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1. Introduction

In Electrical Impedance Tomography (EIT), the aim is to extract infor-
mation about the internal properties of a physical object by external
measurements of electric current and voltage. In practice, through a set
of surface electrodes, currents of prescribed magnitudes are conducted
into the object and the voltages needed for maintaining the currents are
recorded. This procedure is often repeated with several different input
current patterns. Afterwards, the obtained current-voltage data are used
to compute an image of the interior of the object. Typically, the image
represents an estimate of the electrical conductivity (or more generally
admittivity) distribution of the object.

In many situations the conductivity distribution may carry valuable
information about the examined object. For instance, the conductivi-
ties of air, blood, cancer tissue and healthy tissue can differ significantly
from each other at human body temperature. This fact is utilized in
EIT-based breast cancer detection or real-time monitoring of lung func-
tion. Examples of non-clinical EIT applications include, among others,
control of industrial processes, non-destructive testing of materials and
locating mineral deposits. For more details about the potential uses of
EIT, consult the review articles [8, 13, 56] and the references therein.

Compared to conventional imaging modalities such as X-ray computed
tomography (CT) or magnetic resonance imaging (MRI), EIT enables
inexpensive and easily portable equipment. Moreover, EIT is relatively
safe because the applied currents are typically of low magnitude, and the
electrical measurements do not expose the subject to ionizing radiation
(such as X-rays). In contrast to CT or MRI, EIT images are characterized
by low spatial resolution (but high temporal resolution) making it ill-
suited for imaging detailed structures.
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The lack of spatial resolution in EIT imaging is explained by the ill-
posed nature of the inverse conductivity problem; even with high num-
ber of electrodes, the strong diffusion of electric potential by conductive
medium has the effect that very different conductivity distributions can
cause practically indistinguishable electrode voltages. Therefore, a typi-
cal set of noisy EIT measurement data contains only very limited infor-
mation about the underlying conductivity distribution. For this reason,
even relatively small amounts of noise or modelling error can severely
deteriorate the image quality.

Especially absolute EIT imaging (where the data corresponds to a single
conductivity distribution) is notorious for its sensitivity to mismodelling
of the electrode positions and the shape of the object. In a typical re-
construction algorithm, even a slight imprecision in the measurement
geometry usually leads to ruined conductivity images. This is a major
drawback of absolute EIT as a biomedical imaging technique since, in
practice, the precise electrode locations and/or object shape are rarely
known. The main research problem of the dissertation is (i) to develop a
framework for practical 2D & 3D absolute EIT reconstruction algorithms
that tolerate uncertainty in the measurement geometry.

Besides being a source of modelling error, the EIT measurement ge-
ometry (or more relevantly the electrode configuration) can affect the
conductivity information content of the EIT measurement. For example,
if one is interested only in imaging a subregion of the object, it makes
sense to position the electrodes so that the current can be concentrated
to that region. Also, particularly in real-time monitoring of some rapidly
varying processes, there may not be enough time to perform exhaustive
current-voltage measurements. Under such circumstances, it is desirable
to configure the electrodes optimally based on the available prior infor-
mation. The second research problem of this thesis is (ii) to build a
paradigm for optimizing electrode positions in absolute EIT.

Outline of the dissertation

According to experimental studies [14, 49] the so-called complete elec-
trode model (CEM) of EIT is capable of predicting electrode voltages up
to the measurement precision. We hypothesize that, in absolute EIT, the
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geometric modelling error can be reduced significantly by reconstructing
the measurement geometry and the conductivity distribution simulta-
neously within the CEM framework. Most EIT algorithms capable of
producing conductivity reconstructions from absolute experimental data
model the measurements using the CEM, and rely on Newton-type min-
imization of an ‘output least squares’ functional [13]. Although such an
approach cannot be considered extremely sophisticated mathematically,
it provides a flexible framework to incorporate the electrode positions
and the outer boundary shape as a part of the reconstruction. To make
this approach feasible, an efficient method for numerically differentiating
the output functional with respect to the geometric attributes is needed.

In the first two articles of the dissertation, a shape gradient of the elec-
trode voltages (modelled by the CEM) is determined. The shape gradient
is shown to consist of two components corresponding to the electrode lo-
cations [I] and the outer boundary shape [II], respectively. It is further
demonstrated that these components can be numerically implemented
in the computation of the needed derivatives in a Gauss–Newton-like
reconstruction algorithm for both simulated and experimental EIT data.

The shape analysis of the CEM relies on the Sobolev regularity of the
corresponding spatial potential distribution. The sufficient regularity is
guaranteed by the contact resistance parameters which are used in the
CEM to describe the quality of contacts at the electrode/object inter-
faces. However, for close-to-vanishing contact resistance (perfect con-
tacts), instability in the used finite element approximation of the shape
gradient is observed [III]. The theoretical basis for this effect is devel-
oped in [IV]. It is shown that, when the contact resistances tend to zero,
the CEM forward solution converges to a function without the required
regularity.

The derived shape analysis also provides feasible tools for the opti-
mization of electrode positions in EIT. In paper [V], an application of
the shape gradient in optimal experiment design of EIT is presented. To
be more precise, the electrode positions are optimized with respect to
certain criteria derived from Bayesian statistics.
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2. Electrical Impedance Tomography

In this section we present a brief survey of the mathematical fundamen-
tals of EIT; for a more detailed introduction to this broad topic, the
reader is advised to consult [8, 13, 56] and the references therein.

In classical electrostatics, the absence of current sinks and sources in
an isotropic conductive medium can be expressed by the conductivity
equation

∇ · (σ(x)∇u(x)) = 0, (2.1)

where σ = σ(x) > 0 and u = u(x) model the spatial conductivity
distribution and the electric potential, respectively. The most impor-
tant models for EIT are formulated using boundary value problems for
(2.1) or its generalizations to time-harmonic fields and/or anisotropic
(matrix-valued) conductivities. In the time-harmonic case, an equation
of form (2.1), with σ replaced by a complex valued admittivity, can be
derived from Maxwell’s equations using approximations that are justi-
fied for the frequency range within which EIT typically operates. In the
following, it is assumed that σ is real-valued unless mentioned otherwise.

2.1 Continuum model

Most of the theory related to EIT is based on the continuum model which
assumes infinite dimensional boundary data. Let Ω ⊂ R

d, d = 2, 3, be a
domain describing the dimensions of the object of interest; the boundary
of Ω is abbreviated by Γ and assumed to be smooth enough. The set of
admissible conductivities is denoted by

L∞
+ (Ω) =

{
σ ∈ L∞(Ω) : ess inf

x∈Ω
σ(x) > 0

}
. (2.2)

13
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The formal idea is that if a current density f is applied on Γ, then the
electric potential u in Ω is governed by the Neumann boundary value
problem

∇ · (σ∇u) = 0 in Ω, σ
∂u

∂ν
= f on Γ, (2.3)

where ν is the outward unit normal of Γ. A straightforward application
of the theory of elliptic partial differential equations shows that for any
given

f ∈ H−1/2
� (Γ) = {f ∈ H−1/2(Γ) : 〈f, 1〉 = 0},

the problem (2.3) has a solution u ∈ H1(Ω) that is unique up to an
additive constant. Here the angular brackets denote the dual pairing
between H−1/2(Γ) and H1/2(Γ); note also that the ‘zero-mean’ property
of f corresponds to the current conservation law.

An ideal set of (static) EIT measurement data would correspond to the
knowledge of the full set of Cauchy data

{
(f, u|Γ) : u solves (2.3) for f ∈ H−1/2

� (Γ)
}

which is characterized by the Neumann-to-Dirichlet map

Λσ : H−1/2
� (Γ) → H1/2(Γ)/R, Λσf = u|Γ,

where u|Γ is the Dirichlet trace of the solution to (2.3). It is not hard to
show that Λσ is a positive definite and self-adjoint linear isomorhpism,
with its inverse Λ−1

σ being the corresponding Dirichlet-to-Neumann map.
Note that although Λσ is linear, the mapping σ �→ Λσ, which relates the
conductivity to the ideal boundary measurements, is non-linear.

The purely theoretical version of the inverse conductivity problem of
EIT can be formulated as ‘Is it possible to determine the conductivity σ

from the knowledge of Λσ?’; the fundamental results on this topic are
listed in the following section. However, it is advisable to keep in mind
that although the continuum model is mathematically well-established,
it is a bad model for real-life electrode measurements [14, 49]. Therefore,
other models are needed in practice.

2.2 Inverse conductivity problem

The inverse conductivity problem has been extensively studied in dimen-
sions d ≥ 2 ever since the publication of [11] by A. Calderón; this is
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why the inverse conductivity problem is often called Calderón problem.
It is known that for large classes of isotropic (real-valued) conductivities
there is a one-to-one correspondence between σ and Λσ [4, 35, 43, 54, 56]
whereas for anisotropic (matrix-valued) conductivities the same does not
hold. Note that although many of the uniqueness proofs use construc-
tive techniques, they do not necessarily imply numerical schemes for the
estimation of σ. The question of reconstructing (information about) σ

from boundary measurements is considered in §2.4.
Interestingly, the minimal assumptions on σ and Ω for the existing

uniqueness proofs are different for d = 2 and d ≥ 3 spatial dimensions.
In the plane, unique determination of σ by Λσ has been shown for any
real-valued σ ∈ L∞

+ (Ω) and a general domain Ω with a connected comple-
ment [4], whereas in d ≥ 3, some extra regularity is required from both
σ and Γ [9, 22, 46]. It should also be mentioned that there exists a vari-
ety of partial data results where Cauchy data pairs for the conductivity
equation are assumed known on a subset Γ′ ⊂ Γ, and still, identifiability
for general classes of conductivities can be deduced [28, 31].

In the case of an anisotropic conductivity σ, there is no uniqueness
because deforming Ω by a boundary preserving diffeomorphism Φ yields
another anisotropic conductivity σ̃ = Φ∗σ with Λσ̃ = Λσ (see e.g. [52]).
In the plane the converse also holds true, thus fully characterizing the
non-uniqueness [2, 52]. In dimensions d ≥ 3, the non-uniqueness can be
characterized to a certain extent [21, 37].

Before concluding the section, we consider briefly the instability of the
inverse conductivity problem. It can be shown [1] that even if the inverse
map Λσ �→ σ existed, it would be discontinuous from (a subset of) the
space of linear operators L(H−1/2(Γ), H1/2(Γ)) to L∞(Ω). With suffi-
cient smoothness constraints on the conductivity, a logarithmic modulus
of continuity between the aforementioned topologies can, however, be
obtained [1, 6]. For more information on the (in)stability results for the
inverse conductivity problem, we refer to [56].

2.3 Complete electrode model

In practice, the EIT data is collected by M contact electrodes on the
surface of the object. The CEM is an accurate model for real-life mea-
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surements because it takes into account the electrode shapes and the
imperfect contacts between the object and the electrodes.

Because electrodes are usually made of a highly conductive material,
in the CEM they are modelled as ideal conductors. In other words, the
electric potential on an electrode is assumed to be a constant that can
be measured. In real world, the current density under the electrode is
unknown, but the net electrode currents can be controlled. On the other
hand, hardly any current penetrates the object boundary outside the
electrodes in a typical EIT measurement environment. Furthermore, it
can be argued [14, 49] that the contact between the electrodes and the
surface of the object is not perfect. This effect can be modelled as thin
resistive layers, with a surface resistance zm > 0, at the electrode/object
interfaces. The conductivity equation (2.1) combined with the above
features gives rise to the boundary value problem

∇ · (σ∇u) = 0 in Ω,

σ
∂u

∂ν
= 0 on Γ \

M⋃
m=1

Em,

u + zmσ
∂u

∂ν
= Um on Em,

∫
Em

σ
∂u

∂ν
dS = Im, m = 1, 2, . . . , M.

(2.4)

It is not hard to demonstrate that for any given I = {Im}M
m=1 ∈ R

M
� ,

(2.4) has a unique solution (u, U) in the space (H1(Ω) ⊕ R
M)/R. Here

R
M
� ⊂ R

M is the subspace of vectors whose entries sum up to zero. The
second component U models the electrode voltages. The CEM, that is
(2.4), has been shown to be capable of reproducing measurement data
reasonably well (at best up to .1% [49]).

The electrode measurement map corresponding to (2.4), defined via

Rσ,zI = U, Rσ,z : RM
� → R

M/R, (2.5)

is invertible and can be represented as a symmetric R
(M−1)×(M−1) ma-

trix [49]. Consequently, there are only M(M −1)/2 degrees of freedom in
Rσ,z, which is certainly not enough information for uniquely determining
a general conductivity.

Many (theoretical) EIT reconstruction algorithms require an approx-
imation of Λσ as an input. Thus, it is important to understand the
relationship between Rσ,z and Λσ. Under reasonable assumptions, it can

16
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be shown [26] that the composition of Rσ,z − diag(z) with suitable pro-
jections converges in L(L2

�(Γ), L2(Γ)/R) to the compact operator

Λσ : L2
�(Γ) → L2(Γ)/R

as the maximal distance between the centers of adjacent electrodes tends
to zero, that is, when the number of electrodes is increased and their size
decreased in a controlled manner.

2.4 Reconstruction methods

The practical version of the inverse conductivity problem is as follows:
given a discrete set of (noisy) electrode measurements, reconstruct an
image of the conductivity inside the examined object. The existing EIT
reconstruction methods fall roughly into two categories: iterative and
direct algorithms. Due to the ill-posedness of the underlying inverse
problem, all the functional reconstruction methods involve some form of
regularization which enables stable reconstruction. Often, the regular-
ization has an interpretation in terms of the available prior information
on the unknown parameters [29, 30].

Most real-life applications of EIT employ iterative methods based on
data-fitting by minimizing an ‘output least squares’ discrepancy func-
tional over a set of admissible conductivities (and other model parame-
ters). Regularization can be achieved via adding suitable penalty terms
to the cost functional or, e.g., by suitable stopping criteria for Krylov
subspace methods [40]. Due to the non-linearity of the problem, the
minimization typically involves (gradient-based) Newton-type steps. Ex-
amples of iterative EIT reconstruction algorithms can be found in [12,
39, 57, 59] and the references therein. Also other than ‘discrepancy’ type
objective functionals have been considered; see e.g. [8] for an approach
based on variational principles.

The iterative methods are attractive because their implementation does
not require deep understanding of the fine aspects of the forward model.
Thus it is possible to directly use an accurate forward model such as
the CEM. Moreover, the incorporation of prior information is usually
straightforward. Although these methods can be tuned to yield very good
reconstructions, there are several disadvantages, too. In most cases, there
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is no proof of convergence, and the relationship between the reconstruc-
tion and the ‘true’ conductivity is not well-understood. Furthermore,
especially in three-dimensional imaging, the computational workload can
become overwhelming.

The methods that do not involve recursive iterations are here classi-
fied as direct. Perhaps the most fundamental technique in two dimen-
sions is the ∂ (D-bar) -method [42] which implements the constructive
two-dimensional uniqueness proof in [43] (see also [3] for a direct EIT
reconstruction method based on the uniqueness proof in [4]). Under cer-
tain conditions, a variant of the ∂-method admits a regularization strat-
egy [34], that is, the reconstruction converges to the true conductivity as
the noise level tends to zero; this kind of a property is not known for any
(non-trivial) iterative EIT method.

Other proposed direct methods include the Calderón’s linearization
method [11, 42] and the layer stripping algorithm [50, 53]. Moreover,
sampling type methods that aim at locating (the supports of) conduc-
tivity inhomogeneities in a known background [10, 33, 38] allow a very
fast reconstruction. In practice, many direct methods can be difficult
to implement because they typically require difference data as the in-
put. Moreover, it is not usually known how to include detailed prior
information in the direct reconstruction algorithms.

2.5 Modelling error

It is known that the choice of the measurement model can affect the
predicted EIT data more than major changes in the conductivity distri-
bution; see e.g. [47] for a numerical study on this subject. Even when
the CEM is used, significant modelling errors may arise from uncertainty
about some other model parameters such as the electrode locations, the
contact resistances, or the shape of the imaged object. It is well-known
that even slight perturbations in these attributes can cause major arte-
facts in reconstructions [I, II, III]; a simulation of this effect is illustrated
in Figure 2.1.

A conventional trick to improve the tolerance of modelling errors is to
apply reconstruction methods working with difference data U − Ũ , that
is, the difference between EIT measurements corresponding to two dif-
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ferent conductivities σ and σ̃ (or admittivities in the case of frequency
difference data). It has been observed that, if the measurement geometry
and contact resistances remain unperturbed, part of the modelling error is
removed in the difference data; see Figure 2.2 for a simulation of this phe-
nomenon. Unfortunately, this may fail e.g. in medical applications due to
orientation shifts or breathing of the patient. At worst, the relative error
may even be amplified in the difference data for the following reason.
Let U ε = U + ε and Ũ ε̃ = Ũ + ε̃ be noisy measurements corresponding
to two different conductivities with ε and ε̃ being realizations of inde-
pendent zero mean random variables, whence E|ε − ε̃|2 = E|ε|2 + E|ε̃|2.
By ill-posedness, changes in the conductivity may not affect the data
much, meaning that |U − Ũ | � |U |, |Ũ |. Therefore the relative (squared)
mean error in the difference data E|ε − ε̃|2/|U − Ũ |2 may be augmented,
especially if E|ε|2 = c|U |2 and E|ε̃|2 = c̃|Ũ |2 for some constants c, c̃ > 0.

The problems with modelling errors in absolute EIT have been partly
resolved in earlier works. It is possible to include the estimation of con-
tact resistances as a part of an iterative reconstruction algorithm [59].
Furthermore, two successful approaches to coping with unknown exte-
rior boundary shape have been introduced prior to this dissertation. The
method in [36] is based on allowing anisotropic conductivities to account
for the domain distortion. In [44, 45], the errors resulting from an incor-
rect boundary shape are compensated using the so-called approximation
error approach where the idea is to represent the modelling error as an
additive stochastic term whose (second order) statistics are approximated
via simulations.
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Figure 2.1. 2D absolute EIT reconstructions with (middle) exactly known and (right) mis-
modelled measurement geometries. The measurement data, which is corrupted
by 0.9%� relative noise, is simulated using the object depicted on left. The
contact resistances zm = 0.1, m = 1, . . . , 18 are assumed to be known. For
more information on the employed Newton-type reconstruction algorithm, see
e.g. the publications [II, III] and the references therein.
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Figure 2.2. 2D difference EIT reconstructions with different a priori assumptions on the
geometry. The measurement Ũ

ε̃ is simulated using the object depicted on left
in Figure 2.1, whereas the shape of the domain (with homogeneous unit con-
ductivity) employed in the generation of the reference measurement U

ε varies.
Both Ũ

ε̃ contain 0.9%� of relative noise. The first two reconstructions (from
left) correspond to the case where Ũ

ε̃ is simulated using exact geometry; the
reconstructions are computed in (left) the exactly known and (middle) the mis-
modelled geometry. On right, both the simulation of the reference measure-
ment U

ε and the reconstruction are performed using a slightly mismodelled
geometry (the exact geometry is visualized by the gray line); this illustrates a
situation where difference EIT may fail. In this case, the difference data con-
tains a remarkable amount of 10% of relative noise due to the reasons explained
in §2.5. In all computations, the contact resistances are assumed to have the
known values zm = 0.1, m = 1, . . . , 18. The used Newton-type algorithm is
formulated directly for difference data; otherwise it is analogous to the one of
Figure 2.1.
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3. Differentiability of EIT models with
applications

The differential calculus for forward models has important applications in
inverse problems, particularly in iterative reconstruction algorithms. In
normed vector spaces there exist several notions of a derivative. Perhaps
the most fundamental is the Fréchet derivative defined as follows: Let
H1, H2 be normed vector spaces, G ⊂ H1 open and F : G → H2. The
operator F is said to be Fréchet differentiable at η ∈ G if there exists a
linear map F ′(η) : H1 → H2 such that

lim
0 �=ε→0

‖F (η + ε) − F (η) − F ′(η)ε‖H2

‖ε‖H1

= 0; (3.1)

the operator F ′(η) is called the Fréchet derivative of F at η ∈ H1. It is
easy to demonstrate that F ′ obeys familiar laws, such as the chain rule.
Fréchet differentiability is a very strong property; many optimization
methods can be implemented using the weaker Gateaux derivative [16, 17]
which also exhibits many of the desired elements of classical differential
calculus.

As discussed in §2.4, EIT reconstruction methods based on lineariza-
tions of the forward maps F (σ) = Λσ or F (σ, z) = Rσ,zI are common. In
the pioneering paper [11] it was proven for F (σ) = Λσ that F ′(σ)|σ=const

is injective on L∞(Ω). This, in a certain sense, justifies the detection
of small conductivity perturbations using the linearized forward opera-
tor. In fact the linearization can provide substantial information even if
the perturbation is not small; if a solution κ ∈ L∞(Ω) to the equation
F (σ) − F (σ0) = F ′(σ0)κ exists, then κ contains essential information on
the support of σ − σ0 ∈ L∞(Ω) [23].
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3.1 Generic Newton-type iterative algorithms

The penalized minimization problem

arg min
η∈K

J(η), J(η) = ‖F (η) − V ‖2
H2 + P (η) (3.2)

can be motivated by its regulative properties [19, 32] or starting from the
statistical context [30]. Here V is the measured data, K ⊂ H1 is a set
of admissible model parameters and P : H1 → [0, ∞) is a penalty func-
tional. In the classical regularization theory, questions such as ‘is (3.2)
solvable?’, and ‘if it is, does it admit a regularization strategy?’ are
studied. For a linear F and quadratic penalization, the theory is well
established [19]. For a non-linear F , no comprehensive theory exists
although a part of the linear regularization theory extends to the non-
linear case if the Fréchet derivative F ′ is regular enough. However, in the
context of EIT, no regularization strategy for (3.2)-type methods (with-
out extensive restrictions on the conductivity) is known. For literature
on classical regularization theory, see [19, 32, 41, 55] and the references
therein.

In practice H1, H2 are usually Hilbert spaces. If F and P are suffi-
ciently many times Fréchet differentiable, iterative methods may be able
to solve (3.2). A standard (second order) optimization algorithm is given
by the Newton’s method [60] defined as

ηj+1 = ηj − (Hess J(ηj))−1Grad J(ηj) (3.3)

where
Grad J(η) = 2F ′(η)∗(F (η) − V ) + Grad P (η)

and

Hess J(η) = 2F ′(η)∗F ′(η) + 2F ′′(η)∗(F (η) − V ) + Hess P (η)

are the gradient and the Hessian of the cost function J , respectively. Note
that if all the relevant operators are bounded, then (by Lax–Milgram
theorem [15]) positive definiteness of Hess J(η) is sufficient condition for
its invertibility. Under suitable regularity assumptions, the Newton’s
method converges at a quadratic rate if the initial guess is sufficiently
good [60].
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In practice, the computation of F ′′(η)∗ can be tedious. A more feasible
alternative of (3.3) is provided by the Gauss–Newton (G–N) method,
where the term involving F ′′ is neglected. In addition, to further simplify
the computations, the penalty term is often chosen to be quadratic, i.e.,
P (η) = ‖L(η − η0)‖2

H3 where L : H1 → H3 is linear. The performance
of the G–N method (and the Newton’s method) can be improved by,
e.g., adaptive choice of the step size via line search and/or Levenberg–
Marquardt modifications [60]. There exist also studies on the convergence
of a generic G–N algorithm [5, 7].

3.2 Applications in EIT reconstruction

G–N-type optimization methods have been successfully applied to the
estimation of both σ and z from experimental data [13, 24, 42, 58]. Note
that the successive linearizations are justified by the fact that F (σ, z) =
Rσ,zI is (infinitely many times) Fréchet differentiable in L∞(Ω)⊕(0, ∞]M

[11, 59], and the Hilbert space structure required in (3.3) is achieved via
discretization of L∞

+ (Ω). Although regulative properties of such methods
are not well-understood, the local convergence of a discretized CEM-
based (inexact) Newton-like algorithm has been established in [40]; see
also [18] for a (theoretical) study on the convergence of a G–N-like algo-
rithm applied to the continuum model.

Efficient methods for the numerical approximation of the gradients or
higher derivatives of various objective functions have been introduced
in previous works. The Jacobian matrix F ′ of F (σ, z) = Rσ,zI can be
computed explicitly by sampling its rows using suitable variational for-
mulations [40, 59]. Alternatively, matrix-free methods that avoid storing
the full Jacobian but instead compute merely ‘Jacobian times vector’
evaluations, are possible; see e.g. [8, 20] for an adjoint operator tech-
nique that allows matrix-free computations.

3.3 Shape derivatives of the CEM electrode potentials

Shape optimization problems arise in many fields of science and engineer-
ing, including EIT. In the development of numerical shape optimization
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methods, differentiation of a shape functional (or more generally a ten-
sor) J(Γ) with respect to perturbations of Γ plays a central role [17, 48].

There are several standard approaches to building numerical shape
derivative based schemes. If the boundary is parametrized by a set of
given functions, such as trigonometric functions or splines, a suitable
shape derivative enables the use of standard optimization techniques,
such as the Newton’s method (3.3), for handling the free parameters in
Γ. This parametric approach is straightforward to implement but it also
has drawbacks, such as the inability to deal with changes in the topol-
ogy (e.g. the emergence of holes or new domains). A more sophisticated
framework is provided by level set methods [17], where boundaries are
represented as level sets of auxiliary functions ϕ : Rd × (0, ∞) → R so
that Γt = {x ∈ R

d : ϕ(x, t) = 0}. The level set methods can be used to
build iterative numerical schemes where the evolution of Γt is determined
by the (shape-derivative-dependent) non-linear level set equation for ϕ.
Since no explicit geometry parametrization is required, flexibility with
respect to topology changes is achieved.

Shape analysis (and related) concepts have been previously employed
in EIT, but mainly to reconstruct inclusion shapes or other geometric
entities lying well within Ω; see e.g. [25, 27]. In this thesis the main
objective is to develop a practically applicable shape derivative with re-
spect to the outer boundary Γ of the examined object, as well as with
respect to the electrodes E = {Em}M

m=1. The CEM provides an attractive
framework for such considerations. Since both the injected currents and
the measured voltages are discrete,

J(Γ, E) = U(Γ, E) = Rσ,z(Γ, E)I (3.4)

is a natural choice for the shape tensor. Unfortunately, some subtleties
are unavoidable due to the limited smoothness of the solution to (2.4);
see the publications [III, IV] and the references therein.

Shape analysis of (3.4) can be carried out by perturbing the domain
using suitable transformations, and keeping track of the variations in the
shape tensor. The procedure can be summarized as follows. Consider
perturbations of the identity having the form

Φt(x) = x + tV (x), x ∈ Ω, t ≥ 0, (3.5)
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which are diffeomorphisms for ‘small enough’ t and ‘smooth enough’ V

(see e.g. [I]). Note, however, that the shape analysis can also be per-
formed using more general domain transformations (see e.g. the speed
method in [17, 48]). The values of the perturbed shape tensor (3.4) are
J(Γt, Et) = Rσ,z(Γt, Et)I where Γt = ∂(Φt(Ω)) and Et = {Φt(Em)}M

m=1.
Using some standard tools of the shape calculus for boundary value prob-
lems, namely the notions of material and shape derivatives [48], it can
be shown that there exists Gm(Γ, E) ∈ D′(Γ) acting as the shape gradi-
ent [17, 48] such that

∂

∂t
Jm(Γt, Et)|t=0 = 〈Gm(Γ, E), V |Γ〉, m = 1, 2, . . . , M (3.6)

where 〈·, ·〉 is a suitable dual evaluation. The explicit form of Gm depends
on J(Γ, E) as well as on certain (boundary operator evaluations of) the
corresponding spatial potential u = u(Γ, E). Unlike in some classical ex-
ample problems, (3.6) not only depends on the component of V |Γ normal
to Γ, but also — to account for the movement of the electrodes — on
the tangential component of V |∂E normal to ∂E; see e.g. [17] for more
information on general structuring for classes of shape gradients.

Based on (3.6) it is possible to develop differentiability results that are
well-suited for numerical applications: taking a vector field extension
from Γ to Ω with suitable continuity properties [II] yields the Fréchet
differentiability of the electrode voltages U = Rσ,zI with respect to suf-
ficiently small vector fields living on Γ. In the case of regular enough
parametrizations of Γ, this allows explicit formulas for the derivatives of
U with respect to the parameters. However, this is not sufficient for our
purposes since the positions of the electrodes E need also to be adjusted.
Therefore, a separate derivative with respect to the movement of the
electrodes is also of interest [I]. In fact, the evaluation of (3.6) for vector
fields with V · ν = 0 on Γ turns out to be the correct interpretation for
the electrode derivatives. This is a consequence of the fact that close-
to-identity transformations with the property Φ(Ω) = Ω act almost as
tangential perturbations in a relevant topology.

25



Differentiability of EIT models with applications

26



4. Summary of results

[I] In this paper, it is demonstrated that the measurement map of the
CEM is Fréchet differentiable with respect to the electrodes. A general
way of perturbing the electrodes is constructed using projections of vec-
tor fields living on the electrode boundaries. The Fréchet derivative is
determined by the solution of an elliptic boundary value problem with
distributional boundary conditions. A dual formula for the electrode
shape gradient is derived, and employed in a Gauss–Newton algorithm
for the simultaneous reconstruction of the conductivity and the elec-
trode positions from simulated (noisy) measurement data.

[II] The analysis of [I] is modified to prove the Fréchet differentiabil-
ity with respect to the outer boundary of the object. A dual for-
mula for the boundary shape gradient is derived, and employed in the
Gauss–Newton based reconstruction of the object cross-section along
with other parameters [I]. The functionality of the algorithm is tested
with simulated (noisy) measurement data.

[III] This article is an experimental validation of the reconstruction al-
gorithm devised in [II]. The data are measured using a reshapable tank
filled with tap water and conductive/resistive inclusions. An instability
issue due to the small contact resistance is observed and circumvented
by a suitable phasing of the reconstruction algorithm.

[IV] Theoretical grounds for the instability encountered in [III] are de-
veloped. It is shown that, when the contact resistances tend to zero,
the interior CEM potential converges to a function without the regu-
larity required by a dual formula used in the computations of [III]. As
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a by-product, it is deduced that the electrode voltages of the CEM are
more accurately Galerkin-approximated than the corresponding spa-
tial potentials. Numerical experiments supporting these conclusions
are presented.

[V] This article considers optimization of electrode positions with respect
to certain (Bayesian) posterior covariance related criteria. To make the
computations feasible, the CEM measurement operator is linearized
with respect to the conductivity. The proposed optimization algorithm
is of the steepest descent type, with the needed gradients computed
based on a (second order) electrode shape derivative of the CEM. The
functionality of the method is verified via two-dimensional numerical
experiments.
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