
9HSTFMG*afihac+ 

ISBN 978-952-60-5870-2 
ISBN 978-952-60-5871-9 (pdf) 
ISSN-L 1799-4934 
ISSN 1799-4934 
ISSN 1799-4942 (pdf) 
 
Aalto University 
School of Science 
Department of Information and Computer Science 
www.aalto.fi 

BUSINESS + 
ECONOMY 
 
ART + 
DESIGN + 
ARCHITECTURE 
 
SCIENCE + 
TECHNOLOGY 
 
CROSSOVER 
 
DOCTORAL 
DISSERTATIONS 

A
alto-D

D
 14

4
/2

014 

 

E
m

il E
irola 

M
achine learning m

ethods for incom
plete data and variable selection 

A
alto

 U
n
ive

rsity 

Department of Information and Computer Science 

Machine learning methods 
for incomplete data and 
variable selection 

Emil Eirola 

DOCTORAL 
DISSERTATIONS 



Aalto University publication series 
DOCTORAL DISSERTATIONS 144/2014 

Machine learning methods for 
incomplete data and variable selection 

Emil Eirola 

Doctoral dissertation for the degree of Doctor of Science in 
Techology to be presented with due permission of the School of 
Science for public examination and debate in Auditorium T2 at the 
Aalto University School of Science (Espoo, Finland) on the 17th of 
October 2014 at 12 noon. 

Aalto University 
School of Science 
Department of Information and Computer Science 
Environmental and Industrial Machine Learning Group 



Supervising professor 
Prof. Juha Karhunen 
 
Thesis advisor 
Dr. Amaury Lendasse 
 
Preliminary examiners 
Assoc. Prof. Alberto Guillén, University of Granada, Spain 
Prof. Dr. Barbara Hammer, Bielefeld University, Germany 
 
Opponent 
Prof. Fabrice Rossi, University Paris 1 Panthéon-Sorbonne, France 

Aalto University publication series 
DOCTORAL DISSERTATIONS 144/2014 
 
© Emil Eirola 
 
ISBN 978-952-60-5870-2 
ISBN 978-952-60-5871-9 (pdf) 
ISSN-L 1799-4934 
ISSN 1799-4934 (printed) 
ISSN 1799-4942 (pdf) 
http://urn.fi/URN:ISBN:978-952-60-5871-9 
 
Images: ESA/Herschel/PACS/MESS Key Programme Supernova 
Remnant Team; NASA, ESA and Allison Loll/Jeff Hester (Arizona 
State University) 
 
Unigrafia Oy 
Helsinki 2014 
 
Finland 



Abstract 
Aalto University, P.O. Box 11000, FI-00076 Aalto  www.aalto.fi 

Author 
Emil Eirola 
Name of the doctoral dissertation 
Machine learning methods for incomplete data and variable selection 
Publisher School of Science 
Unit Department of Information and Computer Science 

Series Aalto University publication series DOCTORAL DISSERTATIONS 144/2014 

Field of research Computer and Information Science 

Manuscript submitted 10 June 2014 Date of the defence 17 October 2014 

Permission to publish granted (date) 14 August 2014 Language English 

Monograph Article dissertation (summary + original articles) 

Abstract 

Machine learning is a rapidly advancing field. While increasingly sophisticated statis-
tical methods are being developed, their use for concrete applications is not necessarily
clear-cut. This thesis explores techniques to handle some issues which arise when
applying machine learning algorithms to practical data sets. The focus is on two par-
ticular problems: how to effectively make use of incomplete data sets without having to
discard samples with missing values, and how to select an appropriately representative
set of variables for a given task.

For tasks with missing values, distance estimation is presented as a new approach
which would directly enable a large class of machine learning methods to be used. It
is shown that the distance can be estimated reliably and efficiently, and experimental
results are provided to support the procedure. The idea is studied both on a general
level, as well as how to conduct the estimation with a Gaussian mixture model.

The issue of variable selection is considered from the perspective of finding suitable
criteria which are feasible to calculate and effective at distinguishing the most useful
variables also for non-linear connections when limited data is available. Two alterna-
tives are studied, the first being the Delta test, which is a noise variance estimator
based on the nearest neighbour regression model. It is shown that the optimal selec-
tion of feature uniquely minimises the expectation of the estimator. The second method
is a mutual information estimator based on a mixture of Gaussians. The procedure is
based on a single mixture model which can be used to derive estimates for any subset
of variables. This leads to congruous estimates for the mutual information of different
variable sets, which can then be compared to each other in a meaningful way to find
the optimal.

The Gaussian mixture model proves to be a highly useful tool for several tasks, es-
pecially concerning data with missing values. In this thesis, it is used for distance
estimation, time series modelling, and mutual information estimation for variable se-
lection.
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Sammandrag 

Maskininlärning är ett snabbt framåtgående forskningsområde. Samtidigt som allt
mer avancerade statistiska metoder kommer fram, är deras tillämpning för konkre-
ta användningsområden inte nödvändigtvis entydigt. Denna avhandling utforskar me-
toder för att hantera vissa problem som uppkommer vid tillämpning av maskininlär-
ningsalgoritmer till praktiska datamängder. Tyngdpunkten ligger på två särskilda svå-
righeter: hur att effektivt utnyttja ofullständiga datamängder utan att lämna bort de
datapunkter som saknar värden, och hur att välja en representativ grupp av attribut
(variabler) för ett visst modelleringsuppdrag.

För uppgifter med saknade värden, presenteras avståndsestimering som en ny stra-
tegi som direkt skulle möjliggöra användningen en stor mängd maskininlärningsme-
toder. Det visar sig att det går att uppskatta avstånden tillförlitligt och kostnadeffek-
tivt. Idén behandlas både på en allmän nivå och hur man utför estimeringen med en
Gaussisk blandningsmodell.

Frågan om attributval beaktas utgående från passliga kriterier som är lämpliga att
beräkna och effektiva på att identifiera de mest användbara variablerna även för icke-
linjära modeller och när den tillgängliga datamängden är begränsad. Två alternativ
undersöks: den första är Delta-testet, baserad på den närmaste grannens regressions-
analys. Det visas att det optimala valet av variabler minimerar Delta-testets vänte-
värde. Den andra metoden är en estimator av ömsesidig information baserad på den
Gaussiska blandningsmodellen. Tekniken använder sig av en enda blandningsmodell,
som kan tillämpas för att härleda uppskattningar för diverse urval av variabler. Detta
leder till motsvarande beräkningar av den ömsesidiga informationen för olika variabel-
uppsättningar, som sedan kan jämföras med varandra för att hitta den optimala.

Den Gaussiska blandningsmodellen visar sig vara ett högt användbart redskap för
flera tillfällen, särskilt angående data som saknar värden. I denna avhandling används
den för avståndsestimering, modellering av tidsserier, och estimering av ömsesidig in-
formation för attributval.
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1. Introduction

1.1 Aims and scope

The prevalence of machine learning has been steadily increasing in the

current information age. Engineering advances in processor performance

and storage capacities have provided an opportunity to make practical

use of computational statistics on a large scale. Simultaneously, the re-

search community has contributed by devising new clever algorithms to

maximise the amount of relevant information that can be extracted from

data. While data sets are large at times, the more common situation is

that the number of samples is limited by practical issues, meaning that

all of the available data must be used as efficiently as possible in order to

achieve the desired results. This thesis strives to show how some of these

difficulties can be addressed in machine learning contexts.

One pertinent issue is incomplete data sets, where some samples have

missing information. Most machine learning techniques are not designed

to work with such data, and the unfortunate consequence is often that the

incomplete data samples are simply ignored in the subsequent analysis.

A primary aim of the research for this thesis has been to find better ways

to deal with this data, leading to the approach of directly estimating the

distances between data samples. The publications show that estimating

distances is feasible in general, and a specific method to conduct it with

Gaussian mixtures is introduced. The resulting estimates can then be in-

corporated into one of several machine learning procedures, since many of

them can be formulated in terms of the differences or similarities between

data points.

Time series with gaps are a common special case of incomplete data,

and a frequent occurrence in many fields. In this thesis, the problem

17



Introduction

of modelling such data is considered by applying the Gaussian mixture

model with appropriate restrictions on the covariance matrices to match

the autocovariance structure of a time series.

The increasing size of the data sets leads to the necessity of variable

selection. Automated measurement systems can efficiently gather large

batches of information about individual targets, but it can be unfeasible

to determine which features are relevant for a particular task. Machine

learning methods generally consider each input variable to be of equal im-

portance, although this is not necessarily true. Variables may provide re-

dundant information already covered by other variables in a better form,

or be entirely irrelevant in certain situations. This thesis presents two

criteria to determine which input variables or sets of variables are most

useful for a given modelling task. The first is the Delta test, which uses

the average error of the nearest neighbour model as a relative measure

of quality of the involved variables. A more sophisticated alternative is

achieved by estimating the mutual information between input and output

variables. While mutual information has been used for variable selection

previously, Publication V of this thesis presents a new procedure to calcu-

late it using Gaussian mixtures. This estimation method is particularly

suitable for comparing estimates over different variable sets.

The Gaussian mixture model is a recurring topic due to its general use-

fulness as a probability density estimate, but it is particularly relevant

due to how data with missing values can be included when fitting the

model.

1.2 Publications and author’s contribution

This thesis consists of seven publications written with coauthors. The

contributions of the present author to each article are detailed here.

Publication I: Distance Estimation in Numerical Data Sets with Missing Val-

ues This first article introduces the idea of distance estimation as a use-

ful new approach to machine learning with missing data. It is shown that

calculating the expectation of the squared distance between samples re-

duces to finding the expectation and variance separately of each missing

value, and a procedure to conduct the estimation based on the principle of

maximum entropy is presented. Directly estimating the distances leads to

more accurate results than using an equivalent model to fill in the miss-

18
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ing values and calculating distances on the imputed data. The author

contributed with the original idea, conducted the experiments, and wrote

the article.

Publication II: Mixture of Gaussians for distance estimation with missing

data This article is about using Gaussian mixtures to more accurately

conduct the distance estimation, also covering several issues of fitting

the mixture model to data with missing values. In addition, it includes

some results on how the estimated distances are used for building ex-

treme learning machine neural networks. The author contributed with

the original idea, conducted the experiments, and wrote the manuscript.

Publication III: Regularized Extreme Learning Machine For Regression with

Missing Data Using the estimated distances for an extreme learning ma-

chine is further explored here with various regularisation techniques. The

article also includes results for a financial application, using the model to

predict the possibility bankruptcy for a collection of companies. The au-

thor was responsible for the idea and programming implementation con-

cerning missing values and distance estimation (25% of the total work).

Publication IV: Gaussian Mixture Models for Time Series Modelling, Fore-

casting, and Interpolation The article studies how Gaussian mixtures

can be used for time series modelling by appropriate constraints on the

model parameters. A particular focus is placed on modelling incomplete

(i.e., gapped) time series. The author contributed with the original idea,

conducted the experiments, and wrote the manuscript.

Publication V: Variable Selection for Regression Problems Using Gaussian

Mixture Models to Estimate Mutual Information A further use of the Gaus-

sian mixture model is for mutual information estimation. Since a single

mixture model can be used to estimate the mutual information for differ-

ent subsets of variables, this is particularly useful for variable selection,

and also works directly on data with missing values. The author con-

tributed with the original idea, conducted the experiments, and wrote the

manuscript.

Publication VI: Using the Delta test for variable selection The Delta test is

a relatively simple method that had been used occasionally as a variable

selection criterion previously, but this is the first article to specifically

focus on studying the reasons why it works as well as it does. The author

contributed with the original idea, conducted the experiments, and wrote

the manuscript with input from the co-authors (80% of the total work).

19
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Publication VII: The Delta Test: The 1-NN Estimator as a Feature Selection

Criterion This extended update of Publication VI contains a consider-

ably more thorough theoretical analysis and experimental evaluation of

the same method. The author contributed with the original idea, con-

ducted the experiments, and wrote the manuscript with input from the

co-authors (80% of the total work).

1.3 Structure of the thesis

The remainder of this thesis includes four chapters. Chapter 2 presents

an overview of relevant background information, including concepts in the

field of machine learning and current approaches to solving the studied

issues of incomplete data and variable selection. Chapter 3 introduces

the relevant contributions to machine learning with missing data from

the publications. The two methods for variable selection are studied in

Chapter 4. Conclusions and summary are contained in Chapter 5.

20



2. Background

2.1 Overview of machine learning

Machine learning is the study of designing and constructing methods to

learn from data. In this context, learning refers to inferring statistical

properties and relationships from a collection of data samples [79]. The

intent is that the discovered patterns can be used to predict associated

values for future data.

The field of machine learning – or pattern recognition, as it is also known

as – is generally divided into supervised and unsupervised learning. In

supervised learning, data samples with labels are available for the learn-

ing algorithm, and the goal is to find an accurate predictive model in the

form of an algorithm which takes the sample as an input and returns the

correct label [2]. The training data generally consists of a set of input-

output pairs {(xi, yi)}N
i=1, where each input sample xi is a d-dimensional

vector of numbers, and each sample has an associated output label yi.

These labels can take different forms, such as representing membership

of a class, a numerical quantity, or a vector of several such properties.

The d different values specified for each input are known as variables

(or features, attributes, or covariates). The main examples of supervised

learning tasks are classification, where the goal is to assign input points

to one of two or more classes, and regression, where the target output is a

numerical quantity, often a continuous variable.

The other main category, unsupervised learning, has no predefined la-

bels, and part of the task is to determine what sort of structure would be

suitable for the data [2]. This often takes the form of clustering, i.e., parti-

tioning the data into groups in such a way that members of each group are

somehow similar to each other. In addition, there are approaches between
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Background

supervised and unsupervised learning, including semi-supervised learn-

ing and reinforcement learning [27]. The focus of this thesis is, however,

mainly on supervised learning.

To illustrate the use of some of the methods presented later, they will be

applied to two well-known examples of machine learning tasks:

• The Boston housing data set [5] is a set with 14 attributes for 506 ob-

jects, and the modelling task is to predict the value of a house/apartment

from the 13 other properties.

• The laser data known as Santa Fe A is selected from the Santa Fe Time

Series Competition [110, 111]. The series contains 1000 samples of in-

tensity data of a a far-infrared-laser in a chaotic state, and the task is to

perform one-step-ahead prediction.

2.2 Supervised learning methods

2.2.1 Linear regression

Some of the simplest and most common models are realised in terms of a

linear function of the input variables. Linear regression [11] is the model

where the output label is approximated by a linear (or affine) function:

yi ≈ f (xi)=
d∑

j=1
wjxi, j +b (2.1)

The parameters which define the model are the weights wi and bias term

b. The notation is often simplified by defining a new component xi,0 which

is 1 for all samples i, and equating w0 = b, resulting in:

f (xi)=
d∑

j=1
wjxi, j +b =

d∑
j=0

wjxi, j = wT xi (2.2)

Training this model is usually done by the method of least squares, find-

ing those parameter values wj which minimise the sum of squared errors

between the labels and predictions on the training set [40]. Collecting the

samples xi as rows into a matrix X with the corresponding labels in the

vector y, this is expressed as

y=Xw+ e , (2.3)
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where e represents the modelling error. The least squares formulation

corresponds to the optimisation problem of minimising this error:

wopt = argmin
w

‖e‖2 = argmin
w

‖y−Xw‖2 (2.4)

The optimum is found as the solution of the normal equations,

(XTX)w=XT y , (2.5)

which in turn can be efficiently solved for w by any of a number of existing

algorithms for solving linear systems of equations [12, 40]. In general, the

the number of available samples (xi, yi) should exceed the number of vari-

ables, and the preferable situation is even that N � d in order to reliably

estimate the weights wj. The case when N < d can still be approached

through ridge regression [50], where a penalty term is added to Eq. (2.4)

in order to restrict the norm of w. This is also known as Tikhonov regu-

larisation.

Generalised linear model

A generalisation of the linear model in Eq. (2.1) is obtained by defining

a fixed set of basis functions φ j(·), and modelling the output as a linear

combination of these [11]:

f (xi)=
M∑
j=0

wjφ j(xi) (2.6)

An example of this is polynomial regression, where the functions φ j take

the form of different powers of the components of xi and their products.

The model in Eq. (2.6) is still linear with respect to the parameters wj,

and can be solved by the method of least squares. In this case, the number

of basis functions (M) should be less than N.

2.2.2 Method of nearest neighbours

A simple non-linear method for classification or regression is the nearest

neighbour (NN) method [22, 94]. The idea is that given a query point to

look through the dataset and find the closest point, then take the label of

that point as the prediction:

yi ≈ yNN(i) where NN(i) := argmin
j �=i

∥∥xi − x j
∥∥ . (2.7)

This is readily extended to k nearest neighbours (k-NN), where the pre-

diction is the average of the k closest points. In regression, this is usually

the arithmetic mean, whereas in classification tasks it is more suitable to

use the mode.
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Input layer nodes

Hidden layer

Output node

Figure 2.1. A single hidden-layer feed-forward neural network.

2.2.3 Neural networks and the Extreme Learning Machine

An artificial neural network [51, 27, 10] is a computational model inspired

by the structure of the brain. Each neuron is a node which performs a pro-

cessing task, such as combining several inputs and applying a function to

produce an output value. After assigning the parameters to define the

network, measured variables are mapped to the input nodes, and process-

ing the network produces a result in the output node. A properly trained

neural network can be a highly efficient and accurate prediction model.

A common type of neural network is the multilayer perceptron [27], re-

ferring to the topology of arranging the neurons in consecutive layers. A

frequently used model is the single hidden-layer feed-forward neural net-

work (Figure 2.1), which has only one layer between the input and output

layers. Each input is connected to every node in the hidden layer, and the

output is a linear combination of the hidden-layer neurons. The number

of output nodes is determined by the number of values to predict for each

input vector, and the output layer nodes could also be non-linear, if appro-

priate. For example, a network with d input nodes, one output node, and

M neurons in the hidden layer can be written as

f (x)=
M∑

k=1
βkh

(
d∑

j=1
wk jx j

)
(2.8)

where h(·) is an appropriate activation function. The activation function

is often chosen to be a continuous, bounded, and monotonous function

to simulate the “spiking” of a neuron, where the neuron changes state

from inactive to active when the input increases above a threshold value.

Popular choices include the sigmoid and hyperbolic tangent functions [10]:

σ(t)= 1
1+exp(−t)

tanh(t)= 1−exp(−2t)
1+exp(−2t)

(2.9)

While neural networks have potential to be powerful models, training
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the network on data can be notoriously difficult. Training entails finding

optimal values for all the weights wk j and βk. An effort to minimise the

mean squared error using gradient descent leads to the common method

of back-propagation, where all the weights are iteratively updated, taking

a small step in the direction which most decreases the error on each step

[49, 51, 27]. This approach can work well after proper training, but back-

propagation can require a long time to converge. Other potential compli-

cations include converging to sub-optimal minima and overtraining. In a

sufficiently large network, the algorithm can proceed to incorporate spu-

rious properties of individual training samples if it runs for too long. This

overtraining can be avoided by various early stopping criteria [27].

A recent development is the Extreme Learning Machine (ELM) [55],

which is a single hidden-layer feed-forward neural network where only

the output weights βk are optimised, and all the weights wk j between the

input and hidden layer are assigned randomly.

Hβ= y where Hik = h
(
wT

k xi
)

(2.10)

Training this model is much simpler, as the optimal output weights βk

can be calculated by ordinary least squares. The method relies on the

idea of random projection: mapping the data randomly into a sufficiently

high-dimensional space means that a linear model is likely to be rela-

tively accurate. As such, the number of hidden-layer neurons needed for

achieving equivalent accuracy is often much higher than in a multilayer

perceptron trained by back-propagation, but the computational burden is

still nearly negligible.

A high number of hidden layer neurons introduces concerns of overfit-

ting, and regularised versions of the ELM have been developed to remedy

this issue. These include the optimally pruned ELM (OP-ELM) [76], and

its Tikhonov-regularised variant TROP-ELM [77].

2.2.4 Least squares support vector machines

One widely used non-linear model is Least Squares Support Vector Ma-

chines (LS-SVM) [100]. It is a variation of the original support vector

machines [20], designed to be computationally lighter without sacrificing

accuracy. The technique is closely related to that of Gaussian processes

[84].

This section presents a brief summary of the method, see [100] for a
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detailed exposition. The model can be represented in its primal space as

f (x)= wTϕ(x)+b , (2.11)

where ϕ : Rd → Rnh is a mapping to a higher dimensional feature space

(possibly even infinite dimensional), w is a corresponding weight vector,

and b a bias term. Training of the model is performed by the minimisation

problem

min
w,b,e

J(w, e)= 1
2

wT w+ 1
2
γ‖e‖2 (2.12)

s.t. yi = wTϕ(xi)+b+ ei i ∈ {1, . . . , N}

The function J is the sum of a regularisation term and the fitting error.

The relative weights of the two terms, and the extent of the regularisa-

tion, is determined by the positive, real parameter γ. The problem is

impractical in the primal space, since ϕ(x) and w are potentially infinite

dimensional, and for this reason it is studied in the dual space, where ϕ(x)

does not have to be explicitly constructed. Instead, it suffices to define a

kernel K such that

K(xi, x j)=ϕ(xi)Tϕ(x j) (2.13)

With this, the model can be written as

f (x)=
N∑

i=1
αiK(x, xi)+b (2.14)

and the parameters b and α can be solved from a linear system. The most

common choice for K is the radial basis function (Gaussian) kernel:

K(xi, x j)= exp

{
−
∥∥xi − x j

∥∥2

σ2

}
, (2.15)

where the parameter σ determines the kernel width. Using LS-SVM with

the RBF kernel then requires the user to choose two real valued param-

eters: γ and σ. The selection of these is non-trivial, and the parameters

can not be optimised separately from each other. One suggested method

to perform this tuning is by a grid search to minimise the random k-fold

cross-validation error of the resulting model (Section 2.7).

2.3 Variable selection

In modern modelling problems, it is not uncommon to have an overwhelm-

ing number of input variables. Many of them may turn out to be irrelevant

for the task at hand, but without external information it is often difficult
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to identify these variables. Variable selection (also known as feature selec-

tion, subset selection, or attribute selection [80]) is the process of automat-

ing this task of choosing the most representative subset of variables for

some modelling task.

Variable selection is a special case of dimensionality reduction. It can

be used to simplify models by refining the data through discarding in-

significant variables. As many regression models and other popular data

analysis algorithms suffer from the so-called curse of dimensionality [7]

to some degree it is necessary to perform some kind of dimensionality re-

duction to facilitate their effective use [107, 31, 66].

In contrast to general dimensional reduction techniques, variable selec-

tion provides additional value by distinctly specifying which variables are

important and which are not [47]. This leads to a better intuitive insight

into the relationship between the inputs and outputs, and assigns inter-

pretability to the input variables. In cases where the user has control

over some inputs, variable selection emphasises which variables to focus

on and which are likely to be less relevant. Furthermore, discarding the

less important inputs may result in cost savings in cases where measur-

ing some properties would be expensive (such as chemical properties of a

substance).

Variable selection techniques are in general based on either variable

ranking or subset selection [47]. While subset selection methods attempt

to return a single optimal subset of variables, the ranking methods only

provide an ordering of the variables’ estimated relevance for predicting

the output. For regressions tasks, it is then left up to the user to se-

lect how many of the top ranked variables to choose. Due to their nature,

ranking methods often fail to recognise situations where certain variables

are useful only when combined with specific other variables. Subset se-

lection is generally computationally more expensive, and the problem is

known to be NP-hard even for a linear classifier [46, 3].

2.3.1 Correlation and linear methods

The simplest effective variable ranking method is to calculate and rank

each input Xk by the Pearson correlation coefficient between it and the

output Y [47, 48]:

ρk =
Cov(Xk,Y )
σXkσY

. (2.16)
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The covariances and standard deviations can be estimated from data.

This measure can only account for linear dependence of the output on

the inputs, and is unable recognise more intricate connections between

the variables. Using the correlation by itself is not ideal, since it does not

account for correlations between the input variables, and is thus unable

to detect redundant variables.

An improvement is to consider a linear model with L1 regularisation on

the weight vector:

min
w

‖y−Xw‖ s.t. ‖w‖1 ≤ t (2.17)

This is known as the LASSO method (least absolute shrinkage and selec-

tion operator) [104]. The regularisation leads to solutions where many of

the weights are zero, and it can be an effective form of variable selection

by only considering the variables with non-zero weights for further study.

Gradually increasing the value of t leads to new variables being included

one by one.

Least angle regression (LARS) [28] is an efficient implementation of

LASSO to solve the problem for all values of t. The order in which the

variables are selected provides a ranking of their usefulness for predict-

ing the output. Compared to the simple ranking by correlation, LARS

is better as it specifically chooses the variables based on how much of the

residual they can explain, i.e., how much new information they bring. This

avoids the selection of an undesired variable in situations were a variable

is highly correlated with the output only because it is highly correlated

with some of the other highly correlated inputs.

As the method only ranks the input variables, it does not explicitly spec-

ify the number of top-ranked variables to select for optimal results, and

this must somehow be chosen by the user.

2.3.2 Mutual information

The mutual information (MI) [23] is a measure of dependence between

two random variables. It can be defined through the Shannon entropy:

I(X ;Y )= H(Y )−H(Y |X ) (2.18)

= H(X )+H(Y )−H(X ,Y )

where the entropy H is the expected information content, which can be

written in terms of a random variable’s probability mass function px(X ):

H(X )=E[− log(px(X ))] (2.19)
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If X is continuous, H(X ) as calculated above with the probability density

function px(X ) is known as the differential entropy [23]. The conditional

entropy H(Y |X ) and joint entropy H(X ,Y ) are defined analogously through

the conditional and joint probability distributions.

For continuous random variables X , Y with a joint distribution described

by the density p(x, y), the definition is equivalent to the integral below.

I(X ;Y )=
∫

Y

∫
X

p(x, y) log
(

p(x, y)
px(x)py(y)

)
dx d y (2.20)

Here px and py are the marginal probability densities of the random vari-

ables.

Another interpretation of mutual information is that it is the Kullback–

Leibler (KL) divergence [23] of the product of the marginal distributions

px(x)py(y) from the joint distribution p(x, y). The KL divergence is a mea-

sure of the difference between the distributions. If X and Y are inde-

pendent random variables, the joint density is separable as the product

p(x, y)= px(x)py(y), and the divergence is 0. The more dependent the vari-

ables are, the larger the divergence, and the higher the value of the mu-

tual information is.

Estimating mutual information

Early attempts to estimate mutual information from data with an un-

known structure have been based on binning and histograms. That ap-

proach is not feasible for data with more than a couple of dimensions,

as the number of samples required for reliable estimates grows exponen-

tially. A general complication with using probability density estimation

is that the tails of the distribution are particularly difficult to estimate

accurately.

More recently, Kraskov et al. [63] proposed a method to estimate mutual

information by considering nearest neighbours of each point in the input

and output spaces separately and together. This approach has proven

effective, and gained popularity.

Maximum Likelihood Mutual Information (MLMI) [101, 102] is another

recent development promising accurate estimates.

Variable selection by mutual information

The seminal work on feature selection with mutual information [6] for-

mulates the problem as follows: find the subset with k features that max-

imises the mutual information, for some a priori fixed value k. The MI is

only estimated from histograms and binning.
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For classification problems, a method involving kernel density estima-

tion for the conditional distribution of each class has been used to esti-

mate mutual information for variable selection [65], and later extended

to dimensionality reduction [64].

A suggestion for regression problems is to find variables which maximise

Kraskov’s mutual information estimator [90]. To gauge the uncertainty of

Kraskov’s estimator, a resampling strategy has been proposed which can

also help in determining how many variables to select in a forward search

[32]. Extending variable selection to datasets with missing values, the

partial distance strategy (PDS) has been used to find nearest neighbours

for Kraskov’s estimator [26].

Mutual information has also been used for a visualisation procedure for

grouping features [39].

While optimising mutual information generally leads to accurate models

in more concrete performance measures (classification rate, mean squared

error), it has been shown that pathological examples exist where this is

not true [34]. The adequacy of mutual information for estimating predic-

tion accuracy is more precisely detailed in [33].

MI and mean squared error

While concerns have been raised over the use of MI as representative

of prediction error [34, 33], there is a clear connection between the two

measures. In the general case, MI implies a lower bound for the mean

squared error (MSE) of an arbitrary estimator Ŷ (X ):

E[(Y − Ŷ (X ))2]≥ 1
2πe

e2H(Y |X ) (2.21)

[23, Thm. 8.6.6] when the entropy H is in nats (base e logarithm). Here

equality is achievable only for the optimal estimator Ŷ (X )=E(Y |X ) and if

the residual Y − Ŷ (X ) is Gaussian.

Since H(Y |X )= H(Y )− I(X ;Y ), it holds that that

E[(Y − Ŷ (X ))2]≥ 1
2πe

e2(H(Y )−I(X ;Y ))

= Ce−2I(X ;Y )
(2.22)

where C = 1
2π e2H(Y )−1 is a constant that does not depend on the chosen

variables X . Increasing the MI thus reduces the lowest achievable error.

2.3.3 The Relief algorithm

The Relief algorithm [61] is another popular method for feature selec-

tion for classification problems. The idea is based on evaluating variables
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based on how well they distinguish samples close to the class boundary

from each other. This is done by considering the nearest hit (nearest

neighbour from the same class) and nearest miss (from a different class).

If nearby misses have a large difference in the values of a certain vari-

able, that variable is considered useful. On the other hand, variables

with large differences for nearby hits are not as useful. The method has

been extended to the ReliefF algorithm [88], which considers more than

one nearest hit/miss for each class, among other efficiency improvements.

A variant for regression problems has also been introduced, called RRe-

liefF [88]. As the concepts of hits and misses no longer apply when the

target is continuous, they are replaced by a measure of how large the

differences in the outputs of the nearest neighbours are, compared to dif-

ferences in the input variables.

The output of the algorithm is a set of weights for the input variables,

which can be converted to a ranking of the variables in order of impor-

tance. The Relief algorithm is able to effectively capture non-linear de-

pendencies between the input and output variables. The main limitation

is that since scores are given to each input variable individually, variables

which are highly correlated with each other tend to all be selected, even

when this is redundant.

2.4 Dealing with missing data

Most methods in machine learning are based on the assumption that data

is available as a fixed set of measurements for each sample. This is not

always true in practice, as several samples may have incomplete records

for any of a number of reasons. These could include measurement error,

device malfunction, operator failure, non-response in a survey, etc. Simply

discarding the samples or variables which have missing components often

means throwing out a large part of data that could be useful for the model.

It is relevant to look for better ways of dealing with missing values in such

cases.

In modelling such data, an assumption is that each missing value hides

an underlying true value that is meaningful for analysis [69]. In the fol-

lowing, xobs is the observed part of a data sample, xmis is the true value

of the unknown missing part, and M is a random variable indicating

whether a certain value is missing or not. The vector θ represents any

other unknown parameters.

31



Background

The cause for the data being missing is important to consider in order to

approach the issue appropriately. Three categories of missingness mech-

anisms are generally identified [69]:

• Missing completely at random (MCAR), which is when the event of a

value being missing is independent of any values, known or unknown:

p(M | xobs, xmis,θ)= p(M | θ) (2.23)

• Missing at random (MAR) is the less restrictive situation where the

missingness may depend on the value of the observed data:

p(M | xobs, xmis,θ)= p(M | xobs,θ) (2.24)

MAR is an ignorable missingness mechanism in the sense that maxi-

mum likelihood estimation still provides a consistent estimator [69].

• If the probability of having missing values depends on the missing val-

ues themselves, they are called not missing at random (NMAR). Mod-

elling such data is generally only possible by introducing other, specific,

assumptions, and will not be considered further in this thesis.

Two general procedures for handling missing values can be discussed sep-

arately from more specific models:

• Complete-case analysis implies discarding all incomplete samples, and

using the remaining samples as if they constitute the entire data set.

This simple approach is useful if abundant data is available since any

standard analysis method can be applied without modification. Care

should be taken to avoid biases, however, since if the data is not MCAR,

the collection of complete samples is not a representative sampling of

the entire data set.

• Available-case analysis is an alternative approach where for each indi-

vidual estimate involving only a subset of variables, all samples with

those variables present are included. For instance, statistics involving

one (e.g., the mean) or two (e.g., covariance) variables can be estimated

more accurately in this way. The disadvantage is that since different es-

timates are calculated using different sets of samples, combining them

may lead to inconsistent results. For instance, consider estimating the
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covariance of two variables by available-case analysis, and separately

their variances as univariate available-case analyses. Using these to

calculate the correlation coefficient in Eq. (2.16) could result in a value

outside the allowed range from −1 to 1.

2.4.1 Imputation

Considering the assumption that every missing value represents an un-

derlying true value, an intuitive approach is to consider filling in the miss-

ing value. This is known as imputation. It is a simple idea, but may not

be that effective due to how errors propagate.

There are several paradigms for imputing missing data used in conjunc-

tion with machine learning methods [69].

• Conditional mean imputation implies filling in the missing values by

the best guess. This is optimal in terms of minimising the mean squared

error of the imputed values, but suffers from leading to biased derived

statistics of the data. For instance, estimates of variance or distances

are negatively biased.

• Random draw imputation is more appropriate for generating a repre-

sentative example of a fully imputed data set, but may have too much

variability in estimates of any single values to be accurate.

• Multiple imputation is drawing several representative imputations of

the data, analysing each set separately, and combining the results [91].

This can result in unbiased and accurate estimates after a sufficiently

high number of draws, but it is not always straightforward to deter-

mine the posterior distribution to draw from [29, 92]. In the context of

machine learning, repeating the analysis several times is however im-

practical as training and analysing a sophisticated model tends to be

computationally expensive.

If the fraction of missing data is sufficiently small, a practical prepro-

cessing step is to take any reasonable imputation method to fill in the

missing values and proceed with conventional methods for further pro-

cessing. Any errors introduced by inaccurate imputation may be consid-

ered insignificant in terms of the entire processing chain. With a larger
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proportion of measurements being missing, errors caused by the imputa-

tion are increasingly relevant, see, e.g., [30] for an analysis on the effect

of imputation on classification accuracy.

A simple method of imputation by searching for the nearest neighbour

among only the fully known patterns can be effective when only a few val-

ues are missing [53, 59, 18], but is ineffective when a majority of the data

samples have missing components as the availability of candidates de-

creases rapidly. An improved approach is incomplete-case k-NN imputa-

tion (ICkNNI) [106], which searches for neighbours among all patterns for

which a superset of the known components of the query point are known.

This still fails in high-dimensional cases, or with a sufficiently large pro-

portion of missing data. A more intricate method where multiple nearest

neighbours are considered, and a model is separately learned for each in-

complete sample, is presented in [109].

2.4.2 Estimating distances

The problem of directly estimating pairwise distances between samples

with missing values is less studied. Previous approaches involve imputing

the missing data with some estimates, and calculating distances from the

imputed data. This technique severely underestimates the uncertainty

of the imputed values. Estimating the distances directly leads to more

reliable estimates as the uncertainty can also be considered.

A simple and somewhat widely used method for estimating distance

with missing values is the Partial Distance Strategy (PDS) [25, 52]. In

the PDS, an estimate for the squared distance is found by calculating the

sum of squared differences of the mutually known components, and scal-

ing the value proportionally to account for the missing values.

d̂(xi, x j)2 = d
|Oi ∩O j|

∑
l∈Oi∩O j

(
xi,l − xj,l

)2. (2.25)

The index sets Oi and O j represent the observed components of the sam-

ples xi and x j, respectively. As the contribution of the missing values is

ignored even if the corresponding variable for the other sample is known,

the accuracy of the method is limited and there is a tendency to exag-

gerate the variability of distances. In a nearest neighbour search, for

instance, this manifests as a risk of returning samples with several miss-

ing values only because the few mutually known variables have similar

values. Furthermore, if two samples have no common components, the

output of this strategy is undefined. The PDS has nevertheless been used
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to find nearest neighbours in order to estimate mutual information [26].

In a specific case of an entropy-based distance measure [19], the au-

thors propose that the distance to an incomplete sample can be estimated

as the mean distance after the missing values are replaced by random

draws. However, the missing value is successively replaced by the corre-

sponding attribute from every specified sample, ignoring any dependence

to the observed attributes of the incomplete sample.

Finding distances from each sample to some prototype patterns (where

the prototypes have no missing values) has been conducted by ignoring

those components which are missing for the query pattern. Such dis-

tances from the same query point to different prototypes are compara-

ble, and this strategy has, for instance, been used successfully with self-

organising maps (SOM) [21]. This is, however, equivalent to the partial

distance strategy, and suffers from the same limitations.

2.4.3 Methods to account for missing data intrinsically

For some machine learning methods, it is possible to use the incomplete

samples in training the model without additional processing. One pos-

sibility for integrating the imputation of missing values with building a

prediction model is presented in the MLEM2 rule induction algorithm

[41]. A variation is to restrict the search to certain samples or attributes

according to specified rules, as in the “concept closest fit” [41] and “rough

sets fit” [67] methods.

Another suggested alternative is to use nearest neighbours to simulta-

neously conduct classification and imputation [36].

A way to use mixtures of Gaussians for training neural networks on

data with missing values has previously been proposed in [105], involving

finding the average gradient of the relevant parameters by integrating

over the conditional distribution of missing values. However, the authors

only specify widths for the Gaussian components separately for each di-

mension in their implementation. This simplifies the analysis greatly, ef-

fectively ignoring correlations by restricting the covariance matrices to be

diagonal. The suggested procedure specifically applies to training the net-

work by back-propagation, and cannot directly be used for other machine

learning methods. Another more limited approach to directly allow in-

complete samples to be used in back-propagation is to flag input neurons

corresponding to unknown attributes as protected, temporarily restricting

them from being modified [108]. Further suggested approaches to using
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a mixture of Gaussians to model the input density for machine learning

include forming hidden Markov models for speech recognition by integrat-

ing over the density [78]. Another analysis accounting for the uncertainty

of missing values using a single multivariate Gaussian in clinical trials is

[9].

2.5 Gaussian mixtures models

Mixtures of Gaussians can be used for a variety of applications by estimat-

ing the density of data samples [11]. A Gaussian mixture model is defined

by its parameters. These consist of the mixing coefficients πk, the means

μk, and covariance matrices Σk for each component k (1≤ k ≤ K) in a mix-

ture of K components. The combination of parameters is represented as

θ = {πk,μk,Σk}K
k=1.

The model specifies a distribution in Rd, given by the probability density

function

p(x | θ)=
K∑

k=1
πkN (x |μk,Σk), (2.26)

where N (x | μ,Σ) is the probability density function of the multivariate

normal distribution

N (x |μ,Σ)= 1√
(2π)d det(Σ)

exp
(
−1

2
(x−μ)TΣ−1(x−μ)

)
. (2.27)

2.5.1 The EM algorithm

The standard procedure for fitting a Gaussian mixture to a data set is

maximum likelihood estimation by the Expectation–Maximisation (EM)

algorithm [24, 74]. The log-likelihood of a model given data X is

logL (θ;X)= log p(X | θ)=
N∑

i=1
log

(
K∑

k=1
πkN (xi |μk,Σk)

)
, (2.28)

where θ = {πk,μk,Σk}K
k=1 is the set of parameters to be determined.

As explicitly optimising Eq. (2.28) is difficult, Z is introduced as a set of

latent binary variables zik, each representing whether sample i belongs

to component k. A sample can belong to only one component, so for a fixed

i, exactly one of zik for different k is non-zero. Write the complete data
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log-likelihood as follows:

logLC(θ;X,Z)= log p(X,Z | θ) (2.29)

= log
N∏

i=1
p(xi, zi | θ) (2.30)

= log
N∏

i=1
p(zi)p(xi | zi,θ) (2.31)

= log
N∏

i=1

(
K∏

k=1
π

zik
k

)(
K∏

k=1
N (xi | θk)zik

)
(2.32)

=
N∑

i=1

K∑
k=1

zik log(πkN (xi | θk)) (2.33)

The E-step is to find the expected value of the complete data log-likeli-

hood function, with respect to the conditional distribution of latent vari-

ables Z given the data X under the current estimate of the parameters

θ(t):

Q(θ | θ(t))=E
[
logLC(θ;X,Z) |X,θ(t)] (2.34)

Defining tik =E[zik |X,θ(t)], this reduces to

Q(θ | θ(t))=
N∑

i=1

K∑
k=1

tik log(πkN (xi | θk)) , (2.35)

where tik for each sample xi and component k is the probability that the

sample belongs to that component. Given the current parameter esti-

mates θ(t), it is calculated as

tik =
πkN (xi | θ(t)

k )∑K
j=1π jN (xi | θ(t)

j )
. (2.36)

In the M-step, the expected log-likelihood is maximised:

θ(t+1) = argmax
θ

Q(θ | θ(t)) , (2.37)

which corresponds to re-estimating the model parameters using the up-

dated probabilities:

Nk =
N∑

i=1
tik, (2.38)

πk =
Nk

N
, (2.39)

μk =
1

Nk

N∑
i=1

tikxi, (2.40)

Σk =
1

Nk

N∑
i=1

tik(xi −μk)(xi −μk)T . (2.41)

In a practical implementation, the E-step in Eq. (2.36) and M-step in

Eqs. (2.38)–(2.41) are alternated until convergence is observed in the log-

likelihood. The initialisation before the first E-step is arbitrary. The clus-

tering algorithm K-means is a popular choice to find a reasonable initial-

isation [11].
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2.5.2 With missing values

A Gaussian mixture model with the EM algorithm works well on incom-

plete data sets, since any missing values can be included in the same

framework [37, 56].

The data X now contains the observations {xi}N
i=1 so that for each sample

i there is an associated index set Oi ⊆ {1, . . . ,d} representing which vari-

ables are known (observed). The complement set Mi corresponds to the

missing values for that sample. The observed part of the full data is re-

ferred to by XO, and the observed data log-likelihood with missing values

is

logL (θ;XO)= log p(XO | θ)=
N∑

i=1
log

(
K∑

k=1
πkN

(
xOi

i

∣∣μk,Σk
))

(2.42)

where as a shorthand of notation, N (xOi
i | μk,Σk) is also used for the

marginal multivariate normal distribution probability density of the ob-

served values of a sample xi.

In order to apply the EM algorithm, additional latent variables XM are

introduced for all the missing values in the data. The E-step is then to

find

Q(θ | θ(t))=E
[
logLC(θ;XO,XM ,Z)

∣∣ XO,θ(t)] (2.43)

where the expectation is with respect to all the variables in both XM and

Z (the unknown component memberships).

This requires some additional computation, including the conditional

expectations of the missing components of a sample with respect to each

Gaussian component k, and their conditional covariance matrices, i.e.,

μ̃
Mi
ik =E

[
xMi

i

∣∣ xOi
i , zik = 1

]
(2.44)

Σ̃
MMi
ik =Cov

[
xMi

i

∣∣ xOi
i , zik = 1

]
(2.45)

where the statistics are conditional on the assumption that xi originates

from the kth Gaussian.

Then the E-step is:

tik =
πkN

(
xOi

i

∣∣μk,Σk
)

∑K
j=1π jN

(
xOi

i

∣∣μ j,Σ j
) , (2.46)

μ̃
Mi
ik =μMi

k +Σ
MOi
k

(
Σ

OOi
k

)−1(xOi
i −μ

Oi
k

)
, (2.47)

Σ̃
MMi
ik =ΣMMi

k −Σ
MOi
k

(
Σ

OOi
k

)−1
Σ

OMi
k , (2.48)

For convenience, also define corresponding imputed data vectors x̃ik and

full covariance matrices Σ̃ik which are padded with zeros for the known
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components.

x̃ik =
⎛
⎝xOi

i

μ̃
Mi
ik

⎞
⎠ , (2.49)

Σ̃ik =
⎛
⎝0OOi 0OMi

0MOi Σ̃
MMi
ik

⎞
⎠ . (2.50)

The M-step is nearly the same as with fully observed data, only using

the imputed samples for the calculations, and including the conditional

covariances for the imputed values.

Nk =
N∑

i=1
tik, (2.51)

πk =
Nk

N
, (2.52)

μk =
1

Nk

N∑
i=1

tik x̃ik, (2.53)

Σk =
1

Nk

N∑
i=1

tik

[
(x̃ik −μk)(x̃ik −μk)T + Σ̃ik

]
, (2.54)

2.5.3 Model selection

When using the EM algorithm to fit a mixture model, the number of com-

ponents K must be fixed beforehand. This selection is crucial and has a

significant effect on the resulting accuracy. Too few components are not

able to model the distribution appropriately, while having too many com-

ponents can cause overfitting.

The number of components can be selected according to the Akaike in-

formation criterion (AIC) [1] or the Bayesian information criterion (BIC)

[93]. Both are expressed as a function of the log-likelihood of the con-

verged mixture model:

AIC=−2logL (θ;X)+2P , (2.55)

BIC=−2logL (θ;X)+ log(N)P , (2.56)

where P = Kd + 1
2 Kd(d+1)+K − 1 is the number of free parameters. In

practice, the EM algorithm is run separately for several different values

of K , and the model which minimises the chosen criterion is selected. As

log(N) > 2 in most cases, BIC more aggressively penalises an increase in

P, generally resulting in a smaller choice for K than by AIC.

Another choice is the Akaike information criterion [1] with the small

sample (second-order) bias adjustment [57]. Using the corrected version
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can be useful, as the number of parameters grows relatively fast (quadrat-

ically) when increasing the number of components.

AICC =−2logL (θ;X)+2P + 2P(P +1)
N −P −1

(2.57)

With high-dimensional data sets, the number of parameters quickly tends

to become larger than the number of available samples when increasing

the number of components, and the criterion would not be valid anymore.

This effect can be mitigated by imposing restrictions on the structure of

the covariance matrices, but this would also make the model less power-

ful.

Minimum description length [87, 42] is a general principle for model

selection. In the current case of choosing the number of components, it is

equivalent to BIC in Eq. (2.56) above [103]. Several further criteria are

discussed in [75, Ch. 6].

2.5.4 High-dimensional data

As the number of free parameters grows with the square of the data di-

mension, in high-dimensional cases it is often not possible to fit a conven-

tional Gaussian mixture model, or even a model with a single Gaussian

component. A practical solution is that the covariance matrices are re-

stricted to being identical [75]

Σk =Σ ∀k (2.58)

Alternatively, each covariance matrix could be forced to zero for all off-

diagonal elements, although this has the side effect of aligning the com-

ponents along the coordinate axes. The further simplification where the

variance is equal in all directions, Σk = σ2
kI, is hence often preferred as it

retains the rotational invariance.

Another possibility is high-dimensional data clustering (HDDC) [13],

which is a Gaussian mixture model where the covariance matrices are re-

placed by a reduced representation. From the different variants of HDDC,

the basic version allow all the parameters of the reduced representation to

be determined freely for each component. In brief (see [13] for details and

derivations), the reduced representation entails taking the eigenvalue de-

composition of the covariance matrix

Σk =QkΛkQT
k (2.59)

and modifying all the eigenvalues λk j apart from some of the largest ones.

Only the dk largest eigenvalues are kept exactly, and the remaining ones
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are replaced by their arithmetic mean. In other words, the covariance

matrix Σk is replaced by a matrix Σ′
k = QkΛ

′
kQT

k where Λ′
k is a diagonal

matrix with the elements

λ′
k j =

⎧⎪⎨
⎪⎩
λk j j ≤ dk

bk j > dk

(2.60)

where

bk =
1

d−dk

d∑
l=dk+1

λkl =
1

d−dk

(
tr(Σk)−

dk∑
l=1

λkl

)
, (2.61)

assuming the eigenvalues λk j are in decreasing order. This representa-

tion implies that only the first dk eigenvalues and eigenvectors need to

be calculated and stored, efficiently reducing the number of free param-

eters required to specify each Gaussian component. The number of sig-

nificant eigenvalues can be determined by the scree test [15], where the

dimension is selected when the subsequent eigenvalues have a difference

smaller than a specified threshold.

Applying this idea to the case of missing data is possible by modifying

the covariance matrices of each component after calculating them in the

M-step in Eqs. (2.51)–(2.54). However, the computational gains obtained

from having a reduced representation are not available, as the full covari-

ance matrices still need to be inverted in order to calculate the conditional

parameters in the following E-step.

2.6 Time series analysis and modelling

A time series is one of the most common forms of data, and has been

studied extensively from weather patterns spanning centuries to sensors

and microcontrollers operating on nanosecond scales. A time series is any

sequence of numbers where the order corresponds to the temporal order

[14]. Typically this is a quantity that is measured at regular intervals,

such as end of day stock prices, yearly rainfall in an area, or the average

number of sunspots visible each month. From a machine learning per-

spective, the most relevant tasks tend to be prediction of one or several

future data points, or interpolation to fill in gaps in the data.

In order to conduct any meaningful analysis, the values of a time series

must follow some underlying rules connecting them to previous values. A

typical assumption is that a time series is stationary, i.e., the parameters

governing the generative model do not change over time. This enables the
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possibility of estimating the relevant parameters from a sufficiently long

sample of the time series.

Many types of time series can be modelled by linear methods, such as

auto-regressive (AR) models [14]. For example, an autoregressive model

of order p, AR(p), of a time series zt would be represented as

zt =
p∑

j=1
wj zt− j +εt , (2.62)

where the current value zt is a linear combination of previous terms with

additive noise εt. This expression is directly usable as a prediction model.

Some time series are not adequately explainable by linear models, but

can instead be modelled by non-linear regression analysis, where the cur-

rent value is a non-linear function of previous values [60, 38].

2.7 Model selection, evaluation and parameter optimisation

Model selection refers to the process of finding a model structure which

most appropriately fits the available data. In many cases, the structure

of a model can be parametrised in terms of some hyperparameters, and

several choices for these parameters can be evaluated according to the

resulting fitting error. The parameter set giving the best result is then

selected.

An important concern in machine learning is the generalisation ability

of a model, referring to how accurately the model can handle previously

unseen data samples [2]. Given any training data, it is easy to find a

perfectly fitting model simply by making it complex enough, but such a

model is unlikely to be able to deal with new data properly. The training

data is a representative sample of a more general distribution, and a good

model should only take into account those properties which are relevant

in the general case.

The crucial step of evaluating the performance of a model is not an ob-

vious issue. For many models, it is sensible to examine the output error

yi − f (xi) for each sample, and take the average of the square of these to

obtain the mean squared error (MSE). When the same data is used both

for building the model and evaluation, this is known as the training er-

ror. The error measure that the model produces on new data from the

underlying distribution is the generalisation error [79]. In many cases,

the training error significantly underestimates the generalisation error,

as the model is optimised on the same data as it is evaluated on. This is
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an example of overfitting.

The origin of overfitting can be understood through the bias-variance

decomposition of the expected error. In the following, assume a regression

model f̂ (X ) is built on a dataset originating from Y = f (X )+ε, where the

noise ε is zero mean and independent from X . The expected squared error

at a point x0 can be decomposed as follows:

E
[
(Y − f̂ (x0))2 | X = x0

]=
E
[
(Y − f (x0))2 | X = x0

]︸ ︷︷ ︸
noise

+(
f (x0)−E[ f̂ (x0)]

)2︸ ︷︷ ︸
(bias)2

+E
[
( f̂ (x0)−E[ f̂ (x0)])2]︸ ︷︷ ︸

variance

(2.63)

Here the expectation of the model should be interpreted as taken over

the distribution of different datasets on which the model is built, i.e., re-

alisations of datasets {(xi, yi)}N
i=1. The error resulting from the noise ε is

unavoidable. The second term is the bias of the model as an estimator of

the true function; this is minimised by fitting the model to the data. The

last term is the variance of the model around its mean, representing how

sensitive it is to differences between realisations of the data. Typically,

making a model more complex has the intended outcome of decreasing

the bias, but also the undesired effect of increasing the variance. This

dilemma is known as the bias-variance trade-off, and overfitting occurs

when the increase in variance exceeds the improved fit of the model.

To recognise and avoid overfitting, the samples which are used for train-

ing and evaluation must be separated. The available data can be split

into two complementary sets, the training and test sets [2]. If the model

is trained on the training set and evaluated on the test set, the resulting

MSE is likely to be a better indicator of the generalisation error. Often, a

separate validation set is additionally partitioned for parameter selection.

Building several models with different parameter values, their relative

performance can be assessed on the validation set, and the best selected.

A typical rule of thumb for splitting the data is 50% for the training set,

and 25% each for validation and testing [50].

The process of splitting into training and validation sets can be per-

formed repeatedly to increase the confidence of the estimates. A common

way to structure the repetition is k-fold cross-validation [79, 50], where

the data is (usually randomly) partitioned into k equally sized sets. Each

of the k sets is sequentially chosen to be the test set, and the model is

trained on the union of the remaining k−1 sets. Averaging these test er-

rors then provides a reasonable estimate for the generalisation error, as

every sample has been used for testing exactly once.
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A special case of cross-validation when k = N is called leave-one-out

(LOO) cross-validation [50]. As the name implies, here each single sam-

ple is sequentially left for the test set while the model is trained on the

remaining samples, and the squared errors are averaged. As this gen-

erally requires the training of N models, it is often too inefficient to be

practical, but for certain methods (such as the LS-SVM) it is possible to

obtain the LOO error exactly without explicitly performing the repeated

training of the model [16].

Another issue related to the evaluation of machine learning models is

that the distribution of data in the intended final application may differ

somewhat from the available training data. This is known as dataset

shift [83], and if such changes can be expected, they should be taken into

account in the model selection procedure. An overview of approaches to

deal with different forms of dataset shift is presented in [83].
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3. Contributions to Missing Data
Methods

3.1 Distance estimation

In pattern recognition, it is mostly the distances between data points that

matter. Many computational methods can be formulated in terms of pair-

wise distances between samples, or alternatively the distances between

the samples and a set of prototypes. Nearest neighbours (k-NN) [94] and

multidimensional scaling (MDS) [17] directly use the distances. Kernel-

based methods, such as support vector machines (SVM) [20, 51], are usu-

ally applied with kernel matrices calculated from the pairwise distance

matrix. Distances from samples to prototypes are also used in radial basis

function (RBF) neural networks [10, 51] and self-organising maps (SOM)

[62, 89, 51].

In most cases, the distance measure used is the Euclidean metric: given

two samples, take the square-root of the sum of squared elementwise dif-

ferences. With specified values for all elements of both data vectors, this

is straightforward arithmetic. But if one or more of the elements are miss-

ing, the distance between the samples is a far more nebulous concept.

Some approaches to deal with the issue have been suggested – includ-

ing calculating the distances after imputation, and the partial distance

strategy – but these have limited accuracy. Specifically, while minimising

the imputation error is a reasonable strategy for filling the data, calculat-

ing distances on the resulting data leads to a suboptimal estimate of the

distance.

A procedure to estimate all pairwise distances in a data set immediately

enables the use of any of the aforementioned machine learning techniques

without having to consider any further tricks to deal with the missing

values.
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3.1.1 The expected squared distance

Given two arbitrary data vectors xi, x j ∈ Rd, which may contain missing

values, the target in Publication I is to estimate the squared Euclidean

distance between them.

d(xi, x j)2 = ‖xi − x j‖2 =
d∑

l=1
(xi,l − xj,l)2 (3.1)

The reasons for working with the squared distance directly originate from

the observation that it is considerably easier to deal with than the non-

squared distances. In addition, many methods specifically use the squared

distance (e.g., RBF and SVM). In other cases where distances are only

going to be sorted or ranked, such as in nearest neighbours, using the

squared distance is equivalent.

The sum of squared differences can be partitioned into four parts de-

pending on the missing and observed parts of each sample:

‖xi − x j‖2 =
d∑

l=1
(xi,l − xj,l)2 = ∑

l∈Oi∩O j

(xi,l − xj,l)2 + ∑
l∈Oi∩Mj

(xi,l − xj,l)2

+ ∑
l∈Mi∩O j

(xi,l − xj,l)2 + ∑
l∈Mi∩Mj

(xi,l − xj,l)2. (3.2)

The index sets Oi and O j represent the observed components of the sam-

ples xi and x j, respectively, and Mi and Mj correspondingly the missing

values. The first term in the expression above (l ∈ Oi ∩O j) includes those

components which are known for both samples, and can be calculated di-

rectly. The remaining sums contain those parts where one or both of the

values are missing. The missing values can be replaced with random vari-

ables Xi,l for every l ∈ Mi. Taking the expected value of the expression and

using the linearity of expectation leads to:

E
[‖xi − x j‖2]= ∑

l∈Oi∩O j

(xi,l − xj,l)2 + ∑
l∈Oi∩Mj

E[(xi,l − X j,l)2]

+ ∑
l∈Mi∩O j

E[(Xi,l − xj,l)2]+ ∑
l∈Mi∩Mj

E[(Xi,l − X j,l)2] (3.3)

This further simplifies as

E
[‖xi − x j‖2]= ∑

l∈Oi∩O j

(xi,l − xj,l)2 + ∑
l∈Oi∩Mj

(
(xi,l −E[X j,l])2 +Var[X j,l]

)
+ ∑

l∈Mi∩O j

(
(E[Xi,l]− xj,l)2 +Var[Xi,l]

)
+ ∑

l∈Mi∩Mj

(
(E[Xi,l]−E[X j,l])2 +Var[Xi,l]+Var[X j,l]

)
(3.4)
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In more detail, the second summation (l ∈Oi ∩Mj) is expanded as

E[(xi,l − X j,l)2]=E[x2
i,l −2xi,l X j,l + X2

j,l]= x2
i,l −2xi,l E[X j,l]+E[X2

j,l]

= x2
i,l −2xi,l E[X j,l]+E[X j,l]2 −E[X j,l]2 +E[X2

j,l]

= (xi,l −E[X j,l])2 +E[X2
j,l −E[X j,l]2]

= (xi,l −E[X j,l])2 +Var[X j,l]

The other cases are similar. The only assumption here is that in the fi-

nal term where both observations are missing (l ∈ Mi ∩ M j), the random

variables Xi,l and X j,l are uncorrelated, given the known values of the

samples.

It is important to note that no assumptions have been made about the

distribution of the samples. The random variables Xi,l for any individ-

ual sample can have arbitrary distributions, since the expression for the

squared distance is linearly separable into the contributions of each di-

mension separately. The only information needed to calculate the expec-

tation is the mean and variance of each missing value individually.

A general assumption in machine learning is that data samples are in-

dependent draws from some underlying multivariate probability distribu-

tion. Then the distributions of Xi,l should be seen as the conditional dis-

tribution when the known values are fixed, with respect to the underlying

distribution. Let the distribution consist of the set of random variable

{Xl}d
l=1 with a probability density p(X1, . . . , Xl). Then p(Xi,l) = p(Xl | xOi

i ),

and the expectations and variances above can be determined as the corre-

sponding conditional expectations.

Now construct an imputed version of xi and call it x̃i. Each missing

value has been replaced by its conditional mean

x̃i,l =

⎧⎪⎨
⎪⎩

E[Xl | xOi
i ] if l ∈ Mi,

xi,l otherwise
(3.5)

Let σ2
i,l be the corresponding conditional variance

σ2
i,l =

⎧⎪⎨
⎪⎩

Var[Xl | xOi
i ] if l ∈ Mi,

0 otherwise
(3.6)

Using these, the result in Eq. (3.4) is conveniently written as

E
[‖xi − x j‖2]= d∑

l=1

(
(x̃i,l − x̃ j,l)2 +σ2

i,l +σ2
j,l

)
(3.7)

An alternative form is also:

E
[‖xi − x j‖2]= ‖x̃i − x̃ j‖2 + s2

i + s2
j , where s2

i =
∑

l∈Mi

σ2
i,l (3.8)
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Writing the expression like this shows how the uncertainty related to the

missing values leads to an expected increase in the distance. Using an

imputation method and then calculating the distance on the filled in data

only accounts for the first term in this equation. Explicitly including the

variance term is essential for an accurate estimate.

3.1.2 Using a multivariate normal distribution

The underlying multivariate distribution is usually not known, so the

problem then becomes how to calculate the conditional statistics. As-

sume it is possible to estimate the first and second moments of the dis-

tribution from the data, i.e., the mean μ and covariance Σ. If this is all

the information available, it is reasonable to apply the principle of max-

imum entropy which states that the most appropriate model is the one

that maximises the entropy (while satisfying modelling constraints). The

distribution with maximal entropy for a given mean and covariance struc-

ture is the multivariate normal distribution with those parameters [23,

Thm. 8.6.5].

Proceeding with the assumption that the data originates from a multi-

variate normal distribution with known parameters μ and Σ, the condi-

tional means and variances for Eqs. (3.5) and (3.6) are straightforward to

calculate.

Let the d-dimensional random variable X be split into two parts accord-

ing the missing and observed parts of a sample xi, and also partition the

mean and covariance accordingly:

X =
⎡
⎣X Mi

XOi

⎤
⎦ , μ=

⎡
⎣μMi

μOi

⎤
⎦ , Σ=

⎡
⎣ΣMMi ΣMOi

ΣOMi ΣOOi

⎤
⎦ (3.9)

It holds that the conditional distribution of X Mi given XOi = xOi
i also fol-

lows a normal distribution, with mean

μ̃
Mi
i =μMi +ΣMOi

(
ΣOOi

)−1(xOi
i −μOi

)
(3.10)

and covariance matrix

Σ̃
MMi
i =ΣMMi −ΣMOi

(
ΣOOi

)−1
ΣOMi (3.11)

as shown in [4, Thm. 2.5.1]. The conditional means and variances of each

missing value are then found by extracting the appropriate element from

μ̃
Mi
i or the diagonal of Σ̃MMi

i . In the context of distance estimation, only the

value of the mean and covariance are relevant, and the full distribution

is not important.
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If the assumption of a normal distribution is not true, the actual dis-

tribution must have smaller entropy. Hence Eq. (3.11) will lead to over-

estimating the conditional variance, and subsequently to over-estimating

the expected distance by Eq. (3.8). In machine learning, over-estimating

the distance may be preferable to under-estimating, as this minimises the

chance of false positives when looking for nearby samples.

Estimating the covariance matrix

While calculating the mean is simple even when the data has missing val-

ues, it is not as easy to determine the best way to estimate the covariance

matrix. The two standard approaches are often inadequate:

Available-case analysis in this case refers to separately estimating the

covariance for each pair of variables, including every sample for which the

two variables are observed. This approach can however result in a matrix

which is not positive definite, which leads to further problems when trying

to solve a linear system using a part of it (as in Eq. (3.10)).

Complete-case analysis means ignoring all incomplete samples. The use-

fulness of this approach depends entirely on how many complete samples

there are left, and whether that is enough to get a decent estimate.

The most accurate method is usually some variant of the EM algorithm

to find a maximum likelihood estimate, even though it is computationally

somewhat more demanding.

3.1.3 Using Gaussian mixture models

More accurate estimates for the distances can be derived by fitting a

Gaussian mixture model to the data, as studied in Publication II.

Fitting the mixture model using the EM algorithm in Section 2.5.2 pro-

vides the conditional means x̃ik and covariances Σ̃ik for each sample with

respect to each mixture component. It only remains to determine the over-

all conditional mean and covariance matrix. These are found weighted by

the memberships as follows:

x̃i =
K∑

k=1
tik x̃ik, Σ̃i =

K∑
k=1

tik

(
Σ̃ik + x̃ik x̃T

ik

)
− x̃i x̃T

i . (3.12)

The expression for the covariance is found by direct calculation of the

second moments. In order to estimate pairwise distances, the conditional

variances σ̃i,l = Σ̃
ll
i can be extracted from the diagonal of the conditional

covariance matrix, or si calculated directly as the trace of Σ̃i.
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3.1.4 Extension to weighted distances

The same idea can also be used to estimate the Mahalanobis distances, or

any such metric weighted by a positive definite matrix S−1 written in the

form:

‖xi − x j‖2
S = (xi − x j)T S−1(xi − x j) (3.13)

As the matrix S is positive definite, it’s inverse has a Cholesky decompo-

sition S−1 = LLT . Then:

‖xi−x j‖2
S = (xi−x j)T S−1(xi−x j)= ‖LT xi−LT x j‖2 =

d∑
l=1

(LT
l xi−LT

l x j)2 (3.14)

where Ll is the lth column of L. Applying Eq. (3.8):

E
[
‖LT xi −LT x j‖2

]
= ‖LT x̃i −LT x̃ j‖2 +

d∑
l=1

Var[LT
l xi]+

d∑
l=1

Var[LT
l x j] (3.15)

Now, using the conditional covariance matrices Σ̃
MMi
i corresponding to

each sample xi and the fact that the variance of a sum is the sum of the

covariances [99, corollary 5.4]:

Var[LT
l xi]=Var

[ d∑
j=1

L jl xi, j

]
=

∑
j∈Mi

∑
k∈Mi

L jlLkl Cov[Xi, j, Xi,k]= LT
l Σ̃iLl (3.16)

Here Σ̃i is the conditional covariance matrix corresponding to the sample

xi, with zeros for any covariances involving observed values. In terms of

the matrix Σ̃
MMi
i from Eq. (3.11), it would be

Σ̃i =
⎛
⎝0OOi 0OMi

0MOi Σ̃
MMi
i

⎞
⎠ . (3.17)

The relevant part is the sum of these variances, and the sum over the

diagonal elements is the trace. Since the trace of a matrix product is

invariant under cyclic permutations, this can be written as:

d∑
l=1

Var[LT
l xi]=

d∑
l=1

LT
l Σ̃iLl = tr

(
LTΣ̃iL

)
= tr

(
LLTΣ̃i

)
= tr

(
S−1Σ̃i

)
(3.18)

Putting it all together, the expected squared Mahalonobis distance is

straightforward to calculate:

E
[‖xi − x j‖2

S
]= ‖x̃i − x̃ j‖2

S + s2
i + s2

j where s2
i = tr

(
S−1Σ̃i

)
. (3.19)

This can be seen as a generalisation of Eq. (3.8).
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3.1.5 Experiments

To compare the different methods for estimating distances, a simulated

experiment is done on the Boston housing data set, whereby values are

removed at random. Three separate experiments are done, from a low ra-

tio of missing values (5%) to medium (20%) and high (50%). The accuracy

of the estimated distances is then used to compare. The Gaussian mixture

model is compared to the model of a single multivariate normal distribu-

tion, the partial distance strategy (PDS), and calculating the distances

after Incomplete-case k-NN Imputation (ICkNNI).

First, the methods are compared by the root mean squared error (RMSE)

of all the estimated pairwise distances in the data set,

C1 =
(1
κ

∑
i> j

(d̂(xi, x j)−d(xi, x j))2
)1/2

(3.20)

where d(xi, x j) is the true Euclidean distance between samples i and j

calculated without any missing data, and d̂(xi, x j) is the estimate of the

distance provided by each method after removing data. The scaling factor

κ is determined so that the average is calculated only over those distances

which are estimates, discarding all the cases where the distance can be

calculated exactly because neither sample has any missing components:

κ = MN − M(M +1)/2, where M is the number of samples having missing

values.

A common application for pairwise distances is a nearest neighbour

search, and thus the average (true) distance to the predicted nearest

neighbour is used as a second criterion,

C2 = 1
N

N∑
i=1

d(xi, xNN(i)), where NN(i)= argmin
j �=i

d̂(xi, x j) (3.21)

Here, NN(i) is the nearest neighbour of the ith sample as estimated by

the method, and d(xi, xNN(i)) is the true Euclidean distance between the

samples as calculated without any missing data. The criterion measures

how well the method can identify samples which actually are close in the

real data.

The average RMSE values for the methods are presented in Table 3.1.

The best result for each row is underlined, and any results which are

not statistically significantly different (two-tailed paired t-test, α = 0.05)

from the best result are bolded. The values in parenthesis represent the

accuracy when the distances are calculated using the particular model for

imputation only.
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Table 3.2 shows the corresponding performances in terms of the true

distance to the predicted nearest neighbour.

It can be seen that the mixture model approach generally leads to the

best result, while PDS has the largest errors in all cases. The results also

clearly show that including the variance terms of Equation (3.8) leads to

an improvement in the accuracy compared to only imputing the values.

Publications I and II include further experiments on several other data

sets, with similar results.

Table 3.1. Average RMSE of estimated pairwise distances, comparing the two proposed
variants the Partial Distance Strategy (PDS) and Incomplete-case k-NN Im-
putation (ICkNNI).

PDS ICkNNI Single Gaussian Mixture model

5% 0.514 0.329 0.338 (0.348) 0.331 (0.338)

20% 1.001 0.672 0.597 (0.650) 0.587 (0.619)

50% 2.269 1.593 1.066 (1.330) 1.104 (1.245)

Table 3.2. Average of the mean distance to the estimated nearest neighbour, com-
paring the two proposed variants the Partial Distance Strategy (PDS) and
Incomplete-case k-NN Imputation (ICkNNI).

PDS ICkNNI Single Gaussian Mixture model

5% 1.047 0.901 0.911 (0.907) 0.886 (0.894)

20% 1.790 1.376 1.299 (1.309) 1.237 (1.277)

50% 3.692 2.744 2.086 (2.228) 2.073 (2.225)

3.2 Machine learning using estimated distances

3.2.1 Using estimated distances for a kernel matrix

Several machine learning methods can be formulated in terms of the dis-

tances between samples, for instance LS-SVM (Section 2.2.4). The ker-

nel matrix is generally required to be positive semi-definite, and such a

kernel is known as a Mercer kernel [51]. Using the distance estimation

procedure in Section 3.1 will result in a valid kernel in exactly the same

way as a distance matrix calculated on fully observed data.
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To see this, it is sufficient to show that the estimated distance matrix

is a valid Euclidean distance matrix. This can be done by explicitly con-

structing a set of points with the required distance matrix in a higher-

dimensional (d+N-dimensional) space as follows:

• The first d components of each point xi as per the conditional expecta-

tion x̃i,l in Eq. (3.5).

• Each point xi is offset by si from Eq. (3.8) in a direction orthogonal to

everything else

Calculating the squared Euclidean distance between points xi and x j in

this space exactly leads to Eq. (3.8). As the matrix of estimated pairwise

distances is equal to a matrix of pairwise distances (in another space), the

kernel matrix will be positive-definite for any appropriate kernel function.

3.2.2 ELM with missing values

Using distance estimation to construct an extreme learning machine is

discussed in Publications II and III. It is achieved by selecting the ac-

tivation function appropriately, so that it can be expressed in terms of

distances. The RBF kernel is thus a natural choice. RBF neural networks

are commonly trained by choosing the centres by a clustering method or

other optimisation procedure [51, 10]. In order to achieve the random pro-

jection property, which is essential for ELM, the parameters for the hid-

den layer nodes should be assigned randomly [54, 55]. The kernel centres

μ j can be either selected from among the training samples, or as random

points in the input space. The widths σ j can be randomly drawn from an

appropriate distribution. The training phase then consists in finding the

least-squares solution to the linear system

Hβ= y (3.22)

where y is the target output of the labelled data and the hidden layer

output matrix H has the elements

Hi j = exp

(
−
∥∥xi −μ j

∥∥2

σ2
j

)
(3.23)

augmented by a constant column of ones to account for the bias term.

Using any method to estimate the distances between each sample xi and

centre μ j, the ELM can be applied in the standard way after inserting the

estimates directly into Eq. (3.23).
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3.2.3 Experiment on regression

Again, the different distance estimation methods can be compared in their

use for regression in the Boston housing data set. Table 3.3 shows the

average test errors of ELM models which have been built using different

distance estimates, but are otherwise identical.

The mixture model and single Gaussian models lead to similar results

in terms of accuracy. Both are clearly better than PDS and ICkNNI, par-

ticularly for a larger fraction of missing values. Several further experi-

ments with ELM models for both regression and classification tasks are

presented in Publication II.

Table 3.3. Average normalised MSE of ELM predictions for regression tasks.

PDS ICkNNI Single Gaussian Mixture model

5% 0.242 0.199 0.199 (0.199) 0.198 (0.198)

20% 0.342 0.279 0.255 (0.256) 0.255 (0.258)

50% 0.567 0.593 0.419 (0.446) 0.433 (0.461)

3.3 Time series modelling with Gaussian mixtures

Gaussian mixture models can also be used as an effective time series

model to accomplish prediction and gap-filling, and this method has been

introduced in Publication IV. A rolling window is used to extract sub-

sequences of length d. The next step is a time-delay embedding, where

each sub-sequence is interpreted as a point in Rd. The coordinates are

determined by the respective values of the time series.

A Gaussian mixture model can be fit to the data in the d-dimensional

space by the EM algorithm, appropriately marginalising over any missing

values. Additional constraints are applied to ensure that the covariance

structure of the mixture model is consistent with the autoregressive time

series configuration.

3.3.1 Fitting the model

Starting with a time series z of length n

z0, z1, z2, . . . , zn−2, zn−1,
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after fixing a regressor length d, conduct a delay embedding [60] by con-

structing the design matrix X:

X=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

z0 z1 . . . zd−1

z1 z2 . . . zd
...

...
...

zn−d zn−d+1 . . . zn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x0

x1
...

xn−d

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (3.24)

The rows of X should be seen as vectors in Rd. The idea is to use GMM to

estimate the density of these points. The EM algorithm from Section 2.5.1

works well to fit the model.

Gaps in the time series lead to missing values in the design matrix.

However, this is not a problem since the EM algorithm can account for

missing values (Section 2.5.2).

Missing-data padding

Since the EM algorithm deals with missing values, it makes sense to con-

struct X by considering that everything before and after the measurement

period consists of “missing values”. This is called padding the design ma-

trix X with missing values (marked as ‘?’). The procedure maximises the

use of the data for training, and effectively increases the number of avail-

able training samples from n−d+1 to n+d−1 (cf. Eq. (3.24)):

X=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

? ? . . . ? z0

? ? . . . z0 z1
...

...
...

...

? z0 . . . zd−3 zd−2

z0 z1 . . . zd−2 zd−1
...

...
...

...

zn−d zn−d+1 . . . zn−2 zn−1

zn−d+1 zn−d+2 . . . zn−1 ?
...

...
...

...

zn−1 ? . . . ? ?

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

x1
...

xd−2

xd−1
...

xn−1

xn
...

xn+d−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.25)

Another advantage is that any available-data analysis over a subset of

variables is invariant to shifts in the indices, as it should be for time se-

ries.

3.3.2 Constrained covariance model

The GMM is intended for estimating arbitrary continuous distributions,

and thus ignores some issues specific to time series. In particular, the
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mean of a stationary time series is the same no matter what lag you are

observing it at, so the mean of every variable in the GMM should also be

the same. Also, the d × d covariance matrix corresponding to the GMM

distribution represents the autocovariance matrix of the time series up

to lag d−1, and should thus be a symmetric Toeplitz matrix. A Toeplitz

matrix is a matrix which is constant along every diagonal.

There are various ways to create a mixture model which satisfies the

constraints, but the best approach is to incorporate the restrictions into

the EM algorithm while fitting the model to data.

Having means μk, covariances Σk, and mixing coefficients πk for each

component k of a GMM, these parameters can be used to calculate the

mean and covariance of the full distribution:

μ=
K∑

k=1
πkμk , Σ=

K∑
k=1

πk

(
Σk +μkμ

T
k

)
−μμT . (3.26)

Now the mean should be made equal for each variable, and the matrix

should be made Toeplitz and symmetric:

Σ≈Rz =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

rz(0) rz(1) rz(2) . . . rz(d−1)

rz(1) rz(0) rz(1) . . . rz(d−2)
...

...
...

...

rz(d−1) rz(d−2) rz(d−3) . . . rz(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.27)

Rz is the autocovariance matrix of the time series z, with rz(l) being the

autocovariance at lag l.

The idea here is to first go through a standard iteration of the EM al-

gorithm. After calculating the parameters in the M-step, they should be

modified by as little as possible so that the constraints are satisfied.

Let θ = {μk,Σk,πk}K
k=1 be a structure containing the current parameters

of the GMM, and Ω the space of all such models. Then define Φ⊂Ω as the

subset of parameter sets which satisfy the constraints

Φ= {θ ∈Ω |μ is equal and Σ is Toeplitz} (3.28)

When maximising the expected log-likelihood with the constraints, the

M-step should be

θ(t+1) = argmax
θ∈Φ

Q(θ | θ(t)) , (3.29)

but this is not feasible to solve exactly. Instead, first calculate the stan-

dard M-step

θ′ = argmax
θ∈Ω

Q(θ | θ(t)) , (3.30)
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and then project the result θ′ onto Φ to find the closest solution

θ(t+1) = argmin
θ∈Φ

d(θ,θ′) (3.31)

for an appropriate interpretation of the distance d(θ,θ′) between models.

The intuition is that if the difference between models is minimised, their

log-likelihoods should not be too far off. Specifically, Q(θ(t+1) | θ(t)) should

be close to the optimal maxθ∈ΦQ(θ | θ(t)).

As the quantity is not maximised, even though it can be observed to

increase, this is strictly not an EM algorithm. Instead, it is an instance

of the Generalised EM (GEM) algorithm. As long as an increase is en-

sured in every iteration, the GEM algorithm converges similarly as the

EM algorithm [24, 74].

To achieve the result in practice, define the distance function between

sets of parameters as follows:

d(θ,θ′)=
K∑

k=1

∥∥μk −μ′
k
∥∥2 +

K∑
k=1

∥∥Sk −S′
k
∥∥2

F +
K∑

k=1
(πk −π′

k)2 , (3.32)

where Sk =Σk +μkμ
T
k are the second moments of the distributions of each

component and ‖·‖F is the Frobenius norm. Using Lagrange multipliers,

it can be shown that this distance function is minimised by the results

presented below in Eqs. (3.34) and (3.37).

The mean

After an iteration of the normal EM-algorithm by Eqs. (2.38–2.40), find

the vector with equal components which is nearest to the global mean μ

as calculated by Eq. (3.26). This is done by finding the mean m of the com-

ponents of μ, and calculating the discrepancy δ of how much the current

mean is off from the equal mean:

m = 1
d

d∑
j=1

μ j, δ=μ−m1 , (3.33)

where 1 is a vector of ones. Shift the means of each component to compen-

sate, as follows:

μ′
k =μk −

πk∑K
j=1π

2
j

δ ∀k . (3.34)

As can be seen, components with larger πk take on more of the “responsi-

bility” of the discrepancy, as they contribute more to the global statistics.

Any weights which sum to unity would fulfil the constraints, but choos-

ing the weights to be directly proportional to πk minimises the distance in

Eq. (3.32).
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The covariance

After updating the means μk, recalculate the covariances around the up-

dated values as

Σ̂k =Σk +μkμ
T
k −μ′

kμ
′T
k ∀k . (3.35)

The global covariance from Eq. (3.26))

Σ̂=
K∑

k=1
πk

(
Σ̂k +μ′

kμ
′T
k

)
−μ′μ′T . (3.36)

Then, find the nearest (in Frobenius norm) Toeplitz matrix R by calculat-

ing the mean of each diagonal of Σ̂:

r(0)= 1
d

d∑
j=1

Σ̂ j, j, r(1)= 1
d−1

d−1∑
j=1

Σ̂ j, j+1, r(2)= 1
d−2

d−2∑
j=1

Σ̂ j, j+2, etc.

The discrepancy Δ from this Toeplitz matrix is

Δ= Σ̂−R, where R=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

r(0) r(1) r(2) . . . r(d−1)

r(1) r(0) r(1) . . . r(d−2)
...

...
...

...

r(d−1) r(d−2) r(d−3) . . . r(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

In order to satisfy the constraint of a Toeplitz matrix for the global covari-

ance, the component covariances are updated as

Σ′
k = Σ̂k −

πk∑K
j=1π

2
j

Δ ∀k , (3.37)

the weights being the same as in Eq. (3.34). Eqs. (3.34) and (3.37), to-

gether with π′
k = πk, minimise the distance in Eq. (3.32) subject to the

constraints.

Heuristic correction

Unfortunately, the procedure described above does not account for the

spectral composition of the matrices, and can occasionally lead to matri-

ces Σ′
k which are not positive definite. Hence, an additional heuristic cor-

rection ck is applied in such cases to force the matrix to remain positive

definite:

Σ′′
k = Σ̂k −

πk∑K
k=1π

2
k

Δ+ ckI ∀k. (3.38)

In the experiments section of Publication IV, the value ck = 1.1|λk0| is used,

where λk0 is the most negative eigenvalue of Σ′
k. The multiplier needs to

be larger than unity to avoid making the matrix singular.

A more appealing correction would be to only increase the negative (or

zero) eigenvalues to some acceptable, positive, value. However, this would
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break the constraint of a Toeplitz global covariance matrix, and hence the

correction must be applied to all eigenvalues, as is done in Eq. (3.38) by

adding to the diagonal.

Free parameters

The constraints reduce the number of free parameters relevant to calcu-

lating the AIC and BIC. Without constraints, the number of free parame-

ters is

P = Kd︸︷︷︸
means

+ 1
2

Kd(d+1)︸ ︷︷ ︸
covariances

+ K −1︸ ︷︷ ︸
mixing coeffs

, (3.39)

where K is the number of Gaussian components, and d is the regressor

length. There are d −1 equality constraints for the mean, and 1
2 d(d −1)

constraints for the covariance, each reducing the number of free parame-

ters by 1. With the constraints, the number of free parameters is then

P ′ = (K −1)d+1︸ ︷︷ ︸
means

+ 1
2

(K −1)d(d+1)+d︸ ︷︷ ︸
covariances

+ K −1︸ ︷︷ ︸
mixing coeffs

. (3.40)

The leading term is reduced from 1
2 Kd2 to 1

2 (K −1)d2, in effect allowing

one additional component for approximately the same number of free pa-

rameters.

Exogenous time series or non-contiguous lag

If the design matrix is formed in a different way than by taking consecu-

tive values, the restrictions for the covariance matrix will change. Such

cases are handled by forcing any affected elements in the matrix to equal

the mean of the elements it should equal. This will also affect the number

of free parameters.

As this sort of delay embedding may inherently have a low intrinsic di-

mension, optimising the selection of variables could considerably improve

the accuracy of the model.

3.3.3 Forecasting and gap-filling

The model readily lends itself to being used for short-to-medium term

time series prediction. For example, if a time series is measured monthly

and displays some seasonal behaviour, a Gaussian model could be trained

with a regressor size of 24 (two years). This allows us to take the last

year’s measurements as the 12 first months, and determine the condi-

tional expectation of the following 12 months.

59



Contributions to Missing Data Methods

The mixture model provides a direct way to calculate the conditional

expectation. Let the input dimensions be partitioned into past values P

(known) and future values F (unknown). Then, given a sample xP
i for

which only the past values are known and a prediction is to be made,

calculate the probabilities of it belonging to each component

tik =
πkN (xP

i |μk,Σk)∑K
j=1π jN (xP

i |μ j,Σ j)
, (3.41)

where N (xP
i | μk,Σk) is the marginal multivariate normal distribution

probability density of the observed (i.e., past) values of xi.

Let the means and covariances of each component also be partitioned

according to past and future variables:

μk =
⎡
⎣μP

k

μF
k

⎤
⎦ , Σk =

⎡
⎣ΣPP

k ΣPF
k

ΣFP
k ΣFF

k

⎤
⎦ . (3.42)

Then the conditional expectation of the future values with respect to the

component k is given by

z̃ik =μF
k +ΣFP

k (ΣPP
k )−1(xP

i −μP
k ) (3.43)

The total conditional expectation can now be found as a weighted average

of these predictions by the probabilities tik:

ẑi =
K∑

k=1
tik ỹik . (3.44)

It should be noted that the method directly estimates the full vector of

future values at once, in contrast with most other methods which would

separately predict each required data point.

To conduct missing value imputation, the procedure is the same as for

prediction. The only difference is that in this case the index set P con-

tains all known values for a sample (both before and after the target to be

predicted), while F contains the missing values that will be imputed.

3.3.4 Experiment

To illustrate the use for modelling gapped time series, some experimental

results are shown here. The studied time series is the Santa Fe time

series competition data set A: Laser generated data [110]. The task is set

at predicting the next 12 values, given the previous 12. This makes the

regressor size d = 24, and the mixture model fitting is in a 24-dimensional

space.
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Figure 3.1. Results on the Santa Fe A Laser time series data for various degrees of miss-
ing values, including the number of components selected by AIC and the re-
sulting MSEs of the corresponding test set predictions.

The modelling is repeated with various degrees of missing data (1%

through 50%). In the training phase, missing data is removed at ran-

dom from the time series before forming the padded design matrix. To

calculate the testing MSE, missing values are also removed from the in-

puts (i.e., the past values from which predictions are to be made) at the

same probability. The MSE is then calculated as the error between the

forecast and the actual time series (with no values removed). The entire

procedure is done twice – with and without the constraints in section 3.3.2

– to show how the constraints affect the results.

Fig. 3.1 shows the number of components selected by AIC (Section 2.5.3),

and the corresponding test MSEs, for various degrees of missing values.

As expected, the forecasting accuracy deteriorates with an increasing ra-

tio of missing data. The number of components selected by the AIC re-

mains largely constant, and the constrained model consistently performs

better. Publication IV includes further details concerning the experiment.
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4. Variable Selection Methods

4.1 Mutual information estimation by Gaussian mixtures

The mutual information between input and output variables is a natural

choice for a variable selection criterion, and several methods for estimat-

ing it have been proposed (see Section 2.3.2). Publication V presents how

a mixture of Gaussians can be used for this purpose. There are several

reasons which make Gaussian mixtures an appealing method for estimat-

ing mutual information for feature selection:

1. After fitting the mixture model to the full set of variables, the model can

directly be used to calculate the mutual information for any subset of

variables. This is useful in variable selection, where it is often necessary

to evaluate a large number of different subsets.

2. Estimates for different variable sets seem to behave more consistently

than with using other estimators. In particular, the estimate of the mu-

tual information nearly always increases when adding variables, as it

should.

3. As the Gaussian mixture can be fit to data with missing values, the

estimator works for such incomplete data sets as well.

Mutual information estimators directly based on estimating the proba-

bility density of the underlying probability distribution of the data have

generally been discouraged in the literature due to the difficulty of obtain-

ing accurate estimates of the density. However, as Publication V shows,

Gaussian mixture models can be used very effectively for this purpose.
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The main idea is to use a Gaussian mixture model to estimate the den-

sities of the variables. However, instead of directly calculating Eq. (2.20),

consider Eq. (2.19), and interpret the integral as an expectation.

I(X ;Y )=
∫

Y

∫
X

p(x, y) log
(

p(x, y)
px(x)py(y)

)
dx d y (4.1)

=E
[
log p(x, y)− log px(x)− log py(y)

]
(4.2)

Given a sample of data {xi, yi}N
i=1, the expectation can be approximated by

the arithmetic mean over the data:

Î(X ;Y )= 1
N

N∑
i=1

(
log p(xi, yi)− log px(xi)− log py(yi)

)
(4.3)

The proposed approach is based on this expression, requiring only esti-

mates of the density and marginal density at each point of data. By

fitting a Gaussian mixture model to the joint space X ×Y , the resulting

model directly provides an estimate of p(xi, yi). To calculate the marginal

probability densities, the same Gaussian model is used, restricted to the

appropriate variables. The marginal model is easily acquired by only in-

cluding the appropriate elements from the means and covariances of each

Gaussian component. Having a GMM with K components in the X ×Y

space with mixing coefficients πk, means μk, and covariances Σk for each

component k (0<πk < 1,
∑K

k=1πk = 1), the parameters can be partitioned as

below:

μk =
⎡
⎣μX

k

μY
k

⎤
⎦ , Σk =

⎡
⎣ΣX X

k ΣXY
k

ΣY X
k ΣY Y

k

⎤
⎦ . (4.4)

The marginal model for X is directly determined as a GMM of K compo-

nents with the same mixing coefficients πk, but means μX
k and covariance

matrices ΣX X
k . The marginal GMM is similarly found for Y , and for any

subspaces of X corresponding to different sets of selected variables.

As the goal is to evaluate differences between the joint density p(x, y)

and the product px(x)py(y), the same model should be used to estimate

all the quantities. It might seem reasonable to separately optimise an-

other mixture model in the space for X to estimate px instead, and this

could result in a more accurate estimate for px itself, but could also lead

to spurious differences causing an inflated KL divergence. Having con-

sistent estimates is particularly important for variable selection, where

mutual information estimates for different variable sets are compared to

each other.
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In machine learning, the goal is to find a model that can predict an out-

put variable Y from several input variables X , and here the mutual infor-

mation with the output is used to select the variables. However, the mu-

tual information never decreases when adding irrelevant variables. Thus

an exhaustive search over all feature sets is meaningless, as it is known

beforehand that the criterion is maximised when all the variables are in-

cluded. The forward search is a more practical approach; here variables

are added one by one, at each step selecting the variable which leads to the

largest increase in MI when considered together with the previously se-

lected variables. The order of successive selection then leads to a ranking

of variables: the first selected variable can be seen as the most important,

and so on.

4.2 The Delta test

The Delta test is the leave-one-out error of the nearest neighbour (1-NN)

regression model. While the model itself is not particularly accurate com-

pared to more sophisticated regression models, it can be used for variable

selection by choosing those variables which minimise the error.

The method was initially studied in Publication VI, and it has been used

with success in several cases [82, 8, 95, 71, 112, 70, 35, 113]. Publication

VII presents further theoretical justification to explain why the method

works as well as it does. Several papers specifically focused on optimising

the Delta test have also been published in the literature [44, 72, 73, 97,

96, 43, 45].

4.2.1 Noise variance estimation

The Delta test is traditionally considered a method for residual noise vari-

ance estimation. In the kind of regression tasks considered here, the data

consist of N input points {xi}N
i=1 and associated scalar outputs {yi}N

i=1 [58].

The assumption is that there is a functional dependence between them

with an additive noise term:

yi = f (xi)+εi (4.5)

The function f is often assumed to be smooth, or at least continuous, and

the additive noise terms εi are i.i.d. with zero mean and finite variance.

Noise variance estimation is the study of how to find an a priori estimate

for Var(ε) given some data without considering any specifics of the shape
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of f . Having a reliable estimate of the amount of noise is useful for model

structure selection and determining when a model may be overfitting.

The original formulation [81] of the Delta test was based on the con-

cept of variable-sized neighbourhoods, but an alternative formulation [98]

with a first-nearest-neighbour (NN) approach has later surfaced. In this

treatment, specifically this 1-NN formulation will be used as there is no

parameter to select, and it is conceptually and computationally simple.

The Delta test could also be seen as an extension of the Rice variance

estimator [86] to multivariate data.

The nearest neighbour of a point is defined as the unique point in a data

set which minimises a distance metric to that point:

NN(i) := argmin
j �=i

∥∥xi − x j
∥∥2 . (4.6)

It may occur that the nearest neighbour is not unique, and in that case it

is sufficient to randomly pick one from the set of nearest neighbours. In

this context, the neighbours are determined by the Euclidean distance. It

may be justified to use other metrics to get better results in some cases, if

some input variables are known to have specific characteristics that the

Euclidean metric fails to account for appropriately. Knowing if other met-

rics are more appropriate generally requires external knowledge about

the source or behaviour of the data. For instance, data representing class

labels are best handled by the discrete metric, and “time-of-day” or “time-

of-year”-type variables by taking into account their cyclic behaviour.

The Delta test, initially introduced in [81] and further developed in [98],

is usually written as

δ= 1
2N

N∑
i=1

(
yi − yNN(i)

)2 , (4.7)

i.e., the differences in the outputs associated with neighbouring (in the in-

put space) points are considered. This is a well-known estimator of Var(ε)

and it has been shown—e.g., in [68]—that the estimate converges to the

true value of the noise variance in the limit N → ∞. Although it is not

considered to be the most accurate noise estimator, its advantages include

reliability, simplicity, and computational efficiency [58]. The method ap-

pears not to be particularly sensitive to mild violations of the assumptions

made about the data, such as independence and distributions of the noise

terms.
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4.2.2 The Delta test for variable selection

The Delta test was originally intended to be used for estimating residual

variance. Following [95, 112], Publications VI and VII examine a differ-

ent use: to use it as a cost function for variable selection by choosing

that selection of variables which minimises the Delta test. Each subset

of variables can be mapped to a value of the estimator by evaluating the

expression in Eq. (4.7) so that the nearest neighbours NN(i) are deter-

mined according to the distance in the subspace spanned by the subset of

variables. Define the Delta test δ : P
(
I
)→R as

δ(Ĩ) := 1
2N

N∑
i=1

(
yi − yNN(i;Ĩ)

)2 (4.8)

where

NN(i; Ĩ) := argmin
j �=i

∥∥xi − x j
∥∥2

Ĩ , (4.9)

and the distances are calculated considering only the current set of vari-

ables: ∥∥xi − x j
∥∥2

Ĩ := ∑
k∈Ĩ

(
xi,k − xj,k

)2 . (4.10)

The publications show that choosing the subset which gives the smallest

value for the Delta test constitutes an effective variable selection proce-

dure for regression modelling. As the purpose of the Delta test is to deal

with noisy data, it is impossible to formulate a statement showing that

the Delta test could always choose the perfect variables, due to the ran-

dom effects of the noise. Hence the assertions consider the expectation of

the Delta test, and show that the expectation is minimised for the best

selection of variables for a finite number N of data points.

In Publication VII, it is shown that with a finite (but sufficiently large)

number of samples, the expectation of the Delta test is uniquely min-

imised by the smallest selection of variables which can fully explain the

deterministic part of the target function. Combined with the property that

the variance of the Delta test converges to zero with increasing number of

samples, this suggests that the probability of getting the correct selection

generally increases with the amount of data available.

Some assumptions concerning the distribution of the data are required

in order for the results to hold true. These continuity assumptions de-

tailed in Publication VII are designed to be similar to and compatible with

the assumptions many popular non-linear modelling techniques make

about the data. This enhances the usability of the Delta test as a pre-

processing step for practically any non-linear regression task.
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An exhaustive search over the 2d −1 non-empty subsets of d variables

to find the global optimum of the Delta test is a possibility, but not fea-

sible for large values of d. Instead, there are more efficient approximate

search schemes. Stepwise search methods, where variables are individu-

ally added or removed depending on the change in the criterion are often

practical. Search strategies for variable selection are further discussed in

detail in, e.g., [47, 85].

Publications VI and VII only consider using the Delta test for regression

problems, but the method could also be applied to classification tasks by

considering the misclassification rate of the nearest neighbour classifier.

Its use for classification has not been extensively tested, however, and the

analysis in Publication VII only applies to regression tasks.

4.3 Experiments

The two variable selection methods presented – mutual information esti-

mation by Gaussian mixtures and the Delta test – are here experimen-

tally evaluated against four other variable selection/ranking methods:

1. LARS: Least angle regression [28] (Section 2.3.1)

2. RReliefF [88], the regression variant of the Relief method (Section 2.3.3)

3. Mutual Information by Kraskov’s estimator [63]

4. Variable selection by Maximum Likelihood Mutual Information (MLMI)

estimation [101, 102]

The comparison criterion is the mean squared error of a least squares

support vector machine (LS-SVM) [100] regression model, as this model

is known to be sensitive to redundant variables. The model is trained

using the selected variable set, and the median (over repeated runs of

optimising hyperparameters) leave-one-out error is calculated. This can

be considered a fair criterion for comparing the selections of variables.

As a preprocessing step, all variables including the target variable are

standardised to zero mean and unit variance before the variable selection

process.

The Delta test is optimised by an exhaustive search over all possible
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selections. The other criteria are used with a forward search approach

for selecting variables. This results in a ranking of variables, and the

variable sets formed by successively selecting the selected variables are

evaluated by the resulting LS-SVM accuracy.

For the Boston housing data set, the modelling task is to predict the

value of a house/apartment from the 13 other properties. The variables

selected by the methods as well as the median LOO-errors of the LS-SVM

are all presented in Table 4.1. There are no obviously redundant variables

in the data set, as is evidenced by the constantly decreasing error when

successively choosing the variables determined by each ranking method.

The only exception is found by Kraskov’s estimator, which manages to find

a better performing set of variables by excluding 2, 4, and 11. The Delta

test find the exactly same result, the final selection including all but those

three variables.

The same test is also applied to forecasting the Santa Fe A time series.

It has been shown that a regressor size of 12 should suffice to train an effi-

cient model. The variable selection then pertains to which of the delayed

regressors (up to a delay of 12) should be used to build the model. The

results are shown in Table 4.2. The best accuracy is obtained by choosing

the top three variables as ranked by RReliefF. The Delta test performs de-

cently, leading to a better model than the Kraskov and MLMI estimators,

while choosing only three of the regressor variables. The Gaussian mix-

ture here outperforms the Delta test, as well as the other MI estimators.

More experiments comparing the variable selection methods on several

additional data sets are presented in Publications V and VII.
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Table 4.1. The selected inputs and median LOO MSE for the Boston housing data. Bold
values represent optimal choices in the sense of the lowest error with the
smallest set of variables.

1 2 3 4 5 6 7 8 9 10 11 12 13 MSE

DT • • • • • • • • • • 0.0892

LARS RReliefF Kraskov MLMI GMM

13 0.3236 6 0.4257 13 0.3236 13 0.3236 13 0.3236
6 0.2323 13 0.2323 6 0.2323 11 0.2416 6 0.2323

11 0.2037 5 0.1901 10 0.1516 5 0.2018 11 0.2037

12 0.1909 8 0.1739 5 0.1476 10 0.1918 8 0.1531

4 0.1772 4 0.1829 9 0.1305 9 0.1946 5 0.1359

1 0.1544 10 0.1571 1 0.1158 3 0.1893 4 0.1434

8 0.1435 12 0.1379 12 0.1205 6 0.1167 12 0.1366

5 0.1331 2 0.1316 7 0.1176 8 0.1129 2 0.1395

2 0.1360 9 0.1150 8 0.0964 7 0.1094 1 0.1360

3 0.1290 11 0.1067 3 0.0892 4 0.1148 9 0.1237

9 0.1161 3 0.1054 4 0.0991 12 0.0956 10 0.1062

10 0.1048 7 0.0953 2 0.0982 2 0.0953 3 0.1048

7 0.0926 1 0.0926 11 0.0926 1 0.0926 7 0.0926

Table 4.2. The selected inputs and median LOO MSE for the Santa Fe A data. Bold val-
ues represent optimal choices in the sense of the lowest error with the smallest
set of variables.

1 2 3 4 5 6 7 8 9 10 11 12 MSE

DT • • • 0.0143

LARS RReliefF Kraskov MLMI GMM

8 0.3750 1 0.6537 8 0.3750 4 0.4643 7 0.4224

7 0.1250 2 0.0208 7 0.1250 2 0.0839 1 0.1770

3 0.1044 8 0.0087 1 0.0811 6 0.0728 2 0.0136

1 0.0203 9 0.0144 9 0.0718 8 0.0650 6 0.0142

2 0.0137 7 0.0147 6 0.0735 5 0.0619 5 0.0159

4 0.0138 10 0.0243 3 0.0175 7 0.0643 10 0.0309

5 0.0144 6 0.0228 5 0.0172 3 0.0627 3 0.0315

6 0.0152 3 0.0179 4 0.0178 10 0.0724 4 0.0328

9 0.0156 11 0.0219 2 0.0156 12 0.0885 8 0.0177

10 0.0206 12 0.0257 10 0.0206 1 0.0187 9 0.0206

12 0.0220 5 0.0241 11 0.0221 11 0.0193 11 0.0221

11 0.0245 4 0.0245 12 0.0245 9 0.0245 12 0.0245
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5. Conclusion

This dissertation considers two separate aspects of machine learning that

are particularly relevant when taking standard methods and using them

for practical tasks.

Distance estimation is introduced as a fresh approach to machine learn-

ing with missing values. It is shown that finding the expected value of

the squared distance between two samples reduces to calculating the con-

ditional mean and variance of each missing value separately. Conduct-

ing the estimation using a Gaussian mixture or a single Gaussian are

both shown to be effective procedures for different use cases. Using the

estimated distance for further machine learning methods leads to more

accurate models than simply filling in the missing values.

For time series modelling, the mixture of Gaussians also proves to be

very useful when appropriate restrictions on the model are applied, espe-

cially considering its inherent ability to deal with gaps in the data.

Two different methods for subset evaluation are studied for automated

variable selection. The Delta test is a simple criterion which is fast to

calculate, but is nevertheless powerful at identifying relevant variables

from redundant ones. Using Gaussian mixtures to estimate mutual infor-

mation is another particularly effective method to differentiate between

variables. While fitting the mixture can be computationally expensive,

the same model can subsequently be used to evaluate all the required

variable subsets.

The work on this dissertation commenced with studying two separate is-

sues, but in the end introduces a method to address the combined problem

of variable selection with incomplete data, by mutual information estima-

tion with Gaussian mixtures.

While the methods presented show promising results in several applica-

tions, some limitations must be recognised. The procedures rely on the as-
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sumption of having a mixture of Gaussians which approximates the prob-

ability density with reasonable accuracy. Fitting the mixture, however,

can be difficult to accomplish well, as it involves many case-dependent

choices. The general model with fully independent covariance matrices

for each component is not always the most practical; instead, diagonal

matrices, shared covariances, or other restrictions can be appropriate.

Determining the number of components is also not straightforward, even

though several criteria have been developed to select this value. Even

then, the EM algorithm may converge slowly, or not at all, and end up in

local optima. These issues combined make the process not only computa-

tionally expensive, but burdensome for the end user.

A limitation of the time series modelling approach is that it requires

the original data to have been evenly sampled with equal spacing. This

assumption is shared with all other autoregressive models, but does not

hold for many practical applications where time series are gathered.

The variable selection methods define a criteria for evaluating a selec-

tion of variables, but do not provide any assistance in how to search the

space of possible subsets. For high-dimensional applications where vari-

able selection is most needed, an exhaustive search is not tractable. Sev-

eral methods do exist to facilitate the search, but finding a good search

strategy is not a trivial issue.

Certain issues related to the methods presented in this thesis have not

been fully resolved as of yet. These open questions include the following:

• Which accuracy criterion for estimated distances is most relevant in

machine learning with missing data?

• Which model selection criterion for determining the number of com-

ponents in a Gaussian mixture leads to the best results in the type of

problems studied here?

• Delta test: can it be proven that the probability of getting the correct

(i.e., minimal fully explaining) selection of variables converges to 1 with

increasing N?

• Both variable selection methods presented only work with regression

tasks. What is the best way to extend them to (potentially multi-class)

classification problems?
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These questions, and the ongoing research on other methods, show that

there remains work to be done in this problem area. Data gathering tech-

nology has reached a point where data is a available to such an extent that

appropriate procedures for analysis and interpretation are still catching

up. As such, there is some way to go before reaching a future with more

automated machine learning systems to help the users extract maximally

meaningful information from ever-increasing data collections.
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