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Hydrogen and nitrogen are inescapable elements in all commercial steel products and the 

presence of dissolved hydrogen and nitrogen in liquid steel can cause various problems in most 
of the final products. In general, the reduction of these elements in liquid steel is required in 
most steelmaking companies, where vacuum treatment is typically applied to remove these 
impurities. 
The main focus of this thesis work has been put on investigating the dehydrogenation and/or 
denitrogenation behavior in a number of operational vacuum tank degassers (VTD) from 
different industrial plants. A literature review on various investigations and modeling 
techniques in the related field was firstly presented in this report. Based on the developed  
theories and methods that are relatively separate in the open literature, an integrated 
computational fluid dynamics (CFD) model was built to better understand the degassing 
process on an industrial scale and more importantly, for accurate predictions that are of 
considerable importance to industrial process operators. 
The CFD model consists of two sub-routines for calculating multiphase flows and species 
transportations, respectively. The commercial CFD package of ANSYS FLUENT was adopted 
and augmented by various user-defined functions. As for the multiphase sub-model, the 
standard k-epsilon equations were extended by adding extra source terms to consider the 
impact of gas injections on turbulence quantities. The sub-model was validated by using 
literature data for an aqueous system whose similarity represented one of the industrial VTDs 
studied in this work. With the extended k-epsilon equations, deviations from measured data of 
axial liquid velocity and turbulent kinetic energy were lower than 13 % and 18 % respectively, 
whereas the deviations were about 30 % and 85 % with the standard equations. For mass 
transfer calculations, two fundamental expressions that have been commonly employed to 
compute mass transfer coefficient in gas-liquid systems were assessed. Comparisons with 
process data showed that the eddy-cell correlation provides a better prediction under the 
studied conditions. The versatility of the CFD model was further demonstrated by performing 
extensive simulations to cover the effect of gas flow rate, initial element (i.e., hydrogen and 
nitrogen) content and steel compositions on final element content and degassing rate. For 
hydrogen removal, deviations from measured data in different industrial plants were ranged 
between 6 % and 14 % and for nitrogen removal, the deviations were generally lower than 13 %. 
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1. Introduction 

In modern steelmaking, the demand for clean steels has been consistently growing 
throughout the industry as improvements to steel’s mechanical properties play a vital 
role in defending steel products against newer competitive materials. Steelmakers are 
urged to precisely control the temperature and composition of liquid steel in order to 
produce ultra-clean steels with low contents of impurities, such as sulfur, phosphorus, 
non-metallic inclusions, hydrogen and nitrogen. It is well known that dissolved hy-
drogen has a number of negative effects on the processing characteristics and service 
performance of steel products. For example, if liquid steel contains an excessive 
amount of hydrogen, significant quantities of hydrogen could be ejected during so-
lidification - since the solubility of hydrogen in steels declines with a decrease in 
temperature - resulting in pinhole formation and porosity in steel products. In fact, 
just a few parts per million of hydrogen dissolved in steels would cause severe hair-
line cracks, tensile ductility loss, hydrogen embrittlement and blistering. In the case 
of nitrogen, it can be either a detrimental or a beneficial element depending on the 
other alloying elements present, the form and quantity of nitrogen present, and the 
required steel grade. For instance, nitrogen is effective in improving the mechanical 
and corrosion properties of steels if it remains in solid solution or precipitates as very 
fine and coherent nitrides [1]. In general, however, nitrogen in most steel products is 
regulated within a limited level because high nitrogen content may cause poor cold 
formability and inconsistent mechanical properties (especially in hot-rolled products). 

1.1. Vacuum Tank Degasser 

In order to obtain a satisfactory cleanliness of steels, it is necessary to control and 
improve a wide range of operating conditions throughout the steelmaking process 
like deoxidant and alloy additions, secondary metallurgy treatments, shrouding and 
casting strategies. In practice, degassing treatment of liquid steel has allowed 
steelmakers to produce products with low contents of carbon, hydrogen and nitrogen. 
There are basically two types of degassers, one is called the recirculating process, 
such as the RH degasser in which liquid steel is recirculated from a lower ladle into 
an upper degassing unit and back to the ladle. The other type is referred to as the 
simple ladle or tank degasser, where a vacuum atmosphere is applied and inertial 
(argon) gas is bubbled through the melt. The scope of the present thesis is limited to 
the vacuum tank degasser (VTD), which is schematically illustrated in Figure 1.1. As 
can be seen, a refractory lined ladle is placed in a chamber where the ascending gas is 
pumped out, leading to a very low operating pressure inside the chamber (i.e., less 
than 1 mbar). At its bottom, the ladle is equipped with porous plug(s) or nozzle(s) 
where argon gas is blown in. It should be noted that in the chamber cover there is an 
addition hopper with a vacuum lock (cf. Figure 1.1) which is used to add alloying 
elements and/or slag components during vacuum treatment. In fact, the vacuum tank 
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degasser is quite prevalent in today’s steelmaking industry as in addition to its degas-
sing functions it can also offer more benefits, e.g., desulphurization, non-metallic 
inclusions removal, precise alloying, and temperature and composition homogeniza-
tion. The following text will however, place most emphasis on the degassing process 
in the VTD as it has been the primary focus of this thesis work. 

Figure 1.1 Sketch of a vacuum tank degasser

Gas removal in a VTD is mainly accomplished by the following reaction: 

 (1.1) 

where X denotes the dissolved impurity (i.e., hydrogen or nitrogen). 
According to the Sievert’s law, a general equilibrium relation can be written for the 

above reaction: 

 (1.2) 

where c, f, P and K are respectively, the equilibrium concentration and activity coeffi-
cient of the concerned element, its partial pressure in gas atmosphere and equilibri-
um constant that only depends on the operating temperature. 

Evaluation of Eqn. (1.2) shows that from a thermodynamic point of view a very low 
and completely satisfactory level of hydrogen or nitrogen in molten steel can be ob-
tained under vacuum conditions. However, such a low level would, in reality, take a 
very long time even if it is not impossible due to kinetic limitations. In practice, a 
considerable amount of purge bubbles (generated from gas injections) are introduced 
to stir the liquid bath and to prompt degassing reactions at numerous local sites. 

Vacuum
Chamber

Vacuumizing

Argon Gas

Ar, H2, N2...

Addition
Hopper

Ladle
Furnace

2[H]=H2 ;
2[N]=N2 .
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1.2. Computational Fluid Dynamics (CFD) Approach 

Computational Fluid Dynamics (often abbreviated as CFD) principally belongs to a 
branch of fluid mechanics and adopts numerical methods and algorithms to solve and 
analyze diverse issues involving fluid flows. The fundamentals of all CFD problems 
are the Navier-Stokes equations in conjunction with a set of auxiliary expressions 
derived from theoretical and/or experimental investigations. Over the years, princi-
pally due to the rapid evolution of computer techniques, various methods have been 
developed to discretize computational domains and to linearize underlying equations. 
Nowadays, by employing a supercomputer or cluster, large-scale simulation scenarios 
with multiphase interactions can be performed within an acceptable period of time. 

Steelmaking is a complex process that involves the refining of hot metal in furnaces 
and ladles followed by solidifying through continuous casters. Of these, the refining 
operations generally encounter heat and mass transfers which are significantly asso-
ciated with the state of flow motions in the metallurgical reactors (e.g. a VTD). Direct 
observations and measurements conducted in these vessels appear to provide useful 
insight into the system, which is practically impossible otherwise because the in-situ 
environments are always hostile and highly aggressive. Over recent decades, almost 
all the studies pertaining to ladle refining have been carried out by using CFD ap-
proaches and/or physical (aqueous) models. Compared to physical modeling, numer-
ical approaches have received more attention mostly due to its incomparable ad-
vantages: like the relative ease with which complex processes of high temperatures 
and large-scale dimensions can be represented. Also, there is no inaccessible location 
in a computational domain and no disturbance caused by a probe, which are com-
monly encountered in a physical model [2]. 

1.3. Objective and Structure of the Thesis 

The vacuum degasser is commonly utilized in the modern steelmaking industry and 
its importance to high-quality steel production has been highlighted by many re-
searchers. In addition, due to the extensive research in this field, the prevailing con-
ditions of fluid flow, mass/heat transfer and chemical kinetics are understood to a 
large extent. The present thesis has been aimed at examining the degassing phenom-
ena (dehydrogenation and denitrogenation) in different operational VTDs and to 
provide VTD managers and operators with a versatile tool for better understanding 
the process and optimizing some operating parameters. To this end, a comprehensive 
CFD model has been developed step by step during the thesis work. A variety of elab-
orate sub-models and concepts, which are relatively separate in the literature, have 
been integrated into the CFD model. The multi-component effect of steel composition 
on the degassing process has been assessed by coupling the CFD model with an in-
house thermodynamics code, which can be used to calculate the activity coefficient of 
dissolved elements in liquid steel as a function of steel composition and temperature. 
Also, efforts were put into developing an “on-line use” concept to control the nitrogen 
removal since CFD calculations are often time-consuming and are therefore, so far, 
inappropriate for on-line use. 

The summary of this thesis contains a brief literature review on various investiga-
tions and modeling methods related to this field. Three VTDs from different industri-
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al plants are briefly described in terms of their geometric configurations and main 
operating conditions. Finally, the CFD models established in the thesis are illustrated 
by outlining a few examples. 
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2. Literature Review 

The whole operation of VTDs encompasses a variety of intricate processes and today, 
thanks to extensive work conducted internationally, the general principles with re-
gard to VTDs have been elucidated to a significant extent. A VTD is essentially a sys-
tem comprising of a gas-stirred ladle operated under reduced pressure, therefore, 
some research and modeling methods used to investigate the phenomena pertaining 
to gas-stirred ladles are summarized and discussed in this chapter. Overall, the focus 
is put on models and methods closely related to the work presented in this thesis. 

2.1. Hydrodynamics of Gas-stirred Ladles 

Hydrodynamic behaviors of gas-stirred ladles have been mostly clarified by many 
researchers: Figure 2.1 shows a simplified outline of the hydrodynamics that can 
occur within gas-stirred ladles. As the gas is injected into the heavier surroundings 
(i.e., liquid steel), it expands quickly due to the sudden change of pressure and tem-
perature. The resulting gas envelopes break into numerous bubbles rapidly over a 
very short distance from the bottom and the bubbles with different sizes proceed 
vertically upwards [3]. As a result, the liquid steel around the bubbles is accelerated 
and forced to move upwards following the bubbles. This motion can then be trans-
ferred to the steel bulk near the bubble-steel mixture region by viscous force and 
lateral turbulent fluctuations, leading to a recirculating flow in the ladle (cf. Figure
2.1). When the bubble-steel mixture reaches the bath surface, bubbles break through 
to the atmosphere and the momentum of the liquid stream is transformed into a 
radially spreading surface flow. 

Figure 2.1 Schematic of hydrodynamics in a gas-stirred ladle 

Argon

Bubble-steel Mixture Bath Surface

Recirculating
Flow

Gas Envelope
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2.1.1. Gas-liquid plumes 

The basic feature in the aforementioned gas-stirred ladle system is the bubble-steel 
mixture (cf. Figure 2.1), which by its very hostile and highly aggressive nature, 
makes direct observations and measurements on an industrial ladle extremely cum-
bersome and costly if not impossible. Instead, characteristics of the process have 
been widely investigated by using aqueous systems since water and liquid steel have 
equivalent kinematic viscosities [4-10]. It should be stressed that in industry small 
ladles are equipped with one bottom plug and large ones with two, which typically 
have non-axisymmetric geometries with eccentric injections. However, the physical 
models that have been used for fundamental studies were mostly equipped with ax-
isymmetric nozzles/orifices for the sake of simplicity. 

It is now generally accepted that the mixture region (cf. Figure 2.1) assumes a 
truncated conical shape as flow conditions in the ladle reach a relatively steady state. 
Based on experimental investigations, the gas dispersion region has been divided into 
four distinct regimes, namely: primary bubble, free bubble, plume and spout. Of 
these, the influence of kinetic energy induced by the gas injection eventually decays in 
the primary and free bubble regimes, whilst, in contrast, the plume region is solely 
governed by buoyancy due to large density difference between the two phases. Anag-
bo and co-workers [8] were probably the first who quantitatively demarcated the 
depth of each regime in a liquid bath by deriving a dimensionless dispersion group, 
ND, based on extensive data from different gas-liquid systems. The authors further 
implied that the plume can occupy most of the bath depth under the practical (mod-
erate) gas flow rates adopted in ladle operations. This essentially proves that assum-
ing the presence of a buoyant plume to describe the fluid dynamics in metallurgical 
gas-stirred ladles is quite reasonable [3]. 

Gas volume fraction, bubble frequency and rising velocity within the plume have 
also been measured and studied by numerous investigators in vessels of widely vary-
ing dimensions and operating parameters [6-14]. As a rule, computer aided resistivity 
probes were utilized to measure the variables and the results of these studies [6, 9-10] 
indicate that the normalized radial profile of a gas volume fraction is Gaussian and 
consequently, the fully spatial gas fraction ( ) distribution in the plume can be ex-
pressed using the following dimensionless form: 

 (2.1) 

where g,max is the locally maximum gas volume fraction, r is the radial distance and 
rmax/2 is the distance from the symmetric axis to the position where gas fraction is half 
the maximum value. 

It has also been shown that, with the exception of the bath surface and the immedi-
ate vicinity of the gas injection point, the (average) bubble rising velocity within the 
plume is somewhat independent of the vertical height of the bath [6, 9]. These obser-
vations confirm that hydrodynamic conditions in the vicinity of the gas entry are of 
less importance to the gas-stirred system and the initial momentum of the gas jet can 
be neglected when conducting mathematical and/or numerical analysis. 
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2.1.2. Flow field outside the plume 

In addition to the measurements of various parameters within the plume region, gas-
stirred flows outside the plume have also been determined and investigated. The 
liquid velocities have generally been measured by using a laser anemometer or Dop-
pler velocimetry in water models with different injection arrangements, i.e. nozzles or 
(porous) plugs [5, 9-11]. Figure 2.2 depicts the measured (mean) velocity profiles in 
the bulk liquid, which have been carried out at the beginning of 1980s [5]. As it shows, 
a big vortex of recirculating flow occurs in the upper half of the bath and some quies-
cent zones exist at the bottom portion of the ladle, which is a typical flow pattern in 
such a system. Subsequent measurements made by employing more advanced and 
accurate devices have confirmed the flow pattern and further revealed that a relative-
ly high vertical velocity at the plume axis is readily apparent [10]. 

Figure 2.2 Experimentally measured velocity profiles for a gas velocity of (a) 1.6 m/s and (b) 3.2 m/s 
at the injection nozzle [5]

Sahai and Guthrie [12] were among the first to correlate the average speed of liquid 
recirculation to key operating parameters in gas-stirred ladles on the basis of energy 
balance analysis. Latterly, some of the approximations and simplifications made by 
the authors have been questioned and several modifications have been proposed by 
Mazumdar and coworkers [13, 14]. Through their improvements these authors ar-
rived at an explicit expression for the mean recirculation speed, U, in terms of some 
key operating variables: 

 (2.2) 

where Q, L and R are the gas flow rate, (equivalent) bath depth and ladle radius. 

2.1.3. CFD modeling approaches 

The state of fluid motion has considerable influence on secondary steelmaking pro-
cesses due to the significant impacts on mixing efficiency, mass and heat transfer, 
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inclusion removal and refractory wear. Therefore, extensive fundamental studies and 
diverse CFD simulations of fluid flow in gas-stirred ladles have been previously car-
ried out as the gas injection induced flow is mostly encountered in secondary 
steelmaking. Szekely and coworkers outlined the first ever CFD model of a gas-stirred 
system by solving the turbulent Navier-Stokes equations [4]. The authors assumed 
that the plume comprised of a cylinder shape and that the bulk flow was driven by 
shear stress between gas and liquid. Although these assumptions have been shown to 
be unrealistic, this work has pioneered the development of computer aided process 
metallurgy, giving rise to an exponential increase in publications adopting CFD tech-
niques. Of these, three approaches are commonly applied in the open literature, 
namely, quasi single-phase, Lagrangian-Eulerian and Eulerian-Eulerian. The distinc-
tive features and calculation procedures of these techniques are briefly summarized 
in the following text. It is worth noting here that for all CFD simulations containing 
process variables (e.g. molten liquids and high temperature) the gas flow rate has to 
be converted from the ‘standard state’ to a certain in-situ state, for which the ideal gas 
law has commonly been applied in the literature. 

2.1.3.1. Quasi single-phase approach 
The quasi single-phase model is basically a continuum approach, in which the gas-
liquid mixture within the upwelling plume is treated as a homogeneous liquid with 
reduced density. This approach has been widely used, e.g. by the groups headed by 
Szekely and Guthrie [4, 5, 13-17], particularly in the earliest applications of CFD to 
such processes. The CFD models utilized in the above mentioned reports were all 
two-dimensional based on the axisymmetric coordinate (primarily due to limited 
computing capabilities) and Figure 2.3 illustrates the basic calculation procedures. 

Figure 2.3 Calculation procedures of the quasi single-phase approach

As shown in the figure, the key to the numerical approach is a set of conservative 
equations and more importantly, the (spatial) distribution of gas volume fraction and 
turbulence quantity calculation method should be specified before the equations are 
solved. These conservative equations are comprehensively described in Ref. [2] and 
therefore, are not reproduced here. The gas volume fraction embodied in the axial 
momentum equation is required to represent the buoyancy force (per unit volume), 
through which the recirculating flow is generated. On the other hand the turbulence 
model is used to compute the effective viscosity that is embodied in each momentum 
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equation. It has been recognized that a good estimate of effective viscosity is a pre-
requisite for successfully predicting flow conditions in the two-phase system [14]. The 
gas volume fraction can be specified on the basis of either auxiliary expressions or 
experimental measurements. For instance, both slip and non-slip models have been 
proposed and assessed by different investigators, who concluded that a reasonable 
agreement between measured and calculated flow fields can be achieved by assuming 
slip between gas and liquid phases [15, 18]. In some later work, the measured gas 
voidage and plume geometry were implemented in the numerical approach [10, 19]. 
Zhu et al. [20] conducted a numerical study for the turbulent fluid flow and mixing 
characteristics in gas-stirred ladles by using a three-dimensional code, which was 
developed on the basis of the quasi single-phase approach. The code has been proven 
to be more advanced than the previous ones since it can account for both an axisym-
metric system and an eccentric bubbling ladle. The effects of gas flow rate, nozzle 
arrangement at the bottom and sidewall pattern of the ladle on fluid flow phenomena 
were investigated in the study and very informative conclusions have been drawn: A 
ladle with (slightly) tapered sidewalls has shorter mixing time compared with a cylin-
drical one and eccentric blowing increases the azimuthal velocities in a ladle (cf. Fig-
ure 2.4), thus reducing the mixing time. 

Figure 2.4 The computed flow fields on the symmetric plane with different nozzle arrangements [20]

The quasi single-phase approach is by far the most simplistic and computationally 
efficient for modelling fluid flow in gas-stirred ladles. Good correlations have been 
achieved between the numerical simulations and physical experiments in terms of 
flow field, mixing time and turbulence quantity distribution. However, due to the 
assumption of homogenization, it is impossible to account for the interfacial phe-
nomena that are of great importance to the steelmaking modellers by using such an 
approach. As a result, a simulation model based on a two-phase approach is required 
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despite the obvious increase of model complexity and this has led to the subsequent 
development of Lagrangian-Eulerian and Eulerian-Eulerian approaches. 

2.1.3.2. Lagrangian-Eulerian approach 
In the Lagrangian-Eulerian approach, the trajectories of a stream of (particulate) 
bubbles are calculated in a Lagrangian field, whereas the bulk liquid motion and 
turbulence parameters are calculated with a fixed Eulerian grid. Johansen and 
Boysan [21] were among the first to introduce the approach to simulate the fluid 
dynamics in a gas-stirred ladle. The authors stressed that as the quasi single-phase 
approach lacks generality because the movement and spread of the bubbly plume are 
given a priori according to some experimental observations and measurements an 
alternative approach was required. They presented a special calculating procedure to 
solve the equations of liquid flow (and turbulence) coupled with the motion of gas 
bubbles, thus predicting mean flow velocities, bubble dispersions, buoyancy effects 
and mass transfer rates from first principles. Later on, Mazumdar and Guthrie [22] 
simulated submerged gas injection phenomena during ladle refining operations by 
adopting a similar calculating procedure, briefly described as follows: 
 

(a) The bubble motion equations are solved (first by using a ‘null’ set of flow ve-
locity and turbulence and later, using the updated ones). The predicted bubble 
trajectories are superimposed on to the Eulerian grid and the overall distributions 
of gas volume fraction and interfacial drag forces are estimated. 

(b) The estimated gas volume fraction and interfacial drag forces are then in-
corporated into the continuous phase equations (i.e., liquid flow and turbulence) 
that are solved iteratively. Typically, a large number of iterations were performed 
before re-solving the trajectories. 

(c) At the end of the predetermined number of iterations, bubble trajectories are 
re-calculated using the prevalent flow and turbulence fields as well as the updated 
distributions of gas volume fraction and interfacial drag forces. 

(d) The sequences from step (a) to (c) are repeated until a converged solution is 
reached. 

 
It must be noted that in the above mentioned reports the authors assumed that only 

mono-size bubbles are present in the system and bubble-bubble interactions were 
totally ignored. In addition, only the drag force induced by velocity difference was 
considered in the bubble motion equations, which could explain the general devia-
tions between the measurements and predictions especially in the vicinity of the gas 
injection nozzle and the free surface (cf. Figure 2.5). 
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(a) 

(b) 

Figure 2.5 Comparisons of numerical predictions and the corresponding experimental measurements 
along the axial distance. (a) Axial velocity; (b) Turbulence kinetic energy [22]

Guo and Irons [23] conducted a numerical study based on the Largrangian-
Eulerian principles where different body and interfacial forces embodied in the bub-
ble motion equations were taken into account, i.e., the virtual mass force, buoyancy 
force, drag force and lift force. It has been shown that the predictions compare very 
well with available experimental results in Wood’s metal [24, 25] in terms of plume 
geometry, gas voidage and liquid velocity. More importantly, it has been demonstrat-
ed that the lateral lift force is responsible for plume spreading while the drag force 
induces its bending towards the ladle sidewall. Olsen and Cloete [26] have also pre-
sented an advanced model for simulating hydrodynamics of gas-stirred ladles in 
which the overlaying liquid phase was modeled by utilizing the volume of fluid meth-
od and a combined correlation describing the lift coefficient was evaluated. The calcu-
lated results showed that at a high gas flow rate the assumption of a flat free surface 
on the bath top is still valid but the effect of lift force is minor. 

Cloete [27] argued that a more realistic plume can be predicted based on a large 
number of accurate auxiliary correlations and approximations. For example, a drag 
law for spherical capped bubbles, a turbulent dispersion model, an algorithm ac-
counting for particle (i.e., bubble) growth and breakup and a pre-defined bubble size 
distribution. To this end, the author outlined a full scale, three-dimensional and tran-
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sient numerical model to simulate fluid flow and mixing in gas-stirred ladles. The 
model was employed to assess various operating and design parameters pertaining to 
flow field and mixing efficiency by conducting systematic studies. The predicted 
plumes in the ladle under different gas flow rates are outlined in Figure 2.6, where 
the theoretical profiles proposed by Oeters et al. [28] are also plotted. 

Figure 2.6 Comparisons of predicted plume representations and the theoretical ones (blue lines) [27]

The Largrangian-Eulerian approach has proved to be very promising in simulating 
the bubble driven flow in gas-stirred ladles and has gained ample attention over re-
cent years. The model also has a large potential to provide a platform for investiga-
tions on other fundamental but significant issues, e.g., alloying element dissolution, 
non-metallic inclusion behavior and degassing phenomena. The main disadvantage 
of the approach lies in the associated high computational demand or the limited bub-
ble numbers that can be considered. 

2.1.3.3. Eulerian-Eulerian approach 
In contrast with the Lagrangian-Eulerian treatment, the Eulerian-Eulerian approach 
assumes that both phases may coexist in the same control volume at the same time 
and each phase consists of a continuous field interpenetrating and interacting with 
the other in the computational domain [2]. Consequently, the concept of phasic vol-
ume fraction is applied and continuity and momentum conservative equations em-
bodying the volume fraction are solved for both the phases. 

Schwarz and Turner [29] were among the first to simulate the two-phase turbulent 
flow in a gas-stirred bath by adopting the Eulerian-Eulerian method. The authors 
implemented extra turbulent diffusion terms in the continuity equations and only 
considered drag forces between the two phases, which were contained in the momen-
tum equations. Ilegbusi and Szekely [30] later on reported a similar but three-
dimensional model to calculate the turbulent recirculating two-phase flow both in an 
air-water and a nitrogen-steel system. The results showed that the predicted liquid 
velocities correlate well with the corresponding experimental ones and more interest-
ingly, (nitrogen) gas plumes in molten steel appear to be much narrower and behave 
quite differently from those in water. The authors therefore concluded that more 
experimental work to evaluate their predictions and systematical studies to assess the 
influence of the various auxiliary correlations/coefficients are required. Based on the 
previous publication [31], Jonsson and Jönsson [32] presented a more practical mod-
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el that includes argon gas, slag as well as liquid steel in the ladle. The thermal effects 
on material properties including density, heat capacity and viscosity were also taken 
into account by solving energy conservation equations. The predicted surface veloci-
ties of steel were reported to be in at least five times greater agreement with experi-
mental data compared to the ones in a model that excludes the effect of slag. 

Over the years, a large amount of work has been conducted internationally for this 
purpose and several non-drag mechanisms of interfacial interaction have been inte-
grated in the calculating procedures [33-42]. It is now commonly accepted that the 
momentum transfer between the phases is accommodated by a set of interfacial forc-
es that are mainly categorized as drag force and non-drag forces. For the bubbly flow 
system, the non-drag forces generally include the (lateral) lift force, the virtual mass 
force and the turbulent dispersion force. The relative importance of each force de-
pends on the bubble size and on the turbulence degree in the bath. In the literature, 
the drag force and lift force are usually considered to describe the plume bending and 
spreading, respectively, however, some or all of the other non-drag forces are ignored. 
Drag force acts on bubbles in the case they moved with a relative (slip) velocity within 
the surrounding liquid and as a consequence, the drag force always imposes in the 
opposite direction of this relative movement. Within the framework of the Eulerian-
Eulerian approach, the drag force is composed of the following: 

 (2.3) 

where , , d and u are the volume fraction, density and bubble diameter, respectively. 
The subscripts ‘g’ and ‘l’ denote the gas and liquid phase. CD is the drag coefficient 
and there exists a variety of correlations implemented in the literature, as reviewed 
by Lou and Zhu [42]. 

Lift force is exerted on a bubble when there exists velocity gradients within the sur-
rounding liquid. Pressure is lower in the region where the relative velocity is larger 
and the bubble is driven into this region due to the lift effect acting perpendicularly to 
the direction of the relative movement and the following formulation has been widely 
adopted: 

 (2.4) 

where CL is the lift coefficient, which shows quite a variation throughout the literature 
and can be basically determined by comparing the numerical results against corre-
sponding experimental measurements. 

In a recent study, the hydrodynamics of a 60-ton industrial ladle was simulated us-
ing an Eulerian-Eulerian methodology [43]. As can be seen in Figure 2.7, the gas 
plumes are defined by plotting the iso-surfaces of gas volume fraction and the liquid 
flow is associated with two recirculating zones in each half of the symmetric plane. It 
has been reported by the authors that the magnitude of the liquid velocity is con-
sistent with the one for equivalent industrial configurations. 
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Figure 2.7 Predicted flow field of liquid steel and the argon plumes in a vertical plane passing through 
the porous plugs under a low gas flow rate [43] 

A common approximation among the investigations mentioned above is that the 
bubble size is assumed constant throughout the bath and a representative value of 
diameter is usually given by a theoretically deduced or empirical expression. The 
value is then used to determine the drag force (coefficient) and some other related 
non-drag forces. Some of the authors pointed out that even a big change in bubble 
diameter has only a limited impact on the bubble plume and bulk liquid flow [40, 42]. 
Still, this approximation seems implausible since both bubble breakup and coales-
cence have been observed in physical experiments [8, 10]. A more reliable method is 
therefore required to calculate the bubble size distribution within the bath, which is 
an important parameter for predicting mass, momentum and energy transfers 
through the interface between gas and liquid in a gas-stirred ladle. To the best of the 
present author’s knowledge, the only practical way to achieve this goal is to calculate 
the interfacial area concentration (IAC) by solving its transport equations. The IAC is 
defined as the total surface area of gas bubbles per unit (mixture) volume and the 
local bubble size can be readily computed. Kocamustafaogullari and Ishii [44, 45] 
were among the first to derive an IAC transport equation from the statistical model of 
particle number density one-dimensional case, which includes the source and sink 
terms due to particle breakup and coalescence. Some subsequent publications [46-49] 
showed a few variations of the original model to account for different sizes of bubble 
and in general, the simulated results have shown good correlation with the physical 
observations. 

2.1.3.4. Turbulence considerations 
The importance of turbulence transportation has been readily understood as it has 
been stressed that (turbulent) eddy diffusion is primarily responsible for dispersing 
various materials across the streamlines of convective bulk flows in a ladle. Taniguchi 
et al. [50] demonstrated that it is more suitable to formulate the volumetric mass-
transfer coefficient between gas bubbles and liquid by using an eddy-cell expression, 
implying turbulent diffusion governs the mass transfer process in their experimental 
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system. Also, it has been determined that the generation of turbulence in a ladle can 
aid in inclusion agglomeration and float-up in the bath. 

Over the years, different versions of turbulent viscosity have been applied, ranging 
from an algebraic equation to the k-  model with special near-wall function [51]. 
Grevet and co-workers used their own detailed experimental data as a basis to sug-
gest that the standard k-  model is inadequate to realistically simulate the turbulence 
phenomena in a gas-stirred system [5], a fact which was later confirmed by Ma-
zumdar et al. [14]. Johansen and Boysan [52], probably for the first time, modified 
the coefficients of the standard k-  equations and the effect of turbulence induced by 
bubbles within the plume was included via an additional source term. It has been 
demonstrated that the numerical predictions for a water model of a ladle show very 
satisfactory quantitative agreement with corresponding experimental results. Since 
then, other source terms embodying gas-induced effects have been proposed and 
examined thoroughly [10, 30]. As a result, the estimates of flow field and turbulence 
quantities in a gas-stirred ladle have evolved from ‘consistent trend’ to ‘satisfactory 
agreement’ when compared to the experimental measurements. Nowadays, as a rule, 
adequate predictions of both flow field and turbulence quantities in a gas-stirred ladle 
can be obtained by introducing proper source terms to k-  equations and/or carefully 
adjusting some coefficients embodied in the auxiliary formulas. 

2.2. Kinetics of Degassing in Gas-stirred Ladles 

The degassing of liquid steel subjecting to vacuum treatment was introduced in 1950s 
with the primary objective to lower the hydrogen content of liquid steel to prevent 
cracks in large ingots and subsequently the process was also used for lowering the 
nitrogen and oxygen (and carbon) contents [1]. As a result the emphasis of the follow-
ing text is placed on describing the kinetics of dehydrogenation and denitrogenation 
in gas-stirred ladles and reviewing some important related studies. 

From a theoretical standpoint, degassing occurs as a result of the following series of 
steps: 

(a) The gaseous element, namely [X], diffuses from the bulk liquid to the inter-
face of gas (bubble) and steel 

(b) Chemical reaction takes place at the interface as  

(c) The gas product X2 diffuses from the interface to the bulk gas phase (i.e. in 
the bubbles) 

 
Apparently, as depicted in Figure 2.8, the above kinetics are governed by different 

mechanisms including mass transfer in liquid steel, chemical reactions at the inter-
face and mass transfer in the gas phase. Consequently, the rate of the degassing pro-
cess can be controlled either by mass transfer or the rate of chemical reactions. In 
terms of the slowest step, the overall degassing rate could be limited by (a) mass 
transfer in liquid steel, (b) chemical reaction at the interface and (c) mass transfer in 
the bulk gas; however, if more than one kinetic step influences the rate, it is mix-
controlled. It has been widely accepted that mass transfer of gas product in the bub-
bles is quite fast in a gas-stirred ladle. For dehydrogenation, chemical reaction at the 
interface is rapid under the high temperature and hydrogen removal rate is mainly 
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controlled by mass transfer in liquid steel, which has been confirmed in the literature. 
Detailed description of mathematical formulae and considerations for hydrogen re-
fining are given, among others, by a Swedish research group [53, 54]. In addition, a 
new concept for on-line prediction of hydrogen and sulfur removal was proposed by 
the same group [55, 56]. In contrast with dehydrogenation, denitrogenation is mix-
controlled by mass transfer in liquid steel and chemical reaction at the interface be-
cause of the existence of some surface-active elements in the liquid steel. For example, 
sulfur is surface-active and can block the interfacial site for chemical reaction and 
reduces its rate [57-60]. In order to accommodate the predictive models embodying 
transport equations and to better understand the degassing process, substantial re-
search has been conducted in the past, mainly focused on mass transfer in liquid steel 
and interfacial chemical reactions (of denitrogenation). 

Figure 2.8 Illustration of degassing kinetics in gas-stirred ladles 

2.2.1. Mass transfer in liquid steel 

Mass transfer in a gas-stirred ladle occurs primarily as a result of molecular diffusion, 
turbulent diffusion and bulk convection. The total flux of a species ‘i’ across a fixed 
plane normal to the x-direction is therefore expressed as: 

 (2.5) 

where Dm and Dt are the molecular diffusivity and eddy diffusivity, U is the average 
velocity. (It should be noted here that the three terms on the right hand side of Eqn. 
(2.5) accounts for molecular diffusion, turbulent diffusion and convection transport, 
respectively). 

In normal ladle operations, the contribution of molecular diffusion to mass transfer 
in liquid steel is negligible and considerable efforts have been made to correlate the 
overall mass transfer coefficient to turbulence and flow parameters. To the best of the 
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author’s knowledge, both the Higbie penetration assumption and the eddy-cell model 
have been frequently adopted in the literature to address these phenomena. Higbie 
assumed that mass transfer in a gas-liquid system is related to the surface renewal 
time, which is a function of bubble diameter and slip velocity [61]. Bannenberg and 
co-workers [59] employed the assumption to investigate degassing operations in 
secondary steelmaking and proposed that the mass transfer coefficient is proportion-
al to the square root of diffusivity and depends on the hydrodynamics of the metal-
gas system. Later on, Alves et al. [62] reported that the assumption is only applicable 
to systems at low dissipation of turbulent kinetic energy (TKE). On the other hand, 
the eddy-cell model postulates that mass transfer in gas-liquid system is mainly de-
termined by the motion of small-scale eddies and thus the mass transfer coefficient is 
a function of TKE dissipation [63, 64]. Taniguchi et al. [50] for comparison used both 
a Higbie penetration expression and the eddy-cell model to determine CO2 concentra-
tion in a water-CO2 system. The results showed that the eddy-cell model is more 
accurate in the bubble dispersion region, where TKE dissipation is at a high level. 
Similarly, the numerical work conducted by Venturini and Goldschmit [41] indicated 
that the eddy-cell model based predictions agree satisfactorily with their experi-
mental results both in a mass transfer (in liquid) controlled and a mix-controlled 
process. 

2.2.2.Interfacial chemical reaction 

The fundamentals of chemical reactions in steelmaking have been understood on the 
basis of laboratory experiments over the past decades. It has been revealed that 
steelmaking reactions are generally controlled by mass transfer at the boundary lay-
ers, e.g., dehydrogenation in gas-stirred ladles, due to the high temperature. However, 
there are exceptions, the most notable being absorption and desorption of nitrogen 
by liquid steel, which is a case of mix-controlled kinetics, i.e., both interfacial reaction 
and mass transfer partially control the overall reaction rate. This is because, as men-
tioned before, the surface-active elements in liquid steel can block the interfacial 
reaction sites, thus retarding the reaction rate. 

Pehlke and Elliott [65] in their pioneering work measured the rates of nitrogen ab-
sorption and desorption by liquid iron and derived a number of very important find-
ings: nitrogen absorption and desorption are approximately with the same rate con-
stant and an increase in either oxygen or sulfur content in liquid iron drastically de-
creases the reaction rate. A subsequent study by Fruehan and Martonik [66] con-
firmed these findings and further showed that the rate of nitrogen absorption into Fe-
Cr melts with low sulfur content is limited by mass transfer in the liquid phase. In 
contrast, for melts containing significant amounts of sulfur it is mix-controlled by 
both mass transfer and interfacial chemical reaction. As a result it is recommended 
that melts should be thoroughly deoxidized and desulfurized prior to subsequent 
processing by degassing units (i.e. a VTD). 

Additionally, it has been reported that the operating temperature has a remarkable 
impact on denitrogenation rate in liquid steel, as Ito and co-workers [67] indicated 
from their experimental results that the effect of oxygen on nitrogen transfer rate 
decreases as the temperature of liquid steel increases, which leads to a lower oxygen 
fraction at the interface. Similarly, Fu et al. [68], demonstrated that the resistance of 
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sulfur to nitrogen removal rate decreases with increases in temperature. Harashima 
and co-workers [57, 58] investigated the kinetics of nitrogen desorption from liquid 
iron under reduced pressures. Their results showed that an increase in the total pres-
sure gives rise to a reduced overall rate constant and the degree of negative influence 
of oxygen is about 2.5 times higher than that of sulfur. In addition they also managed 
to correlate the chemical reaction rate constant to oxygen and sulfur contents in liq-
uid iron. Kitamura et al. [69] later on adopted this correlation and developed a math-
ematical model for nitrogen desorption in vacuum degasser. The predicted results 
agreed well with their experimental ones. 

The effects of commonly encountered alloying elements on nitrogen behavior have 
also been extensively examined in the literature. Work by Choh et al. [70] revealed 
that manganese (Mn) and copper (Cu) in liquid steel may lower the interfacial tem-
perature due to the latent heat of vaporization, thus decreasing the nitrogen removal 
rate. Other Japanese researchers argued that the elements such as titanium (Ti), 
zirconium (Zr), vanadium (V), manganese (Mn) and chromium (Cr), which have a 
stronger affinity with nitrogen than iron and as such would enhance the nitrogen 
dissociation rate, whereas the elements like aluminum (Al), silicon (Si), boron (B), 
copper (Cu), tungsten (W) and tin (Sn) impose a stronger repulsive force against 
nitrogen that would retard the dissociation rate [71-73]. 
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3. Model Developed in the Thesis 

As in “List of Publication and the Author’s Contribution”, four scientific papers are 
included as supplements in the thesis. The connections between the papers and their 
interactions with different industrial cases are briefly described in Table 3.1. Paper 
I presents the first version of the CFD model (i.e., M1.0), of which the main focus was 
put on evaluating different turbulence formulae to simulate the multiphase hydrody-
namic phenomena in gas-stirred vessels. Also, a dehydrogenation module was in-
cluded in M1.0 and it was employed to mimic hydrogen removal from an industrial 
vacuum tank degasser (i.e., Riva cases). As reported in Paper II, M1.0 was later on 
upgraded to M1.1 by introducing a denitrogenation module. The applicability of M1.1 
was confirmed by simulating hydrogen and nitrogen removal from the Ruukki degas-
ser. By considering the fact that sulfur in liquid steel can be removed by the overlay-
ing slag, a desulfurization sub-module was coupled to M1.1 and this leads to the com-
plete version (M1.2) of the CFD model established during the thesis work. As in Pa-
per III, the versatility and applicability of M1.2 were explicitly shown. The efforts 
behind Paper IV were put into developing an “on-line use” concept to control the 
nitrogen removal and M1.2 was employed to conduct extensive simulations based on 
which two 3D operating diagrams were plotted. 

Table 3.1 Connections between the supplement papers and the interactions with industrial cases

 Main feature Task completed 

Paper I 
M1.0 

Gas-liquid flow field 
Dehydrogenation 

Validated by a water model from the literature 
Applied on an industrial cases of Riva to 
simulate dehydrogenation 

Paper II 
M1.1 (based on M1.0) 

Denitrogenation 
([S] is fixed) 

Applied on industrial cases of Ruukki to 
simulate 

o Dehydrogenation 
o Denitrogenation 

Paper III 

M1.2 (based on M1.1) 
Denitrogenation 
([S] varies during 
operation) 

Applied on industrial cases of Ruukki to 
simulate 

o Denitrogenation including the effect of 
Desulfurization 
Alloying elements 

Paper IV M1.2 

Applied on industrial cases of Ruukki to 
simulate 

o Denitrogenation emphasizing on building 
3D operating diagrams for on-line use 

 
Figure 3.1 schematically illustrates the structure and calculating procedures of the 

CFD model developed in this thesis. As can be seen, the model consists of a multi-
phase flow and a degassing sub-model. The former is based on the Eulerian-Eulerian 
approach and both the extended k-  turbulence and one-group interfacial area con-
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centration transport equation are embodied in the sub-model. Steady-state flow fields 
and IAC distributions are therefore obtained by solving the multiphase sub-model 
and then the results can be used by the degassing sub-model: By giving the correla-
tions of mass transfer coefficient and chemical reaction rate constant, the species 
transport equation is solved to investigate the dehydrogenation and/or denitrogena-
tion processes in a vacuum tank degasser. 

Figure 3.1 Schematic of model structure in the thesis 

3.1. Conservation Equations 

The main conservation equations including Eulerian-Eulerian transport equations for 
gas-liquid flows, extended k-  equations, interfacial area concentration and species 
transport equations are expressed as follows. 

3.1.1. Multiphase flow 

The continuity equation for phase ‘q’ (i.e., gas or liquid steel) is: 

 (3.1) 

where ,  and  are the volume fraction, density and velocity vector, respectively. 

The momentum equation for phase ‘q’ is defined as: 

 (3.2a) 

where P and eff are the pressure and effective viscosity, the subscript ‘p’ stands for 
the phase other than phase ‘q’. 

The lift force and drag force  are considered between gas (bubbles) and 

liquid steel in the model, and are expressed as: 

 (3.2b) 



Model Developed in the Thesis 

21 
 

 (3.2c) 

where CL and  are the lift coefficient and bubble relaxation time, respectively. The 
drag coefficient CD is determined by the following expressions: 

 (3.2d) 

where db and RT are the bubble diameter and Rayleigh-Taylor instability wavelength. 

3.1.2. Extended k-  equations 

The standard k-  (mixture) equations for turbulence calculation are expressed as: 

 (3.3a) 

 (3.3b) 

where the subscript ‘mix’ denotes mixture (volume-averaged) quantity, t and Gk are 
the eddy viscosity and production of turbulence kinetic energy (TKE). Sk and S  are 
the source term (i.e., zero by default). 

The above (standard) equations should not be directly applied in the gas-liquid sys-
tem where the bubbles could magnify turbulence in the bulk liquid as a result of in-
terfacial interactions like drag, wake shedding and bubble wobbling. In order to take 
such aspects into account, the standard equations have been extended by Sheng and 
Irons [10]. The source terms suggested by the authors are: 

 (3.3c) 

 (3.3d) 

where the subscripts ‘l’ and ‘g’ stand for liquid and gas phase, respectively. 

3.1.3. Interfacial area concentration 

A one-group IAC equation, which has been comprehensively described by Wu et al. 
[46] and Hibiki et al. [48], is employed to calculate the distribution of IAC. The con-
servation equation is: 

 (3.4) 
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where SRC, SWE, and STI are the terms of bubble coalescence induced by random colli-
sion, bubble coalescence induced by wake-entrainment and bubble breakup induced 
by turbulent impact, respectively. 

3.1.4. Species transport 

The species transport equation, which is used to compute the transient distribution of 
impurity in phase ‘q’, is as follows: 

 (3.5a) 

where the subscript ‘i’ denotes [X] or X2 depending on the phase in question. Yi,q and  
are the species mass fraction and diffusive flux. The source term Si,q for each phase 

has the following relation as a result of mass conservation: 

 (3.5b) 

For dehydrogenation, the source term is expressed as: 

 (3.5c) 

where , a and YH are the mass transfer coefficient in liquid, interfacial area concen-
tration, local hydrogen concentration in the computational cell, respectively. 

For denitrogenation, the overall rate is decided by the mass transfer in liquid steel 
and chemical reaction at the interface. The source term is therefore related to the 
mass transfer rate, Jm, and the chemical reaction rate, Jr: 

 (3.5d) 

and 

 (3.5e) 

where Al-g, MN, Y[N],in, are the interfacial area between steel and gas, mole mass of 
nitrogen and nitrogen content at the interface, respectively. The apparent chemical 
reaction rate constant reads: 

 (3.5f) 

where fo, fs, Yo and Ys are the activity coefficients and contents of oxygen and sulfur in 
liquid steel, respectively. 

For the mass transfer coefficient in liquid, both Higbie and eddy-cell expressions 
have been evaluated in the thesis work and the eddy-cell expression appears more 
accurate in terms of predicting the final hydrogen content in an industrial vacuum 
tank degasser (VTD). The eddy-cell expression utilized is: 
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 (3.5g) 

where D,  and  are the diffusivity in liquid steel, turbulent dissipation rate and kin-
ematic viscosity, respectively. 

3.1.5. In-house activity coefficient sub-model 

The activity coefficient of dissolved elements in liquid steel has been commonly calcu-
lated using the assessed activity data of the liquid phase based on the WLE formalism 
[74]. In this thesis, however, it is calculated from the liquid phase substitutional solu-
tion data of the IAD database [75], which provides thermodynamic data for iron 
based alloys with solutes Al, C, Cr, H, Mn, N, Nb, Ni, O, P, S, Si, Ti and V. As the sub-
stitutional formalism applies mole fractions and expresses solute activities with re-
gard to the Raoultian standard state (pure component) and the WLE formalism ap-
plies mass fractions and expresses solute activities with regard to the 1 wt % standard 
state, the former data must be converted to the latter to obtain the activity coefficient. 
This is realized by the following formula based on the theory of thermodynamic 
standard states, as reviewed by Miettinen [76]: 

 (3.6) 

where R is the gas constant (8.3145 J/K·mol), MX is the molar weight (g/mol) and 
MFe is the molar weight of iron (55.85 g/mol).  is the chemical potential and  is 
the activity coefficient of component X in its infinite dilution (solute mole fractions 
close to zero). Both terms are calculated with the substitutional solution model and 
data. 

3.2. Boundary Conditions 

Boundary conditions used in the CFD model are briefly summarized in Table 3.2. The 
surface of liquid bath is considered flat and only gas can escape through the (free) 
surface. This is realized by adding a set of sink terms into the conservation equations 
of gas phase in each control volume adjacent to the surface [37]. The sink terms are 
given as Eqn. (3.7),where wg, Afs and Vcv are the gas velocity perpendicular to the free 
surface, free surface area and volume of numerical grid (control volume), respectively. 
The gas phase enters calculation domain through a porous nozzle and its velocity is 
calculated by using Eqn. (3.8), where Q and Anozzle, eff are the gas flow rate and effec-
tive area of porous nozzle. The no-slip condition is applied for the liquid, while the 
slip condition is imposed for the gas at the walls. In addition, the standard wall func-
tion is employed for calculating near-wall turbulence quantities. 
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Table 3.2 Boundary conditions used in the model 

Bath surface Gas inlet Wall 

Degassing boundary 

 

 

Equation (3.7) 

Velocity inlet 

 

Equation (3.8) 

For liquid phase: no-slip condition 

For gas phase: slip condition 

For turbulence quantities: standard wall 

function 

3.3. Industrial VTDs 

During the thesis work the following three industrial VTDs from different steelmak-
ing plants have been studied: Riva Caronno Works of Italy, VoestAlpine Stahl Dona-
witz GmbH (VASD) of Austria and Ruukki Metals Oy of Finland. The main dimen-
sions and operating parameters of these VTDs are briefly outlined below. 

The structure of the Riva VTD is depicted in Figure 3.2, where a porous plug is lo-
cated at 0.695 m from the center of the bottom. Other dimensions are also shown in 
the figure. 

Figure 3.2 Schematic structure of the Riva VTD 

The evolution of operating pressure during vacuum treatment in the Riva VTD is 
illustrated in Figure 3.3, where the pressure is lowered rapidly and then reaches a 
stable condition of deep vacuum (typically under 1.33 mbar), which will last for the 
remaining period. In addition, argon gas with a high flow rate of 0.15 Nm3/min is 
injected at the beginning (lasting about 1 minute) of the deep vacuum condition to 
create the open-eye. After that, the gas flow rate is reduced to 0.05 Nm3/min, which 
is relatively low when compared to many other steel plants. During the entire 25-
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minute treatment, the temperature varies from 1913 K (1640 °C) to 1868 K (1595 °C) 
and the hydrogen content in liquid steel is reduced from 6.1 ppm to 1.7 ppm. 

Figure 3.3 Evolution of operating pressure during vacuum treatment in the Riva VTD 

Dimensions of the VASD ladle are shown in Figure 3.4(a). The operation pressure 
is typically below 1-3 mbar and the initial hydrogen content in the liquid steel is 3-4 
ppm. The vacuum pressure is reduced rapidly and reaches a stable deep vacuum 
condition, which lasts about 17 minutes. An argon gas injection rate of 100 NL/min is 
usually applied in the plant. 

A VTD with a capacity of 105-ton liquid steel from Ruukki Metals in Finland is also 
simulated in this work. During vacuum treatment, nitrogen and hydrogen are simul-
taneously removed from the VTD. The main dimensions and structure of the ladle are 
depicted in Figure 3.4(b). Argon gas is injected from two porous plugs eccentrically 
located at the ladle bottom to provide circulation flow in the liquid bath. The argon 
flow rate is set so it is approximately equal for each plug and the evolutions of flow 
rate and operating pressure during vacuum treatment are shown in Figure 3.5. As 
can be seen, the operating pressure is suddenly reduced at the beginning of the 
treatment and gas flow rate is kept at low level to prevent slag foaming. The flow rate 
is gradually increased and kept constant as deep vacuum condition (usually below 1 
mbar) is achieved in the middle of the process, which lasts about 20 minutes (marked 
as deep vacuum treatment in the figure). 
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                         (a)     (b) 

Figure 3.4 (a) Schematic structure of the VASD VTD (b) Schematic structure of the Ruukki VTD 

Figure 3.5 Evolutions of operating pressure and gas flow rate during vacuum treatment in the Ruukki 
VTD 

3.4. Results and Discussions 

3.4.1. Validation of the multiphase flow model 

Figure 3.1 indicates the importance of multiphase flow conditions in the overall 
predictions. However, to the best of the present author’s knowledge, there exist no 
practical ways to measure the gas-liquid flow within an industrial VTD. Therefore, the 
multiphase flow sub-model is firstly evaluated on the basis of the experimental study 
by Sheng and Irons [9, 10]. The comparisons of main parameters between their ex-
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perimental set-up and the Riva VTD are listed in Table 3.3, where the porous plug 
size of the Riva ladle is converted to the hydraulic diameter. 

Table 3.3 Comparisons of main parameters between the physical model and the Riva ladle 

Physical model by Sheng 
and Irons [9, 10] Riva ladle 

Vessel diameter (m) 0.5 2.51 

Nozzle hydraulic diameter (mm) 4.0 5.7 

Bath height (m) 0.42 2.5 

Liquid density (kg/m3) 998 7100 

Liquid viscosity (Pa s) 0.001 0.005 

Gas density (kg/m3) 1.225 0.48* 

Gas viscosity (Pa s) 105 1.79 8.4* 

Gas flow rate (m3/s) 103 0.05-0.15 3.0-6.0* 
Frmd (-) 0.068-0.21 0.20-0.40 

(‘*’ stands for the properties of argon at temperature of 1873 K (1600 °C), pressure of 1.7×105 Pa) 

It is found that the modified Froude numbers, Frmd, are quite close between the two 
systems. This implies that, according to the similarity laws, the physical measure-
ments can represent the flow conditions in the Riva VTD to a great extent. 

 (3.9) 

where Q, dhyc and H are the gas flow rate, nozzle hydraulic diameter and bath height, 
respectively. 

The comparisons between the measured and calculated flow fields under different 
gas flow rates (i.e., 5.0×10-5 and 1.5×10-4 Nm3/s) are shown in Figure 3.6, where the 
numerical predictions with standard k-  equations are also given. In general, the 
circulating flows, which are located at the upper part of the bath, occur as a main 
feature in both systems and the liquid flows upwards in the central region as a result 
of gas injection. The flow direction tilts gradually and is directed to the ladle sidewall 
near the bath surface and finally, the liquid flows downwards along the sidewall when 
it becomes far enough away from the intensive injection zone. It is to be noted that 
the extended turbulent equations could give more accurate predictions in terms of 
velocity magnitude and the center position of the liquid vortex (cf. the red dot in the 
figure). 

For detailed information, the measured and calculated axial liquid velocities along 
the center line are plotted in Figure 3.7. Based on the five measured points, the 
average deviations of the calculated values with extended turbulence equations are 
about 6 % and 13 % for the cases with low and high gas flow rate, respectively. How-
ever, the deviations with standard turbulence equations are approximately 30 % for 
both cases. Therefore, the calculated results using the extended turbulence equations 
are more accurate when compared to the experimental data. 
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Figure 3.6 Comparisons of flow fields between physical and numerical results under different gas flow 
rates: (a) Experimental measurements, (b) Predictions with the extended turbulence equations, (c) 
Predictions with standard turbulence equations 

Figure 3.7 Comparisons of axial liquid velocity between physical and numerical results under different 
gas flow rates 
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Similarly, the comparisons between the measured and calculated TKE under differ-
ent gas flow rates are depicted in Figure 3.8, and the detailed comparisons of TKE 
along the center line are plotted in Figure 3.9. It is found that by using the extended 
turbulence equations the deviations from the measured points are 18 % and 7 % for 
the two cases, which are much lower than the ones (about 85 %) with the standard 
equations. This suggests that the accuracy of prediction can be improved by using the 
extended turbulence equations even though it shows some deviations of TKE near the 
vessel bottom and bath surface (cf. Figure 3.8 and Figure 3.9). This could be ex-
plained by the nature of the k-  equations that are known to overestimate turbulence 
quantities especially in strongly curved flows. Nevertheless, the developed multiphase 
sub-model in this work appears accurate enough to investigate the complex flow 
behavior in the industrial vacuum degasser. 

Figure 3.8 Comparisons of TKE between physical and numerical results under different gas flow rates: 
(a) Experimental measurements, (b) Predictions with the extended turbulence equations, (c) Predic-
tions with standard turbulence equations 
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Figure 3.9 Comparisons of TKE between physical and numerical results under different gas flow rates 

3.4.2.Simulations of hydrogen removal 

The CFD model is adopted to simulate the dehydrogenation process both in the Riva 
and the VASD degasser. Only the deep vacuum period of each VTD is considered and 
the overlaying slag phase is ignored in the simulations. The general assumptions, 
simplifications and boundary conditions for each industrial case can be found in 
Paper I-III (cf. Appendix). 

3.4.2.1. Riva cases 
To study the effect of vacuum pressure on hydrogen removal, three cases with differ-
ent vacuum pressures (Pv) are simulated: 1 mbar for Case 1; 2 mbar for Case 2; 10 
mbar for Case 3. In addition, the initial hydrogen content in liquid steel ([H]) and gas 
flow rate of 6.1 ppm and 0.05 Nm3/min are the same for the three cases. It should be 
noted here that Case 1 corresponds to one of the practical operation conditions in the 
plant (i.e., Riva Caronno Works of Italy). The hydrogen transport equations are 
solved based on the stationary flow field obtained with the multiphase sub-model and 
some detailed results are displayed in Figure 3.10. 
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Figure 3.10 Some detailed calculated results for Case 1: (a) Transient distribution of [H] (in ppm); (b) 
Hydrogen content as well as velocity field (in m/s) in the central plane

As is clear from the figure, [H] decreases during the vacuum treatment and a low [H] 
zone appears both in the gas plume and bath surface. This can be explained by the 
locally low hydrogen partial pressure in the bubbles and at the surface. Also, it can be 
seen that [H] is higher in the regions that are remote from the gas plume and open-
eye. 

In principle, hydrogen removal could take place through the bubble surface and 
bath surface. These two routes are compared in Figure 3.11, where the evolutions of 
dehydrogenation rate by gas bubbles and by bath surface are plotted. It is shown that 
the bubble surface is the main area for hydrogen removal especially at the beginning 
of the process. As can be seen in the figure, dehydrogenation rate on bubble surface is 
5 times higher as the process commences since the gas-liquid interfacial area is much 
higher than that at the bath surface. The dehydrogenation rates for both routes de-
crease during the process due to the descent of [H] in the bath, leading to the decay of 
the driving force for mass transfer, i.e. the concentration gradient. However, the 
dehydrogenation rate at the bath surface does not decrease as much as the one for gas 
bubbles. This could also be explained by the driving force: the hydrogen content 
around the open-eye is always at a lower level when compared to the one in the bulk 
flow (cf. Figure 3.10), giving rise to a lower driving force for the removal reaction at 
the bath surface. 
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Figure 3.11 Dehydrogenation rates by bubble surface and bath surface for Case 1 

The effect of vacuum pressure on dehydrogenation is illustrated in Figure 3.12, 
where the [H] removal ratio for each route, i.e. bubble surface or bath surface, is 
depicted. It can be seen that the total removal ratio decreases when the vacuum pres-
sure increases since the thermodynamic conditions for dehydrogenation in the liquid 
bath deteriorate with increasing vacuum pressure. Furthermore, as shown in the 
figure, the removal ratio from the bath surface slightly increases for Case 3 with much 
higher vacuum pressure. This can be explained as follows: the liquid steel with higher 
[H] (because of the worse dehydrogenation conditions in the bath) could reach the 
bath surface where the partial pressure of hydrogen is fixed due to the assumption of 
zero-H2 partial pressure. The driving force of dehydrogenation near the bath surface 
therefore rises, causing the higher removal ratio at the bath surface. 

Figure 3.12 Effect of vacuum pressure on hydrogen removal ratio for Cases 1-3 

In order to validate the integrated model, three more cases, which correspond to 
operating conditions in the plant and are listed in Table 3.4, were performed. The 
calculated final [H] for Case 4-6 as well as that of Case 1 are plotted in Figure 3.13, 
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where the measured data from the plant are also given. As can be seen, the biggest 
deviation of 6.2% occurs with Case 4, a good agreement is still achieved between 
prediction and measurement. 

Table 3.4 Main parameters for Cases 4-6 of Riva VTD 

 Case 4 Case 5 Case 6 

Vacuum pressure, mbar 0.72 0.78 0.58 

Gas flow rate, Nm3/min 0.07 0.08 0.1 

Deep vacuum period, min 21 15 20 

Initial [H], ppm 5.9 5.6 5.8 

Figure 3.13 Comparisons of measured and calculated final hydrogen content in liquid steel 

3.4.2.2. VASD cases 
For the VASD ladle, the transient distributions of [H] during the treatment as well as 
the velocity field on the center plane are illustrated in Figure 3.14. This shows simi-
lar patterns to Figure 3.10: [H] decreases during the process and low [H] zones 
appear near the gas plume and open-eye. 

Figure 3.15 shows the evolutions of [H] in liquid steel with different initial [H]. As 
can be seen, [H] in liquid steel decreases during the process and more interestingly, 
the effect of initial [H] on the final content seems to be minor when the vacuum time 
is long enough, e.g. only a difference of 0.085 ppm exists among the three cases with 
17-min of deep vacuum. In addition, since measurements of [H] in the degasser are 
unavailable from this particular plant set-up, a set of average data based on the 
measurements from various tundish heats with liquid steel after different durations 
of vacuum treatment (cf. 8-17 minutes in the figure) are given for comparison. It is 
shown that the simulation results differ up to 6% from the average data, indicating 
that the predicted curves correspond well with the average data. This could verify the 
CFD model if the tundish data can reflect the final [H] in the VTD to a great extent, 
which in fact has been confirmed by the personnel from the plant (i.e. VoestAlpine 
Stahl Donawitz GmbH of Austria). 
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Figure 3.14 (a) Transient distribution of [H] in the steel bath ([H] in ppm) (b) Hydrogen content with the 
corresponding velocity field (in m/s) on the center plane for a VASD case (initial [H] is 3.5 ppm) 

Figure 3.15 Evolutions of hydrogen content in liquid steel with different initial [H] for the VASD ladle 
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3.4.3.Simulations of hydrogen and nitrogen removal (Ruukki cases) 

The process of simultaneous dehydrogenation and denitrogenation in the Ruukki 
degasser is simulated by using the integrated model. The variation in the steel com-
position before the degassing operation is listed in Table 3.5. It is worth noting that 
the carbon content is in the range of 0.1% to 0.35% and the oxygen content is general-
ly lower than 6 ppm, which implies that decarburization could barely take place in the 
VTD. 

Table 3.5 Variation in Ruukki steel composition before degassing treatment 

 Al C Cr H Mn N Nb 
Min. 0.015 0.1 0.033 0.0004* 0.6 0.003 0 
Max. 0.127 0.35 1.78 0.0004* 1.4 0.0073 0.081 

 Ni O P S Si Ti V 
Min. 0.03 0.0002 0.006 0.0016 0.09 0.002 0.005 
Max. 0.66 0.0006 0.017 0.0154 0.5 0.126 0.198 

(* stands for average content in liquid steel) 

Figure 3.16 illustrates the evolution of nitrogen and hydrogen contents in liquid 
steel during deep vacuum treatment for a base case of the Ruukki ladle. As can be 
seen, the contents of nitrogen and hydrogen gradually decrease as the operation pro-
ceeds and the low content zones appear in the vicinity of the plume. 

Figure 3.16 Transient distribution of (a) nitrogen and (b) hydrogen in liquid steel during deep vacuum 
treatment for the Ruukki ladle 

3.4.3.1. Effect of alloying agent on denitrogenation 
The effect of various alloying agents on the denitrogenation process is estimated by 
conducting simulations with different contents of each alloying element. The evolu-
tions of the apparent chemical reaction rate under different alloying element contents 
are displayed in Figure 3.17, where the average rate over the 19-min deep vacuum 
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period is plotted and the content range of each element is chosen according to Table
3.5. As can be seen in Figure 3.17 (a), the reaction rate decreases with an increase 
in the content of [S] or [O], because sulfur or oxygen as a surface-active element can 
block the interfacial reaction sites and consequently retard the chemical reaction rate. 
Furthermore, the reaction rate decreases as each of [Cr], [Nb], [V], [Ti] or [Mn] con-
tent increases (cf. Figure 3.17 (a)) since those elements have stronger affinity with 
nitrogen than iron, therefore lowering the nitrogen activity in liquid steel and reduc-
ing the reaction rate. In contrast, as demonstrated in Figure 3.17 (b), an increase in 
the content of [C], [Si], [P] or [Ni] can promote the reaction rate as these elements 
have stronger repulsive force against nitrogen than iron and thus increase the nitro-
gen activity. In addition, the presence of aluminum slightly enhances the nitrogen 
reaction rate even though it has stronger affinity with nitrogen than iron. 

(a) 

(b) 

Figure 3.17 Effect of various alloying elements on the (average) apparent chemical reaction rate 

The effects mentioned above are further elucidated in Table 3.6, where the influ-
ence of each alloying element on the activity coefficients and chemical reaction rate is 
listed. In principle, the influence of an element on nitrogen reaction rate is attributed 
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not only to its effect on the activity of nitrogen in liquid steel but it is also linked to its 
influence on the activities of sulfur and oxygen, which are at the same time deter-
mined by the other alloying elements present in the liquid steel. This is reflected in 
the last column of Table 3.6: Even though an increase in [Al] content reduces the 
activity of nitrogen, it leads to an increase in the sulfur activity and lowers the activity 
of oxygen. Consequently, its effect on the chemical reaction rate is a combination of 
all those aspects. It should be noted that although the presented results are valid for 
the steel composition studied here, the developed concept is general and would be 
applicable for other steel grades. 

Table 3.6 Effect of various alloying elements on the activity coefficients and chemical reaction rate 

 Cr Nb V Ti Mn C Si P Ni Al 

fN      + + + +  

fS      + + + + + 

fO         +  

kN      + + + + + 

3.4.3.2. Operating diagram of denitrogenation for on-line use 
Emphasis behind the present work has also been put into clarifying the correlations 
between the chemical reaction rate (constant), initial and final [N] content and thus 
providing the managers and operators with some instructive information in real-time. 
To this end, a diagram of final [N] content and nitrogen removal ratio can be plotted 
on the basis of extensive numerical experiments with various operating parameters 
using the integrated CFD model. 

Figure 3.18 illustrates two operating diagrams under different gas flow rates. It 
must be stressed that all the simulations behind the figures are performed for 1100 
seconds corresponding to the deep vacuum period of the degassing process and the 
liquid steel composition varies in each simulation to cover the whole range of the 
steel composition listed in Table 3.5. It is generally concluded from the figures that 
the final [N] content decreases with an increase in the average reaction rate constant 
and increases as the initial content rises. The nitrogen removal ratio, which is defined 
as the removed nitrogen in liquid steel relative to the initial one, is marked with 
dashed lines. It shows that the removal ratio rises as either the rate constant or the 
initial [N] content increases. In addition, by comparing Figure 3.18 (a) and (b), it 
can be seen that each line of the removal ratio moves downwards with higher gas flow 
rate, indicating that more nitrogen can be removed from liquid steel when the bath is 
more stirred. 

The operating diagrams demonstrated above are further verified with some indus-
trial measurements from the plant. Comparisons of measured and predicted final [N] 
contents under different gas flow rates are shown in Figure 3.19, where each pre-
dicted content are determined from the operating diagrams with corresponding ini-
tial [N] content, gas flow rate and calculated average chemical reaction rate constant 
based on the steel composition. It is calculated that the average deviations of the 
predicted results are lower than 13% and 10% for the cases with low and high gas flow 
rate respectively. This suggests that the operating diagrams presented in this report 
would be an informative and accurate tool for VTD managers and operators. 
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(a) 

(b) 

Figure 3.18 Operating diagrams based on predictions of the CFD model: (a) gas flow rate of 130 
NL/min and (b) of 180 NL/min per plug. The nitrogen removal ratio is marked with dashed lines 
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Figure 3.19 Comparisons of measured data of final [N] and the ones by corresponding operating 
diagrams 
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4. Conclusions 

The CFD technique has been proven to be a powerful tool for simulating various 
transport phenomena within metallurgical reactors, which are typically operated 
under extremely hostile conditions. Nevertheless, different thermodynamic con-
straints should be considered for each specific metallurgical reactor in order to pro-
vide a better understanding of the underlying process. This thesis work has placed 
particular emphasis on investigating the dehydrogenation and/or denitrogenation 
behavior in some operational VTDs from different industrial plants. To this end, a 
comprehensive CFD model has been developed step by step during the thesis work, of 
which the novelties and new features exist in the following aspects. 

A literature survey was firstly conducted in the related field and a variety of 
elaborate sub-models and concepts, which are relatively separate in the lit-
erature, have been integrated into the CFD model. 
The multi-component effect of steel composition on the degassing process 
has been assessed by coupling the CFD model with an in-house thermody-
namics code, which can be used to calculate the activity coefficient of dis-
solved elements in liquid steel as a function of steel composition and tem-
perature. 
Efforts were put into developing an “on-line use” concept to control the ni-
trogen removal since CFD calculations are often time-consuming and are 
therefore, so far, inappropriate for on-line use. 

The CFD model was developed on the basis of the Eulerian-Eulerian approach and 
consists of two sub-routines for calculating multiphase flows and species transporta-
tions, respectively. The commercial CFD package of ANSYS FLUENT was adopted 
and augmented by implementing various user-defined functions. The versatility of 
the model has been demonstrated by performing different simulations to cover a wide 
range of main operating parameters of the VTDs. Also, the accuracy of the model was 
established by performing comparisons against industrial measurements. The main 
findings from this thesis work are summarized as follows. 

The multiphase model with extended turbulent equations gives more accu-
rate results compared to the model with standard turbulent equations. (as 
in Paper I) 
Hydrogen removal takes place both at the bubble-liquid interface and at 
the bath surface, though the bubble surface was determined to be the main 
area for dehydrogenation especially at the beginning of the process. (as in 
Paper I) 
The model was applied to study the simultaneous removal of hydrogen 
and nitrogen in liquid steel and the predicted results indicated that lower 
hydrogen and nitrogen content can be achieved by increasing the gas flow 
rate and prolonging the deep vacuum duration. (as in Paper II) 
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The effect of various alloying elements on denitrogenation process was es-
timated and the simulations revealed that the nitrogen removal rate de-
creases with an increase in the content of [S], [O], [Cr], [Nb], [V], [Ti] or 
[Mn], whereas it increases with an increase in the content of [C], [Si], [P], 
[Ni] or [Al]. (as in Paper III) 
The 3D operating diagrams, which correlate the chemical reaction rate 
constant and initial nitrogen content to its final content in liquid steel, 
were presented. It has been shown that these operating diagrams would be 
a useful tool for providing instructive information to VTD managers and 
operators. (as in Paper IV) 
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5. Future Prospects 

Still, there are a number of issues to be tackled regarding the CFD model. More vali-
dation against industrial data from different steel grades will be carried out in the 
near future. The accuracy of the model will be improved to further reduce the (small) 
discrepancies between predicted results and industrial measurements by tuning some 
of the assumptions and/or parameters. The overlaying slag phase will be embodied in 
the model so that the desulphurization process can be simulated, in order to make the 
model more versatile and flexible. Moreover, an attempt to performing parallel simu-
lations will also be made. 
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