is possible only at the

Landau levels, where the presence of bulk states allows charge carriers to

scatter from one edge to another.

In Publication XI the conductance of a two-terminal device was stud-

ied in the quantum Hall regime. At high magnetic fields, the spin de-

generacy of the charge carriers becomes lifted. However, at lower field

strengths the degeneracy of the spins remains, which allowed the use of a

non-spin-polarized model. It was found that the type of disorder strongly

affects the width of the zeroth Landau level, located at the CNP. With

short-ranged potential disorder or vacancy-type defects, the zeroth LL

remains delta-function-like, whereas the other LLs become broadened.

With longer range potential disorder, the zeroth LL becomes wider, simi-

lar to the other LLs. Even if the chemical potential of the system is at a

LL, the current flowing through the device, given at zero temperature by

[20]

I(Vb) =
2e

h

∫ EF+eVb/2

EF−eVb/2
T (E)dE, (4.13)

is large when the bias window is broad compared to the width of the LL.

Thus in an experimental setup, a delta-function like zeroth LL will re-

sult in a low measured resistance peak. This agrees with experimental

conductance measurements of graphene on a SrTiO3 substrate [57]. The

resistance peak at the zeroth LL was found to decrease significantly as

a function of decreasing temperature. In SrTiO3, the dielectric constant

increases by an order of magnitude when the temperature decreases from

room to liquid helium temperature. Thus charge inhomogeneities be-

come strongly screened, which according to the simulations will reduce

the measured resistance. On the other hand, such a decrease can also be

attributed to a reduction in the effects of electron-electron interactions,
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Figure 4.6. Left hand panel: Resistance of AGNRs (top) and ZGNRs in the quantum
Hall regime with respect to the location of the zeroth LL E0, based on TB
simulations. Right hand panel: Corresponding band structures of pristine
ribbons.

that will also become more screened with increasing dielectric constant.

In Publication XI, it was also found that at the other LLs, the innermost

conduction channels become quickly completely localized in the presence

of disorder, whereas the other channels exhibit significantly longer local-

ization lengths. This will lead the four-terminal longitudinal resistance

(equalling the total longitudinal resistance minus the contact resistance)

to become pinned to fractional values of the resistance quantum at the

nonzero LLs, i.e.

R =
h

2e2
2

4n2
L − 1

, |nL| > 0, (4.14)

where nL is the Landau level index. Compared with the experimental

results in Ref. [7], the pinned values given by Eq. 4.14 differ by roughly

30% on average.

4.5 Spin-dependent transport

According to theoretical simulations, in a freestanding ZGNR at or very

close to half-filling, the edge states are spin-polarized. In the ground
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Figure 4.7. The spin polarization of a notched zigzag-edged graphene nanoribbon at half
filling. The lower panel shows the atomic structure of the ribbon.

Figure 4.8. Spin-dependent conductance for the notched system shown in Fig. 4.7 com-
puted using (a) tight-binding and (b) DFT. Blue corresponds to the majority
spin and red to the minority spin.
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state, the opposite edges have opposite majority spin, resulting in sym-

metric transmission functions for both spin species. However, asymmetry

regarding the edges may result in a significantly spin-dependent conduc-

tance. In Publication XII, the conductance of a spin-polarized ZGNR with

a notch was computed. The structure of the device is shown in Fig, 4.7,

which also indicates the spin-polarization of the ground state, computed

using the mean-field Hubbard model. It turns out that the transmission

function is strongly spin-dependent, as shown in Fig. 4.8. Such a de-

vice could be used as a spin-filter. Similar ideas were also presented in

Ref. [58]. To realize a spin-filter, it is important that the chemical po-

tential of the system is close to the charge neutrality point and that the

applied bias voltage is small, as mean-field Hubbard and DFT calcula-

tions indicate that the ground state of a system with even a relatively

low level of doping is not spin-polarized. Additionally, the system must be

freestanding or located on a substrate that does not affect the edge state

or the spin-polarization.

4.6 Phonon-assisted transport

In this section, phonon-assisted tunneling during an STS measurement

is studied. In Publication II, experimental STS curves for finite AGNRs

on an Au(111) substrate were presented and compared against numeri-

cal simulations. Since such ribbons have zigzag-shaped termini, an edge

state was observed, as discussed in Section 2.3.2. However, despite good

match between simulated and measured STM maps, a simple LDOS-

based model did not reproduce the measured STS curves, which revealed

in addition to a prominent resonance close to the charge neutrality point,

a weaker resonance at positive bias. Interestingly, the weaker resonance

disappeared when a bond between the substrate and the opposite end

of the molecule was created. In order to explain this, several hypotheses

were tested, such as a change of the magnetic polarization or the charging

state of the molecule, or a change in the phonon-electron coupling. These

hypotheses are discussed in Publication II and Publication III. The best

explanation for the observed behavior was found to be that the weaker

resonance is a phonon replica of the edge state, with the induced bond

suppressing the electron-phonon coupling. This is supported by the fact

that the STS spectrum matches well a simulated result with parameter-

ized electron-phonon couplings.
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The computations are based on the methods presented in Refs. [59]. If

the end state is located at E0, the transmission function can be obtained

from

T (E) ∝
∫ ∞

−∞
dσ

�
exp

(
− Γ|σ|

2�
+

2(E − E0 + λ)

�
−

∑
β

∣∣∣∣Mβ

�ωβ

∣∣∣∣
2 [

(1 + 2N)ωβ
)(1− cos(ωβσ)) + i sin(ωβσ)

])
, (4.15)

where ωβ is the angular frequency of vibrational mode β, Γ = (Γtip +

Γsubstrate)/2 is the average coupling strength between the contacts, λ ≡∑
β(M

2
β/�ωβ) and Nωβ

is the Bose-Einstein occupation factor. The trans-

mission was computed using a two-phonon model with the electron-phonon

coupling strengths Mβ taken as free parameters and fitted to the mea-

sured STS curve, with the results shown in Fig. 4.9(a). However, the val-

ues of the parameters Mβ fit well in the range of ab initio results for the

electron-phonon coupling strengths in similar but isolated finite nanorib-

bons, as shown in Fig. 4.9(b).
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Figure 4.9. (a) Measured STS spectra at the left and right end central atoms of a finite
graphene nanoribbon. The red line is a simulated result taking into account
interaction with two phonons, with parameters optimized against the mea-
sured left end result. (b) Comparison between the optimized parameters for
the two phonons and DFT-based results for a similar but shorter molecule.
The solid line shows the results with Gaussian broadening. (c) and (d) show
constant height STM maps taken at the elastic peak and the replica at 225
meV, respectively, using a CO-terminated tip. (e) DFT simulation of a dI/dV
map at the CNP measured with a p-wave tip. A corresponding TB-simulation
would yield a very similar result. Scale bars, 0.5 nm.
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5. Summary

In this Thesis, the electronic properties of graphene has been studied,

with an emphasis on electronic transport. In Publication I, the parame-

ters of the tight-binding model were optimized to reproduce band struc-

ture and transport results given by the density functional theory. This

model was used in several of the other publications. In Publication II,

the local density of states of finite graphene nanoribbons on Au(111) was

studied both experimentally and through simulations. The measured and

simulated dI/dV maps agreed well with each other, but to obtain a good

match with the scanning tunneling spectrum for the end state of the

ribbon, phonon-assisted tunneling was needed to be taken into account.

Moreover, it was found that the phonon-assisted tunneling is suppressed

when the opposite end of the molecule becomes bonded to the substrate.

In Publication III, the simulations were presented in more detail, and it

was argued that spin-polarization does not seem to be a plausible reason

for the observed dI/dV spectrum. Publication III also presented direct

comparisons between tight-binding-based and computationally more ex-

pensive simulation results, as well as actual measurements, showing that

tight-binding gives very accurate results especially for the local density of

states of pristine molecules.

In Publication IV, the simulated local density of states for hexagonal

graphene nanoflakes was compared against STM measurements perfor-

med on an Ir(111) substrate. The results showed a good match between

simulations and experimental results, barring the lack of a localized edge

state in the experimental results, which can be explained by an interac-

tion between the edges and the substrate. The lower than expected Fermi

velocity may be explained by the experimental STM map being affected by

direct tunneling between the tip and substrate, as suggested in Ref. [38].

In Publication V the state at the zigzag-shaped between graphene and
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hexagonal boron nitride was studied. Comparisons between experimental

and simulated scanning tunneling microscopy maps indicated that at the

measured interfaces boron atoms were bonded to the graphene edge.

Electronic transport in graphene was studied in several publications.

Publication VI presented methods to apply the Kubo-Greenwood method

on graphics processing units, significantly increasing the speed of the cal-

culations. Additionally, the Kubo-Greenwood method was explicitly com-

pared with results from the Landauer-Büttiker approach. In Publication

VIII, it was shown that the converged value of the propagating length

given by the Kubo-Greenwood method is directly proportional to the lo-

calization length obtained using the Landauer-Büttiker approach

Transport in ballistic graphene was studied in Publication VII. Exper-

imental measurements indicated the presence of periodic resonances in

the dI/dV map, which were attributed to Fabry-Pérot interference. The

experimental results matched theoretical simulations in a system with

both transverse single-mode resonances and longitudinal multimode res-

onances, with the estimated Fermi velocity being clearly higher than in

graphene on a substrate, thus matching previous results for suspended

graphene. In Publication IX a scattering cross section formalism for trans-

port in mesoscopic quasi-1D graphene nanoribbons was studied. It was

shown that in addition to diffusive systems, the effective scattering cross-

section can accurately be used to estimate the conductance of large-scale

localized systems. In principle, the scattering cross section can be ob-

tained from the transmission function of even a single-defect system, pro-

vided that the system is either diffusive or localized. This fact was applied

in Publication X, where the density functional theory was used to obtain

ab initio cross sections for various impurities in graphene.

The effect of a strong magnetic field on electronic transport in graphene

was studied in Publication XI. It was found that the type of disorder

strongly affects the transmission close to the zeroth Landau level. More-

over, it was shown that the innermost conducting channels exhibit very

short localization lengths, which may lead the longitudinal resistance

peaks to become pinned to fractionally quantized values. Whereas such

fractional values have not been found experimentally, a comparison with

the measured values found in Ref. [7] shows a difference of only 30 %.

In Publication XII it was found that notched ZGNRs may act as efficient

spin filters, although their capability is highly dependent on the size and

shape of the notch. Spin filtering devices based on these structures may
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be difficult to manufacture, as the edge opposite to the notch needs to be

intact and as the spin configuration must remain antiferromagnetic even

after a bias voltage is applied.
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