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many steps. Transcriptional regulation in eukaryotes occurs, e.g., through binding of 
transcription factors and chromatin remodeling via various epigenetic pathways. Additionally, 
dysregulated transcription has been reported in various diseases. Thus, transcription and 
transcriptional regulation are of great interest for research. 
In this work, we study the transcriptome and its regulation using bioinformatic and 
computational biology approaches. We propose computational methods, LIGAP and DyNB, for 
analysis of temporal gene expression profiles measured using microarrays and RNA-seq, 
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differential expression analysis between an arbitratory number of time series microarray data 
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conditions. Sorad, is a modeling framework based on differential equations and Gaussian 
processes for analysis of intracellular signaling transduction through phosphoprotein 
activities. We also propose and demonstrate how the in silico models inferred using Sorad can 
be used in estimating modulation strategies to obtain desired signaling response. Finally, we 
study the determinants of nucleosome positioning and subsequent effects on gene expression. 
All the proposed methods are benchmarked against existing methods and, in addition, they are 
applied to real-life problems. The comparison studies validate the applicability of the presented 
methods and demonstrate their improved performance relative to existing methods. Our 
transcriptome studies led to increased knowledge on the early differentiation of human T cells, 
and provided a valuable resource of candidate genes for future functional studies of the 
differentiation process. Our nucleosome study revealed that within loci important for T cell 
differentiation only 6% of the nucleosomes are differentially remodelled between T helper 1 
and 2 cells and cytotoxic T lymphocytes. The remodelled nucleosomes correlated with the 
known differentiation program, chromatin accessibility, transcription factor binding, and gene 
expression. Finally, our data supports the hypothesis that transcription factors and 
nucleosomes compete for DNA occupancy. 
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Tiivistelmä 
Geenin transkriptiossa kopioidaan DNA:ssa olevaa geneettistä koodia, joka johtaa geenien 

ilmentymiseen. Geenien ilmentymiseen johtava transkriptioaskel on tarkasti säädelty 
biologinen tapahtuma. Transkriptiota eukaryoottisoluissa säädellään muun muassa 
transkriptiotekijöiden sitoumisen promoottori- ja tehostaja-alueille ja epigeneettisten 
tekijöiden kautta. Geenien transkription säätelyn parempi ymmärtäminen on tärkeää, koska 
esimerkiksi transkription virheellinen säätely voi johtaa erilaisiin sairauksiin. 
Tämän väitöskirjan artikkeleissa on kehitetty laskennallisia menetelmiä geenien ilmentymisen 
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1. Introduction

The work presented in this thesis resides in the interface of applied statis-

tics and genomics, while focusing on the computational side of the re-

search. Specifically, novel methodologies are presented for preprocessing

and downstream analysis of genomic and proteomic data. As a result, the

work here can be described by the following overlapping terms, bioinfor-

matics and computational biology.

Transcriptome analysis was revolutionized by the development of mi-

croarrays as they made it possible to simultaneously screen the expres-

sion of tens of thousands of genes using a hybridization approach. An-

other revolution in this field was the development of next-generation se-

quencing technology providing an unbiased and high-throughput tool for

measuring absolute quantities of DNA and RNA molecules. In order to

utilize the large data sets produced by these experimental techniques,

specific computational techniques have been developed with the help of

the processing power of computers. At the same time, this era of genome-

wide study has required additional changes in the conceptual thinking

needed to draw conclusions from the data.

The initial sequencing of the human genome published in 2001 (Ven-

ter et al., 2001; Lander et al., 2001) and the subsequent sequencing of

the genomes of various other organisms has revolutionized genomics re-

search (Green et al., 2010; Human Microbiome Project Consortium, 2012;

Huang et al., 2012a; Nystedt et al., 2013). For instance, in the 1000

genome project (The 1000 Genomes Project Consortium, 2012) the goal

is to shed light on variation in the human genome between individuals

instead of relying on a reference human genome. Importantly, genome-

wide studies have demonstrated the complexity of the intertwined sys-

tems of various biological pathways. The ENCODE project demonstrated

that over 80%, of the human genome is associated with biochemical activ-
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ity. This strongly implies that the amount of so called “junk DNA” (Ohno,

1972) has been overestimated (The ENCODE Project Consortium, 2012).

Of course, it is important to note that observed biochemical activity does

not necessarily imply functional significance (Graur et al., 2013). In ad-

dition, a study in the carnivorous bladderwort plant, Utricularia gibba,

demonstrated that the development and reproduction of a complex or-

ganism does not require a huge amount of nongenic DNA. The authors

argue that there could be a species-specific bias towards either nongenic

DNA deletion or nongenic DNA insertion and duplication (Ibarra-Laclette

et al., 2013). Nevertheless, the functional mapping of the genome remains

challenging due to the complexity of regulatory mechanisms, limitations

in measurement assays, and cell-type specificities.

Various computational and statistical analyses play an important role in

the current molecular biology research. Bioinformatics is a research field

in which biology and informatics are combined in order to store, retrieve,

organize and analyze biological data. For instance, sequence analysis has

been useful in both defining evolutionary relationships between organ-

isms using computationally derived phylogenetic trees (Blanchette and

Tompa, 2002; Boffelli et al., 2003), and predicting RNA and protein folding

based on the nucleotide (Sharma et al., 2008) and amino sequences (Rost

and Sander, 1994), respectively. Moreover, bioinformatic approaches have

been successfully applied to annotate genomes. These approaches have

been used to identify protein-coding genes (Delcher et al., 1999; Zhang,

2002) and interaction sites between DNA and transcription factors by

matching the DNA sequence and the binding domains of the transcription

factors (Stormo, 2000; Barash et al., 2003). Additionally, bioinformatics

approaches have also been used to extract information by computational

literature analysis (Scherf et al., 2005).

Computational biology focuses on deriving mathematical models and

rules to describe the behaviour of various biological systems. For example,

the use of computational biology for modeling and simulation of various

cell processes has gained popularity (Noble, 2002). The bioinformatics

and computational biology fields overlap in their application. In the be-

ginning of the millenium, an approach, termed as “systems biology” or

“computational systems biology”, was proposed (Kitano, 2002b,a). In this

approach, the interactions within and between intrinsically complex bio-

logical systems are studied together instead of focusing on the separate

subunits that exist within that system (Kitano, 2002b,a). The successful
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use of a systems biology approach requires diverse high-throughput mea-

surements and elegant computational approaches to extract biologically

meaningful and valuable information.

The clinical importance of genomics is increasing as these high-through-

put techniques are employed more frequently in clinics and hospitals.

Next-generation sequencing can replace and complement the current gene-

specific clinical tests. This is the fundamental step towards the long-

awaited “personalized medicine”, where the treatments are specified for

the individual patients (Schilsky, 2010; Tursz et al., 2011; Hood and Friend,

2011). These advances will result in a major shift in the current drug

discovery paradigm (Emilien et al., 2000; Kramer and Cohen, 2004; Hall

et al., 2010; Woollard et al., 2011).

The transcriptional program of a cell largely determines its function and

fate. The transcriptional process is an important regulatory mechanism

in eukaryotic cells for ensuring a proper response to a stimulus. There-

fore, understanding how cells can control and fine tune their transcrip-

tional programs, is a clinically important and motivated task. In this

work, the goal was to gain broad insights into gene transcription and its

regulation by approaching scientific questions from multiple perspectives.

For instance, we have studied intracellular signal transduction networks

and the role of chromatin structure regulation in transcription initiation

and regulation. Finally, we present computational methodologies for iden-

tifying biologically meaningful differences in temporal gene expression

landscapes.

This thesis consists of four peer-reviewed articles published in interna-

tional journals. Publication I and Publication III present dynamic Gaus-

sian process models for analyzing kinetic data sets obtained using ei-

ther microarray or next-generation sequencing assays, respectively. The

LIGAP tool described in Publication I allows comparison between an arbi-

trary number of time series microarray experiments using Bayesian anal-

ysis. The DyNB methodology described in Publication III is a method

for analysis of time series RNA-seq data. In addition, it is applicable

for studying systematic differences between replicates. Sorad presented

in Publication II is a computational method for studying dynamic signal

transduction based on experimental phosphoprotein data. Moreover, it

can be used to estimate the optimal perturbations for producing desired

behaviour in the signaling cascade. Lastly, in Publication IV we studied

transcriptional regulation from the perspective of nucleosome position-
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ing. To accomplish this, we produced high-resolution nucleosome maps

for a subset of the mouse genome using BEM-seq (bacterial artificial chro-

mosome enriched mononucleosomal DNA sequencing). These nucleosome

maps were overlaid with transcription factor binding maps to show that

the displacement of individual nucleosomes coincides with the binding of

transcription factors in a highly cell-type specific manner.

First, a brief introduction to the necessary biological concepts is given

in Chapter 2, followed by a short explanation that will connect genomic

experiments with statistical analysis in Chapter 3. An introduction to the

computational methodologies used in the publications is given in Chap-

ter 4. Themain results of the publications are presented in Chapters 5 through 7.

Lastly, the discussion and conclusion are in Chapters 8 and 9, respectively.
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2. A Primer on Transcription and its
Regulation for a Computational
Biologist

In this chapter we provide brief descriptions of the biological concepts

covered in this thesis. In summary, we discuss some of the mechanisms

cells use to modulate their responses to environmental changes. Our fo-

cus is on the transcriptional response, so transcription and its regulation

are discussed in more detail. Unless otherwise stated, the concepts are

introduced and explained in the context of eukaryotic cells.

In this thesis, the two most important classes of molecules are DNA (de-

oxyribonucleic acid) and RNA (ribonucleic acid). The genetic code, DNA, is

composed of two chains of nucleotides in a double-helix structure. A single

nucleotide is composed of a nucleobase, a five-carbon sugar and a phos-

phate group. The human genome consists of around 3 billion nucleotide

base pairs in 23 chromosomes (International Human Genome Sequencing

Consortium, 2004). Substructures of DNA, genes, are stretches of biologi-

cally meaningful DNA, although “gene” does not have a clear and widely-

accepted definition. The Sequence Ontology Consortium reportedly gave

the following rather broad definition for the term gene: “a locatable re-

gion of genomic sequence, corresponding to a unit of inheritance, which

is associated with regulatory regions, transcribed regions and/or other

functional sequence regions” (Pearson, 2006). Transcription is the process

whereby parts of genetic information coded into DNA are read and copied

into RNA molecules by RNA polymerases (RNAPs). Often, these tran-

scribed RNA molecules are also referred to as transcripts. In eukaryotic

cells there are three different RNAPs. RNA polymerase I and III tran-

scribe ribosomal and transfer RNAs, respectively; whereas, RNA poly-

merase II (RNAPII) transcribes the protein-coding genes (Cramer et al.,

2008). The transcribed molecules have many important roles in cell func-

tion via various pathways. For instance, a subset of transcripts (protein-

coding) are translated into proteins. Next we will briefly cover the tran-
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scription process in more detail.

2.1 Transcription Process

The transcription process has the following five phases: preinitiation, ini-

tiation, promoter clearance, elongation and termination (Shandilya and

Roberts, 2012). The preinitiation complex (PIC) is the assembly of general

transcription factors (TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH) and

RNAPII along with additional cofactors at the core promoter (Sims et al.,

2004). Initiation is driven by the transcription factors at the promoter

(about 200 bases upstream from the transcription start site (TSS)) by

assembling the transcription initiation complex (TIC) (Nikolov and Bur-

ley, 1997). At the same time, an ATP-dependent opening of the double-

helix structure takes place at the TSS enabling the transcription of the

gene (Nikolov and Burley, 1997). Promoter clearance is the transition

of RNAPII from the initiation to active elongation phase during which

RNAPII loses contact with the initiation factors. Phosphorylation of ser-

ine 5 of RNAPII by the general transcription factor TFIIH enhances the

promoter escape of the TIC. Meanwhile, positive transcription elonga-

tion factor b (pTEFb) phosphorylates serine 2, thereby enhancing active

elongation (Sims et al., 2004) as depicted in Figure 2.1. Transcription

is terminated upon the identification of a termination sequence by the

protein complexes CPSF (Cleavage and polyadenylation specificity factor)

and CstF (Cleavage stimulation factor), which leads to the cleavage of

nascent RNA and release of the newly transcribed transcript (Shandilya

and Roberts, 2012).

The nascent RNAs undergoing transcription, called pre-mRNAs (precur-

sor messenger RNAs), are subject to post-transcriptional processing. Af-

ter the cleavage of the nascent RNA, the transcript is modified by the ad-

dition of a 5’ cap and a poly(A) tail (Lewis and Izaurralde, 1997; Proudfoot,

2011). Furthermore, the RNA molecule undergoes alternative splicing in

which it is cut and reassembled in a highly regulated manner (Matlin

et al., 2005). After alternative splicing of RNA, which takes place during

transcription in the cell’s nucleus, the processed RNA chain is called ma-

ture mRNA, often abbreviated simply as mRNA (McManus and Graveley,

2011).

Cells transcribe various RNA molecules, besides protein-coding RNAs,

with different characteristics whose roles are not yet fully understood. In
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Figure 2.1. Regulation of RNA polymerase II transcription initiaton and elonga-
tion. From the initiation phase the phosphorylation of serine 5 of RNAPII by
TFIIH leads to promoter escape. The phosphorylation of serine 2 by positive
transcription elongation factor b (pTEFb) drives RNAPII to active elongation
and transcription. Adapted from (Saunders et al., 2006) with permission from
Macmillan Publishers Ltd.

the next section we will cover some of the known RNA molecule families

with important regulatory functions.

2.2 Transcriptome

The transcriptome of a cell is its catalogue of RNA molecules, along with

the corresponding transcript levels (Ozsolak and Milos, 2011). Transcrip-

tomes are important for cellular behaviour because transcriptomes of dif-

ferent cell types are variable and they are dynamic in nature during cell

differentiation (Rhodes and Chinnaiyan, 2005; Cloonan et al., 2008; Wil-

helm et al., 2008; Wu et al., 2010; Sharov et al., 2003). Although tran-

scriptomes are highly variable between cell types, the genome is highly

stable between different cell types. This emphasizes the importance of

understanding regulation of the transcriptome and the consequent effects

on cell fate.

Only one-fifth of the RNAs in the transcriptome are protein-coding (Kapra-

nov et al., 2007). Several different functional families of RNA molecules

have been described and are distinguished by their size, structure, and

function (see Figure 2.2). The RNAs belonging to the major protein syn-

thesis complex, the ribosome, are referred as rRNAs (ribosomal RNAs).
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Figure 2.2. Classification of selected RNA molecules by function and size. RNA
molecules can be separated based on whether they are translated to proteins
or not. Moreover, the noncoding RNAs can be categorized based on the size
and function.

Therefore, RNAs have a major role in translation (Noller, 1991). The short

RNAs, e.g., tRNAs (transfer RNAs), snoRNAs (small nucleolar RNAs),

piRNAs (piwi-interacting RNAs), and miRNAs (microRNAs), are ofted

referred by the umbrella term of short noncoding RNAs (ncRNAs) (Kim

et al., 2009). Importantly, miRNA, siRNA (short interfering RNA), and

shRNA (short hairpin RNA), are capable of regulating gene expression

via the RNAi (RNA interference) pathway (Wilson and Doudna, 2013).

For example, miRNAs bind to the 3’UTR regions of mRNAs and thereby

promote mRNA degradation and prevent translation (He and Hannon,

2004). Recently, there has been an increased interest in the study of lin-

cRNAs (large intergenic noncoding RNAs) (Guttman et al., 2009) and cir-

cRNAs (circular RNAs) (Memczak et al., 2013; Hansen et al., 2013). For

example, lincRNAs have been shown to play a role in pluripotency and

differentiation of embryonic stem cells (Guttman et al., 2011). The lin-

cRNA, noncoding RNA repressor of NFAT (NRON), has been identified as

having an inhibitory effect on nuclear factor of activated T cells (NFAT)

(Willingham et al., 2005; Sharma et al., 2011).

2.3 Transcription Regulation

The focus of this section is transcription regulation. First of all, transcrip-

tion initiation and elongation are highly regulated processes (Sims et al.,

2004; Maston et al., 2006; Saunders et al., 2006). The transcribed mRNAs

are post-transcriptionally regulated at different levels, including process-

ing, stability, translation and transport (Maston et al., 2006). Moreover,
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we will briefly describe chromatin and chromatin remodeling molecules,

and cover some of the regulatory mechanisms of chromatin in modulating

transcription. More detailed descriptions of these concepts can be found,

e.g., in the reviews on transcription regulation and on the role of the chro-

matin structure in gene accessibility (Li et al., 2007; Weake andWorkman,

2010; Beisel and Paro, 2011; Spitz and Furlong, 2012)

2.3.1 Regulation of RNA Polymerase II Elongation

Active elongation of RNAPII can be paused by interaction between nega-

tive elongation factors NELF (negative elongation factor) and DSIF (DRB

sensitivity inducing factor) by increasing the sensitivity to DRB (5,6-Dichloro-

1-β-D-ribofuranosylbenzimidazole) (Lee and Young, 2000). DRB is an

inhibitor of members of the family of cyclin-dependent kinases (CDKs)

(Yankulov et al., 1995), including CDK9. By inhibiting CDK9, DRB in-

hibits RNAPII elongation by suppressing the effect of the positive tran-

scription elongation factor b (PTEFb) (Ip et al., 2011). PTEFb is a cyclin-

dependent kinase formed by CDK9 and other cyclin subunits with the

ability to phosphorylate NELF and DSIF, thereby inducing active RNAPII

elongation by releasing the stalled RNAPII (Kohoutek, 2009). There are

additional positive elongation factors; for example, TFIIH has a positive

effect on the initial unwinding of DNA (Sims et al., 2004). TFIIF remains

attached with the elongating RNAPII exerting a positive effect on elon-

gation (Sims et al., 2004), and ELL2 (elongation factor, RNA polymerase

II, 2) prevents RNAPII backtracking by enhancing the alignment of the 3’

OH of nascent RNA with the catalytic site (Martincic et al., 2009). These

mechanisms are illustrated in Figure 2.1.

2.3.2 DNA-binding Proteins

A subset of proteins have DNA binding domains (DBDs) and are thereby

capable of highly specific binding directly to DNA. They are referred to

as transcription factors if they have positive or negative effects on tran-

scription through DNA binding. Transcription factors have been shown

to influence transcription by binding to distal regulatory regions and core

and proximal promoters. The DBDs on the proteins are used to classify

transcription factors into different families; for a review on transcription

factor families see (Pabo and Sauer, 1992; Latchman, 1997). Recently, the

binding specificities of 830 human transcription factors were measured
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systematically using the SELEX technique (reviewed by Stoltenburg et al.,

2007) yielding 239 different binding specificity models (Jolma et al., 2013).

Other proteins without DBDs also regulate transcription, such as coacti-

vators, corepressors, chromatin remodelers, histone acetylases, and his-

tone deacetylases. The coacting proteins, i.e., coactivators and corepres-

sors, are proteins which form complexes with transcription factors through

trans-activating domains (TADs) without direct interaction with DNA. All

the possible mechanisms by which proteins regulate transcription are not

yet fully understood. For instance, transcription factors can either posi-

tively or negatively regulate the recruitment of RNAPII to the promoter,

chromatin accessibility for other proteins and transcription machinery,

and RNAPII elongation in gene body. Distal regulatory regions are fur-

ther divided into enhancers, silencers, insulators, and locus controlling

regions (LCRs) based on their functions (Maston et al., 2006). Distal regu-

latory regions have been shown to mediate their regulatory effect through

mediators and DNA looping, which emphasizes the importance of study-

ing the three-dimensional structure of chromatin. In murine embryonic

stem cells, the protein complexes mediator and cohesin have been shown

to connect enhancers and core promoters (Kagey et al., 2010). More-

over, CTCF (CCCTC-binding factor), a protein reported to form an insu-

lator, together with cohesin, has been reported to have a similar function

(Merkenschlager and Odom, 2013).

2.3.3 Chromatin

The chromatin is the structure of DNA packed into cell nucleus (see Fig-

ure 2.3). The different chromatin structure levels, from large to small,

are chromosome, 30 nm fibre, and 10 nm fibre (Olins and Olins, 2003).

Chromatin has the following four major functions: packing the DNA into

the cell nucleus, regulating gene expression, allowing mitosis, and pro-

tecting DNA from damage (Olins and Olins, 2003). The basic repeating

unit of chromatin is the nucleosome (Olins and Olins, 2003). The nucleo-

some core particle is an octamer composed of histone proteins H2A, H2B,

H3, and H4 where each one is present in two copies, and approximately

147 base pairs of DNA. The DNA wrapped around the histone octamer in

an 1.65 superhelical turn is termed mononucleosomal DNA (Andrews and

Luger, 2011). In addition to these four canonical histone proteins, there

are histone protein variants H2AZ and H2AX (Redon et al., 2002), whose

function on chromatin activity is not yet widely studied. There are studies

24



A Primer on Transcription and its Regulation for a Computational Biologist

Nucleus

P

DNA

Me

Ac

Ac

Figure 2.3. The packaging of DNA into chromatin structure. Nucleosomes com-
posed by the histone proteins are the basic repeating units of chromatin. The
beads on string form of DNA associated with nucleosomes leads to the pack-
aging of DNA into higher-order chromatin structure in cell nucleus. Adapted
from (Probst et al., 2009) with permission from Macmillan Publishers Ltd.

showing that H2AX alters nucleosome instability (Zlatanova and Thakar,

2008) and phosphorylation of H2AX has been associated with DNA dam-

age (Sharma et al., 2012). The linker histone protein H1 does not be-

long to the nucleosome core particle, as it sits on the top of the structure

keeping the wrapped DNA in place. Around 80% of DNA is associated

with the core nucleosome particles, the remaining unassociated DNA be-

tween the nucleomes is termed as linker DNA (Workman and Kingston,

1998; Alberts, 2007). Individual nucleosomes are packed into a 10 nm

fibre and a higher level packing of multiple nucleosomes produces a 30

nm fibre (Belmont et al., 1999; Tremethick, 2007). Based on the packing

density chromatin is classified into euchromatin and heterochromatin. In
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the euchromatin state the chromatin is sparsely packed; whereas, in the

heterochromatin state the chromatin is tightly packed (Grewal and Jia,

2007; Gaspar-Maia et al., 2011). In most cases, the DNA wrapped around

the nucleosomes is protected from binding by transcription factors. The

binding is blocked because of the inaccessible conformation of DNA, which

prevents the identification of the target DNA by DBD. Finally, the deter-

minants governing nucleosome positioning are reviewed in (Struhl and

Segal, 2013).

2.3.4 Chromatin Remodeling and Post-translational
Modifications on Histone Tails

Dynamic chromatin regulation is a pathway for regulating chromatin struc-

ture and accessibility. For instance, chromatin accessibility is regulated at

the promoters in order to control the binding of transcription machinery or

transcription factors. Different mechanisms driving dynamic chromatin

remodeling are not fully understood yet. The SWI/SNF (SWItch/Sucrose

NonFermentable) protein complex has been shown to regulate DNA ac-

cessibility. It has an ATP-dependent mechanism to destabilize the contact

between the DNAmolecule and the histone protein complex (Vignali et al.,

2000). Additionally, histone acetyltransferases and deacetylases are pro-

posed to a have role in controlling chromatin structure by modifying the

acetylation state of histone proteins. Acetylated histones have weakened

contact with the DNA segment (Struhl, 1998). The knowledge of different

chromatin remodeling pathways are summarized, e.g., in the following

reviews (Cosgrove et al., 2004; Zentner and Henikoff, 2013). LincRNAs

have also been linked to chromatin remodeling (reviewed in Bergman and

Cedar, 2013). They bind to chromatin remodelers, thereby modulating

their catalytic activity and controlling their chromatin targets.

The tails of histone proteins have several residues associated with post-

translational modifications (PTMs) (see Figure 2.3). PTMs of the tails in-

clude methylation, acetylation, phosphorylation, ubiquitination, SUMOy-

lation, citrullination, and ADP-ribosylation (Suganuma and Workman,

2011). Histone methyltransferases (HMTs) are the proteins which can

catalyze one or multiple methyl groups to the specific residues on the his-

tone tails (Wood and Shilatifard, 2004; Greer and Shi, 2012).

Commonly, these histone tail PTMs are described by giving the name

of the affected histone, the specific amino acid abbreviation with the po-

sition, the type of modification and the number of modifications (Turner,
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Figure 2.4. Examples of post-translational modifications. A selected list of post-
translation modifications on histone tails, which are associated, for instance,
with euchromatin and heterochromatin, repressed and active transcription
and enhancer activity. For example, H3K36me3 is often found within the
actively transcribed genes. Adapted from (Schones and Zhao, 2008) with per-
mission from Macmillan Publishers Ltd.

2005). For example, H3K4me2 denotes the dimethylation of the 4th lysine

residue from the beginning of the N-terminal in the H3 protein. Some of

the post-translational modifications have been associated with active and

poised transcription and different chromatin states as the schematic in

Figure 2.4 illustrates. For example, H3K36me3 is found in the gene body

of the actively transcribed genes; whereas, H3K27me3 is found in genes

27



A Primer on Transcription and its Regulation for a Computational Biologist

which are not transcribed (Kooistra and Helin, 2012). Heterochromatin

is associated with the marks H3K9me2 and H3K9me3 (Rosenfeld et al.,

2009). The proteins containing the JmcJ domain are shown have the abil-

ity to demethylate residues on histones tails. For example, JHDM1 and

JMJ3 are identified to be H3K36 and H3K27 demethylases, respectively

(Tsukada et al., 2006; Xiang et al., 2007). Two members of polycomb re-

pressive complexes (PRCs), PRC1 and PRC2, are known to play a role in

regulating gene expression by repressive actions (Schwartz and Pirrotta,

2007). For instance, PRC1 monoubiquitylates the histone H2A and PRC2

catalyzes the methylation (di- and tri-) of H3K27 (Margueron and Rein-

berg, 2011).

The H3K4me1 and H3K4me2 histone marks associated with open chro-

matin have been identified to be enriched in putative enchancers charac-

terized by the binding of p300 (Heintzman et al., 2007, 2009). The proteins

p300 and CBP (cAMP-response element-binding protein) compose a coac-

tivator family, and they have also been shown to act as histone acetyl-

transferases (Ogryzko et al., 1996). Active enhancers, defined to have

RNAPII and a subunit of transcription initiation factor TBP-associated

factor 1 (TAF1) (Ong and Corces, 2011), allegedly have different histone

marks compared to inactive or poised enhancers. The distinct histone

mark of active enhancers is H3K27ac, which is speculated to be present

due to the acetyltransferase activity of p300 and CBP (Creyghton et al.,

2010).

As a result, transcription is hypothesized to be regulated partly by the

post-translational modifications of the histone tails (Strahl and Allis, 2000;

Jenuwein and Allis, 2001). That is, these post-translational modifica-

tions of histone tails may regulate chromatin structure and transcription

directly or, alternatively, via recruitment of additional protein effectors

(Suganuma and Workman, 2011). The interpretation of this putative bio-

logical regulatory mechanism is complicated because it has been hypoth-

esized that the histone modifications are crosstalking and likely to have

combined effects (Suganuma and Workman, 2011).

2.3.5 Extracellular and Intracellular Signaling

In the previous sections we covered various direct intracellular mecha-

nisms of transcription regulation without focusing on the influential indi-

rect mechanisms. First of all, the cells and their behaviour are not isolated

from the environment. For example, the cells are communicating with
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each other and with the environment using various signal transduction

mechanisms. Through these signal transduction mechanisms cells mod-

ulate their metabolism, function and development. The signal transduc-

tion from the signaling cell to the target cell is mediated by the signaling

molecules secreted by the signaling cell. These secreted signal molecules

are recognized by the corresponding receptors on the target cell surface.

There are various classes of signaling molecules with different biochem-

ical characteristics, for instance, hormones, cytokines and neurotransmit-

ters. In addition, different receptors on the cell surface can be classified

into four subclasses: ion channel, enzyme, tyrosine kinase and G protein-

coupled receptors. All of these subclasses have extracellular, membrane

and intracellular domains (Alberts, 2007). From the cell surface, the sig-

nal produced by the binding of a signaling molecule to a corresponding

receptor is further transduced by various secondary messenger molecules

which can translocate to the cell cytoplasm and nucleus.

A signal transduction process can be described as endocrine, paracrine,

juxtacrine, autocrine or intracrine, where the classification is based on

the domain where signal transduction takes place (Alberts, 2007). Sig-

nal transduction between cells is endocrine if the transduction happens

between distal cells, paracrine if the communicating cells are spatially

close, and juxtarine if the cells are touching (Alberts, 2007). Signal trans-

duction within a cell is autocrine if it takes place through the membrane

receptors, and intracrine if it happens within the cell (Alberts, 2007).

As an example, we quickly describe the calcineurin/NF-AT pathway par-

tially depicted in Figure 2.5, which leads to the NFAT translocation and

consequently regulation of transcription (Shaw et al., 1988). The cell re-

ceives the extracellular signal when the T cell receptor on its surface en-

counters an antigen-presenting cell. Upon T cell activation, PLCγ1 is

phosphorylated leading to the production of IP3 and the release of intra-

cellular calcium (Ca2+) stores, and an overall increase of Ca2+ levels in

the cytoplasm (Smith-Garvin et al., 2009). The increase in the level of cy-

toplasmic calcium is sensed by the STIM1 and STIM2 sensor molecules,

which have a role in activating the Ca2+ release activating channels (Liou

et al., 2005). Consequently, the calmodulin (CaM) Ca2+ sensor protein ac-

tivates the inhibitory protein complex calcineurin, which is composed of

the subunits calcineurin A and calcineurin B, where calcineurin A inter-

acts with calmodulin in a Ca2+-dependent manner and binds Ca2+ (Klee

et al., 1979). Activated calcineurin will dephosphorylate NFAT, leading to
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Figure 2.5. The calcineurin/NF-AT pathway drives the translocation of the
NFAT transcription factor to the cell nucleus. The T cell activation
releases the Ca2+ stored in the intracellulalr calcium stores. The increase in
the cytoplasmic Ca2+ levels activates the Ca2+ release channels, which leads
to the activation of calcineurin by calmodulin. The activated calcineurin in-
hibitory protein complex dephosphorylates NFAT allowing it to be translo-
cated into the cell nucleus to drive the T cell transcription program. Adapted
from (Steinbach et al., 2007) with permission fromMacmillan Publishers Ltd.

a rapid translocation of NFAT from the cytoplasm into the cell nucleus

(Okamura et al., 2000). After the translocation to the nucleus, NFAT

drives T cell activation by cooperating with various transcription factors,

e.g., by forming a complex with AP-1 which will lead to IL-2 production

(Jain et al., 1992). The immunosuppressant drugs FK506 and cyclosporin

A (CsA) and have been shown to block the effect of the calcineurin/NF-

AT pathway by inhibiting NFAT translocation (Rühlmann and Nordheim,

1997).
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3. Bridging Experiments and Statistical
Analysis

In this chapter we briefly cover the main experimental and computational

factors one has to take into account when analyzing genomic data ob-

tained using high-throughput technologies. Two important high-throughput

measurement technologies in genomics are DNA microarrays and next-

generation sequencing. The introduction of DNA microarray technology

revolutionized genomics research by allowing genome-wide studies. DNA

microarrays are still widely used for standard genotyping and gene ex-

pression profiling because of their simplicity, cost-efficiency, and adapt-

ability of automation.

In general, DNAmicroarrays and next-generation sequencing are meth-

ods for measuring DNA and RNA contents of biological samples. The com-

plete cataloging of the biological material within a cell is not currently

possible, so studies must focus on a certain aspect by enriching a subset

of the biological material. For example, a study can focus on measuring

the DNA reverse transcribed from miRNAs or mRNAs, which are size-

selected or selected based on the poly(A) tail, respectively. It is important

to include proper controls for the enrichment steps, which should be taken

into account in the data analysis. For instance, in antibody-based applica-

tions where genomic DNA is fragmented prior to the immunoprecipitation

step, it is highly recommended to include a control samples that has not

been subjected to immunoprecipitation in the analysis. This control will

be beneficial in accounting for fragmentation bias or other biases.

Different computational analysis methods for microarray and next-ge-

neration sequencing data are needed for various reasons. First, they are

necessary because of the vast amount of generated data. Second, they can

provide a statistically sound framework for taking into account the biases

in the data by modeling the measurement process and combining repli-

cations. Third, they can provide a quantitative framework for identifying
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Figure 3.1. Gene expression estimation using microarrays and RNA-seq. A
schematic of a gene consisting two exons is depicted in the top panel. A probe
in a microarray is targeting a specific short genomic region within a exon.
The probe intensity is used as a proxy for the gene expression. In the RNA-
seq approach fragmented mRNA molecules are sequenced, which are then
mapped against the exons and exon-exon junctions. After normalizing the
different sequencing depths the number of aligned sequencing reads within
the gene can be used in the gene expression estimation. Finally, the read
coverage information can be useful in estimating the distribution of the gene
expression estimates. Adapted from (Garber et al., 2011) with permission
from Macmillan Publishers Ltd.

biologically significant signals from the data.

3.1 DNA Microarrays

A DNA microarray is a dense collection of predefined DNA oligos, often

referred to as probes, which are used to measure the DNA content of a

sample based on the hybridization of the probe to a DNA target sequence

as depicted in Figure 3.1 (Heller, 2002). Initially, microarrays were used

mostly for probing genotypes and gene expression (Schena et al., 1995; Ho-

heisel, 2006), but they have been usefully applied for other purposes, in-

cluding ChIP-chip (chromatin immunoprecipitation followed by microar-

ray) (Ren et al., 2000), protein detection (Haab, 2001) and chromosome

conformation capture (Simonis et al., 2006; Zhao et al., 2006). Probes are

designed in such a way that they cover the sequences of the regions of

interest in the genome while maximizing specificity (Heller, 2002). The

probe lengths in different microarray designs usually vary between 14 to

60 nucleotides. For instance, the probes in the Affymetrix gene expres-

sion arrays and Agilent microarrays are 25 and 60 nucleotides in length,

respectively (Heller, 2002; Hardiman, 2004).

32



Bridging Experiments and Statistical Analysis

In the preparation step, the DNA fragments are fluorescently labeled,

which allows them to be detected using a laser excitation. The quantifi-

cation of the emitted light is done using either a single- (single color) or

two-sample (two colors) microarray design. Importantly, this type of quan-

tification does not provide absolute expression estimates of the targeted

genomic regions. Therefore, the differences between the conditions being

studied are quantified relative to another sample on the same array (two-

sample array) or computationally (single-sample array). Moreover, the

strength of the signal cannot be treated as a proxy for the abundance of

the target sequence, e.g., due to the differences between the probe affini-

ties (as A/T-rich probe sequences have shown to have lower hybridization

intensities than probe sequences with high G/C content) (Heller, 2002). In

addition, microarrays have been shown to have sensitivity and specificity

issues (Draghici et al., 2006). Because probe-based technologies have been

in the market for a while and are widely used, the basic analyses, prepro-

cessing and secondary data analysis, of the most common microarray data

types are well-established.

After imaging the preprocessing of the raw data begins, the spots are

identified and their fluorescence intensitity values are estimated using a

selected image quantification software, followed by removal of bad qual-

ity spots (Quackenbush, 2002). For gene expression arrays, the previ-

ous steps are commonly followed by the application of the robust multi-

chip average (RMA) method, which consists of a background adjustment,

quantile normalization, and summarization steps. There are alternative

normalization techniques available, but the importance of doing the nor-

malization in a proper way should be stressed. For making the probes

comparable between arrays, the data has to be transformed and normal-

ized within an array and between arrays. This has to be done in order

to correct differences in the quantities of the starting biological material,

hybridization preferences, and in labeling and detection (Quackenbush,

2002). One can assess the quality of the data by generating various plots:

density plots of probe intensities within an array, boxplots illustrating the

probe intensity distributions across a set of arrays, and ratio-intensity

plots from two-channel arrays. In addition, the ComBat software (John-

son et al., 2007) can be used to remove batch effects from the arrays, such

as systematic differences between the arrays caused by preparing them in

different hybridization runs. Finally, the data is usually log transformed

in order to make the up- and down-regulated ratios comparable (Quack-
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enbush, 2002).

Commonly, after preprocessing the data, limma (linear models for mi-

croarray data) (Smyth, 2005) is used for a statistical identification of the

differentially expressed genes between a set of conditions. Importantly,

the number of replicates is usually limited; thus, estimating the vari-

ation in the data can be difficult. Therefore, limma uses an approach

which assumes that the probe sets with similar values have similar vari-

ation and thus estimates the variances robustly by sharing information

between probes (Smyth et al., 2005). The limma software allows for the

definition of sophisticated study designs, such as, paired samples study

designs, which can be useful in detecting modest changes (Smyth, 2005).

In practice, the probe-based approach is limited by the fact the one can

only detect what is included in the probes, making identification of novel

coding or noncoding transcripts or fusion genes practically impossible.

Another limitation is that not all sequences can be targeted reliably using

short probes (Okoniewski and Miller, 2006). Similarly, identification of

single nucleotide polymorphisms (SNPs) is limited to the known or prede-

fined ones, and the expression estimation relies on short RNA stretches.

Spatial signal patterns can be captured using probes targeting adjacent

sequence segments. Obviously, the spatial resolution of microarrays can

be improved by using highly overlapping probes. For example, tiling mi-

croarrays have been used to detect interactions between DNA-binding

proteins and DNA (ChIP-chip) (Cawley et al., 2004), DNase I (deoxyri-

bonuclease I) hypersensitivity sites (DNase-chip) (Crawford et al., 2006),

and nucleosome positions (MNase-chip) (Song et al., 2008).

3.2 Next-generation Sequencing

To get a glimpse of next-generation sequencing, a reader may refer to the

reviews by Shendure and Ji (2008), Metzker (2010) and Mardis (2013).

Instead of using probes to capture the fragments, as in the microarray-

based approaches, sequencing directly measures the nucleotide composi-

tion of the fragments. This is the biggest conceptual difference between

microarrays and next-generation sequencing as depicted in Figure 3.1

(Mardis, 2013). Often the sequencing approaches are divided into Sanger

and next-generation sequencing (NGS) technologies. Unlike the Sanger

sequencing used in the initial human genome sequencing project (Lander

et al., 2001), the NGS approaches produce millions of reads with shorter
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read lengths (Mardis, 2013). Importantly, sequence count is a direct mea-

sure of abundance with a high dynamic range instead of the relative mea-

sure obtained using the microarray approaches (Mardis, 2013). Various

NGS platforms are available (see Lam et al. (2012); Liu et al. (2012)), but

the two most widely used platforms are SOLiD (Sequencing by Oligonu-

cleotide LIgation and Detection) and Illumina sequencing (sequencing by

ligation and synthesis) (Liu et al., 2012). Sequencing libraries can be con-

structed and sequenced in different ways. For instance, the fragments can

be sequenced from one of the ends or from both ends, which are referred

as single-end (SE) and paired-end (PE) sequencing, respectively (Mardis,

2013). Depending on how the sequencing library is designed, PE sequenc-

ing can be subdivided into standard PE sequencing (short fragments) and

mate-pair sequencing (long fragments) (Mardis, 2013). Recently, several

studies have been published to identify the effects, such as PCR artifacts

and GC bias, of the measurement technology and library construction pro-

tocols on the results (Malone and Oliver, 2011; Nookaew et al., 2012; Ko-

genaru et al., 2012; Giorgi et al., 2013; Ross et al., 2013).

An advantage of NGS approaches over microarray approaches is the

ability to reformulate the hypothesis afterwards, e.g., one can check the

existence of a novel fusion gene from old data sets. In addition, NGS

approaches have, in general, higher resolution than microarrays due to

direct sequencing of the fragments. However, there are drawbacks: se-

quencing takes more time, sequencing library construction is more te-

dious, sequencing is more expensive, and the sequencing library construc-

tion might require more biological starting material.

3.2.1 Sequence Aligment

For each sequenced fragment, the sequencer analyzes the raw images and

outputs a nucleotide sequence together with the quality scores. These

quality scores are interpretable as a probability that the base was se-

quenced correctly in widely-accepted format, such as, FASTQ (Cock et al.,

2010; Metzker, 2010). The quality scores, often in the Phred format (Ew-

ing et al., 1998), are useful in assessing if the sequencing was successful

and in removing bad quality reads (Patel and Jain, 2012). Additionally,

sequencing adapters are removed and an existence of unexpected bias in

the nucleotide distribution is checked (Horner et al., 2010; Patel and Jain,

2012). Moreover, one should check the average quality score as a func-

tion of read position and the level of sequence duplication caused by low
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complexity of the sequencing library.

Often the next step is to identify the sequenced fragments in respect to

a reference genome. In other words, to align or map them against the ref-

erence genome, which has been sequenced and constructed previously us-

ing appropriate sequencing techniques (Metzker, 2010). The importance

of the alignment step should be emphasized since, in practice, it will de-

fine the starting point and constraints for the analysis. The choice of the

reference genome depends on the biological application, e.g., in the case of

mRNAs or bisulfite-treated DNA one has to take into account the splicing

or the conversion of unmethylated cytosine residues into uracils, respec-

tively (Trapnell et al., 2009; Krueger and Andrews, 2011). The Smith-

Waterman algorithm (Smith and Waterman, 1981) does solve the local

sequence alignment problem in a general form, but it is not applicable for

aligning NGS data sets due to the large size of genomes and great num-

ber of sequences. Therefore, various approximative alignment algorithms

based on efficient hashing or Burrows-Wheeler transformation have been

proposed, such as MAQ (Li et al., 2008), BWA (Li and Durbin, 2009),

Bowtie (Langmead et al., 2009), and Bowtie 2 (Langmead and Salzberg,

2012). The SOLiD method differs from other sequencing methods in that

the sequencing results are read in the color-base, i.e., it uses the 2-base

code (Liu et al., 2012). Therefore, instead of directly converting the reads

from color-space into base-space, which does cause a frame shift upon a

read error, it is advised that the reads are aligned in the color-space (Li

and Homer, 2010). The aligments are reported independently based on

the choice of the aligment software, either in the SAM (human readable)

or BAM (compressed binary version) formats. The SAM and BAM for-

mats are easily manipulated using the samtools software (Li et al., 2009).

In general, PE sequencing is more informative than SE sequencing; for

instance, it provides the actual fragment lengths and eases the identifi-

cation of unique alignments (Metzker, 2010). However, PE sequencing is

complicated by various and higly abundant repetitive elements (de Kon-

ing et al., 2011), especially because of the short read length (Treangen

and Salzberg, 2012). If an appropriate reference genome or transcrip-

tome is not available, then one can attempt to use the reads to construct

a candidate genome, i.e., combining overlapping sequence reads in order

to identify longer sequence contigs. Many methodologies are available for

carrying out de novo genome and transcriptome assembly; for instance,

Velvet (Zerbino and Birney, 2008), AbySS (Simpson et al., 2009), Cufflinks
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Figure 3.2. Information extraction from ChIP-seq and RNA-seq experiments.
The ChIP-seq and RNA-seq quantification and discovery analysis workflows
are proceeding from the bottom to top. The analysis starts by aligning the
reads against the reference genome or alternatively by constructing a de novo
transcriptome. This is immediately followed by a step where the signal is lo-
cally quantified by detecting enriched or depleted regions or within certain
predefined genomic regions. The implications of the findings are studied from
different perspectives and finally integrated across the data types. Adapted
from (Pepke et al., 2009) with permission from Macmillan Publishers Ltd.

(Trapnell et al., 2010), and Trinity (Grabherr et al., 2011).

3.2.2 Downstream Analysis

There are several reviews describing the basic analysis of ChIP-seq (chro-

matin immunoprecipitation followed by sequencing) and RNA-seq (RNA

sequencing) data depicted partially in Figure 3.2 (Pepke et al., 2009; Osh-

lack et al., 2010; Ghosh and Qin, 2010). Moreover, a protocol paper by

Trapnell et al. (2012) describes the use of the Tuxedo suite pipeline con-

sisting of Bowtie (Langmead et al., 2009; Langmead and Salzberg, 2012),

Tophat (Trapnell et al., 2009), and Cufflinks (Trapnell et al., 2010) soft-

wares for transcriptomics analysis. Often the next step after the align-

ment is the generation of the read coverage signal, which allows visual

inspection of the signal. Read coverage signals can be stored using using

binary and indexed formats, bigWig and bigBed (Kent et al., 2010), which

allow a fast and remote display of the data using, e.g., the UCSC genome

browser (Kent et al., 2002).

The counts of read fragments and aligned sequencing reads vary be-

tween experiments. Thus, the different sequencing depths of the samples

have to be made comparable using normalization. Different normaliza-
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tion techniques have been proposed for specific applications. For instance,

the total number of reads (Mortazavi et al., 2008) or the median of the ra-

tios of observed read counts (Anders and Huber, 2010) has been used as

a normalization factor in sequencing depth normalization. Moreover, a

regression-based within- and between-lane normalization procedure has

been proposed for GC content normalization (Risso et al., 2011).

Usually some sort of a local quantification of the detected signal has to

be done to ease the analysis and interpretation of the data. For instance,

calculating the number of reads arising from each gene or exon, focusing

on the gene promoters or identifying interesting regions throughout the

genome. These methods can be distinguished by whether they identify the

interesting regions automatically or use predefined region annotations.

For many organisms the protein-coding genes are well annotated (Pruitt

et al., 2009; Flicek et al., 2013). Thus, one can simply use these annota-

tions while quantifying the signal, or as a basis for detecting novel tran-

scripts (Anders and Huber, 2010; Trapnell et al., 2010). Unfortunately,

the annotation-based approach is not always practical, e.g., the gene-level

quantification does not work well if the signal is intra- and intergenic. In

those cases, the common approach is to identify either the regions where

the signal is enriched or depleted compared to a control or another bio-

logical sample. Several approaches based on an identification of signal

enrichments have been successful; for instance, mirDeep2 identifies novel

RNA molecules (Friedländer et al., 2012), MACS identifies interactions

between DNA-binding proteins and DNA (Zhang et al., 2008), and SICER

detects histone modifications (Zang et al., 2009).

The statistical models used in microarray data analysis are not statis-

tically sound for NGS data due to the different nature of the data, i.e.,

arbitrary intensity values versus discrete read counts. Therefore, many

of the analysis methods are built based on the assumption of Poisson or

negative binomial distribution, such as, DESeq (Anders and Huber, 2010),

edgeR (Robinson et al., 2010), MACS (Zhang et al., 2008), SICER (Zang

et al., 2009), and cn.MOPS (Klambauer et al., 2012).

More challenging than the analysis of individual data types, is the in-

tegration of various data types to get a systematic view that allows for

the interpretation of stronger biological conclusions. Even a simple anal-

ysis, where the goal is to detect a causal relationship between binding

of transcription factor and induced transcription, turns out to be difficult

when the binding site is located outside of the promoter. Since various
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histone PTMs have been associated with inactive and active enhancers

various machine learning approaches, such as support vector machines

(Fernández and Miranda-Saavedra, 2012) and random forests (Rajagopal

et al., 2013), have been proposed to combine the PTM signals to improve

the sensitivity and accuracy of enhancer identification. Moreover, instead

of focusing solely on enhancers, various chromatin states have been an-

notated by integrating the histone PTM information from different cell

types by searching for patterns using hidden Markov models (Ernst et al.,

2011; Ernst and Kellis, 2012).

Due to the young age of the NGS technology, the analysis pipelines for

different NGS applications are not yet well-established. However, the

Galaxy project (Goecks et al., 2010) aims to build an online platform for

doing biological data analysis. The main idea behind Galaxy is to build

analysis pipelines by connecting simple premade analysis modules to-

gether. The paradigm of Galaxy, in theory, allows for building of reusable

analysis pipelines, making data analysis accessible to everyone (Goecks

et al., 2010).

3.2.3 Example Applications

In this section we go through some of the widely-used NGS applications.

The future and current applications of DNA sequencing are discussed in

the review by Shendure and Lieberman Aiden (2012). Generally, one can

interchange microarrays with NGS technologies with minimal changes.

RNA-seq can be used for probing RNA landscapes, such as, mRNA lev-

els. Importantly, because RNA-seq is not limited to the protein-coding

genes and does not require the definition of the targeted sequences be-

forehand, it has proven to be useful for identifying novel RNA molecules.

For instance, RNA-seq has been used in identifying lincRNAs, alterna-

tively spliced mRNA molecules, and fusion genes yielded by scrambled

genomes found in cancer cells.

Due to the lack of probes, NGS can be used for de novo construction of

genomes (Li et al., 2010) and transcriptomes (Guttman et al., 2010; Mar-

tin and Wang, 2011; Grabherr et al., 2011). Moreover, whole genome or

transcriptome sequencing reads can be straightforwardly used for detect-

ing SNPs in respect to the given reference genome (see review by Nielsen

et al. (2011)).

Because NGS overcomes the poor resolution and need for the cumber-

some probe definition step of tiling arrays, it can be easily applied to prob-
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ing for various epigenomic modifications using ChIP-based approaches

(Park, 2009) and chromatin accessibility using approaches relying on DNase

I (deoxyribonuclease I) (Song and Crawford, 2010) or MNase (micrococcal

nuclease) digestion (Valouev et al., 2011). For instance, antibody-based

methylation assays, such as meDIPS (Mohn et al., 2009) and anti-CMS

(Huang et al., 2012b), are useful in identifying methylated regions and

differentially methylated regions. Another interesting and important ap-

plication where NGS has proven to be useful is a metagenomics (Wooley

et al., 2010). In a metagenomic study, the aim is to shed light on the

composition of a biological sample through genomics, e.g., identification of

different bacteria in a gut microbiota (Qin et al., 2010).
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Traditionally, nonparametric techniques are divided into methods which

do not make assumptions about the distribution of the data, and model-

ing approaches in which the exact parametric structure of the relation-

ship between variables is not fixed. The distribution-free view has been

useful in deriving various nonparametric statistics, which can be utilized

for traditional hypothesis testing purposes. However, in this thesis the

focus is on nonparametric regression models, which belong to the latter

class. Importantly, nonparametricity of a model does not imply that the

model would be completely parameter-free. Instead, nonparametricity of

a model states that the structure of the model is not fixed a priori; that is,

the goal is to infer the model structure from data.

Several different methodologies for carrying out nonparametric regres-

sion modeling have been proposed; for instance, regression trees (Breiman

et al., 1984), regression splines (Friedman, 1991), wavelets (Wasserman,

2005), and various kernel-based methods (Simonoff, 1998). Often these

methods rely on a set of weak assumptions about the underlying pro-

cesses, such as smoothness and stationariness. Moreover, flexible non-

parametric regression models are often described to be black box mod-

els because of their limited interpretability (Sjöberg et al., 1995). Impor-

tantly, the interpretability usually decreases when the flexibility of the

model increases. However, interpretability varies between different non-

parametric modeling approaches. To give examples, neural networks are

not interpretable due to the large number of neurons and possibly even

multiple layers (Hassoun, 2003). Whereas, generalized additive mod-

els are more interpretable due to their linearity (Hastie and Tibshirani,

1986).

In statistical inference of a parametric regression model the goal is to

identify, in some sense, the optimal values of the model parameters from
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data that is subjected to random variation. Whereas, the model structure

is also of interest in the inference of a nonparametric regression model.

Moreover, an important subfield of statistical inference is Bayesian infer-

ence where the model parameters are assumed to be random variables.

The Bayesian inference approach has been popular in inferring paramet-

ric and nonparametric models, such as nonparametric Dirichlet (Fergu-

son, 1973; Beal et al., 2002) and Gaussian process models (Doob, 1944).

In the following sections we will cover Gaussian processes (GPs) together

with the parameter inference. Moreover, we will cover the model selection

problem and practical issues of Bayesian inference.

4.1 Gaussian Process Prior

Gaussian processes, a family of stochastic processes, have proved use-

ful in solving practical data-driven problems (Doob, 1944). Their useful-

ness in solving practical problems comes from the properties they share

with the multivariate Gaussian random variables. Even though the as-

sumption of Gaussianity might feel restrictive, GPs are fundamentally

important and useful (Doob, 1944). For instance, while studying any sta-

tionary stochastic process involving only the first two moments, one can

treat the variables as Gaussian (Doob, 1944). Additionally, in some cases

the use of GPs in modeling can be motivated by resorting to the central

limit theorem. Importantly, only a few theoretical properties are such

that they hold for stationary GPs but not for stationary stochastic pro-

cesses in general (Doob, 1944). More important, there are various stochas-

tic processes motivated by physical phenomena, which are, essentially,

Gaussian processes. To give examples, the Wiener process (Medhi, 1994),

Ornstein–Uhlenbeck process (Uhlenbeck and Ornstein, 1930), Brownian

bridge process (Dudley, 2002), and fractional Brownian motion (Mandel-

brot and Van Ness, 1968) are all Gaussian.

Recently, GPs have gained popularity in various machine learning prob-

lems. GPs have been utilized in classifying EEG (electroencephalogra-

phy) signal patterns (Zhong et al., 2008) and in segmenting annotation

sequences (Altun et al., 2004). In addition, they have been used to produce

regression-based models for inferring transcription factor activities condi-

tioned on gene expression measurements (Gao et al., 2008) and for mod-

eling biomass growth and the efficiency of nitrification (Ažman and Koci-

jan, 2007). Gaussian processes have been used to accelerate the Bayesian
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treatment of nonlinear differential equations. To be more precise, instead

of solving the dynamic system explicitly the authors use Gaussian pro-

cesses for approximating the system behaviour (Calderhead et al., 2009).

Similarly, GPs together with variational approximation have proved use-

ful in studying general stochastic differential equations by approximating

their trajectories with a GP prior (Archambeau et al., 2007).

Importantly, GPs do not scale well with the number of data points n

due to the computational complexity O(n3) of the conventional matrix in-

version implementation. To overcome this limitation, several computa-

tionally more efficient approximative approaches have been proposed to

enable Gaussian process inference to scale up (Trecate et al., 1999; Csató

and Opper, 2002; Smola and Bartlett, 2001). A subset of different approx-

imative approaches are reviewed in (Quiñonero-Candela and Rasmussen,

2005; Quiñonero-Candela et al., 2007). Finally, Chalupka et al. (2012)

have defined an unbiased benchmark framework and studied the merits

of different approximation techniques. In the next section we will define

GPs formally.

4.1.1 Gaussian Process Definition

A stochastic process is defined as follows

Definition 1. A stochastic process f on an index set X is a collection of

random variables {fx, x ∈ X} (Parzen, 1987).

The Kolmogov extension theorem guarantees that a certain collection of

finite-dimensional distributions will define a stochastic process

Theorem 1. The Kolmogorov extension theorem guarantees that for a con-

sistent family of finite-dimensional distributions Pfx0,x1,...,xk−1
for all pos-

itive k and xi ∈ X , i = 0, 1, . . . , k − 1 there exists a stochastic process

{fx ∈ X}, which is consistent with this family (Gray and Davisson, 2005).

The mean and covariance functions of a stochastic process are defined

as follows

Definition 2. Let {fx, x ∈ X} be a stochastic process with finite second
moments, then its mean and covariance functions are m(x) = E[fx] and

c(x1, x2) = E [(fx1 −m(x1)) (fx2 −m(x2))], respectively (Parzen, 1987).

A Gaussian random field is defined as follows

Definition 3. A real-valued Gaussian random field (GRF) is a random

field f on an index set X , f : X → R
d, such that the collection of random
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variables {fx1 , . . . , fxn} are multivariate Gaussian for each 1 ≤ n < ∞ and

(x1, . . . , xn) ∈ X n.

A real-valued Gaussian process, f : X → R, is a special case of real-

valued Gaussian random fields and it is defined as

Definition 4. A real-valued Gaussian process is a stochastic process f

on an index set X , f : X → R, such that the collection of random vari-

ables (fx1 , . . . , fxn) are multivariate Gaussian for each 1 ≤ n < ∞ and

(x1, . . . , xn) ∈ X n.

Because in this thesis GPs are used instead of GRFs we present the

required theory in the context of GPs. The following theorem guarantees

that Gaussian processes are fully defined by the mean and covariance

functions.

Theorem 2. If m : X → R is a continuous linear functional and c : X ×
X → R a continuous bilinear nonnegative functional, then there is exactly

one (up to equivalence) Gaussian process f whose mean function is mf = m

and covariance function is cf = c (Denk et al., 2003).

To prove this one can use the Kolmogorov extension theorem after show-

ing that all the finite-dimensional Gaussian distributions are fully param-

eterized by the mean vectors and covariance matrices.

The function-space view of Gaussian processes, where they can be seen

as distributions over functions, is natural in the regression context. For-

mally, a Gaussian process, i.e., the distribution over function f : X → R,

is defined as

f(x) ∼ GP (
m(x), k(x,x′)

)
, (4.1)

where the mean function m(x) is used as a proxy for the unknown mean

of the function

m(x) = E [f(x)] , ∀x ∈ X (4.2)

and similarly the covariance function k(x,x′) is used to capture the co-

variances between the function values

k(x,x′) = E
[
(f(x)−m(x))

(
f(x′)−m(x′)

)]
, ∀x,x′ ∈ X . (4.3)

The Wiener process which is a Gaussian process and the key component

in many stochastic differential equation models, has the mean function

m(t) = 0 and covariance function k(t1, t2) = min(t1, t2). In general, the

exact forms of the mean and covariance functions of the studied process
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are unknown (especially in the machine learning context). Therefore, the

modeling includes the step of choosing the mean and covariance functions.

Importantly, not all functions k : X × X → R are valid covariance func-

tions:

Definition 5. A kernel k : X × X → R is a valid covariance function if it

is symmetric, k(x,x′) = k(x′,x), and fulfills the nonnegative definiteness

requirement∫
k(x,x′)f(x)f(x′) dμ(x) dμ(x′) ≥ 0, ∀f ∈ L2(X , μ), (4.4)

where μ is a measure on the input space X and L2 is the set of square

integrable functions.

The matrices generated using a nonnegative definite kernel, [K]i,j =

k(xi,xj), are nonnegative definite. Additionally, if the covariance function

k can be written as a function of τ = x − x′, then it is stationary. Finally,

if it is a function of |τ |, then it is isotropic.

4.1.2 Selection of Covariance Function

Selection of the covariance function is a fundamental step in Gaussian

process modeling. This stems from the fact that the covariance function

is used to assess the similarity between data points. Consequently, the

covariance function encodes our assumptions about the properties of the

underlying process of interest, such as stationarity, smoothness and pe-

riodicity (Rasmussen, 2004). Rasmussen (2004) discusses various covari-

ance functions together with their properties and example applications,

and presents the necessary theory for formulating new kernel functions.

In some cases, we might either know the exact covariance structure of

the process or have some prior knowledge of it. More often, the covariance

structure is completely unknown in practical problems. A manual inspec-

tion of the data can reveal some properties of the underlying process, and

thus guide the selection of the covariance function (Shi and Choi, 2011).

Unfortunately, the aforementioned approach is subjective in nature and

it is limited in practice to one- and two-dimensional cases (Shi and Choi,

2011). Importantly, applicability of different covariance functions for a

given modeling task can be also assessed in more quantified manner. Two

commonly used approaches to do this are Bayesian model selection and

cross-validation methods (Rasmussen, 2004). Different model selection

techniques are discussed in more detail in Section 4.3.

45



Statistical Inference

4.1.3 Gaussian Processes in Regression Analysis

Next we will briefly describe how Gaussian processes can be applied for

regression problems in which the aim is to estimate a mapping f : X → R

based on the known input and output pairs. Gaussian processes provide

a framework for fully probabilistic nonparametric regression, where the

assumptions about the modeled process, such as smoothness, are taken

into account by decoding them into the mean and covariance functions.

Importantly, the Gaussian process regression framework is not limited

to modeling mappings f : Rd → R as long as the mean and covariance

functions can be defined in a meaningful way.

This paragraph follows the material presented by Rasmussen (2004).

Let D be a list of length N containing the observed noiseless data consist-

ing the input (x) and output (f ) pairs, i.e., D = ((xi, fi)) , i = 1, 2, . . . , N .

Moreover, denote the list of inputs and outputs as X and f , respectively.

Then under the Gaussian process assumption, f(x) ∼ GP(m(x), k(x,x′)),

the joint probability distribution is f ∼ N (m(X),K(X,X)), where [m(X)]i =

m(xi) and [K(X,X)]i,j = k(xi,xj). To use the GP regression model for pre-

dicting the output f∗ with the input X∗ we first write the joint probability

distribution of f and f∗⎛
⎝ f

f∗

⎞
⎠ ∼ N

⎛
⎝
⎛
⎝m(X)

m(X∗)

⎞
⎠ ,

⎛
⎝K(X,X) K(X,X∗)

K(X∗, X) K(X∗, X∗)

⎞
⎠
⎞
⎠ , (4.5)

and by conditioning on X, f and X∗

f |X, f , X∗ ∼ N (mf |X,f ,X∗ ,Kf |X,f ,X∗). (4.6)

wheremf |X,f ,X∗ = m(X∗)+K(X∗, X)K(X,X)−1 (f −m(X)) andKf |X,f ,X∗ =

K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗).

The analytical tractability of GPs is not limited to the theoretical noise-

free setting as the following example illustrates. Let us assume Gaussian

process prior for the unknown function values f , f |X ∼ N (m(X),K(X,X)),

and the Gaussian i.i.d. noise model ε ∼ N (0, σ2
n), where σ2

n is the noise

variance. Then the likelihood of the observed data, y = f(x) + ε, is

N (f , σ2
nI). Under this model, the predictive distributions can be expressed

analytically similarly as in Equations (4.5) and (4.6). Moreover, the marginal-

ization over all the possible Gaussian process realizations f is analytically

tractable

p(y|X) =

∫
p(y|f , X)p(f |X) d f . (4.7)
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4.1.4 Linear Transformations

Similarly as in the case of Gaussian random variables the Gaussianity

of Gaussian processes is preserved under linear transformations. This

property of GPs under linear transformations is reviewed in (Murray-

Smith and Pearlmutter, 2005) with applications. Moreover, this property

is convenient while infering latent variables which have undergone lin-

ear transformations and linear transformations can be used for placing

contraints on the unknowns.

Consequently, the derivatives and integrals of Gaussian processes are

still Gaussian processes. For example, the Gaussian process ḟ(t) of the

partial derivative with respect to t of a Gaussian process f(t)

ḟ(t) =
∂f(t)

∂t
, (4.8)

is defined by the followingmean functionmḟ (t), covariance function kḟ ,ḟ (t, t
′)

and cross-correlation function kḟ ,f (t, t
′)

mḟ (t) =
∂m(t)

∂t
(4.9a)

kḟ ,ḟ (t, t
′) =

∂2k(t, t′)
∂t∂t′

(4.9b)

kḟ ,f (t, t
′) =

∂k(t, t′)
∂t

, (4.9c)

which are needed for stating the predictive distribution for ḟ(t). A linear

integral transformation applied to Gaussian process f(t) parameterized

by mf (t) and kf (t, t
′) has the following form

g(t) =

∫
A(t, τ)f(τ) d τ, (4.10)

where A is the kernel defining the integral transformation. To state the

predictive distribution of the transformed Gaussian process g(t) we need

the mean function mg(t), covariance function of g, kg,g(t, t′), and cross-

correlation function between f and g, kg,f (t, t′) (Ogorodnikov and Prigarin,

1996)

mg(t) =

∫
A(t, τ)mf (τ)dτ, (4.11a)

kg,g(t, t
′) =

∫ ∫
A(t, τ)kf,f (τ, τ

′)A(t′, τ ′)dτ dτ ′, (4.11b)

kg,f (t, t
′) =

∫
A(t, τ)kf,f (τ, t

′)dτ. (4.11c)

The presented differential and integral transformations generalize to higher

dimensions.
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4.2 Parameter Inference

In this section we briefly introduce the concepts of point estimates and

posterior estimates, and their major conceptual differences. The aim of

parameter inference is to construct an estimator for estimating a value of

a given parameter based on the data. Importantly, this is usually done by

stating some requirements that the optimal estimator should satisfy.

4.2.1 Point Estimation

Briefly, a point estimator calculates a single value as an estimate of the

parameter of interest. In this section we will describe point estimators

and the main concepts related to them.

An estimator θ̂ is an unbiased estimator of θ if E[θ̂] = θ (the expectation

is taken with respect to data) for every possible value of θ (Kay, 1993).

That is, if the estimator θ̂ is unbiased, then its probability distribution is

centered around the true parameter value θ. Importantly, depending on

the problem there might not be an unbiased estimator, or there could be

an unique or nonunique unbiased estimator (Kay, 1993). A related im-

portant concept to the unbiasedness is the consistency of an estimator.

That is, if an estimator θ̂ is consistent, then it will convergence in prob-

ability to the true value of the parameter θ as the number of data points

increases indefinitely (Kay, 1993). Notably, consistency and unbiasedness

are different concepts. There are simple examples demonstrating that an

unbiased estimator is not necessarily consistent and vice versa.

The variances of the unbiased estimators can be used as a measure

for their “goodness”, and thus used as a criterion to choose the estima-

tor with minimal variance. Thus, the minimum variance unbiased es-

timators (MVUEs) are a well-studied and important class of estimators

in practical problems (Kay, 1993). The Cramér-Rao inequality gives a

lower bound for the variance of any unbiased estimator; that is, the vari-

ance is at least as high as the inverse of the Fisher information (the ex-

pected value of the observed information) (Kay, 1993). Clearly, if the es-

timator attains the Cramér-Rao lower-bound, then it has to be an MVUE

estimator. Additionally, an estimator is called efficient if it attains the

Cramér-Rao lower-bound for all the parameter values (Kay, 1993). Fi-

nally, various techniques exist for finding estimators based on different

assumptions and requirements. To mention a couple of the techniques:

the Rao-Blackwell theorem based on the use of sufficient statistics for de-
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riving estimators, and the method of moments for finding representations

of various distribution characteristics (Kay, 1993).

In some practical problems the aforementioned techniques to produce

estimators are not applicable; thus, more generally applicable techniques

are desired. For instance, the maximum likelihood estimators (MLEs) are

generally applicable with many desired properties, although, MLEs do

not have any optimality properties with finite sample sizes. Suppose the

data D is distributed according to a probability density function p(D|θ),
then the likelihood function is defined as L(θ;D) = p(D|θ). Simply, the
maximum likelihood estimator of θ is defined to be the parameter value

which maximizes the likelihood θMLE = argmaxθ L(θ;D). Importantly, the

maximum likelihood estimators have many convenient properties. For

example, they are usually relatively easy to calculate. If an efficient es-

timator exists, then it is guaranteed to be the MLE. Additionally, they

are invariant under one-to-one transformations of the parameters (Kay,

1993).

Next, let us consider an example of ML estimation in the context of

Gaussian processes. First, let us assume a Gaussian process prior p(f |X, θ)

and Gaussian likelihood p(y|f , X, θ). Then, the marginal likelihood ob-

tained marginalizing over all the possible Gaussian process realizations f

is analytically tractable

p(y|X, θ) =

∫
p(y|f , X, θ)p(f |X, θ) d f . (4.12)

Unfortunately, even under this simple Gaussian model, the full Bayesian

inference is not straightforward because the hyperparameters θ are not

analytically marginable. Therefore, a widely used approach has been the

type II maximum likelihood (ML-II) principle. ML-II produces a point

estimator by maximizing the marginal likelihood with respect to the hy-

perparameters θML-II = argmaxθ p(y|X, θ) (Berger, 1985). Often, the ML-II

principle is referred to as the empirical Bayes principle in literature.

4.2.2 Bayesian Inference

The Bayesian and frequentist inference approaches have two major dif-

ferences. First, instead of assuming that an unknown model parameter

has a deterministic value, as in the frequentist inference, the Bayesian

analysis considers the parameter to be a random variable with a proba-

bility distribution. The second difference concerns the analysis outcome.

The Bayesian inference can produce a probability distribution describing

49



Statistical Inference

what is known about the parameter of interest given the data; whereas,

the frequentist inference produces a conclusion in the form of “yes” or “no”

derived, e.g., from a significance test. Importantly, neither of the conclu-

sions derived using the frequentist hypothesis testing have an assigned

probability of being correct or false. These differences in the Bayesian

and frequentist inference originate from the different interpretations of

probability. That is, the frequentists interpret the probability of an event

as the limit of its relative frequency in repeated experiments. Whereas,

in a Bayesian setting, probability is viewed as a degree of belief and is

explicitly subjective. More detailed differences between Bayesian and fre-

quentist approaches along with practical comparisons can be found, e.g.,

in (Bartholomew, 1965; Bayarri and Berger, 2004)

Bayes’ theorem provides a way to connect the distributions of θ before

and after obtaining data D. First, let us denote the distribution of θ before
observing any data (prior distribution), as p(θ|α), where α is the hyperpa-
rameter of θ. After accounting for the data D, the posterior distribution of
θ, the updated prior, is

p(θ|D, α) =
p(D|θ)p(θ|α)∫

θ p(D|θ)p(θ|α) d θ =
p(D|θ)p(θ|α)

p(D|α) , (4.13)

where p(D|θ) is the distribution of D conditioned on θ and p(D|α) is the
marginal likelihood distribution of D. Let us assume that we observe

additional data D′ after observing the data D. Then we can use the poste-
rior distribution p(θ|D, α) as the prior distribution in Equation (4.13) and

update it as p(θ|D,D′, α) in the light of new data D′. This procedure is

referred as sequential Bayesian updating.

Often, the Bayesian analysis of models based on practical problems

leads to analytically intractable quantities, because of the marginaliza-

tion of the distributions while calculating the posterior distributions. For

a long time, this limited the use of Bayesian methods. Luckily, the dis-

covery of Markov chain Monte Carlo (MCMC) methods, with increased

computing resources, enabled the use of Bayesian analysis in practical

problems.

4.2.3 Markov Chain Monte Carlo

MCMCmethods provide a general framework for solving high-dimensional

integrals and optimization problems. Briefly, their operation is based on

sampling a Markov chain whose equilibrium distribution is the target dis-

tribution. The use of various MCMC methods, especially in the context of
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machine learning problems, is reviewed in (Andrieu et al., 2003). In ad-

dition, Andrieu et al. (2003) list some problems where MCMC approaches

have shown to be effective. For instance, MCMC methods have been used

in Bayesian inference, optimization, statistical mechanics and penalized

model selection.

Next we will briefly cover the basic idea behind the MCMC techniques.

In a general form, we can state the problem of calculating the value of a

high-dimensional integral

I = Ep[g(θ)] =

∫
g(θ)p(θ) d θ, (4.14)

where g(θ) is a function of θ and p(θ) is a target distribution (Robert and

Casella, 2004). For instance, the target distribution could be a posterior

distribution as in the Bayesian setting. The Monte Carlo integration tech-

niques approximate the value of Equation (4.14) by the empirical average

Î = ḡM =
1

M

M∑
i=1

g(θ(i)), (4.15)

where samples θ(i), i = 1, . . . ,M are sampled from p(θ) (Robert and Casella,

2004). When the samples θ(i), i = 1, . . . ,M are independent, then the

strong law of large numbers guarantees that ÎM → I as M → ∞ (Robert

and Casella, 2004). Importantly, the form of p(θ) might be known only

up to an unknown normalization constant; thus, independent sampling

of p(θ) might not be feasible. However, to overcome this problem one can

relax the requirement of drawing independent samples. That is, to con-

struct a Markov chain where the next sample depends only on the current

sample and is drawn using a transition kernel. If the Markov chain is er-

godic, i.e., aperiodic, irreducible, and positive recurrent, and E[g(θ)] < ∞,
then based on the ergodic theorem with probability 1

lim
M→∞

1

M

M∑
i=1

g(θ(i)) =

∫
g(θ)π(θ) d θ, (4.16)

where π(θ) is the stationary distribution (Robert and Casella, 2004). The

previous remark gives the theoretical foundation of the various MCMC

methods.

The twomost widely usedMCMCmethods are Gibbs sampler andMetropolis-

Hastings algorithm, along with various modifications (Robert and Casella,

2004). Briefly, the Gibbs sampler technique updates the parameter vector

θ = (θ1, θ2, . . . , θN )T element by element iteratively. To be more precise,

the jth element is sampled from the conditional distribution, where the
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posterior distribution p(θ|D) is conditioned on the other N − 1 parameters

p(θj |θ(i)1 , . . . , θ
(i)
j−1, θ

(i−1)
j+1 , . . . , θ(i−1)

n ,D), (4.17)

where the superscript denotes the iteration index (Robert and Casella,

2004). The advantage of Gibbs sampling approach is the “out of the box”

functionality due to the lack of free parameters. But, the drawback is the

requirement for sampling directly from the conditional distributions. If

sampling from the conditional distribution is not feasible, then one can

use the generally applicable Metropolis-Hastings algorithm.

The Metropolis-Hastings algorithm generates random walks by utiliz-

ing user-definable proposal distributions. That is, the proposal distribu-

tion q(θ∗|θ(i)) is used for drawing samples based on the current state θ(i)

of the chain by applying the acceptance or rejection scheme (Smith and

Roberts, 1993)

θ(i+1) =

⎧⎪⎨
⎪⎩
θ∗ if p(θ∗|y)q(θ(i)|θ∗)

p(θ(i)|y)q(θ∗|θ(i)) > u

θ(i) otherwise,
(4.18)

where u ∼ U(0, 1) is a sample from the uniform distribution (Robert and

Casella, 2004). Due to the added flexibility, the choice of proposal distri-

bution has an effect on the convergence of the chain. Thus obtaining an

efficient sampler often involves manual tuning of the proposal distribu-

tion.

As discussed in the previous section, computation of posterior distribu-

tions in Bayesian inference often leads to intractable integrals. In many

cases, the Monte Carlo approach is not feasible for those problems because

the direct sampling from the target distribution is not possible. However,

this limitation can be bypassed by using a MCMCmethod for constructing

a Markov chain whose stationary distribution is the target distribution.

The states of a Markov chain after it has converged to its stationary distri-

bution can be treated as samples from the target distribution. Moreover,

these samples can be used for estimating the target distribution or its

characteristics, e.g., the expected value with a credible interval.

4.3 Model Selection

Model selection is the problem of selecting an optimal model from a set of

considered models. For instance, determining the degree of a polynomial

regression model based on its estimated predictive performance, or other
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measures, is a model selection problem. Clearly, the definition of the op-

timality is subjective; additionally, one has to define the set of considered

models. Thus, the problem of model selection is fundamental in nature.

Many different criteria and procedures based on various foundations for

model selection have been proposed, including Bayes factor (Lavine and

Schervish, 1999), Akaike information criterion (Akaike, 1974), Bayesian

information criterion (Schwarz, 1978), Deviance information criterion (Spiegel-

halter et al., 2002), minimum description length (Hansen and Yu, 2001),

bootstrap procedure (Shao, 1996) and cross-validation (Arlot and Celisse,

2010). In this thesis the focus is on the model selection using model pos-

terior probabilities and Bayes factors.

4.3.1 Bayesian Model Selection

The aforementioned Bayesian analysis framework provides a natural and

sound way to assess the degrees of belief of alternative hypotheses after

observing data. So, let there be M alternative models whose prior prob-

abilities are p(Mi), i = 1, . . . ,M . Then, the posterior probability of the

modelMk given the data D is

p(Mk|D) =
p(D|Mk)p(Mk)∑M
i=1 p(D|Mi)p(Mi)

, (4.19)

where p(D|Mk) is the marginal likelihood of the modelMk

p(D|Mk) =

∫
p(D|θk,Mk)p(θk|Mk) d θk, (4.20)

where the model specific parameters θk are marginalized out. The model

posterior probabilities can be used to rank the models, and quantify the

degrees of belief of the considered alternative models. Especially in the

context of biochemical modeling, a selected set of methods for carrying out

the Bayesian model selection are reviewed in (Vyshemirsky and Girolami,

2008).

Ensemble learning is a technique where multiple models are used simul-

taneously for obtaining better predictive performance (Dietterich, 2000).

In some applications, it is more important to produce accurate predic-

tions than to identify a single optimal model. There are various ensemble

learning methodologies, such as Bayesian model averaging (BMA) (Hoet-

ing et al., 1999; Wasserman, 2000), error-correcting output (Dietterich and

Bakiri, 1995), bagging (Breiman, 1996) and boosting (Duffy and Helm-

bold, 2002). Actually, BMA provides a natural way to carry out ensemble

learning (Hoeting et al., 1999); let there be M models Mk, k = 1, . . . ,M ,
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then the posterior distribution of future observable Δ given data D is

p(Δ|D) =

M∑
k=1

p(Δ|Mk,D)p(Mk|D), (4.21)

which is the weighted average of the individual models, where the weights

are defined by the model posterior probabilities as calculated in Equa-

tion (4.19).

Interestingly, the organizers of the Dialogue on Reverse Engineering As-

sessment and Methods (DREAM) project studied the performance of en-

semble learning in a realistic setting. They carried out an analysis where

they blindly combined the online contest submissions inferring gene regu-

latory networks (Marbach et al., 2012). Their conclusion was that none of

the individual methods outperformed across the different data sets. More

important, the constructed ensemble model yielded a highly robust perfor-

mance across the data sets, illustrating the benefits of ensemble learning

(Marbach et al., 2012).
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5. Temporal Modeling of Gene
Expression

In this chapter we will cover Publication I and Publication III.

5.1 Temporal Modeling of Microarray Data

In this section we will cover the key ideas of the LIGAP method presented

in Publication I. Briefly, LIGAP is a methodology for studying kinetic be-

haviour of gene expression in microarray data between any number of bio-

logical conditions. Coffey and Hinde (2011) reviewed regression, differen-

tial expression, discriminant, and clustering methods for analysis of time

series microarray data. Moreover, various spline-based methods, general-

ized F-tests and hierarchical error, and empirical Bayes models have been

presented for analyzing microarray data. For instance, ANOVA (analysis

of variance) based methodology, TANOVA, defines different ANOVA struc-

tures and searches for the optimal one by evaluating the effects and sig-

nificances of the factors without accounting for the temporal correlation

(Zhou et al., 2010). Whereas, a regression spline based method, EDGE,

provides comparisons between arbitrary number of conditions, but does

not quantify the differential expression in a condition-specific manner

(Storey et al., 2005). Finally, Stegle et al. (2010) proposed an approach

based on GPs to determine the time windows where a gene is differen-

tially expressed. Unfortunately this method is limited to analyzing only

two conditions.

In Publication I, we use LIGAP to study kinetic gene expression profiles

between activated CD4+ T cells (Th0) and polarized CD4+ T cells subsets

Th1 and Th2. We present a temporal and nonstationary model based on

the existence of temporal correlation between measurements from nearby

time-points. The magnitude of the temporal correlation is inferred and

modeled with a temporal Gaussian process regression model (Äijö et al.,
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2012).

5.1.1 Nonstationary Time Series

Nonstationarity of a time series is determined based on the following cri-

terion

Definition 6. A time series x1, x2, . . . , xN is said to be nonstationary if

∃m ∈ {1, 2, . . . , N} so that the joint probability distribution of xi, xi+1, . . . , xi+m−1

depends on the time index i, otherwise the time series is stationary.

A less formal definition could be the following: if the time series is sta-

tionary, then its statistical characteristics do not change over time.

Especially if a cell population is perturbated using an external stimu-

lus, such as activation of CD4+ T cells upon antigen exposure, the cells

undergo a rapid differentiation program, followed by a transition to an

equilibrium (Lund et al., 2003, 2007). To cover the strongly transient

changes, time-course experiments are designed to more frequently collect

samples during the beginning of the differentiation program. Therefore,

the dynamic model used in the analysis should, ideally, model the non-

stationarity in the time series. In the Gaussian process regression frame-

work, this is achieved using a nonstationary covariance function, e.g., the

neural network covariance function (Rasmussen, 2004)

kNN(t, t
′) =

2

π
arcsin

(
2[1 t]Σ[1 t′]T√

(1 + 2[1 t]Σ[1 t]T)(1 + 2[1 t′]Σ[1 t′]T)

)
, (5.1)

where Σ = diag(l−2), the square brackets are used to denote row vectors,

and l is the length-scale parameter. Alternatively, the length-scale pa-

rameter could be a function of time instead of treating it as a scalar in the

squared exponential covariance function. Figure 5.1 compares the Gaus-

sian process regression fits obtained using stationary and nonstationary

covariance functions.

5.1.2 Model Definitions for LIGAP

Let us assume that there are N different biological conditions to compare.

Then in theory, a gene could have from 1 toN distinct expression patterns.

Importantly, at the limit N = 2, the problem simplifies to the traditional

detection of differential expression between two time series. Collectively,

the maximum number of distinct differential expression patterns among

N conditions is given by the N th Bell number, which gives the number of
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Figure 5.1. An example showing the difference between stationary and nonsta-
tionary Gaussian process regressions. (a) The dots correspond to the
triplicate measurements taken at 0, 0.5, 1, 2, 4, 6, 12, 24, 48 and 72 hours.
The black solid curve depicts the mean of the fitted Gaussian process regres-
sion model with the squared exponential covariance function. (b) As in (a) but
here a nonstationary covariance function, the neural network covariance, is
used in calculating the covariance matrix. In both cases the hyperparameters
were selected so that the marginal likelihood was maximized.

Figure 5.2. An example showing the partitions of the sets having three and four
elements. (a) The sets with three elements have five different partitions,
whereas the sets with four elements have 15 partitions as depicted in (b).

distinct partitions of a set (Comtet, 2010). However, in practice, genes do

not express such a variety of expression patterns (Hornshøj et al., 2007;

Ramsköld et al., 2009).

Figure 5.2 illustrates the partioning of experimental conditions in the

context of differential expression analysis. In that example, all the possi-

ble distinct partitions of three or four experimental conditions are illus-

trated.

Let us denote the data corresponding to the condition j as Dj and over

the conditions as D = {D1,D2, . . . ,DN}. Moreover, let models {Mi}, i =
1, . . . , NBell correspond to the set of all the partitions of index set {1, . . . , N}.
Then, the likelihood of the data D given the modelMi and its parameters
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θi by assuming independence is

p(D|f ,Mi, θi) =
∏

I∈Mi

p({Dl}l∈I |fI , θI), (5.2)

where the product is calculated over the disjoint subsets I defined by

modelMi, each of which have their own parameter set θI .

5.1.3 Model Posterior Distribution and Condition Specificities

Under the Gaussian noise model, which is widely used for log-transformed

microarray intensity values, the marginalization over the function values

f is analytically tractable. However, the marginalization over the hyper-

parameters θ is analytically intractable. Thus, we resort to the ML-II

approach, where the hyperparameter values are selected to maximize the

marginal likelihood in which f has been integrated out

θ̂ML-II = argmax
θ

p(D|M, θ). (5.3)

A natural approach to detect differential expression between conditions

is to study the explanatory capabilities of the alternative modelsMi, i =

1, . . . , NBell, which can be quantified by deriving the posterior distribution

over the models. The posterior probability of the modelMi is

p(Mi|D, θ̂ML-IIi ) =
p(Mi)p(D|Mi, θ̂

ML-II
i )∑NBell

j=1 p(Mj)p(D|Mj , θ̂ML-IIj )
. (5.4)

If no prior knowledge is available, then often the prior probabilities of the

alternative models are assumed to be equal, p(Mi) = p(Mj) for all i and

j. In some applications, such as biomarker discovery, the specificity of the

expression pattern is quantified to a given condition. For those purposes,

we can define and calculate the following specificity score based on the

model posterior probabilities

p(“condition j has distinct pattern”) =
∑

Mi∈{Mk|{j}∈Mk,k=1,...,NBell}
p(Mi|D, θML-IIi ),

(5.5)

where the sum is calculated over the models in which Dj is modeled sep-

arately.

5.1.4 Summary of Results

The starting point in Publication I was previously published time-course

measurements of Th0 (activated T helper), Th2 (T helper 2) cells (Elo

et al., 2010), and a previously unpublished time-course data set of Th1 (T
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helper 1) cells. The human naïve CD4+ T cells were isolated from um-

bilical cord blood samples, activated, and polarized as described in (Elo

et al., 2010; Äijö et al., 2012). Using the novel LIGAP methodology, we

analyzed the three time-courses in parallel to gain further insight into

the molecular mechanisms driving human T cell differentiation and func-

tion. The obtained gene lists contained both known and novel genes in-

volved in T cell differentiation in humans, providing a valuable resource

for biomarker purposes, as well as, further functional studies. Moreover,

several novel genes were experimentally validated at the protein and gene

expression levels. Interestingly, we identified a group of reciprocally regu-

lated genes between Th1 and Th2 lineages. The group of reciprocally reg-

ulated genes included, among others, IFNG and TBX21, which are well-

known Th1 signature genes known to suppress Th2 activity (Zhu et al.,

2010).

5.2 Temporal Modeling of Sequencing Data

In this section we cover the methodology presented in Publication III.

DyNB is the first statistically sound methodology to study and detect dif-

ferential temporal behavior of gene expression trajectories from RNA-seq

data. In addition, it can be used to estimate differential differentiation

efficiencies between conditions.

Various methodologies for identifying differentially expressed genes from

RNA-seq data have been proposed. Some of the methodologies are re-

viewed and compared using simulated and real data in several recent re-

view articles (Kvam et al., 2012; Soneson and Delorenzi, 2013; Wesolowski

et al., 2013). For instance, the methodologies DESeq (Anders and Hu-

ber, 2010) and edgeR (Robinson et al., 2010) have been widely used. DE-

Seq and edgeR are based on the negative binomial distribution that has

gained popularity in modeling biological variation in RNA-seq based gene

expression data because of its ability to model overdispersion. Overdis-

persion occurs when the variance of the read count is significantly higher

than the corresponding read count. DESeq and edgeR are mainly based on

the same statistical assumptions, but the two methods differ in how nor-

malization is done and overdispersion is estimated. DESeq estimates the

overdispersion using a local regression approach based on a generalized

linear model of the gamma family. Whereas, edgeR uses a maximum like-

lihood approach conditioned on the total read count per gene followed by
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an empirical Bayes procedure for regularizing the dispersion estimates.

Clearly, the use of the negative binomial distribution leads to a non-

Gaussian measurement model (see Publication III). Consequently, the

posterior distribution of the considered Gaussian process model is an-

alytically tractable. Therefore, the Bayesian model inference is carried

out numerically using the Metropolis-Hastings algorithm. All the details

are presented in Publication III. The presented methodology is used to

analyze previously unpublished data sets of kinetic gene expression in

activated CD4+ human T and Th17 cells. The results demonstrate the

effectiveness of this methodology.

5.2.1 Statistical Model of Read Counts

When RNA-seq was introduced, the count data was modeled using the

Poisson distribution. But it was quickly observed that the assumption

of Poissonity led to an underestimation of the intrinsic biological vari-

ance associated with high read counts between biological samples. The

aforementioned intrinsic biological variance is caused by cell population

hetererogeneity, intrinsic noise in transcription, and differences between

the cell populations. Importantly, the negative binomial distribution al-

lows more flexible modeling of the variance than the Poisson distribution.

Therefore, it has been proposed that the negative binomial distribution is

superior to the Poisson distribution for modeling sequencing read counts

across biological samples (Anders and Huber, 2010; Robinson et al., 2010)

Y ∼ NB(r, p), (5.6)

where r is a predefined number of failures and p ∈ (0, 1) is the probability

of success. Moreover, the negative binomial distribution can be equiva-

lently expressed using the mean μ and variance σ2

μ = E[X] =
pr

1− p
, σ2 = Var[X] =

pr

(1− p)2
(5.7)

because we can express p and r using the first two moments

p =
σ2 − μ

σ2
, r =

μ2

σ2 − μ
. (5.8)

Then, let i be the gene of interest, j denote the sample of interest and ρ

be a function that maps the sample index to the corresponding biological

condition. Moreover, let Yi,j be the random variable representing the read

count of the gene i in the sample j

Yi,j ∼ NB
(
μi,j , σ

2
i,j

)
, (5.9)
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where we have used the mean and variance parameterization as shown in

Equation (5.8). In practice, different samples do not have equal sequenc-

ing depths, and thus the raw read counts are not directly comparable. The

samples, i.e., the read counts, are made comparable by using the sample

specific size factors sj . These size factors are estimated using the median

of the ratios of the observed counts as presented by Anders and Huber

(2010). Instead of scaling the raw observed read counts the scaling is ap-

plied to the condition and gene-specific parameter under estimation which

is denoted as qi,ρ(j), that is

μi,j = qi,ρ(j)sj , (5.10)

where qi,ρ(j) represents the condition specific mean parameter, which is

proportional to the unknown sample and gene-specific concentration. The

estimation of the variances σ2
i,j directly per gene, and independently from

the mean μi,j , could be unstable because of the large biological variance

and small number of replicates. Therefore, DESeq uses the following ex-

tended Poisson variance formulation

σ2
i,j = μi,j + s2jv(qi,ρ(j)), (5.11)

where v : R+ → R
+ is a smooth function of qi,ρ(j). This function is es-

timated using a robust regression approach by assuming that the genes

yielding similar read counts should have similar variances. More details

can be found from (Anders and Huber, 2010).

5.2.2 Temporal Extension to Read Count Data Model

The current methodologies for studying differential gene expression in

RNA-seq data do not take into account the temporal dimension. There-

fore, in Publication III we presented a novel temporal methodology based

on the statistical read count model presented by Anders and Huber (2010).

The temporal dimension is incorporated into the analysis by assuming

that the counts for a given gene are temporally correlated across the time

series. In practice, this is achieved by generalizing the scalar parameter

qi,ρ(j) to be a function of time, qi,ρ(j)(t). The function qi,ρ(j)(t) represents

the kinetics of gene expression, i.e.,

μi,j(t) = qi,ρ(j)(t)sj . (5.12)

Consequently, the variance defined in Equation (5.11) is a function of time

σ2
i,j(t) = μi,j(t) + s2jv(qi,ρ(j)(t)). (5.13)
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To estimate the smooth function qi,ρ(j)(t) we set a zero-mean Gaussian

process prior with the squared exponential covariance function on qi,ρ(j)(t).

That is, qi,ρ(j)(t) ∼ GP(0, k(t, t′)). We denote qi,ρ(j) = {qi,ρ(j)(t)}t. First, the
likelihood of the observed time series data y = {yi,j(t)}, where t, i and j

denotes the time-point, gene and replicate, respectively, under the nega-

tive binomial likelihood assumption is

p(y|qi,ρ(j), X, θ) =
∏

t∈X,j∈{1,...,M}

Γ
(
yi,j(t) + ξ(qi,ρ(j)(t))

)
yi,j(t)! Γ

(
ξ(qi,ρ(j)(t))

) (5.14)

× (
1− ζ(qi,ρ(j)(t))

)ξ(qi,ρ(j)(t)) ζ(qi,ρ(j)(t))yi,j(t),
where X is the set of time-points, θ is the set of hyperparameters (see

Publication III) and

ξ(qi,ρ(j)(t), j) =
(qi,ρ(j)(t)sj)

2

σi,j(t)2 − qi,ρ(j)(t)sj
, ζ(qi,ρ(j)(t), j) =

σi,j(t)
2 − qi,ρ(j)(t)sj

σi,j(t)2
.

(5.15)

Importantly, under the negative binomial likelihoodmodel the marginal-

ization over the function values qi,ρ(j) or over the hyperparameters θ is

not analytically tractable. Therefore, a MCMC approach was used in the

model inference as described later.

5.2.3 Inference of Differential Differentiation Efficiency

Observed variance between the samples within a condition ρ(j) can be

due to intrinsic and extrinsic stochasticity in gene expression. Alterna-

tively, the observed variance could simply be due to a slight change in the

experimental setting. The latter type of variance may be easier to detect

and study, especially, if the effect is systematic and observable across the

time series. Due to the possibility of having differences in experimen-

tal settings, we consider the possibility that the gene expression trajecto-

ries are accelerated or decelerated. Here the acceleration or deceleration

could depend on biological variability or the properties of the given stim-

ulus, such as its strength. This type of transformation can be expressed

as t/kj , j = 1, . . . ,M . Notably, one of the scaling factors kj is set to 1 to

make the model identifiable. An example of the time scaling is depicted

in Figure 5.3.

In the model, the time scaling is taken into account through the Gaus-

sian process qi,ρ(j)(t) by introducing the replicate-specific time scaling pa-

rameter kj . These time scaling parameters are used to scale the temporal

dimension, i.e., qi,ρ(j)(t/kj). The scale parameters ki are in practice un-
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Figure 5.3. An example showing the effects of deceleration and acceleration.
The gray lines show the unknown continuous gene expression trajectories
and the red crosses depict the sampling times 0, 12, 24, 48 and 72 hours. In
the case of k = 9/13 the 72 hour time-point corresponds roughly to the 50
hour time-point in the unscaled time axis (middle panel). Similarly, the 72
hour time-point in the unscaled time space is mapped to the 40 hour time-
point with the scaling k = 9/5 (bottom panel).

known; thus, we first assign prior on them and then marginalize over

them.

5.2.4 Posterior Inference of Temporal Dynamics

Like previously stated, under the negative binomial likelihood p(y|qi,ρ(j), X, θ)

marginalization over the function values qi,ρ(j) is analytically intractable.

Thus, the use of the ML-II approch to optimize the hyperparameter is

not as straightforward or attractive as in the case of Publication I. Con-

sequently, the full Bayesian inference is used on the model. That is, we

marginalize over the function values qi,ρ(j), hyperparameters θ and time-

scaling parameters k

p(y|X) =

∫
p
(
y|qi,ρ(j), X

)(∫ (∫
p
(
qi,ρ(j)|X, θ,k

)
p (θ) d θ

)
p(k) dk

)
dqi,ρ(j).

(5.16)

The traditional numerical quadrature approaches are not applicable due

to multidimensionality of the integrals in Equation (5.16). Thus we re-

sort to the Metropolis-Hastings algorithm (see Publication III). As an

output we get the posterior distribution of the hyperparameters θ and

time-scaling parameters k, and can estimate the marginal likelihood us-
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ing, e.g., the harmonic mean estimator

p(y|X) ≈
(

1

m

m∑
l=1

p(y|X,q(l), θ(l),k(l))−1

)−1

,

where q(l), θ(l),k(l) ∼ p(q, θ,k|y). (5.17)

5.2.5 Quantification of Differential Dynamics

Let us assume that there are two conditions being compared, but the anal-

ysis could be generalized in the same way as presented in Publication I.

The problem of detecting differential expression can be approached by for-

mulating models M0 and M1 for nondifferential and differential expres-

sion, respectively. That is, M0 deals with the pooled data together with

shared parameters, whereasM1 models the two data sets independently

with independent parameters. After estimating the marginal likelihoods

of the models and assuming equal priors we can calculate the Bayes factor

BF =
p(y|X,M1)

p(y|X,M0)
, (5.18)

which quantifies the relative evidence for differential expression.

5.2.6 Summary of Results

The DyNBmethodology was originally developed for analyzing previously

unpublished RNA-seq time-course data sets measured in human acti-

vated T cells and Th17 (T helper 17) cells. The initial DyNB analysis

led to a conclusion that the signature genes, IL17A and IL17F, behaved

systematically differently in one of the biological replicates. Using a ver-

sion of the DyNB model with the addition of temporal scaling factors,

we were able to identify widespread differences between that replicate

and the others. The dynamic behaviour of the signature genes, as well

as many others, were decelerated in this replicate. Moreover, computa-

tionally detected deceleration was experimentally verified by measuring

selected signature Th17 genes in the same cells using a qRT-PCR as-

say. We speculated that the genes showing deceleration similar to the

signature genes have a role in the human Th17 differentiation pathway.

To assess the ability of DyNB to detect differential expression we com-

pared it with DESeq which analyzes time-points independently (Anders

and Huber, 2010). As expected, the gene lists overlapped significantly.

The difference observed could result from the fact that DESeq does not
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model the correlation between time-points or the differential differenti-

ation efficiency and could be more sensitive to changes observed only at

one time-point; hence, the differences observed in the gene lists. Together

these results suggest that the DyNB methodology is able to detect differ-

ential expression between time series. More important, DyNB was able

to estimate systematic differences between replicates, such as differential

differentiation efficiency.
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6. Modeling of Signal Transduction

In this chapter we cover the methodology presented in Publication II. Var-

ious machine learning techniques have been proposed for modeling signal

transduction, such as Bayesian networks (Sachs et al., 2005) and fuzzy

logic (Aldridge et al., 2009). Although these models are easy to handle,

interpret and analyze computationally, they are hard to justify from a

biophysical and mechanistic point of view. Consequently, models based on

ordinary differential equations (ODEs) have been proposed because they

allow definition of dynamic, continuous and mechanistic models (reviewed

in (Aldridge et al., 2006; Chakraborty and Das, 2010)). However, there are

drawbacks with the ODE approaches: ODE models require a parametric

formulation of the model, which can be tedious, difficult, and requires ex-

isting knowledge on the studied phenomenon. Nonetheless, ODEs have

been applied successfully in various modeling applications, e.g., receptor-

dependent mitogen activated protein kinase signaling (Chaudhri et al.,

2010) and the epidermal growth factor driven activation of the extracel-

lular signal–regulated kinase signaling pathway (Xu et al., 2010). Esti-

mation of parameters of a nonlinear dynamic system, expressed using the

differential equation system, is studied from the Bayesian point of view

in (Girolami, 2008).

We propose a flexible nonparametric ODEmodel, which combines the in-

terpretability of parametric models and the ease of nonparametric models.

This is achieved by using a semiparametric ODE model with a nonpara-

metric GP component representing the driving functions. Importantly, the

regulatory functions do not have any explicit free parameters in this for-

mulation. Consequently, we only have to estimate the parameters related

to basal protein level and protein degradation, and the hyperparameters

of the covariance function. The performance of the proposed algorithm

is studied in identifying signaling pathways and learning their dynamics
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from phosphoprotein data.

6.1 Dynamical Model of Signal Transduction

We base our model on a widely used ordinary differential equation model

consisting of basal, regulatory and degradation processes (Barenco et al.,

2006)
dxi(t)

d t
= αi + fi(t)− λixi(t), (6.1)

where αi and λi are the basal and degradation rates, respectively, and

fi(t) is a driving function. The differential equation in Equation (6.1) can

be solved to yield

xi(t) =
αi

λi
+ cie

−λit +

∫ t

0
fi(τ)e

−λi(t−τ) d τ, (6.2)

where ci depends on the initial state xi(0).

6.2 Nonparametric Extension

In practice the function fi in Equation (6.2) is often unknown because

the biological mechanisms of interest are not well understood. To over-

come this we resort to the Gaussian process regression technique. This

approach allows us to use data to carry out probabilistic and nonpara-

metric inference on the regulatory function. Thus, we assign a zero-mean

Gaussian process prior with the squared exponential covariance function

on the regulatory function fi(t). Moreover, we know that xi(t) is also a

Gaussian process because only a linear integral transformation is applied

to fi(x) in Equation (6.2). Consequently, by assuming the squared expo-

nential covariance function we can derive the analytic forms of the mean,

covariance and cross-correlation functions required for the Gaussian pro-

cess representation of xi(t) ∼ GP(mxi(t), kxi(t, t
′)) (see Publication II).

In Publication II, inference of the model was a two-step process as de-

picted in Figure 6.1. First, the Gaussian process model xi(t) is fitted to the

experimental data, i.e., the condition dependent Gaussian processes fi,j(t)

are estimated and the values αi and λi are assumed to be constant across

all conditions. Then, we approximate each inferred regulatory functions

fi,j(t), j = 1, . . . ,M using a single Gaussian process gi(x̂i(t)), where x̂i(t)

is a vector consisting of the phosphoprotein activities of the putative reg-

ulators. This enabled us to model and consider many possible regulatory
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Figure 6.1. A schematic illustration of the two-step inference approach used in
the Sorad methodology. (a) Based on the measurements (green crosses)
continuous Gaussian process representation of fi(t) (orange lines) and xi(t)

(green shaded area) are inferred for each of the conditions separately. (b)
The inferred time-dependent driving functions fi (orange lines) are approx-
imated by a regulatory function gi(xk, xl) (blue lines), which is a function of
the regulatory phosphoprotein activities, to enable the modeling of regulatory
interactions.

interactions between phosphoproteins. The regulatory interactions, i.e.,

how x̂i(t) is defined, could be defined using existing biological knowledge.

Alternatively, x̂i(t) could be defined using data-driven approaches, such

as, cross-validation and Bayesian inference (see Publication II).

6.3 Solving Systems Trajectory

An attractive property of in silico models of biological systems is the ease

and cost-effectiveness of simulating systems’ behaviour under various con-

ditions. For example, one could study how the system will behave over

time under various knockouts or overexpression conditions. Let us as-

sume that using a set of experimental data we have inferred the values of

the parameters αi and λi and functions gi(x̂i(t)). After defining the initial
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state of the system, x(0), and the perturbations in a meaningful manner,

one can simulate the system’s behaviour using any numerical differential

equation solver. The choice of the solver depends on the properties of the

system, such as, variability in the time scales and stiffness. In our appli-

cation, we found the Euler method for solving the systems trajectory was

sufficient.

6.4 Inference for Interventions

One of the long-term goals of building models of various biological sys-

tems is to enable initial hypothesis testing in in silico. For example, an

in silicomodel could be used to identify optimal interventions without the

danger of severe harmful effects. Importantly, the Sorad framework de-

picted in Figure 6.1 allows intervention inference. Suppose a system has

been learnt, i.e., the nonparametric functions and parameters g, α and λ

have been inferred. In addition, let us classify the variables of the sys-

tem to free and fixed variables. The free parameters xfree are the ones

whose trajectories are initially undefined. Whereas, for the fixed parame-

ters xfixed we have a predefined target trajectory which we aim to achieve

by controlling the free parameters. In other words, trajectories of the free

parameters xfree, or a subset of them, are estimated so that the system

produces the desired behaviour specified by the fixed parameters xfixed(t).

An an example, one could use the following cost function

C = ||xfixed(t)− x̂fixed(t)||2 + β||Var[x̂free(t)]||1, (6.3)

where we minimize the Euclidean distance between the trajectories to-

gether with the weighted amount of uncertainty included in the estimated

x̂free(t). Note that the fitting of the fixed parameters xfixed(t) is done by

varying the free parameters xfree(t). Finally, by investigating the esti-

mated behaviours x̂free(t) one can see how the free parameters should be

perturbated (i.e., intervened). Further details can be found from Publica-

tion II.

6.4.1 Summary of Results

In Publication II, we analyzed a part of a publicly available phosphopro-

tein data set (Alexopoulos et al., 2010). The analyzed data subset was

published as a challenge in DREAM (The New York Academy of Sciences,

2009). The data consisted of phosphoprotein levels in a human hepato-
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cellular carcinoma cell line (HepG2) subjected to various perturbations;

for instance, stimulation of cell surface receptors and inhibition of mes-

senger molecules. The DREAM organizers provided a performance metric

for comparing results, which takes into account the prediction in unseen

conditions and the sparseness of the inferred network topology (The New

York Academy of Sciences, 2009).

The Sorad methodology outperformed the methods originally utilized in

the challenge (The New York Academy of Sciences, 2009) by improving

prediction accuracy while maintaining a sparse network topology. More-

over, using an independent test data set we demonstrated the applicabil-

ity of the proposed intervention prediction procedure. In addition, a care-

ful inspection of the inferred model highlighted a putative role for IKK in

activating AKT in TGFα stimulated cells. However, further experimental

validation is required to verify this regulatory interaction and to explore

its potential clinical implications. In conclusion, Sorad is applicable for

learning structures for various biochemical systems. Importantly, Sorad

can be used to predict the required perburbations to the system in order

to modulate the output in a desired manner.
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7. Studies on Transcriptional
Regulation

In this chapter we will cover the main results of Publication IV.

7.1 High-resolution Mapping of Nucleosomes

In Publication IV we studied nucleosome positioning and its regulation

in murine CD8+ cytolytic lymphocytes (CTL) and CD4+ subsets Th1 and

Th2. Previous studies of nucleosome positioning in mouse and human

cells have been based on nucleosome maps obtained with rather low cover-

age (approximately 10–100X) (Valouev et al., 2011). Moreover, the studies

in mammals have focused on average behaviour of nucleosomes at anno-

tated genomic regions, such as promoters, instead of focusing on individ-

ual nucleosomes (Valouev et al., 2011). Importantly, it has been proposed

that reliable detection of changes in nucleosome occupancy and position-

ing could require at least 200-fold nucleosome core coverage (Chen et al.,

2013). Clearly, genome-wide mapping of nuclesomes with that coverage is

not feasible at the moment. To overcome this limition, we utilized the

recently published method, BEM-seq (Bacterial artificial chromosomes

Enriched Mono-nucleosomal DNA Sequencing) (Yigit et al., 2013). This

targeted-sequencing approach enabled us to obtain high-resolution maps

of nucleosomes and to subsequently identify differentially remodelled nu-

cleosomes.

7.1.1 Experimental Approach

In our study, we decided to focus on nine loci spanning nine genes known

to play an important role in T cell differentiation, Prf1, Il4, Ifng, Eomes,

Cd4, Cd8a, Tbx21, Il2ra, and Il2rb (Pipkin and Rao, 2009). Each locus

is approximately 200 kilobases in length, so we covered approximately

1.9 megabases of the mouse genome in total. The sequencing libraries
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were generated from the BAC enriched mononucleosomal DNA treated

with MNase (micrococcal nuclease) (Yigit et al., 2013). The generated se-

quencing libraries were sequenced on the Applied Biosystems SOLiD 4

instrument, yielding approximately 9, 13, and 13 million properly paired

reads in the Th1, Th2, and CTL cells, respectively. Each nucleosome in

Th1, Th2, and CTL cells was sequenced an average of 1010, 1000 and 662

times, respectively. Finally, this led to 10–100 times greater nucleosome

core coverage than in previously published studies on nucleosome posi-

tioning in mammals (Schones et al., 2008; Valouev et al., 2011; Teif et al.,

2012). The obtained high nucleosome core coverage enabled us to estimate

the level of variation in nucleosome positions between cells, which allowed

us to investigate the mechanisms behind nucleosome organization.

7.1.2 Identification of Differentially Remodelled Nucleosomes
(DRNs)

First we calculated center-weighted nucleosome occupancy signals as de-

scribed previously (Yigit et al., 2013). Briefly, a Gaussian kernel is po-

sitioned on the centers of the mapped paired-end reads for calculating a

kernel density estimation of the nucleosome center positions. To quantify

the differences between cell-type specific nucleosome maps, we utilized

a sliding-window based approach in which the detection limit for a sig-

nificant difference was calibrated by comparing two technical replicates

(see Publication IV). Using this approach, we next quantified DRNs be-

tween the cell types in a pair-wise manner. Surprisingly, only 556 DRNs

were detected between the three cell types studied. Only 6% of the nu-

cleosomes were detected to be differentially remodelled, which suggests

that nucleosome organization was highly conserved between the three cell

types studied.

Next, we investigated the biological relevance of the detected DRNs by

an integrative analysis of the data. We made several findings which sug-

gest a high biological significance of the DRNs. First, the distribution of

DRNs between cell types and loci correlated with developmental biology

and gene expression patterns. Second, DRNs were enriched at promoter

and intergenic regions, thus linking DRNs to transcriptional regulation

via promoters and enhancers. Third, DRNs correlated in a cell type spe-

cific manner with chromatin accessibility measured using DNase I ac-

tivity assays (Agarwal and Rao, 1998; Pipkin et al., 2007; Balasubramani

et al., 2010). Fourth, lineage-specific transcription factors showed a strong
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enrichment at lineage-specific DRNs, which we will explain in more detail

below.

7.1.3 Transcription Factor Binding Coincides with Nucleosome
Depletion

First, the clustering of the exhibited nucleosome occupancies identified

groups of DRNs showing similar nucleosome occupancy patterns over cell

types. A motif enrichment analysis was performed to further investigate

the biological role of the DRNs. That is, we computationally checked if

certain transcription factor binding motifs were enriched within the iden-

tified groups of DRNs or not. The hypothesis is that DRNs are a result

of competition between transcription factors and nucleosomes for DNA

occupancy. The Runx and Gata motifs were enriched among the DRNs

showing nucleosome depletion in CTL and Th2 cells, respectively (see

Publication IV). Interestingly, the previously identified lineage-specifying

factors GATA3 (Th2) and RUNX3 (CTL) recognize Gata and Runx motifs,

respectively. Additionally, the enrichments of Gata and Runx motifs were

mutually exclusively, which correlates with the expression of Gata3 and

Runx3 in Th2 and CTL lineages, respectively (see Publication IV).

To validate the functionality of the identified Gata and Runx motifs at

DRNs, we checked if those are occupied by GATA3 and RUNX3. To do this,

we analyzed publicly available GATA3 and RUNX3 ChIP-seq data from

the same cell types (Wei et al., 2011; Lotem et al., 2013). The overlay of

DRNs and binding maps revealed a striking overlap between nucleosome

depletion and transcription factor binding; GATA3 and RUNX3 binding

coincided with nucleosome depletion in Th2 and CTL, respectively (see

Publication IV). Furthermore, the binding sites not overlapping DRNs

were mostly in regions which were nucleosome-free in all three cell types

(see Publication IV).

Further experiments, e.g., titration of RUNX3 and GATA3, are neces-

sary to determine whether the nucleosome depletion is the consequence

of competition between transcription factors and nucleosomes for DNA

occupancy or if additional mechanisms are involved.
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8. Discussion

For a long time, most computational studies on biology focused solely on

sequence and structure analysis. But molecular biology research has been

revolutionized over the past twenty years by the development of various

genome-wide assays. As a result, the exponential growth of data has at-

tracted mathematicians and computer scientists to study biological ques-

tions. The past decade has demonstrated significant growth in data anal-

ysis and the application of computation to biology; for instance, it has

become common for molecular laboratories to employ bioinformaticians.

However, many of our expectations about the genome-wide techniques for

improving our understanding the cell have not been satisfied. While it

is impossible to judge whether or not those expectations were realistic,

we have all been surprised by the complexity of the interactions that are

involved in molecular biology.

Altogether three introductory chapters were presented for demonstrat-

ing the breadth of the field of computational biology research. First, an

introduction to the selected concepts in functional genomics and epige-

nomics was presented to place this work into a broader context. We aimed

to contextualize molecular biology relevant to our work and, at the same

time, to provide a knowledge base for readers without a biology back-

ground. To connect experiments with data analysis, we presented a brief

introduction to the first steps in the analysis of microarray and next-

generation sequencing data. Specifically, we explained the main steps

of quality control, alignment and normalization, that are required before

any subsequent downstream analysis. In addition to making recommen-

dations on how best to preprocess the data, we discussed some of the in-

herent caveats or biases that must be taken into account. We went on to

introduce and discuss the statistical concepts that appear in the publica-

tions featured in this thesis. First, we discussed nonparametric methods
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generally, as well as, formally defined Gaussian processes. Next, we elu-

cidated specific techniques for parameter inference and model selection

while keeping the focus on techniques that emphasize Bayesian concepts.

The transcriptional program of a cell is dynamic in nature and it largely

determines its function, fate, and response to a stimulus. Moreover, dys-

regulation of these transcriptional programs can cause various diseases.

This thesis was composed of three methodological publications and a cross-

disciplinary publication in which we approached the transcription pro-

cess and its regulation from different point of views. The LIGAP and

DyNB methodologies improve the analysis of time series gene expres-

sion data and can be used to detect differential gene expression from

microarray and RNA-seq data. However, these methodologies alone are

unable to provide information about mechanisms of transcription regula-

tion, or the consequences of changes in gene expression. Unfortunately,

these functional and mechanistic questions are the type of questions we

should focus on answering if the goal is to understand the role of genetics

and epigenetics in disease. For that reason, the focus of future genome-

wide studies should be on functional studies instead of screening gene

expression landscapes of various cell types. Related to this aspect, we

also studied chromating remodeling and its influence on transcription by

mapping nucleosomes and correlating that information with transcription

and transcription factor binding. Strikingly, only 6% of the nucleosomes

were repositioned between Th1, Th2, and CTL cells within the nine loci

studied, but, importantly, they correlated with the known transcription

signatures, transcription factor binding, and chromatin accessibility. This

data suggests that the chromatin accessibility is finely tuned between im-

mune cell types. Moreover, this might be due to a competition between

nucleosomes and transcription factors for DNA occupancy.

The presented dynamical models of gene expression could be extended

in various ways; for example, they could account for alternative splicing

and regulation of recruitment and elongation of RNAPII by promoter and

enhancer activities. Hopefully, in the near future there will measurement

technologies available for high-throughput screening of proteins levels.

Based upon this information, it would be intriguing to model the interplay

between transcription and translation, which could dramatically improve

our understanding of translation and its regulation. Intriguingly, the pre-

sented novel time-scaling of DyNB revealed a widespread delay of Th17

differentiation, which could be used as an novel starting point to study
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the different pathways involved in Th17 differentiation.

An obvious extension to the Sorad methodology would be the introduc-

tion of a link from signalling pathways to to the transcriptional level, and

thus enabling the study of downstream effects of intracellular signaling.

We briefly demonstrated how to use Sorad for predicting interventions for

obtaining desired signaling pathway response. It would be interesting to

further investigate the possible limitations of the presented approach and

ways to improve it. Additionally, there are various possible clinical and

experimental applications for the prediction of modulation strategies.

The study described in Publication IV can be followed up in various

ways. For instance, one could study whether RUNX3 and GATA3 need ad-

ditional cofactors to displace nucleosomes, why nucleosomes are dispaced

only at a subset of binding motifs and does the concentration of RUNX3

and GATA3 correlate inversely with nucleosome occupancy at differen-

tially repositioned nucleosomes. The same analysis could also be done for

other transcription factors.

Undoubtedly it will still be beneficial to develop statistically soundmethod-

ologies for the analysis of individual data types. But as soon as possible

more and more research work should aim at developing methodologies

for integrating data types together. Of course this extremely important

task is nontrivial, but it is essential for taking the knowledge about the

cell to the next level. Additionally, this is also prerequisite for taking full

advantage of the systems biology paradigm. We believe this is a prob-

lem in which bioinformaticians and computational biologists have much

to contribute.

Despite many advances in experimental techniques and data analysis

methods that have greatly increased knowledge in the cell biology field,

the complexity of understanding cellular processes remains daunting. For

instance, the role of most cellular proteins is still unknown. So far, our

understanding of the complexity of the cell has gone hand-in-hand with

advances in measurement technologies. It will be intriguing to see when

the continued development of experimental techniques will change this

trend. Undoubtedly, we need to also change our conceptual thinking of

biology in order to overcome both present and future challenges. Addi-

tionally, this will also require great advancements in bioinformatics and

computational biology. However daunting this task may be, we are ex-

cited about the potential for advancement both in the bioinformatic and

computational biology fields. The near future is going to be an intriguing
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time of advancement in the molecular biology field and due to the abun-

dance and complexity of open questions in biology, bioinformaticians have

become a part of molecular biology research.
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9. Conclusion

The main contribution of this thesis has been the development of method-

ologies for time series analysis of various biological data. Importantly, im-

plementations of all the developed methodologies have been made freely

available for everyone to use.

The first methodology, LIGAP, provides a flexible framework for differ-

ential expression analysis between an arbitrary number of time series

microarray data sets. To validate LIGAP it was compared with existing

methods using previously published Th0 and Th2, as well as, unpublished

Th1 genome-wide kinetic gene expression data sets. LIGAP’s performance

was proved when the simultaneous analysis of three T cell lineages identi-

fied genes known to be reciprocally regulated during T cell differentiation.

Beyond previously validated genes, LIGAP was able to identify novel can-

didate genes that are differentially or even reciprocally regulated in these

cell populations. These novel candidates, which we experimentally vali-

dated, could serve as useful biomarkers; but at the very least, the study

results are a valuable transcriptome resource for future studies of early

human T cell differentiation.

The second method, DyNB, is a statistically sound analysis framework

for temporal RNA-seq data. This method can be viewed as a general-

ization of the Gaussian-Cox process, where the negative binomial distri-

bution is utilized instead of the Poisson distribution. In the model, the

Gaussian process component is used for modeling the mean of the read

counts over time. The negative binomial distribution is utilized for model-

ing the distribution of RNA-seq read counts as previously proposed. This

generalization enables a temporal analysis similar to LIGAP, but applica-

ble to RNA-seq data. Importantly, DyNB is novel in its ability to quan-

titatively study differential differentiation efficiencies between biological

replicates. This feature is especially useful for analysis of primary human
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samples, because it accounts for intrinsic differences between samples or

treatments. We used DyNB to analyze previously unpublished RNA-seq

data from human Th0 and Th17 cells. To validate DyNB we compared it

with existing methods. Importantly, the analysis revealed that Th17 dif-

ferentation in one of the cultures was systematically delayed, which was

independently validated using qRT-PCR. This systematic delay among a

subset of genes could be valuable in studying different pathways involved

in Th17 differentiation.

The third publication describes the Sorad methodology for analyzing

measurements of phosphoprotein activity levels. Sorad uses a paramet-

ric ordinary differential equation model with a nonparametric Gaussian

process component. We proposed a novel and efficient two-step scheme

for model inference; first the system is analytically solved solely as a

function of time, then the estimated regulatory function is approximated

using a Gaussian process driven by regulatory factors. Additionally, we

described and demonstrated how Sorad can be applied to predict mod-

ulation strategies, i.e., how the system should be perturbed in order to

achieve the desired system behaviour. We benchmarked the performance

of Sorad against other methods in predicting behaviour of the network

under unseen conditions. The results from the comparison suggested that

Sorad produced the most accurate results. Finally, our analysis with So-

rad pinpointed a putative novel role for IKK in activating AKT in TGFα

stimulated cells.

In the last publication we studied the role of chromatin structure on

transcription. Specifically, we mapped nucleosome positions using BEM-

seq in Th1, Th2, CTL cells across nine important genomic loci. The use

of BEM-seq allowed us to map the nucleosomes with high-resolution and,

consequently to identify computationally the differentially repositioned

nucleosomes. Strikingly, only 6% of the nucleosomes showed differential

occupancy or positioning between the cell types studied. the remodeled

nucleosome map correlated with the previously available data describ-

ing More importantly, the remodelled nucleosomes correlated with the

previously available data describing differentiation program, chromatin

accessibility, and gene expression. An unbiased binding motif analysis

suggested putative binding of key lineage-specifying factors, GATA3 and

RUNX3, at differentially remodelled nucleosomes exhibiting nucleosome

depletion in Th2 and CTL cells, respectively. The functional binding of

GATA3 and RUNX3 at these motif positions was validated using ChIP-
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seq data. Finally, our data supports the hypothesis that transcription

factors and nucleosomes compete for DNA occupancy.
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