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Abstract 
A web-core steel sandwich plate is a lightweight, orthotropic structure. The constituent thin 

plates (2-4 mm) are joined by laser-welding. This thesis investigates the buckling and post-
buckling behaviour of slender web-core sandwich plates loaded in the direction of the web 
plates. The influence of corrosion on the plate buckling is studied via finite element method  
(FEM). The corrosion scenario used is based on experimental observations from specimens 
submerged into the sea for 1 and 2 years. The plate strength analyses are performed with two 
methods: FEM having shell element mesh of the three-dimensional topology and the equivalent 
single-layer theory (ESL). In the later, the sandwich plate is represented with constant, 
homogenised stiffness coefficients, which are related to physical properties of the structure. 

  The first buckling mode of slender web-core sandwich plates is characterised with global 
deformation between the edge supports. The buckling strength depends on the bending and 
transverse shear stiffnesses. This thesis revealed that the buckling strength is very sensitive to 
the variation in transverse shear stiffness opposite to the web plate direction, DQy, especially in 
sandwich plates with high bending stiffness. Furthermore, the stiffness of the sandwich plate 
as a whole in the post-buckling is controlled by that of the in-plane stiffness. The web plates 
impose high, shear-induced, secondary bending stresses on the face plates and these were 
found to be important for accurate estimation of the onset of yielding. The deformation 
resulting from the secondary bending of the face plates makes the unloaded edge stiffer. 
Although membrane stress can be higher there, local buckling during global post-buckling 
occurs further away where the secondary deformations are smaller, primarily in the centre of 
the face plate (x=a/2, y=b/2). Furthermore, the corrosion tests revealed that the cross-section 
is primarily affected by general corrosion. Under this circumstance, the reduction of the 
thickness of the face and web plates reduces the stiffness coefficients and also the buckling 
strength linearly. The buckling strength reduces rapidly, especially because of the reduction in 
the transverse shear stiffness DQy. The reduction of buckling strength doubles if, in addition to 
the outer faces, corrosion also occurs inside the sandwich plate. Beam bending tests also 
showed rapid reduction of the ultimate strength but, in addition, that it can be maintained using 
different protection methods. The results thus indicate that the protection against corrosion 
should be carefully performed. 

  The future work will involve improving the accuracy of the ESL theory in the presence of 
local buckling. 
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List of abbreviations and symbols 

Each publication introduces its list of symbols or in the case of Publication 3, 

they are explained in the corresponding text. The following abbreviations and 

symbols appear in the thesis summary: 
 

 

2D Two-dimensional  

3D Three-dimensional  

a, b Length and width of the sandwich plate 

h, hc Height of the sandwich plate and height of the core 

m, n Number of buckling half-waves in x- and y-direction 

s Spacing of web plates 

u, w Displacement of the sandwich plate in x- and z-direction 

w0 Initial magnitude of imperfection 

tf, tw Thickness of the face plate and thickness of the web plate 

tlw Thickness of the laser weld 

Aij, Bij, Dij In-plane, coupling and bending stiffnesses, i,j=1,2,3. 

DQx, DQy Transverse shear stiffness in x- and y-direction 

E Young´s modulus 

ESL Equivalent single-layer 

F Force acting on the plate 

FEM Finite element method 

FSDT First-order shear deformation theory 

IMO International Maritime Organization 

N0 Buckling strength of a sandwich plate 

σy Stress component in y-direction 

σf Yield strength of the material 

 Poisson ratio 
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Original features 

The following features are believed to be original in this thesis: 

 

1. The influence of stiffnesses on the buckling strength (Publication 1, Publi-

cation 2) and post-buckling behaviour (Publication 2) of slender laser-

welded web-core sandwich plates is explained. 

2. The influence of the rotational stiffness of the laser stake-welded T-joint 

on the buckling strength (Publication 1) and plate post-buckling stiffness 

(Publication 4) is presented. 

3. Extensive physical experimental investigation is carried out to determine 

the influence of corrosion on the steel sandwich structure. Specimens are 

assessed after one and two years of submergence in the sea for the type of 

corrosion developed, rate of thickness reduction and the state of the laser 

welds (Publication 3). 

4. Extensive physical experimental investigation is performed to validate 

numerical models for assessment of the ultimate strength of laser-welded 

web-core steel sandwich beams affected by general corrosion (Publication 

3). 

5. The influence of general corrosion on the plate stiffnesses is determined. 

This allows the calculation of the buckling strength of symmetrically cor-

roded web-core steel sandwich plates using general laminate theories 

(Publication 4). It is demonstrated that the most sensitive stiffness com-

ponent is the transverse shear stiffness in the direction opposite to the 

web plate.  

6. It is validated that the equivalent single-layer laminate theory representa-

tion of the web-core sandwich plate gives an accurate prediction of plate 

buckling and post-buckling for global deformation (Publication 1, Publica-

tion 2).  
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1. Introduction 

1.1 Background 

Humankind is becoming increasingly aware that energy has to be used more 

efficiently to preserve the environment. One of the areas in focus is cargo ship-

ping, which is responsible for the transportation of the majority of goods 

around the world. The International Maritime Organization (IMO) has set out 

regulations that require the reduction of greenhouse gas emissions in ships 

(IMO, 2011). Thus, the legislation for energy efficiency is becoming more de-

manding, which calls for changes in conventional ship design. 

One possible way to increase the energy efficiency of a ship lies in reducing 

her structural weight, allowing a higher amount of cargo to be transported 

instead. Ships’ structures are traditionally made of stiffened plates. Although 

the minimisation of their weight has received much attention in recent dec-

ades, advances in production technology have allowed the use of new struc-

tural concepts that allow higher weight savings. For example, a sandwich plate 

has a lower weight for the same bending stiffness of the traditional structure as 

a result of the material being positioned away from the neutral axis; see Figure 

1. Further beneficial properties of sandwich plates are increased crashworthi-

ness (Noor et al., 1996; Valdevit et al., 2004; Xue and Hutchinson, 2006; Val-

devit et al., 2006), space saving as a result of their low height, the possibility of 

system integration, etc. 

 

 

Figure 1. Advances in production technology allow the use of new structural concepts in ships. 
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Sandwich plates consist of a core enclosed by face plates. The core tradition-

ally has a relatively low stiffness and carries the transverse shear loads. The 

faces have relatively high stiffness and carry the bending and in-plane loads. 

The core can possess various topologies: a web, a corrugation, a honeycomb, a 

cellular core, etc. (Allen, 1969). The core and faces can be selected from vari-

ous materials: metals, composites, plastics, or organic materials. Ships are 

traditionally made from steel, and thus the selection of steel as the material for 

sandwich plates is convenient for welding them to the surrounding structure. 

Steel is easy to recycle and good against fire, but it is prone to corrosion.  

The sandwich plates studied in this thesis are made from steel face and web 

plates. The web plates in the core extend in only one direction and are welded 

to the face plates by means of the laser welding technique (Teasdale, 1988; 

Roland and Reinert, 2000; Kujala and Roland, 2002; Bright and Smith, 2004) 

which enables thin plates (2-4 mm) to be used. The core of the sandwich plate 

can be filled with foam, which has a positive effect on the strength, damping, 

and corrosion (Romanoff and Kujala, 2001; Sandwich project, 2003; Kolsters 

and Zenkert, 2006a; Kolsters and Zenkert, 2006b). However, the focus of this 

thesis is empty sandwich plates since they are cheaper and easier to produce 

and the empty core can accommodate e.g. electrical wiring or piping. The web-

core sandwich plate is stiffer in the direction of the webs, which is convenient 

for large ships where the longitudinal direction bears higher loads. The use of a 

sandwich plate as a part of the deck exposes the plate to ship girder loads as a 

result of the bending induced by waves, i.e. in-plane compression and tension; 

see Figure 2a. The use of web-core steel sandwich plates in ships is restricted 

by the limited understanding of their structural behaviour under such condi-

tions and limited confidence in the efficiency of structural analysis methods. 

In traditional structural elements of ships, such as stiffened and isotropic 

plates, the tensile load-shortening path is stable until the onset of material 

plasticity, i.e. yielding. Compression exhibits different, more dangerous behav-

iour; see Figure 2a. While the stress in the plate is still elastic, the plate can 

buckle, experiencing a sudden increase in the out-of-plane displacements. The 

value of the force at which this occurs is called the buckling strength. The in-

crease in the compressive force continues in the post-buckling regime but the 

stiffness of the plate is reduced. Soon after the material starts to yield, the 

maximum force, called the ultimate strength, is attained.  
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Figure 2. (a) Idealised behaviour of a plate in tension and compression loading; (b) Global and 
local buckling deformation. “ f” represents the yield strength of the material and “A” repre-

sents the cross-sectional area of the plate. 

The plates are typically designed against buckling since it represents the start 

of a reduced compressive load-carrying capacity. Nonetheless, the post-

buckling range can be reached by the plate being overloaded in an unexpected 

situation, for example in harsh sea conditions. Since this can endanger the 

safety of the ship, it is important to understand the post-buckling behaviour. 

Furthermore, ships operate in a corrosive marine environment, which can re-

duce the thickness of the plates. Thin plates are susceptible to buckling, and 

thus the influence of corrosion on the buckling and post-buckling of the sand-

wich plate has to be considered.  

The buckling of web-core sandwich plates can occur in global or local mode; 

see Figure 2b (Aimmanee and Vinson, 2002; Vinson, 2005; Kolsters and 

Wennhage, 2009). Guided by the need to reduce weight and volume, ship 

structural design tends to produce slender sandwich plates in which the ratio 

of height to length and height to width is very low. This is because the plate is 

supported by the web frames and longitudinal girders, whose spacing is typi-

cally 3-7 meters, which is much larger than the height of the sandwich plate, 

e.g. h = 25-45 mm. This leads to the situation that the critical buckling mode of 

the plate is global, the form of deformation where the characteristic length is 

equal to the span of the plate and not the unit cell. The unit cell is the smallest 

repetitive volume of the plate, extending one web plate spacing, s, in y-

direction, height being equal to that of the sandwich plate, h, and the length 

equal to infinitesimal length dx. Since there are no deformations from local 

buckling, the complexity of the problem is reduced. This could mean that sim-

plified methods are suitable for the analysis, but this hypothesis requires in-

vestigation. Simplification can be performed using equivalent single-layer 

(ESL) laminate theory, which defines the sandwich plate in terms of homoge-

nised stiffnesses; see Figure 3. This approach leads to a reduction in the com-

putational efforts within finite element method (FEM) analysis in conceptual 
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design. Furthermore, since stiffnesses have a physical meaning, it reveals the 

physical characteristics of the structure that control the compressive behaviour 

of the plate. 

 

 

Figure 3. Differences in modelling a real sandwich structure in comparison to ESL approach. 

1.2 State of the art 

The buckling strength of an isotropic plate increases linearly with the bending 

stiffness of the plate (Bryan, 1891). In shear-deformable plates, shear stiffness 

plays an important role in addition to the bending stiffness (Allen, 1969, Noor, 

1996, Reddy, 2004). When post-buckling is concerned, the in-plane stiffness 

also becomes important according to von Karman kinematics (Timoshenko 

and Gere, 1961). Therefore, understanding the in-plane, shear, and bending 

behaviour is important for sandwich plates under compression.  

ESL theory relies on homogenised stiffnesses to reduce the number of prob-

lem unknowns. Libove and Bathdorf (1948) and Libove and Hubka (1951) as-

sumed that the corrugated core sandwich plate follows the first-order shear 

deformation plate theory (FSDT; see Reddy, 2004). FSDT, in comparison to 

classical plate theory, includes the transverse shear strains that are assumed 

constant through the thickness of the sandwich plate. Since then, several 

modified stiffness formulations have been presented: for web-core sandwich 

plates see Chen et al. (1971), Lok et al. (1999), Kolsters and Zenkert (2002), 

and Kujala and Klanac (2002). However, in sandwich plates with a discrete 

core significant stress concentrations arise as a result of the shear-induced 

secondary bending of the constituent plates. The effect was presented for cor-

rugated and Z-core sandwich plates in Wiernicki et al. (1991), Smith et al. 
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(1992), Fung et al. (1994), and Knox et al. (1998). Romanoff and Varsta 

(2006) presented a method to obtain the full state of stress (including the sec-

ondary bending stress) from the force resultants of the homogenised solution 

for the bending of web-core sandwich beams. The theory was extended to 

plates in Romanoff and Varsta (2007). The bending response was obtained for 

ESL plates in FEM relying on constant, homogenised stiffness properties. With 

the same approach, Engelstad et al. (1992) obtained the post-buckling re-

sponse of a slender composite plate up to the point of first-fibre failure. This 

gives confidence concerning the applicability of ESL to the global buckling and 

post-buckling of web-core sandwich plates; however, it needs further study 

because of the material and topological differences between the plates.  

The elastic response of sandwich plates using ESL requires the definition of 

homogenised stiffnesses. A web-core sandwich plate is specific in the way that 

the two transverse shear stiffnesses differ tremendously: the one perpendicu-

lar to the webs, DQy, is a few orders of magnitude smaller than that in the di-

rection of the webs, DQx, because of the discrete arrangement of the core. The 

difference in the shear stiffness is further emphasised if the face and web 

plates are joined by means of laser welding, where the thickness of the weld is 

typically less than that of the web plate (Roland and Reinert, 2000). Conse-

quently, the rotational stiffness of the T-joint is reduced, which increases the 

deflections in web-core sandwich beams (Romanoff et al., 2007) and plates 

(Romanoff and Varsta, 2007). Similarly, for C- and Z-core sandwich plates 

Fung et al. (1996) and Fung and Tan (1998) showed that the shear stiffness 

can vary considerably, depending on the contact mechanism between the 

flanges of the core stiffeners and the face plates. For corrugated-core sandwich 

plates produced by adhesively bonding the faces with the core, Rahman and 

Abubakr (2004) and Haj-Ali et al. (2009) showed that the shear stiffness de-

pends on the stiffness of the adhesive and also that it has an effect on the buck-

ling strength of the sandwich plate. Romanoff et al. (2007) showed that the 

rotational stiffness of the T-joint is influenced by the local geometry: beyond 

the initial constant stiffness, the stiffness can increase as a result of contact 

between the plates, which increases the effective width of the laser weld. 

Therefore, a study on the influence of the stiffness of the T-joint on the buck-

ling and post-buckling of the sandwich plate should be conducted.  

Local buckling of face plates between the webs was studied in Kolsters and 

Zenkert (2006a, 2006b) for compression in the web plate direction and or-

thogonal to it, respectively. Although local buckling can be dominant in sand-

wich plates with thin faces, the typical span of girders in ships opens up the 

possibility of global buckling being the critical mode (Kolsters and Wennhage, 

2009). For stiffened plates, the difference between the buckling strength and 
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the ultimate strength is considered smaller in the case of global buckling 

(Hughes, 1983), which makes it a more dangerous mode in the way that the 

reserve in load-carrying capacity beyond the design point is reduced. Global 

buckling and post-buckling were studied for corrugated board plates, in Hahn 

et al. (1992) and Nordstrand (1995). Nordstrand (2004) presented an analyti-

cal and experimental investigation of their compressive behaviour until first-

fibre failure. The plates exhibited first global and then local buckling, as in the 

study by Hahn et al. (1992). However, the difference between the two trans-

verse shear stiffnesses in corrugated-core plates is much lower than in web-

core plates. Furthermore, the structure does not include the deforming T-joint 

either. Therefore, the global buckling and post-buckling behaviour of web-core 

sandwich plates needs to be investigated.  

Marine environments are recognised as being very corrosive for structural 

steel. Changes in the structure as a result of corrosion are known to affect all 

aspects of the plate response: the elastic part, buckling strength, and onset of 

plasticity. Corrosion is a complicated electrochemical process influenced by 

numerous factors (Melchers, 2008; Guedes Soares et al., 2009). Significant 

reductions in the thickness of plates have been measured on ships in service 

(ABS, 2002; Paik et al., 2003; Wang et al., 2003), showing large deviations in 

reductions in thickness for ships of the same type and age (Guo et al., 2008). 

Corrosion can occur throughout the ship, thus also in the upper decks as a re-

sult of green water, rain, and service water accumulation, all leading to high 

humidity in an aggressive marine atmosphere. There are numerous studies on 

the detrimental effect of corrosion on structural behaviour; a good overview 

can be found in the reports by ISSC (ISSC, 2009). The influence of corrosion 

on web-core sandwich beams has been investigated in the European Union 

Sandwich project (Sandwich consortium, 2003) and the investigation of Det 

Norske Veritas (DNV, 2003). However, these experiments were focused on 

observing corrosion wastage rates and the influence on stiffness only in the 

linear elastic regime. Therefore, the influence of corrosion on sandwich plate 

behaviour under in-plane compression needs to be investigated.  

1.3 Scope of work 

The present investigation focuses on the global buckling and post-buckling 

response of slender web-core steel sandwich plates; see Figure 4. The influence 

of the rotational stiffness of the T-joint on the buckling of the plate is ex-

plained in Publication 1. Initiation of the non-linear behaviour through geo-

metric imperfection is studied in Publication 2. The effect of the magnitude of 

the imperfection on the post-buckling response is analysed. The shape of the 



19 

initial imperfection is based on the available measurement data. In Sandwich 

project (Sandwich consortium, 2003), the imperfections in the 3-meter-long 

beams were measured in the direction of the web plates. The cross-sections of 

the beams were similar to those considered in this thesis. The measurements 

showed that the specimens are deformed mainly globally, with the node points 

at the ends of the beams. In the absence of plate measurements, global imper-

fection shape is considered in this thesis. Furthermore, Publication 2 explains 

the influence of the stiffnesses on the non-linear plate behaviour. The accuracy 

of prediction using the ESL theory is analysed in comparison to the FEM re-

sults where the actual topology is represented with shell elements. Experimen-

tal investigation of the influence of corrosion on the cross-sectional geometry, 

material properties and ultimate strength of web-core sandwich beams in 

three-point bending is performed (Publication 3). The credibility of the inves-

tigation requires experimental evidence as a result of the complexity of the 

corrosion process and the possible development of different types of corrosion. 

The corrosion condition is achieved in natural seawater instead of laboratory 

conditions since seawater is a complex mixture of chemical and biological 

processes which is very hard to replicate artificially (Little and Ray, 2002; 

Melchers, 2008). The accuracy of numerical tools for the prediction of the re-

sponse is assessed in comparison to the experiments. The change in the post-

buckling response as a result of corrosion is explained in terms of homoge-

nised stiffnesses (Publication 4). The influence of general corrosion on the load 

carried and the stress state at the onset of plasticity is analysed.  

 

 

Figure 4. Outline of the investigation. 
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1.4 Limitations 

1. In this thesis, the sandwich plates are studied under a uni-axial force since 

this is the primary loading direction in large thin-walled girders such as 

ships and bridges.  

2. The study is performed on slender plates, which buckle globally, and high 

local stress concentrations do not occur until far into the post-buckling re-

gime. Therefore, a linear elastic material curve for buckling and initial 

post-buckling is sufficient. 

3. A symmetric sandwich plate (with respect to the neutral axes) is analysed 

since that cross-section is an industry standard and there is no mem-

brane-bending coupling at the onset of loading. This allows a clear identi-

fication of a buckling strength. 

4. The plate is modelled without the surrounding structure. This reduces the 

number of effects that can influence the nonlinear response of the plate. 

5. The geometric nonlinear analysis is carried out using the global deforma-

tion shape as an initial imperfection, i.e. the initial deformation has a 

characteristic length equal to the span of the plate and not the unit cell. 

The measurements from web-core sandwich beams with similar cross-

sectional proportions to those studied in this thesis showed that this is the 

typical imperfection shape. 

6. For practical reasons, the exposure to sea water is limited to two years; the 

test specimens have a limited size and they are not exposed to mechanical 

loading while corroding.  
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2. Buckling strength 

2.1 Influence of bending and shear stiffness 

The buckling of the sandwich plate represents the starting point of reduced 

load-carrying capacity. The buckling strength of the ESL plate that follows the 

FSDT kinematics depends on the bending and transverse shear stiffnesses; see 

Robinson (1955) and Reddy (2004). The equation for the buckling strength is 

validated with 3D FEM model of the sandwich plate using shell elements in 

Publication 1. The buckling strength N0 per unit width of a simply supported 

plate is: 

 

   (1) 

 

where the coefficients are: 

 

  (2) 

 

The variables m and n are selected in such a way as to make the buckling 

strength minimal. The most critical stiffness is the transverse shear stiffness 

opposite to the web plate direction, DQy. Since it is several orders of magnitude 

smaller than DQx, it severely limits the buckling strength. In comparison to 

long isotropic plate, buckling coefficient k is significantly lower than 4. In-
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creasing DQy so that it has the same value as DQx doubles the buckling strength 

of the plate, whose cross-section is considered as an industry standard (Publi-

cation 2). Thus, it can be beneficial to design the sandwich plate with increased 

DQy because of the positive effect on the global buckling strength. The use of 

foam in the core (Kolsters and Zenkert, 2006a) or even having two-directional 

web plates (Xue and Hutchinson, 2006) will have such an effect. Naturally, 

there are additional design aspects that occur in these cases, such as added 

cost and weight. Therefore, an optimisation with a larger scope is required, 

which is out of the scope of this thesis. 

A web-core sandwich plate can easily be designed to be symmetric with re-

spect to its neutral axes, which means that the bending-extensional coupling 

(B-matrix) is a zero matrix. However, a stiffened plate is asymmetric with re-

spect to its neutral axes, and thus the bending-extensional coupling is inher-

ently built into the structure. As a consequence, the deflections develop as 

soon as any in-plane displacements are imposed on the stiffened plate. This 

significantly limits the buckling strength of a stiffened plate (Jelovica and Ro-

manoff, 2013) and the buckling strength is in that case an approximation of 

the force at which the deflections suddenly increase. 

2.2 Influence of T-joint rotational stiffness 

The use of laser-welding technology to join web and face plates typically cre-

ates a weld that is thinner than the web plate. Therefore, the rotational stiff-

ness of the T-joint is not infinite (as assumed by Chen et al., 1971; Lok et al., 

1999; Aimmanee and Vinson, 2002; Kolsters and Zenkert, 2006a, 2006b; Kol-

sters and Wennhage, 2009) and the loading on the joint will change the 90° 

angle between the plates. The flexibility of the T-joint has a detrimental effect 

on DQy (Romanoff et al., 2007). It causes a significant reduction of the buck-

ling strength of the plate in comparison with the case of a rigid joint (Publica-

tion 1). However, the reduced weld stiffness does not affect the buckling 

strength of all the plates equally. The buckling strength reduces more in plates 

that have a large bending stiffness in addition to a significant reduction of DQy. 

This is because of the relative ratio of the transverse shear and bending stiff-

ness in the buckling formula; see Eq. (1). In the case of sandwich plates with 

relatively small bending stiffness, the buckling strength is governed by c33 term 

in Eq. (1) and thus the changes in DQy do not have significant effect. On the 

other hand, in the case of plates with higher bending stiffness, the c1 and c3 

coefficients increase and it results in higher influence of transverse shear stiff-

ness.  
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When the length of the sandwich plate is greater than the width, the struc-

ture tends to buckle in a multiple half-waves in the longitudinal, loading direc-

tion. As the a/b ratio for a plate increases, so does the number of buckling 

half-waves in longitudinal direction, but their exact number depends also on 

the plate stiffnesses. Publication 1 demonstrates that the rotational stiffness of 

the T-joint is important to determine the exact plate aspect ratio where 

neighbouring buckling modes intersect (see Figure 5). The effect is recognised 

in sandwich plate theory to be related to the reduction of transverse shear 

stiffness of the plate (Allen, 1969). For corrugated cardboard plates, the same 

effect is noticed in the case of a reduced stiffness of the adhesive bond between 

the core and the faces (Rahman and Abubakr, 2004; Haj-Ali et al., 2009).  

 

 

Figure 5. Influence of the rotational stiffness of the T-joint on the buckling strength of the 
sandwich plate (see Publication 1 for more details). 
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3. Post-buckling response 

3.1 General 

The sandwich plate carries an increasing force in the post-buckling range. The 

start of the global post-buckling domain depends, in addition to the buckling 

strength, on the shape and magnitude of the initial imperfection. Imperfec-

tions are always present in plates as a result of manufacturing, handling, etc. 

Global imperfection was measured in slender sandwich beams (Sandwich con-

sortium, 2003), resulting in an increase in the deflections from the onset of 

loading; see Figure 6. Because of geometrical nonlinearity, the bifurcation 

buckling is an approximation of the point when a sudden increase in the de-

flections occurs (Publication 2). Comparison of the force carried for the same 

edge shortening reveals that the increase in the magnitude of the initial imper-

fection has negative effect on the force. This is because the load-carrying 

mechanism changes from membrane towards bending action. The effect of 

geometrical nonlinearity on compressive behaviour is in line with that of other 

types of plates (Jones, 2006). 

 

 

Figure 6. Influence of magnitude of imperfection on load-shortening and load-deflection be-
haviour of the sandwich plate (Publication 2). 

The post-buckling stiffness (i.e. the slope of the load-shortening curve) is con-

trolled by the in-plane stiffness (A-matrix) of the sandwich plate: the larger the 

cross-sectional area of the plate, the larger the post-buckling stiffness. The 

importance of in-plane stiffness for the post-buckling response was empha-

sised for other types of plates in e.g. Stein, 1983; Adali et al., 1996; Paik et al., 

2001; Byklum et al., 2004, Seresta et al., 2005, Chen and Guedes Soares, 
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2007. In comparison to an isotropic plate with the same bending stiffness, a 

sandwich plate has a significantly lower post-buckling stiffness because of its 

lower cross-sectional area. Furthermore, a comparison with the stiffened plate 

with the same in-plane stiffness in both plate directions and undergoing global 

post-buckling shows that the structures have very similar post-buckling stiff-

ness, which underlines the importance of in-plane stiffness in that range 

(Jelovica and Romanoff, 2013). Thus, a decrease in the post-buckling stiffness 

can be expected when the stiffened plate is replaced with a sandwich plate with 

a lower cross-sectional area.  

The post-buckling curve obtained with the ESL approach shows an excellent 

correspondence with the shell element results of 3D structure (Publication 2). 

Thus, the extension of the use of ESL beyond the linear range for web-core 

sandwich plates (Romanoff and Varsta, 2007) is demonstrated. The validity of 

the approach in the same range was previously shown for composite plates 

(Engelstad et al., 1992). 

3.2 Onset of plasticity 

The increase in the deflections and compressive force during the plate post-

buckling leads to the material failure of mild steel according to the von Mises 

criterion. The onset of yielding occurs next to the unloaded edge, in the mid-

span of the sandwich plate. The secondary bending stress in the y-direction is 

at its highest there (see Figure 7) and is greater than the membrane stress in 

the x-direction (Publication 4). The membrane stress increases towards the 

centre of the plate on the concave side; however, the maximum is still lower 

than that of the secondary bending at the edge of the plate. Kolsters and 

Wennhage (2009) considered the onset of plasticity in slender web-core steel 

sandwich plates using membrane stresses only, as did Paik et al. (2001) for 

stiffened plates. This non-conservative approach leads to a larger error as the 

amount of shear-induced secondary bending stress increases; see Romanoff 

and Varsta (2007). Neither was the secondary bending stress considered in the 

analytical failure prediction of corrugated sandwich plates during global post-

buckling in Nordstrand (2004). It could be a contributory factor leading to the 

6% lower ultimate strength in the experiments. The discrepancy was attributed 

to nonlinear material behaviour, although this was not measured in the ex-

periments. 
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Figure 7. Shape of the face plates in an early post-buckling response. 

3.3 Influence of local buckling 

Considering that high-strength steel ( f > 355 MPa) is used as a material for 

slender web-core steel sandwich plates, the structure can experience local 

buckling prior to yielding. An increase in the compressive force on the sand-

wich plate leads to higher membrane stresses in the face and web plates. The 

distribution of the membrane stress changes so that the highest value occurs 

next to the unloaded edge of the plate; see Figure 8. Furthermore, the ampli-

tude of the secondary bending deformation continues to increase, and thus the 

plates develop out-of-plane imperfections curved in both plate directions. Lo-

cal imperfections are not included as initial imperfection shapes in this thesis. 

Under these circumstances, the face plate on the concave side, where the 

membrane stresses are higher, buckles locally, i.e. between the webs (Publica-

tion 2). However, local buckling occurs primarily in the centre of the face plate, 

although the membrane stress is higher at the edge; see Figure 8. The defor-

mation as a result of secondary bending has made the face plate stiffer at the 

edge and postponed the local buckling. A noticeable increase in the force on 

the sandwich plate is required before the face plate buckles locally next to the 

unloaded edge. It also occurs on the convex side as a result of high membrane 

stress. 
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Figure 8. Deformation and membrane stress in the face plate leading to local buckling. 

The difference in the compressive force between global and local buckling de-
pends on the slenderness of the face plate, f f/ /b t Eff/ /ffb t E// ff , the local buckling 

occurs sooner if the face plate is thinner (Publication 2). This is in line with the 

buckling of an isotropic plate, where more slender plates buckle at a lower 

stress. The post-buckling stiffness of the sandwich plate is reduced as a conse-

quence of local buckling. The accuracy of the ESL approach decreases after 

that point since it cannot account for the local buckling. Homogenised stiffness 

properties have rendered the information on the local plate dimensions inac-

cessible. It is known from the literature that single-layer laminate theories are 

inadequate to represent the local effects (Reddy, 1989). 

Local buckling occurs after global buckling in slender corrugated-core sand-

wich plates, as reported by Hahn (1991) and Nordstrand (2004). The studies 

merely observed this phenomenon; the conditions under which it occurred 

were not pursued further. Kolsters and Zenkert (2006a) presented a closed-

form equation for local buckling in web-core sandwich structures, albeit for 

perfectly flat plates. Therefore, the approach is not applicable for the local 

buckling during global post-buckling. In this situation, complicated geometri-

cal shapes influence the occurrence of local buckling. 
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4. Influence of corrosion on compres-
sive behaviour 

To determine the influence of corrosion on the mechanical properties of the 

sandwich structure, an experimental study on sandwich beam specimens that 

have corroded to different extents is performed (Publication 3); see Figure 9. 

The changes in the cross-sectional geometry, material properties and ultimate 

strength of the structure are determined in comparison to uncorroded speci-

mens. The corroded state is achieved by immersion into the Baltic Sea for one- 

and two-year periods with water flowing in the direction of the web plates. It is 

observed that the plates are primarily affected by general corrosion. The aver-

age thickness reduction rates are similar to those obtained in other studies on 

submerged plates tested in different parts of the world (Melchers et al., 2010). 

It is furthermore found that corrosion has negligible effect on the welds from 

those same specimens; see Aromaa et al. (2012). The specimens are tested in 

three-point bending where a significant reduction of the ultimate strength is 

observed for unprotected, corroded specimens: a cross-section that is consid-

ered an industry standard showed a reduction of their ultimate strength by 

10% and 17% after one- and two-year exposure times, respectively. The impli-

cations for sandwich plates under compression are therefore required. 

 

 

Figure 9. Sandwich beam specimens that have corroded to different extents. 
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The study of sandwich plates is conducted numerically since experiments in-

volve substantial difficulties, e.g. producing the required force level and ensur-

ing the desired boundary conditions. The justification for the use of numerical 

tools lies in their successful prediction of the ultimate strength of the corroded 

sandwich beams (Publication 3). Furthermore, the elastic properties of steel 

are observed not to change as a result of corrosion extent considered. Thus a 

study of slender corroded sandwich plates until the onset yielding can be con-

ducted. Corrosion, however, changes the plastic behaviour of the material on 

the tensile specimen level: strain hardening starts as soon as the first yielding 

occurs and the failure strain is reduced. These observations on material behav-

iour are in line with those obtained in earlier numerical studies of tensile 

specimens (Ahmmad and Sumi, 2010; Islam and Sumi, 2011) and corroded 

bars (Almusallam, 2001).  

For the corrosion extent considered in Publication 3, i.e. thickness reduction 

of about 0.5 mm, in practical cross-sections where the tf/hc ratio is small, the 

in-plane, bending and transverse shear stiffnesses depend linearly on the 

thickness of the face plate and the web plate (Publication 4). The transverse 

shear stiffness DQy shows the greatest decrease of all the stiffnesses as a result 

of the reduction of the thickness. The reduction of the stiffnesses doubles if, in 

addition to the outer faces, corrosion also occurs inside the sandwich plate. 

Figure 10 shows the reduction of load-carrying capacity in the sandwich plate 

from Publication 4, where the face plate thickness is initially 2.5 mm, webs are 

4.0 mm, web plate spacing is 120 mm and the core height is 40 mm. In addi-

tion to the response of uncorroded plate, two cases are presented where the 

reduction of face plate thickness is 0.5 mm and 1.0 mm. It can be seen that the 

buckling strength and post-buckling stiffness of the sandwich plate are sensi-

tive to general corrosion. The buckling strength is reduced linearly due to the 

change in stiffnesses. The reduction rate doubles in the event of corrosion be-

ing also in the core. Furthermore, the force at which the yielding occurs is re-

duced in the same rate as the buckling strength. Nonetheless, the physical ex-

periments on sandwich beams showed that the ultimate strength can be pre-

served using different protection methods (Publication 3). However, the po-

tential reduction rates for the ultimate strength suggest that special care 

should be directed towards proper corrosion protection for longer exposure 

periods. This is currently not reflected in the classification society guidelines 

for steel sandwich plates (Det Norske Veritas, 2003), which stipulate that cor-

rosion protection should be performed as in traditional structures. 
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Figure 10. Reduction of load-carrying capacity because of the general corrosion (Reproduced 
from publication 4). 

The rotational stiffness of the T-joint can increase as a result of the contact 

between the face and the web plate in the event of large rotations at the joint 

(Romanoff et al., 2007). This occurs during the post-buckling response of the 

sandwich plate and results in the increase of the post-buckling stiffness (Publi-

cation 4). In the considered cases of corroded plates, however, the addition in 

stiffness does not occur because of the reduced transverse shear and bending 

stiffness coming from the thinner plates.  

Corrosion changes the ratio between the stress components at the point of 

yielding. The secondary bending stress increases as the plates become thinner, 

becoming more important factor leading to material failure. 
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5. Conclusions and future work 

This thesis investigated the buckling and post-buckling behaviour of slender 

web-core steel sandwich plates. The plates were assessed in uni-axial compres-

sion until the onset of plasticity. The first buckling mode of slender web-core 

sandwich plates is characterised with global deformation between the edge 

supports. It is known from the literature that the buckling strength causing the 

global deformation is defined through the bending and transverse shear stiff-

nesses of the sandwich plate. A particular feature of web-core sandwich plates 

is that the two transverse shear stiffnesses differ tremendously: the one per-

pendicular to the web-plate direction, DQy, is a few orders of magnitude 

smaller because of the discrete core. As seen in this thesis, this dramatically 

affects the buckling strength of the plate. Furthermore, the rigidity of the con-

nection between the face and web plate has a significant effect on the trans-

verse shear stiffness, DQy. The thickness of the laser weld being less than the 

thickness of the web plate makes the T-joint flexible. In turn, the transverse 

shear stiffness DQy decreases in comparison to a fully rigid joint. The buckling 

strength is reduced, especially in sandwich plates with a high bending stiff-

ness, because of the relative ratio between the bending stiffness and the trans-

verse shear stiffness. The reduction of the rotational stiffness of the T-joint can 

lead to the reduction of the number of buckling half-waves in a long plate.  

The post-buckling stiffness (i.e. the slope of the load-shortening curve in 

post-buckling) is controlled by the in-plane stiffness of the sandwich plate: the 

larger the cross-sectional area of the plate, the larger the post-buckling stiff-

ness. The shear-induced secondary bending stresses are very important for 

accurate estimation of the yielding. They arise as a result of the bending of the 

face and web plates on the scale of the unit-cell. The secondary bending of the 

face plates can also have an effect on the initiation of the local buckling. De-

formation resulting from secondary bending can make the unloaded edge 

stiffer. Although the membrane stress can be higher there, the local buckling 

occurs further away where the secondary deformations are smaller, primarily 

in the centre of the face plate (x=a/2, y=b/2). 

Corrosion significantly affects the buckling and post-buckling behaviour of a 

steel sandwich plate. For the initial thickness reduction of the plates, i.e. up to 
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about 0.5 mm, in practical cross-sections where the tf/hc ratio is small, the in-

plane, bending and transverse shear stiffnesses depend linearly on the thick-

ness of the face plate and the web plate. The transverse shear stiffness DQy de-

creases the most of all the stiffnesses as a result of the reduction of the thick-

ness. Because of the high reduction of DQy, the reduction rate of buckling 

strength is higher in sandwich plate than in stiffened plate (see Jelovica and 

Romanoff, 2014). The buckling strength reduces linearly, following the reduc-

tion of the stiffnesses. The reductions double if, in addition to the outer faces, 

corrosion also occurs inside the sandwich plate. The force at onset of yielding 

is reduced at the same rate as the buckling strength, which means that the 

safety margin between the design point of the structure and the onset of mate-

rial failure remains unaffected. It was observed in this thesis through experi-

ments that the ultimate strength of the web-core sandwich beams is reduced 

rapidly because of corrosion but, also, that it can be maintained using different 

protection methods. The findings highlight the importance of proper corrosion 

protection of the web-core sandwich plates in a marine environment.  

The experiments showed local corrosion at the T-joint in some cases. This 

might reduce the stiffness of the T-joint and result in further deterioration of 

the load-carrying capability of the sandwich plate. However, this hypothesis 

requires experimental verification in the future. As this thesis indicates, the 

instrumentation for such experiments should be carefully planned since it is 

expected that the failure occurs at the plate edges rather than at the mid-plane 

which is typical for isotropic plates. In practice, despite the efforts for applying 

the high quality corrosion protection, the possibility of localized corrosion ex-

ists, especially considering the long periods these structures should be in use. 

Longer exposure periods of the plate to corrosive environment might lead to 

extensive local corrosion, i.e. crevice corrosion of the T-joint and/or pitting 

corrosion of the thin plates. These cases could lead to global failure and thus 

should be investigated in the future. Further work should also reveal the influ-

ence of the cross-sectional shape and the properties of the production process 

on the distribution, shape, and magnitude of initial imperfections in laser-

welded web-core sandwich plates, especially for thinner face and web plates. 

This thesis considered global initial imperfections on the basis of measure-

ments available in the literature on specimen sizes and cross-sections similar 

to those studied here. 

The local buckling of face or web plates is not accounted for within the ESL 

method. In the future, the method could be extended to include the local buck-

ling. This is important since it reduces the load-carrying capacity of the plate. 

Local buckling causes the change in the ABD-DQ stiffness matrices and their 

non-linear values could be used instead. Similar approach was used in Byklum 
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et al. (2004) for stiffened plates by semi-analytical method. Nonetheless, the 

ESL approach accurately predicts the load-shortening for global buckling and 

post-buckling. It allows a large reduction of the modelling and analysis time, 

which is especially interesting for the conceptual design since the same FEM 

mesh can be used for different cross-sections.  
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