
9HSTFMG*afijei+

Aalto University publication series
DOCTORAL DISSERTATIONS 153/2014

Support for configuration of physical
products and services

Juha Tiihonen

A doctoral dissertation completed for the degree of Doctor of
Science (Technology) to be defended, with the permission of the
Aalto University School of Science, at a public examination held at
the lecture hall TU1 of the school on 31 October 2014 at 12.

Aalto University
School of Science
Department of Computer Science and Engineering
Product Data Management Group

Supervising professor
Casper Lassenius

Thesis advisors
Tomi Männistö
Reijo Sulonen

Preliminary examiners
Cipriano Forza, Università degli Studi di Padova, Italy
Asko Riitahuhta, Tampere University of Technology, Finland

Opponent
Gerhard Friedrich, Alpen-Adria Universität Klagenfurt, Austria

Aalto University publication series
DOCTORAL DISSERTATIONS 153/2014

© Juha Tiihonen

ISBN 978-952-60-5894-8
ISBN 978-952-60-5895-5 (pdf)
ISSN-L 1799-4934
ISSN 1799-4934 (printed)
ISSN 1799-4942 (pdf)
http://urn.fi/URN:ISBN:978-952-60-5895-5

Unigrafia Oy
Helsinki 2014

Finland

Abstract
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Juha Tiihonen
Name of the doctoral dissertation
Support for configuration of physical products and services
Publisher School of Science
Unit Department of Computer Science and Engineering

Series Aalto University publication series DOCTORAL DISSERTATIONS 153/2014

Field of research SCI020Z Computer Science and Engineering

Manuscript submitted 15 April 2014 Date of the defence 31 October 2014

Permission to publish granted (date) 30 September 2014 Language English

Monograph Article dissertation (summary + original articles)

Abstract
The ideal of mass customization is to satisfy individual customer requirements efficiently.

This can be realized with configurable products that can be adapted, within the bounds of pre-
designed offered variation, to individual requirements. Configurators are information systems
that support efficient and errorless specification of individualized products or services.
 Applying the Design Science research approach, a number of artifacts that support the sales
configuration of physical products and services were developed with the aim of advancing the
state of the art of practically applicable configurators.
 We present a conceptualization for configuration knowledge that unifies previous connection-
based, resource-based, structure-based, and function-based approaches. The conceptualization
is object oriented and treats the main concepts uniformly with respect to several criteria, inclu-
ding the availability of taxonomic hierarchies with refinement, abstraction, and applicability
of attributes. A detailed conceptualization for representing the variable compositional struc-
ture of components and functions is included.
 The main artifact of this work is a novel configurator instantiation called WeCoTin. It consists
of a graphical modeling environment Modeling Tool and a Web-based Configuration Tool that
supports the configuration task. WeCoTin is based on a well-founded modeling conceptualiza-
tion and a corresponding high-level object-oriented modeling language with clear formal se-
mantics, provided by mapping the modeling language to weight constraint rules—a form of logic
programs. The Modeling Tool enables efficient graphical modeling and includes features that
support long-term management. The Configuration Tool provides Web-based sales configura-
tion functionality. It applies an inference engine that is based on weight constraint rules to pro-
vide consistent and complete inference. Evaluation includes the characterization of 26 sales
configuration models and run-time performance analysis. Enabled by the novel principles of
WeCoTin, an information systems design theory for sales configurators is proposed.
 Recommendation technologies can support users during choice navigation. We present sce-
narios in which support can be offered and analyze the applicability of recommendation tech-
nologies. We propose extensions to the existing case-based feature value recommendation
technologies by integrating importance weights and similarity metrics. A basic evaluation of
the utility of the case-based collaborative approach was provided through an empirical study.
 Due to the importance of services, mass customization of services by configuration is crucial.
We discuss the offered variation of configurable services in three industries and the applica-
bility of configurators designed for physical products in the context of service configuration.

Keywords configurator, recommender, recommendation, services, service configuration,
configuration modeling, Design Science, information systems design theory

ISBN (printed) 978-952-60-5894-8 ISBN (pdf) 978-952-60-5895-5

ISSN-L 1799-4934 ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942

Location of publisher Helsinki Location of printing Helsinki Year 2014

Pages 112 urn http://urn.fi/URN:ISBN:978-952-60-5895-5

Tiivistelmä
Aalto-yliopisto, PL 11000, 00076 Aalto www.aalto.fi

Tekijä
Juha Tiihonen
Väitöskirjan nimi
Fyysisten tuotteiden ja palveluiden konfiguroinnin tietotekninen tuki
Julkaisija Perustieteiden korkeakoulu
Yksikkö Tietotekniikan laitos

Sarja Aalto University publication series DOCTORAL DISSERTATIONS 153/2014

Tutkimusala SCI020Z Tietotekniikka

Käsikirjoituksen pvm 15.04.2014 Väitöspäivä 31.10.2014

Julkaisuluvan myöntämispäivä 30.09.2014 Kieli Englanti

Monografia Yhdistelmäväitöskirja (yhteenveto-osa + erillisartikkelit)

Tiivistelmä
Massaräätälöinnin tavoitteena on täyttää yksilölliset asiakasvaatimukset tehokkaasti. Tämä

voidaan saavuttaa konfiguroitavilla tuotteilla, joita voidaan muunnella yksilöllisiin tarpeisiin
etukäteen tehdyn suunnittelun sallimissa rajoissa. Konfiguraattorit ovat tietojärjestelmiä,
jotka tukevat tehokasta ja virheetöntä yksilöllisten tuotteiden tai palvelujen määrittelyä.
 Design Science -lähestymistapaa soveltaen työssä kehitettiin artefakteja, jotka tukevat
fyysisten tuotteiden sekä palvelujen myyntikonfigurointia. Tarkoituksena oli mahdollistaa
entistä parempia ja käytännössäkin sovellettavissa olevia konfiguraattoreita.
 Työssä esitetään konfigurointitietämyksen käsitemalli, joka yhdistää aiemmat mallitustavat,
jotka perustuvat kytkentöihin, resursseihin, rakenteeseen ja toimintoihin. Oliopohjainen
käsitemalli soveltaa pääkäsitteille yhtenäisesti luokittelua, abstraktiota ja attribuutteja.
Käsitemallissa on yksityiskohtainen muunneltavan kompositionaalisen rakenteen mallitus.
 Työn tärkein artefakti on uudenlainen konfiguraattoritoteutus WeCoTin. Se koostuu graafi-
sesta mallitusympäristöstä (Modeling Tool) ja verkon yli konfigurointia tukevasta työkalusta
(Configuration Tool). Järjestelmän hyvin määritelty mallituskäsitteistö on osajoukko konfigu-
rointitietämyksen käsitemallista. Mallituskielellä on selkeä formaali semantiikka, joka perus-
tuu käännökseen logiikkapohjaiseen tiedonesittämiskieleen Weight Constraint Rule Language
(WCRL). Modeling Tool tukee tehokasta graafista konfigurointimallitusta ja sisältää pitkäai-
kaishallintaa tukevia ominaisuuksia. Configuration Tool tukee myyntikonfigurointia verkon
kautta. Sen WCRL-pohjainen päättelykone tarjoaa täydellisen ja ristiriidattoman päättelyn.
WeCoTinta on arvioitu 26 konfigurointimallin luomisella ja karakterisoinilla sekä testaamalla
ajonaikaista suorituskykyä. WeCoTin-konstruktion uusien toteutusperiaatteiden pohjalta
esitetään myyntikonfiguraattorien suunnitteluteoria (information systems design theory).
 Suositteluteknologiat voivat tukea käyttäjiä kun he tekevät valintoja konfiguroitaessa. Työssä
tunnistetaan tilanteita, joissa suosittelusta voi olla hyötyä ja analysoidaan tärkeimpien suosit-
teluteknologioiden soveltuvuutta. Eräisiin aiempiin suosittelutekniikoihin esitetään laajen-
nuksia, jotka perustuvat valintojen tärkeyteen käyttäjälle (painoarvo) ja samankaltaisuutta
esittävien metriikoiden soveltamiseen (similarity metrics). Suosittelutekniikoiden tarjoama
hyöty käyttäjille osoitetaan alustavasti empiirisellä kokeella.
 Palvelujen tärkeys korostaa myös palvelujen massaräätälöinnin ja konfiguroinnin tärkeyttä.
Työssä käsitellään palvelujen muunneltavuutta kolmella toimialalla sekä fyysisille tuotteille
soveltuvien konfiguraattorien soveltuvuutta palvelujen konfigurointiin.

Avainsanat konfiguraattori, suositusjärjestelmä, suosittelu, palvelut, palvelujen
konfigurointi, konfiguraatiomallitus, Design Science, tietojärjestelmien
suunnitteluteoria

ISBN (painettu) 978-952-60-5894-8 ISBN (pdf) 978-952-60-5895-5

ISSN-L 1799-4934 ISSN (painettu) 1799-4934 ISSN (pdf) 1799-4942

Julkaisupaikka Helsinki Painopaikka Helsinki Vuosi 2014

Sivumäärä 112 urn http://urn.fi/URN:ISBN:978-952-60-5895-5

1

Preface

This thesis was prepared in the Product Data Management Group (PDMG) of
Aalto University (formerly Helsinki University of Technology). The PDMG’s
research interest is “how information technology can be used for managing
complex products with many variants and long life cycles.” Configuration has
been one of the main streams of PDMG research since the early 1990s.

This work covers a long time span. The author began configuration-related
research in late 1992. The initial phases concentrated on understanding con-
figuration problems and management of product data. Conceptual modeling of
the central phenomena of configuration and product evolution was researched.
An idea occurred: Why not implement a configurator that would capture
PDMG’s understanding about practical configuration problems, provide ade-
quate support for end users, perform high-level modeling, and make use of a
state-of-the-art inference engine developed in a neighboring research group? A
research project was established to develop a concrete system called WeCoTin
(Web Configuration Technology). Research around WeCoTin forms the main
trunk of this thesis.

Later, the importance of services was recognized, creating a need to under-
stand the relation of services to mass customization and configuration. The
newest branch of research in this thesis studies recommendation technologies
in the context of product configurators. Industrial research partners described
a need for consultative sales. Here, the seller actively constructs and recom-
mends solutions to genuinely fit the needs and goals of the customer.

I wish to express my gratitude to all previous and current members of
PDMG. Professor Tomi Männistö provided most useful support as an instruc-
tor during the last phases of this work. His ideas and inspiration have affected
many aspects of this work. Professor Reijo Sulonen, as the supervisor during
most of this work, earns my gratitude for his guidance and patience and for
identifying fascinating topics of research. Professor Casper Lassenius provided
valuable guidance and motivation as the supervisor as this thesis was finalized.

The comments of the pre-examiners Cipriano Forza and Asko Riitahuhta
were invaluable.

Timo Soininen was an inspiring colleague for intensive discussions and de-
bates and the leader of a number of related research projects. Asko Martio
provided invaluable practical understanding about the challenges of industrial
companies related to management of configurable offerings. He and Reijo
Sulonen acquired a number of cases needed for the evaluation of WeCoTin.

2

Alexander Felfernig provided a jump start to research on the recommenda-
tion of configurable offerings, and his cooperation has been fruitful ever since.

Andreas Anderson was the wizard who made WeCoTin a reality with his ex-
traordinary skills of systems development. Nothing was ever difficult. Hannu
Peltonen has a talent for thinking clearly and developing systems based on his
clear thought. This was extremely useful for specifying conceptualizations and
the corresponding core of a configuration modeling system that later evolved
into WeCoTin. Mikko Heiskala was a key member of the WeCoTin develop-
ment team, and his expertise in service modeling has been invaluable. Kaija-
Stiina Paloheimo challenged many basic assumptions of thinking about ser-
vices. Matti Sievänen provided invaluable understanding about cost manage-
ment and pricing of configurable offerings. I quess it was Matti who indoctri-
nated me with the idea of cycling during our frequent meetings. This signifi-
cantly changed my life.

I am grateful to individuals who were part of the WeCoTin development
team or modeled products with it: Sami Asikainen, Miguel Luis Ferreira, Jan
Elfström, Tero Kojo, Juha-Miikka Nurmilaakso, Mikko Pasanen, Kati Sarinko,
and Johanna Voutilainen. I thank the student group Dotcomrades for design-
ing and implementing WeCoTin’s graphical constraint editor (Sakari Ailus,
Pete Hakkarainen, Mika Koskimäki, Jukka Parviainen, Thach Pham, Panu
Ranta, and Juho Tikkala). I thank the student group CCCP for designing and
implementing a tool for comparing configurable products (Andreas Anderson,
Lasse Anderson, Juha Havu, Mikko Heiskala, Virpi Huhtinen, Matias Karv-
inen, and Anni Toikka).

Monika Mandl implemented the RecoMobile environment with considerable
effort. Juha Vepsäläinen checked the statistical conclusions of this thesis.

Johanna “Jonna” Lehtola shed light on darkness at some phases of this work.
Juha Laine, Casper Lassenius, Marjo Kauppinen, and Marko Nieminen all en-
couraged me to just say “it’s ready.” I needed that. All my great colleagues and
support team members, thank you for making SoberIT such an inspiring and
pleasant work environment. I want to thank all the other people who contrib-
uted in one way or another.

Research funding from the Technology Development Centre of Finland
(TEKES) is gratefully acknowledged. We thank Gardner Denver Finland,
KONE, Patria, Tapiola Group, Tamrock, and a number of undisclosed compa-
nies for sharing product information. We also thank Aalto Service Factory for
funding.

Many of you have become good friends, which may be even more important
than support of substance.

Last but not least, I want to thank Marja for her loving support and patience,
Iiro and Olli, and my parents, relatives, and friends for being there.

Helsinki, 22 September 2014

Juha Tiihonen

3

Contents

Preface .. 1

List of Abbreviations .. 5

List of Publications ... 8

Author’s Contribution and Publication Information9

1. Introduction .. 11

1.1 Background .. 11

1.2 Research questions .. 14

1.3 Methodology and overview of contributions 14

1.4 Structure of the thesis .. 19

2. Previous work .. 23

2.1 Overview of literature ... 23

2.2 Basic terminology ... 23

2.3 Configuration knowledge modeling 24

2.4 Configurators .. 28

2.5 Recommendation of configurable offerings 31

2.6 Mass customization and configuration of services 34

3. Conceptualization for configuration knowledge 37

3.1 Types, individuals, and classification 37

3.2 Attributes .. 38

3.3 Component types and compositional structure—parts 39

3.4 Topology—ports .. 39

3.5 Resources .. 40

3.6 Functions .. 40

3.7 Constraints .. 40

3.8 Example ... 41

4. WeCoTin Configurator .. 43

4.1 Requirements .. 43

4.2 WeCoTin overview ... 45

4.3 WeCoTin Configuration Tool .. 45

4

4.4 Modeling Tool and PCML ... 45

4.5 User interface modeling and generation 48

4.6 Determining price and delivery time 49

4.7 Inference with weight constraint rules and Smodels 49

5. Recommendation of configurable offerings 51

5.1 Scenarios for recommending configurable offerings 51

5.2 Selection of recommendation techniques 52

5.3 Proposed extensions to recommendation algorithms 53

6. Sales configuration of services .. 59

6.1 Offered variation in configurable service products 59

6.2 Sources of variation in relationship-based services 61

6.3 Services and configurators for physical products 62

7. Evaluation .. 65

7.1 Artifact evaluation .. 66

7.2 Sales Configurator Information Systems Design Theory 74

7.3 This work and the guidelines of Design Science 78

8. Discussion ... 81

8.1 Related work .. 81

8.2 Threats of validity ... 85

8.3 Answers to the research questions and contributions 87

8.4 Future research ... 92

9. Conclusions .. 93

References ... 96

5

List of Abbreviations

ASP Answer set programming (ASP) makes it possible to express a
problem as a theory consisting of logic program rules with clear
declarative semantics, and the stable models of the theory corre-
spond to the solutions (answer sets) of the problem. The Smodels
system applied in this work follows the ASP paradigm.

B2C Business-to-consumer.

BCRL Basic constraint rule language. The output of grounding a logic
program expressed in WCRL is a corresponding logic program
expressed in BCRL. It contains no variables and can be directly
used by an inference procedure such as smodels.

CSP Constraint satisfaction problem. A constraint satisfaction prob-
lem is a tuple (V, D, C). Here, V is a set of finite domain variables,
V = {v0, v1, …, vn}. Each variable has a (usually finite) domain that
specifies the possible values of the variable, and the set of do-
mains is D, D = {dom0, dom1, …, domn}. C is a set of constraints
specifying restrictions on the allowed combinations of variable
value assignments. A solution to a constraint satisfaction problem
is a set of assignments to each variable {v0 = x0, v1 = x1, …, vn =
xn} such that each xi domi and the assignments are consistent
with the set of constraints C (Mackworth & Freuder, 1985). Ap-
proaches based on CSP formulations are common for problem
solving of configurators.

DCSP Dynamic constraint satisfaction problem (Mittal & Falkenhainer,
1990; Soininen & Gelle, 1999). A DCSP allows dynamic activation
and deactivation of variables and constraints of a CSP.

GCSP Generative CSP (Fleischanderl, Friedrich, Haselböck, Schreiner,
& Stumptner, 1998; Stumptner, Friedrich, & Haselböck, 1998). A
GCSP allows dynamic generation of new variables and instantia-
tion of related constraints in a CSP.

ID (Unique) identifier.

IHIP Services are often attributed with the characteristics of intangibil-
ity, heterogeneity, inseparability of production and consumption,
and perishability, collectively known as IHIP (Grönroos, 2007;
Zeithaml, Parasuraman, & Berry, 1985).

IS Information systems (research discipline): “Its mission is to ad-
vance knowledge about the effective and efficient utilization of in-
formation technology by individuals, groups, organizations, soci-

6

ety, and nations for the improvement of economic and social wel-
fare” (ISR, 2013).

ISDT Information systems design theory is the primary output of De-
sign Science research that “shows the principles inherent in the
design of an IS artifact that accomplishes some end, based on
knowledge of both IT and human behavior” (Gregor & Jones,
2007, p.322).

IT Information technology.

lparse Component lparse of the Smodels system is a front end that com-
piles a WCRL program with variables into programs in the basic
constraint rule language (BCRL) that contains no variables.

MAUT Multi-attribute utility theory, a decision support method (Dyer,
2005; Von Winterfeldt & Edwards, 1986).

PC Personal Computer.

PCML Product Configuration Modeling Language is used in WeCoTin
configurator as the language for representing configuration mod-
els. PCML is object oriented and declarative and has formal im-
plementation-independent semantics.

PDMG Product Data Management Group (PDMG) is a research group of
Aalto University (formerly Helsinki University of Technology).
The main research interest of PDMG is “How information tech-
nology can be used for managing complex products with many
variants and long life cycles.” The author of this thesis is a mem-
ber of PDMG.

RecoMobile A prototype configurator system with recommendation function-
ality (IV, Felfernig, Mandl, Tiihonen, & Schubert, 2010).

RQ Research question. Often in the form RQn: for example, RQ1 is
research question 1.

SCISDT Sales configurator information systems design theory is a partial
ISDT for sales configurators proposed in this work. It is based on
the design of WeCoTin.

SCML Service Configuration Modeling Language. SCML enables the
expression of configuration models of services with a PCML-like
syntax and improved conceptual match (Anderson, 2005).

Smodels The Smodels system (Simons, Niemelä, & Soininen, 2002) pro-
vides an efficient inference engine for WCRL. It consists of com-
ponents lparse and smodels.

smodels Component smodels of the Smodels system provides the main
functionality of Smodels—to compute a desired number of stable
models for a BCRL program. Requirements are specified through
compute statements to constrain the stable models to be comput-
ed.

UML Unified Modeling Language (e.g. Rumbaugh, Jacobson, & Booch,
1999).

7

WCRL Weight constraint rule language allows expression of a problem
as a theory consisting of logic program rules with clear, declara-
tive semantics. WCRL is equipped with weight constraints for
representing weighted choices with lower and upper bounds and
with conditional literals restricted by domain predicates to en-
code sets of atoms over which the choices are made.

WeCoTin A Web-based configurator prototype (abbreviation for Web Con-
figuration Technology). WeCoTin consists of two main compo-
nents: the graphical modeling environment Modelling Tool and
the Web-based Configuration Tool that supports the configura-
tion task.

XML Extensible Markup Language (W3C, 2008) defines a relatively
simple and general way to encode documents in a format that is
readable to both humans and machines and widely applied (Wik-
ipedia, 2014). For a good overview, see (Wikipedia, 2014).

8

List of Publications

This doctoral dissertation consists of a summary and of the following publica-
tions which are referred to in the text by their Roman numerals:

I Soininen, T., Tiihonen, J., Männistö, T. & Sulonen, R. (1998). Towards a
general ontology of configuration. Artificial Intelligence for Engineer-
ing Design, Analysis and Manufacturing (AI EDAM), 12(4), 357–72.

II Tiihonen J., Heiskala M., Anderson A., and Soininen T. (2013).
WeCoTin—a practical logic-based sales configurator. AI Communica-
tions, 26(1), 99–131. doi 10.3233/AIC-2012-0547.

III Tiihonen J., Felfernig A. (2010). Towards recommending configurable
offerings. International Journal of Mass Customisation, 3(4), 389–406.

IV Felfernig, A. Mandl, M., Tiihonen, J. Schubert, M., and Leitner G.
(2010). Personalized user interfaces for product configuration. 15th In-
ternational Conference on Intelligent User Interfaces (IUI ’10), Hong
Kong, China, 317–20. doi 10.1145/1719970.1720020.

V Tiihonen J., Heiskala M., Paloheimo K.-S., Anderson A. (2006). Config-
uration of contract based services. 17th European Conference on Artifi-
cial Intelligence (ECAI 2006), configuration workshop, Riva del Garda,
Italy, 25–30.

9

Author’s Contribution and Publication
Information

Publication I: Towards a general ontology of configuration

The author of this thesis was the second author. He originated the idea of writ-
ing the paper, contributed to the development of the concepts (especially the
connection-oriented and resource-oriented concepts), and was the main de-
veloper of the example. In addition, he contributed requirements, experiences,
and ideas on compositional structure and attributes based on his experiences
from an M.Sc. thesis project (Tiihonen, 1994). Soininen as the first author was
the principal developer of the configuration conceptualization (called ontology
in the publication), especially the foundation on Ontolingua and formalization,
the distinction between types and individuals, and the conceptualizations of
attributes, compositional structure, functions, contexts, and constraints. The
other authors reviewed and polished the conceptualization. This publication
was included in Soininen’s doctoral thesis (2000).

Publication II: WeCoTin—a practical logic-based sales configurator

This article summarizes research around the WeCoTin configurator. It was
entirely written by the author of this thesis. Heiskala reviewed and helped
polish the text. Heiskala, Anderson, and Soininen were included as authors on
account of their previous contributions to WeCoTin and related publications.
Further details on WeCoTin contributors are appended at the end of the publi-
cation.

Publication III: Towards recommending configurable offerings

The author of this thesis was the principal author. Felfernig identified previous
work on recommendation systems and distance metrics, suggested including
the nearest-neighbor algorithm, suggested numerous improvements, and pro-
vided general guidance.

Publication IV: Personalized user interfaces for product configuration

The author of this thesis was the third author, was responsible for the recom-
mendation algorithms applied in RecoMobile (implementation and integration
of an idea from Publication III), and provided the example configuration mod-
el of mobile subscriptions and phone selection. The author also actively partic-
ipated in formulating the research hypotheses with Felfernig and Mandl. The

10

experiment was designed and the results were analyzed and documented
mainly by Felfernig and Mandl. The peer-review process based on the full pa-
per had four reviewers. The acceptance rate was 30% (62 of 206 submissions).

Publication V: Configuration of contract-based services

The author of this thesis was the principal author, performed the main body of
analysis, and documented the results. Other authors were equally involved in
the underlying case studies. Paloheimo and Heiskala contributed most of the
method and previous work. The peer review process was based on full paper
submission. There were three reviewers, but the acceptance rate was not pub-
lished.

Subcontracting: Language check

The author considered all suggested changes of the language check. No other
subcontracting took place.

Introduction

11

1. Introduction

1.1 Background

Mass customization strategy and configurable products
Mass customization aims to provide products or services that closely match
the individual needs of customers while retaining mass-production-like effi-
ciency (Pine, 1993). To be successful in business based on mass customization
strategy, mass customizers require three fundamental capabilities (Salvador,
de Holan, & Piller, 2009): First, solution space development is required to
identify the product properties1 for which customer needs diverge. Second, a
robust process enables reuse or recombining of existing organizational and
value-chain resources to fulfill a stream of differentiated customer needs. Fi-
nally, choice navigation capability is required to support customers in identi-
fying their own solutions while minimizing complexity and the burden of
choice.

Figure 1 illustrates several main concepts2 and their relationships. Business
based on configurable products is one way of achieving mass customization. A
configurable product is the result of solution space development; a design of a
family of products that is provided in advance and can be adapted to meet di-
verging customer requirements within the scope of designed possibilities of
adaptation. A configuration task produces a specification of a product indi-
vidual that meets customer requirements and conforms to the rules of the
configurable product. A specification of a product individual based on a con-
figurable product is called a configuration. A configuration specifies one of the
possible product variants. Variants are based on a family of products but dif-
fer from each other in terms of some properties. If services are included in a
configuration, a service process (consisting of activities and resources) may
also be specified by the configuration. Offered variation (variation for short)
denotes the selection space available to customers – what variable properties
are selectable.

The product family description containing all the information on the possi-
bilities of adapting the configurable product to customer needs is called a con-
figuration model. A configuration model specifies the entities that can appear
in a configuration, their properties, and the rules on how the entities and their
properties can be combined. The configuration model is expressed with mod-

1 Property is defined in Section 2.2.
2 Concept is defined in Section 2.2.

Introduction

12

Figure 1. Core concepts and their major relations.

eling concepts supported by the applied conceptualization. Adopting Gruber’s
definition (1993), a conceptualization is an abstract, simplified view of the
world that we wish to represent for some purpose that consists of the objects,
concepts, and other entities that are presumed to exist in some area of interest
and the relationships between them. For example, some configuration concep-
tualizations support component types,3 attributes, and constraints.

The potential benefits and challenges of mass customization and configura-
ble products are significant (see Heiskala, Paloheimo, & Tiihonen, 2007).

3 See Sections 2.2 and 3.3 (component type) for definitions.

Introduction

13

Many of the challenges can be addressed with information technology (IT)
support because of the well-defined nature of the configuration task.4

Configurators and recommendation support
A class of systems, configurators, makes it possible to represent the offered
variation of configurable products by creation and management of configura-
tion models, as well as to support users in performing the configuration task.
Configurators are often critical to companies that base their business on mass
customization, because they provide the essential choice navigation capability.

One or more modelers create and maintain configuration models. The typi-
cal user of a configurator is directly a customer or a salesperson who aims to
sell an individualized product or service to the customer.

Informal customer needs are formally represented as requirements. Based
on requirements and the configuration model, the configuration engine pro-
duces a configuration that specifies the product individual that meets the cus-
tomer requirements. Thus, a configurator can form the basis for the choice
navigation capability of a company.

Often customers neither know their exact requirements in advance nor know
which of the available alternatives fit their preferences. Therefore, assistance
may be desirable. Such assistance can be provided by a competent salesperson.
An emerging alternative is to integrate recommendation functionality into a
configurator’s user interface, e.g., to suggest suitable alternatives. Previous
configurations and a recommendation model may be used to identify recom-
mendable alternatives or requirements or to resolve conflicting requirements.
A recommendation model may include explicit knowledge on recommendable
(and not recommendable) aspects as well as policies or methods of deriving
such information.

Services are an important part of the global economy. Some services, such as
maintenance contracts, telecommunications services, portfolios of financial
investments, and insurance policies, can be configured. There is a need to un-
derstand the relation between services and mass customization as well as the
impacts of services on configurators.

Numerous configurators have been developed both as research prototypes
and as commercial software. The landmark R1/XCON was deployed at Digital
Equipment Corporation in the early 1980s (McDermott, 1982), and experienc-
es, benefits, and challenges of using it have been widely documented; see, e.g.,
Sviokla (1990) or McDermott (1993).

Major research efforts have been undertaken to provide configurators appli-
cable to solving general configuration tasks instead of a specific domain, e.g.,
Frayman and Mittal (1987), Cunis, Günter, Syska, Peters & Bode (1989), and

4 Advance solution space design implies that one does not design new component types or
novel ways of combining component individuals to satisfy arbitrary customer requirements.
Sometimes a significant part of the product is configured, but creative or innovative design
may be needed to meet requirements outside the designed solution space; this mode of op
eration with ‘partially configurable products’ is important to many companies (Tiihonen,
1999; Tiihonen, Soininen, Männistö, & Sulonen, 1998). Partially configurable products are
beyond the scope of this thesis.

Introduction

14

Stumptner, Haselböck & Friedrich (1994). A large number of commercial gen-
eral-purpose knowledge-based configurators aka configuration frameworks
exists (e.g. Sabin & Weigel, 1998); Anderson (2005) identified 30 vendors
based on their Web pages. In addition, it is customary that prominent enter-
prise resource planning systems include a configurator module as documented
by Haag (1998) and Damiani, Brand, Sawtelle & Shanzer (2001).

Configurators are deployed relatively widely. For example, 970 Web-based
configurators were listed in the International Configurator Database
(cyLEDGE, 2013).

1.2 Research questions

The research theme that unifies research questions of this work is: How to
effectively support configuration of physical products and services? To limit
the scope of the thesis and adhere to the research opportunities identified in
Section 2, the following more focused research questions are addressed:

 RQ1: What are the concepts central to configuration knowledge?

 RQ2: How to construct a practical and computationally well-founded
sales configurator?

 RQ3: Can users be effectively supported in finding suitable products and
services with personalized recommendations?

 RQ4: How does service configuration differ from the configuration of
physical products?

1.3 Methodology and overview of contributions

Sciences of the artificial (Simon, 1996) is concerned with artificial things. Arti-
ficial things a.k.a. artifacts (Simon, 1996) are elements synthesized or con-
structed by humans.5 They can be characterized in terms of functions,6 goals,
and adaptation to “outer environment.” Furthermore, artifacts can be dis-
cussed in terms of imperatives, especially during design time, which reflects
the idea that requirements can be specified and taken as design targets.

Simon (1996) discusses the fundamentals of the science of the artificial with
a wide scope. He identifies a non-exhaustive list of necessary topics in theory
of design. He covers the fundamental properties of natural and artificial
worlds, economic and bounded rationality, the psychology of thinking and
decision-making, and problem-solving and role of representations in problem
solving. Further topics include taking the future and society into account in the
design, the role of the designer, and complexity and management of complexi-
ty through hierarchic systems. However, Simon does not present an actual
theory or methodology of design.

5 Other meanings of ‘artifact’ are outside the scope of this thesis.
6 Concept ‘function’ is discussed in Section 2.3.2.

Introduction

15

Configurable products, their modeling and supporting tools are in the do-
main of the sciences of the artificial. The primary interest of this thesis is on
information technology (IT) artifacts for managing configurable products and
services. Simon’s (1996) ideas underlie the Design Science approach that cre-
ates and evaluates IT artifacts intended to solve identified organizational prob-
lems (Hevner, March, Park, & Ram, 2004). First, Design Science will be briefly
described (Section 1.3.1), and then this work will be characterized as an in-
stance of Design Science research, and its contributions briefly outlined (Sec-
tion 1.3.2). In some aspects of this work, Design Science was augmented with
the case study research method (Yin, 2009), summarized in Section 1.3.3.

1.3.1 Design Science

Hevner et al. (2004) characterize the Design Science approach as follows
(Figure 2). The environment defines the problem space in which the phenom-
ena of interest reside. In Information systems (IS) research, the environment
consists of people, organizations, and technology. People in an organization
perceive, assess, and evaluate business needs in the environmental context of
their organization. The business needs perceived by the researcher stem from
this context. Research relevance is assured by framing research to address
business needs.

Design Science research is conducted through building and evaluation of ar-
tifacts designed to meet the identified business need, the ultimate goal being
utility. The artifacts can be constructs (vocabulary and symbols), models (ab-
stractions and representations), methods (algorithms and practices), or in-
stantiations (implemented or prototype systems). Evaluation of an artifact
often leads to refinements.

Research rigor stems from the appropriate use of the knowledge base. The
knowledge base is formed by foundations used in the develop/build phase of
research and methodologies used in the justify/evaluate phase. The knowledge
base consists of previous contributions to IS research and related disciplines.
Contributions in Design Science are assessed by their application to the identi-
fied business need in the appropriate environment.

Introduction

16

Figure 2. Information Systems Research Framework (Hevner et al., 2004, redrawn).

1.3.2 This work as Design Science research and outline of contribu-
tions

This research spans from the identification of business needs to the construc-
tion of artifacts, their evaluation, and their (limited) application in the busi-
ness context. Thus it exhibits almost a full cycle of Design Science research.

Figure 3 illustrates the main areas of research of this thesis. A conceptualiza-
tion of configuration knowledge was developed and served as a foundation for
a developed sales configurator called WeCoTin. This formed the main trunk of
this work. Additional branches of research included studies on configuration
of services and recommendation support for configurable offerings.

Figure 4 presents this thesis as an instance of the IS research framework.
The figure indicates the main artifacts developed, main scientific foundations,
evaluation, methodologies applied, and additions to the knowledge base. The
general pattern was to understand needs first, then construct artifacts, evalu-
ate them, and, if necessary, refine the artifacts.

A complementary presentation in Figure 5 illustrates the path of research re-
lated to the main artifacts of this thesis (a configuration knowledge conceptu-
alization and WeCoTin configurator). Arrows indicate the relations of units of
research: the source unit of an arrow is a basis for research in the destination
unit. Units portrayed with square boxes indicate Design Science artifacts;
rounded boxes indicate other results such as understanding about the business
context or requirements. The lower right corner of each unit has a numeric
identifier, unit ID. Table 1 summarizes the units of research presented in Fig-
ure 5. Column “Id” refers to the unit ID in Figure 5. Description and addition-
al references summarizes the contents and provides references to additional

Introduction

17

Figure 3. An overview of the research in this work. The main trunk is formed by a conceptual-
ization of configuration knowledge and WeCoTin sales configurator. Recommendation and
service configuration stem from this basis.

publications on the unit of research; Where identifies publication(s) annexed
to this work (roman numerals) and the corresponding section(s) of this thesis.

On a higher level of abstraction, Gregor and Jones (2007) consider that the
primary output of Design Science is information systems design theory (ISDT),
providing general prescriptions for artifacts of the same type. In this spirit, a
sales configurator information systems design theory (SCISDT) is proposed in
Section 7.1.4 based on WeCoTin and its ingredients.

Figure 6 illustrates the additional branches of research in this thesis: config-
uration of services and recommendation of configurable offerings. Table 2
summarizes the units of research in relation to service configuration, and Ta-
ble 3 summarizes those related to recommendation of configurable offerings.

The author of this work considers the additions to the knowledge base
(Figure 4) and Design Science artifacts (the square shapes of Figure 5 and Fig-

Concep-
tualization

W
eC

oT
in

sa
le

s
co

nf
ig

ur
at

or

Recommendation

Service
configuration

Introduction

18

ure 6) to be the contributions of this thesis. The main contributions are the
domain-independent sales configurator WeCoTin (Unit 7 in Figure 5) and the
sales configurator information systems theory (SCISDT; introduced in Section
7.1.4). Further significant contributions are the conceptualization for configu-
ration knowledge (Unit 3) and the extended recommendation algorithms (Unit
16).

1.3.3 Case study research method

Case study research method (Yin, 2009) is applicable to examine contempo-
rary phenomena when a researcher cannot control the events at all or control
is possible only in a very limited manner. Case study is an especially suitable
method for answering ‘How’ and ‘Why’ questions. ‘What’ questions can also be
answered, particularly in exploratory studies. Exploratory, descriptive, and
explanatory case studies are possible.

An exploratory multiple-case-study design (Yin, 2009) with four cases was
applied for publication V to identify if service configuration is relevant and to
characterize it in terms of offered variation and processes. The theoretical
background included a previous definition of configurable products and iden-
tification of related processes (Tiihonen & Soininen, 1997a), and the classical
Ws (what, when, who, where, how, and why) that have been found useful for
characterizing services (Dumas, O'Sullivan, Heravizadeh, Edmond, & Ter Hof-
stede, 2002). Documents on existing service offering of the companies, their
web pages and semi-structured interviews were applied as data sources. This
provided data triangulation. Literal replication was provided by the four cases
of varying background variables (see V and Section 6 for details).

Introduction

19

1.4 Structure of the thesis

Section 2 addresses previous work and identifies gaps in the literature to justi-
fy the research questions.

Sections 3 to 6 summarize the results of publications annexed to this thesis.
Section 3 summarizes a proposed conceptualization for configuration
knowledge. It is based on Publication I.

Section 4 describes the main artifact constructed in this work, WeCoTin, a
domain-independent configurator instantiation. Section 4 is based on publica-
tion II
Section 5 summarizes scenarios of combining recommendation technologies
with configurators and the applicability of the main types of recommendation
technologies. As the Design Science artifacts, extensions to previously pro-

Figure 4. Instantiation of the information systems research framework in this work (adapted
from Hevner et al., 2004).

Introduction

20

posed recommendation algorithms are proposed. Section 5 is based on publi-
cation III.

Section 6 summarizes the relation between services and the configuration
approach, based on publication V and its extended version (Tiihonen,
Heiskala, Paloheimo, & Anderson, 2007).

Section 7 contains an evaluation of artifacts presented in Sections 3 to 6
based on Studies I to V. The design of WeCoTin is abstracted into sales config-
urator information systems theory (SCISDT).

Discussion is provided in Section 8. It includes a comparison with related
work, discusses the threats of validity, answers the research questions, and
identifies topics for future research. Finally, Section 9 presents conclusions.

Figure 5. Research path of WeCoTin: how artifacts and evaluation are based on each
other. See also Table 1.

Introduction

21

Table 1. Summary of units of research related to WeCoTin; see also Figure 5.

ID Description and
additional references

Where

1 Understanding about the business context of configurators: configurable products, related
processes, and problems. Method: semi-structured interviews in 10 companies (each about
1.5 days), construction of a single-purpose manufacturing completion configurator, case
study: how to integrate a configurator into the processes of a company.
(Soininen & Tiihonen, 1995; Tiihonen, 1994; Tiihonen, 1999; Tiihonen & Soininen, 1997b;
Tiihonen et al., 1998)

—

2 The high-level requirements applied in the construction of the WeCoTin configurator; these
are only partially documented.
(Anderson & Pasanen, 2003; Tiihonen, 1994; 1999)

II, 4.1

3 A generalized conceptualization for configuration knowledge representation.
(Tiihonen et al., 1998)

I, 3

4 Product Configuration Modeling Language (PCML): syntax for a subset of the conceptual-
ization of Unit 3.
(Peltonen, Tiihonen, & Anderson, 2001)

II, 4.4

5 The Smodels system provides an efficient inference engine for a weight constraint rule
language (WCRL).
(Simons et al., 2002; Syrjänen, 2002)

—

6 The semantics of PCML are provided by mapping of PCML to a weight constraint rule
language (WCRL).
(Soininen, 2000; Soininen, Niemelä, Tiihonen, & Sulonen, 2001)

—

7 The main artifact of this work: domain-independent sales configurator WeCoTin.
(Tiihonen, Soininen, Niemelä, & Sulonen, 2003)

III, 4

8 A method for performance testing of configurators based on real configuration models and
random requirements.
(Tiihonen, Soininen, Niemelä, & Sulonen, 2002)

III, 7.1.2 p.
68

9 A method for characterizing configuration models.
(Tiihonen, 2009; Tiihonen, 2010)

III,7.1.2 p.
67

10 Applicability of WeCoTin and its modeling capabilities to industrial problems was verified by
modeling and configuring of the sales view of real products and services.
(Tiihonen et al., 2003)

III, 7.1.2

11 Evaluation of WeCoTin and its capabilities to model industrial problems was verified by
modeling and configuring of real products and services; see Unit 10. A number of configu-
ration models were characterized with the method of Unit 9. The run-time performance of
WeCoTin was evaluated with the method of Unit 8.
(Tiihonen et al., 2003; Tiihonen, 2009; Tiihonen, 2010; Tiihonen et al., 2002)

II,
7.1.2

Table 2. Summary of units of research related to service configuration. See also Figure 6.

ID Description and
additional references

Where

12 Analysis of the applicability of the configuration approach to service contract configuration
and identification of special or distinguishing aspects.
(Tiihonen et al., 2007)

V
 6.1-6.3

13 A conceptualization for service configuration modeling, four-worlds model for configurable
services (4WM).
(Heiskala, 2005; Heiskala, Tiihonen, & Soininen, 2005; Heiskala, Tiihonen, Anderson, &
Soininen, 2006)

6.3

14 Service Configuration Modeling Language (SCML) for service sales configuration modeling
and a translator from SCML to PCML. Based on this, WeCoTin can configure products
modeled in SCML (Anderson, 2005).

6.3

Table 3. Summary of units of research related to recommendation of configurable offerings. See
also Figure 6.

ID Description and
additional references

Where

15 Motivation and scenarios for applying recommendation technologies in the context of
configurable offerings. Overview of the applicability of basic recommendation technologies.
Overview of the feature value recommendation technologies in previous work.

III
2.5, 5.2

16 Extended versions of case-based recommendation algorithms for configurable offerings.
(Tiihonen & Felfernig, 2008)

III, 5.3

17 Evaluation of the usefulness of recommendation-supported configuration. A study with 546
test users was performed.
(Felfernig et al., 2010)

IV
7.1.3

Introduction

22

Outside the scope of thesis

<<construct>>
Four-worlds model:

Service configuration
conceptualization +

SCML 13

Relation
of services and
configuration

approach
(case studies,
models with

WeCoTin) 12

<<construct>>
Recommendation

algorithms 16

Unit ID N
<<type of construct>>

Legend
basis for

Motivation for
recommendation

& overview of
technologies 15

Evaluation
with service contracts 14

Evaluation
with user study 17

Concep-
tualization

Reco
mmenda

tion

Service configuration

Figure 6. Research path of service configuration and recommendation of configurable offer-
ings. See also Table 2 and Table 3.

Previous work

23

2. Previous work

2.1 Overview of literature

Primary forums of configuration research have included special issues on con-
figuration in the journals Artificial Intelligence for Engineering Design, Anal-
ysis and Manufacturing (AI EDAM) (Darr, Klein, & McGuinness, 1998;
Felfernig, Stumptner, & Tiihonen, 2011; Soininen & Stumptner, 2003) and
IEEE Intelligent Systems (Faltings & Freuder, 1998; Sinz et al., 2007) as well
as in the Configuration Workshop series arranged in 1996 and yearly since
1999 in conjunction with leading artificial-intelligence conferences.7 Addition-
al forums include the International Journal of Mass Customization (including
a special issue; (Tiihonen, Felfernig, Zanker, & Männistö, 2010), and the
World Conference on Mass Customization and Personalization (MCPC) series.

Configuration has been a fruitful topic for artificial-intelligence research, in-
cluding problem-solving methods, their efficient implementation, and, to a
lesser extent, conceptualizations and languages for representing configuration
knowledge. System instantiations based on novel approaches have been de-
scribed along with their business context.

Less technical aspects, such as application of configurators in business and
corresponding effects (e.g., on organization, processes, business performance),
and configurator user interaction aspects are gaining momentum (e.g. Blecker,
Friedrich, Kaluza, Abdelkafi, & Kreutler, 2005; Forza & Salvador, 2002a; For-
za & Salvador, 2002b; Heiskala et al., 2007; Salvador & Forza, 2007). Some
books guide companies on information management required by mass cus-
tomization, configurator classifications, and selecting a configurator (Blecker
et al., 2005; Forza & Salvador, 2006; Hvam, Mortensen, & Riis, 2008).

2.2 Basic terminology

Next, some basic terminology is defined. This enables discussion on previous
work. This thesis applies some terminology of object-oriented modeling, espe-
cially the Unified Modeling Language (UML) (OMG, 2011). Classes have zero
or more attributes that characterize the structure and zero or more operations
that characterize the behavior of those objects.

7 The configuration workshop of 2013 was an independent event and that of 2014 was ar
ranged in conjunction with 6th International Conference on Mass Customization and Person
alization in Central Europe (MCP CE 2014)

Previous work

24

An attribute has a range of possible values (domain) of a value type such as
integer, Boolean, string, floating point number or some object type and multi-
plicity (also known as cardinality): how many values an instance of the class
has for the attribute. Each attribute has a name. For example, a Car class
might have a color attribute that holds the color of the chassis of an instance
of the Car class. In other words, an attribute is a mapping from a name to val-
ue(s) that characterize(s) the instance. Some attributes have fixed (constant)
values, and others can be given a value.

Classes participate in inheritance hierarchies. Abstract classes cannot have
any direct instances while concrete classes may have instances. Attributes and
operations are inherited from superclasses and may be redefined or refined to
match particular details of the class with the specializing redefinition. For ex-
ample, the domain of an attribute could be restricted. In this thesis, instances
of types (classes) in a configuration model are called individuals.

Concept (as noun) is defined in Random House Unabridged Dictionary: “1. a
general notion or idea; conception. 2. an idea of something formed by mentally
combining all its characteristics or particulars; a construct. 3. a directly con-
ceived or intuited object of thought.” (Steinmetz, 1996). In this thesis, concept
is an object of thought (meaning 3 of (Steinmetz, 1996)); concepts are also
building blocks of conceptualizations.

Characteristic is a ‘distinguishing feature or quality’ (Steinmetz, 1996) of an
object (e.g., concept or idea).8 Property is a characteristic or attribute of any
object. More specifically, in the context of configuration modeling, configura-
tion types (see publication I, Section 3), may define attributes, compositional
structure, possibilities of participating in relationships, and some other as-
pects. All these are properties.

2.3 Configuration knowledge modeling

Configuration knowledge modeling offers ways to represent configuration
models, requirements, and configurations. It has received significant attention
in the literature.

Three primary types of configuration modeling conceptualizations can be
identified. The first type is actually not a conceptualization. It is based on the
idea that configuration knowledge can be directly encoded in the presentation
mechanisms of the problem-solving method. These methods and ways to rep-
resent configuration knowledge are outlined in the context of problem solving
in configurators (Section 2.4.2).

The second type is configuration-domain-specific conceptualizations, which
are independent of problem-solving methods. These can be roughly classified
as connection-based (Mittal & Frayman, 1989), resource-based (Heinrich &
Jüngst, 1991), structure-based (e.g., Cunis et al., 1989), or function-based
(Najmann & Stein, 1992) approaches. The conceptualizations have little in

8 Terms ‘characteristic’ and ‘property’ are defined with various meanings in different streams
of literature. For example, the domain theory of (mechanical) engineering design (Hansen &
Andreasen, 2002) defines meanings that should not be confused with those of this work.

Previous work

25

common, other than the central notion of a component. Term component re-
quires clarification and it is used in this work in two senses. First, without
qualification, component is used in the general sense: “a constituent part; ele-
ment; ingredient” (Steinmetz, 1996). Second, components are building blocks
of products in the sense that products (product individuals) consist of compo-
nents (component individuals). The nature of components is discussed in Sec-
tion 2.3.1 below.

The third and the most recent type of conceptualization includes unified ap-
proaches that combine the ideas of the individual approaches into a covering
ontology or conceptualization. These are discussed in the context of related
work; see Section 8.1.1 (p. 81).

2.3.1 Component

As stated above, literature identifies components as building blocks of prod-
ucts in the sense that products (product individuals) consist of components
(component individuals). This is a common notion, but the exact nature of
components is slightly ambiguous and depends on the adopted approach to
configuration knowledge modeling and also on the views of individual authors.

According to many authors (including the one of this thesis), pre-designed
components may have specification variables a.k.a. parameters, the values of
which need to be specified to manufacture or configure individual compo-
nents, e.g. physical dimensions, surface material, color, or capacity (Aldanon-
do, Hadj-Hamou, Moynard, & Lamothe, 2003; Fleischanderl et al., 1998; Tii-
honen & Soininen, 1996; Wielinga & Schreiber, 1997). Many components are
non-parametric – components do not have any specification variables; they
can be manufactured by identifying the component only; pre-existing draw-
ings, product structures, and other information are available due to pre-
design. Some authors only recognize non-parametric components (e.g., Mittal
& Frayman, 1989). All components – parametric or not – may be characterized
with properties such as weight, material, capacity or power. The value of some
properties is constant, and the value of some properties (e.g. weight) may de-
pend on selected parameter values. Attributes can be used both to represent
parameters of components, and to represent derived or fixed properties. At-
tributes can be necessary or optional – an optional attribute does not have to
have a value in a complete configuration, while a necessary attribute needs a
value.

Structure-based configuration modeling has emphasis on the modeling of
the compositional structure of products (e.g., Cunis et al., 1989). Often a com-
ponent is a physical, usually separable part of another component. In the con-
figuration, domain this whole-part relationship is usually called has-part re-
lationship. The relationship is irreflexive, antisymmetric, and transitive (Ar-
tale, Franconi, Guarino, & Pazzi, 1996; Štorga, Andreasen, & Marjanovi ,
2010). Thus, a component cannot be a part of itself (irreflexivity). The anti-
symmetric nature implies that if W has-part P, it does not hold that P has-
part W. Transitivity means that if W has-part P and P has-part Q, also W
has-part Q holds.

Previous work

26

A central phenomenon in the context of configuration is determining which
components (can) become part(s) of a whole. For example, a Car is to have
exactly one Motor that can be selected out of available motor types e.g. Mo-
tor_1.8_120HP_Petrol or 2.0_100HP_Diesel. Here, several aspects are
noteworthy. First, it is desirable to be able to refer to parts by their generic
part name (Artale et al., 1996), for example Motor. Second, cardinality indi-
cates a valid number of parts with a generic part name. For example, a Car
might have exactly one Motor, exactly four Wheels, and an optional (0 or 1)
Sunroof. Third, only some types of component (allowed types, possible part
types) are eligible for a specific part name; in this example Mo-

tor_1.8_120HP_Petrol or 2.0_100HP_Diesel could be eligible while Mo-
tor_1.8_180HP_Turbo_Petrol might not be. Other aspects of the part-whole
relationship are discussed in Section 3 and publication I.

A major aspect of a component in the configuration domain is connectivity:
the possibility or requirement to connect a component with other components.
This is the basis of connection-based approaches to configuration knowledge
modeling (Mittal & Frayman, 1989), Ports represent connection interfaces;
different port types imply different connections. Compatibility of components
can be modeled with ports: if ports allow components to be connected, they
are compatible. In a pure connection-based approach, the compositional struc-
ture is not explicitly modeled with specific concepts. Rather, ports may be ap-
plied to connect wholes and their parts (e.g., Felfernig, Friedrich, & Jannach,
2000b).

A further notion is that components can be modeled via resources that mod-
el the production and use of some entity, such as power or expansion slots
(Heinrich & Jüngst, 1991; Heinrich & Jüngst, 1996). The underlying idea of
this resource-based configuration modeling is that some component individu-
als produce a resource and other component individuals use it. There must be
enough production to cover use. Pure resource-based configuration modeling
characterizes components are only by their resource production and use.

In natural language, discussion on components does not explicitly distin-
guish between configuration model knowledge and configuration solution
knowledge. For example, the sentence “Car has an engine as a part” can be
interpreted in two ways. As configuration model knowledge, the sentence can
be understood as saying that every car individual must have an engine individ-
ual as a part. As configuration solution knowledge, it states that a configura-
tion includes a car individual that has an engine individual as a part. To make
this distinction explicit, component type and component individual are pre-
sented as central concepts in a configuration conceptualization discussed in
Section 3 and publication I.

2.3.2 Function and feature

According to the ‘domain theory’ of mechanical artefact design, any product is
to support a transformation process where the interplay between an operator
(human) and the artefact delivers effects that are necessary for the (often

Previous work

27

stepwise) transformation of an operand (Hansen & Andreasen, 2002). The
end state of the operand fulfils the purpose or satisfies the intended human
need. The operand can be material, energy, data, or biological objects. Addi-
tional types of characterizations include ‘universal virtues’ that include cost,
quality, time, efficiency, flexibility, risk, and environmental effects (Hansen &
Andreasen, 2002). This thesis adopts the view of publication I, where the func-
tional view of products consists of characterizations of the product that a cus-
tomer or sales person would utilize to describe the products. Many of the func-
tional characterizations (functions) concern the purpose-oriented transfor-
mations, related universal virtues or quality attributes such as reliability, usa-
bility, security, or availability. The conceptualization of Section 3 and publica-
tion I introduces concepts function type and function individual to represent
the functional view in configuration models and configurations, respectively.

The authors of publication II consider feature as a generalization of function;
some aspects of the sales view of configurable products are more adequately
called ‘features’ than ‘functions.’ Examples include the type of bed end of a
hospital bed, the configurable method of sweeping a fireplace, or the desired
shape of an extension element of a fireplace. Furthermore, the authors consid-
er that ‘feature’ is closer to natural language as a better match than ‘function’
to describe the sales view configurable products. Therefore, the configuration
modeling language of WeCoTin configurator is based on concepts feature type
and feature individual (Section 4).

Literature on recommender systems considers that products (‘items’) are
characterized by features. In this context, features can often be thought of as
attributes. For example, the feature color of a personal computer PC1 might
have value red, and another computer PC2 might have value color = black.

It is commonly recognized that features or functions are implemented or re-
alized by component individuals (e.g., Aldanondo, Rouge, & Véron, 2000; Sa-
bin & Weigel, 1998). With respect to domain theory (Hansen & Andreasen,
2002), features or functions roughly correspond to the transformation domain
that focuses on the purpose-oriented transformation of the operand. Compo-
nent individuals in a configuration correspond to the part domain that speci-
fies the parts that can be produced and assembled into a functioning product.
The organ domain with mechanical product's active elements is omitted.

According to some authors, the sales configuration process of highly custom-
izable products takes entirely place in the functional view (Aldanondo et al.,
2000). Najmann & Stein (1992) proposed that objects (components) be char-
acterized by their (attribute-like) functionalities; demands (user requirements)
are also specified in terms of functionalities. The construct resembles re-
source-oriented configuration modeling.

Configuration knowledge often includes constraints for specifying the inter-
dependencies of entities such as component individuals or function individuals
or both. A constraint is a formal rule, logical or mathematical or a mixture of
these, specifying a condition that must hold in a correct configuration. Litera-
ture often mentions requires and incompatibility constraints (Felfernig, Frie-
drich, Jannach, & Zanker, 2002; Felfernig, 2007; Tiihonen & Soininen, 1996).

Previous work

28

A requires-constraint states that some component(s) or parameter value(s)
require other component(s) or parameter value(s) to function. For example, a
sound recording unit requires a microphone to function. Incompatibility-
constraint states that some component(s) or parameter value(s) cannot be
used together. For example, in the context of a car, a combination of an air
conditioning system and an automatic gearbox is incompatible with a
low power engine.

Research Question RQ1: What are the concepts central to configuration
knowledge?

2.4 Configurators

2.4.1 Configurators—an extensively researched topic

Numerous configurators have been developed both as research prototypes and
as commercial software. The landmark R1/XCON was deployed at Digital
Equipment Corporation in the early 1980s (McDermott, 1982), and experienc-
es, benefits, and challenges of using it have been widely documented; see, e.g.,
Barker, O'Connor, Bachant & Soloway (1989), Sviokla (1990), and McDermott
(1993).

Major research efforts have been devoted to configurators applicable to solv-
ing general configuration tasks instead of a specific domain. These include
COSSACK (Frayman & Mittal, 1987), PLAKON (Cunis et al., 1989; Cunis, Gün-
ter, & Strecker, 1991) and its successor KONWERK (Günter & Hotz, 1999;
Hotz & Günter, 2014), and COCOS (Stumptner et al., 1994).

A large number of commercial general-purpose configurators exist. Trilogy
SalesBUILDER (Hales, 1992) was among the first. ILOG offered a generic con-
figuration engine to be used in other vendors’ systems (Junker & Mailharro,
2003a; Mailharro, 1998). Anderson (2005) identified 30 vendors by their Web
pages. In addition, prominent enterprise resource planning system and CRM
vendors have one or more configurators, e.g., SAP9 and Oracle.10 Furthermore,
configuration capabilities are common in Product Lifecycle Management sys-
tems, e.g., Dassault Enovia (3DSEnovia, 2012), Siemens Teamcenter (Siemens,
2011), and PTC Windchill (PTC, 2012).

Configurators are deployed relatively widely. For example, the International
Configurator Database listed 970 Web-based configurator instances that are
available for customers of corresponding companies (cyLEDGE, 2013). Some
of these may be single-purpose “hard-coded” systems, while others are built on
general-purpose configurators that are of interest in this work.

9 SAP R/3 “variant configurator” and “IPC, Internet Pricing and Configuration” (Haag, 2005; Haag, 1998)
10 Oracle Configurator (Damiani et al., 2001; Oracle, 2004; Oracle, 2009), JD Edwards EnterpriseOne
(Oracle, 2012), PeopleSoft Enterprise Configurator (Oracle, 2005), and Siebel Configurator (Oracle,
2007). Oracle has developed ‘Fusion Configurator Engine’ (Sawtelle, 2010), applied in the Oracle Config-
urator.

Previous work

29

Both numerous individual configurator instantiations and general-purpose
configurators that enable the creation of such instantiations exist. In conse-
quence, the author of this work holds that developing artifacts in these catego-
ries is not a scientific contribution as such; greater novelty or deeper principles
are required.

2.4.2 Problem solving in configurators

Numerous problem-solving methods have been applied to configuration tasks;
several overviews of the topic exist. At least rule-based approaches, constraint
satisfaction and its dynamic extensions, several logic-based approaches, and
different formalisms of propose-and-revise methods have been applied; for
summaries, see Stumptner (1997) and Sabin and Weigel (1998). Of these
methods, constraint satisfaction is the most widely applied.

In their taxonomy of types of problem-solving methods for design and con-
figuration, Wielinga and Schreiber (1997) consider configuration problem-
solving methods a subtype of design methods. Configuration problem-solving
methods can be further divided into knowledge-intensive methods and uni-
form methods. Uniform methods apply the same reasoning methods to all
problems, whereas knowledge-intensive methods use (explicitly modeled)
knowledge to constrain and direct problem solving. Knowledge-intensive
methods (propose, critique, and modify; case based, and hierarchical) are not
considered further in this work: the author considers uniform methods to al-
ready be mature enough for supporting the configuration tasks in sales config-
uration of many products and services.

Uniform methods include constraint solving and logic-based methods. Con-
straint satisfaction (CSP) and its extensions have gained significant popularity
(Fleischanderl et al., 1998; Mailharro, 1998; Mittal & Falkenhainer, 1990).
Many authors, e.g., Desisto (2004) and Haag, Junker & O’Sullivan (2007),11
consider constraint-based methods ideal for solving configuration problems.
Constraint-based methods can be extended with preference programming.
Here, the idea is to express preferences and to provide inference that supports
finding solutions that maximally satisfy preferences in such a way that more
important preferences are satisfied before less important ones (Junker &
Mailharro, 2003b).

A constraint satisfaction problem is a tuple (V, D, C). Here, V is a set of finite
domain variables, V = {v0, v1, …, vn}. Each variable has a (usually finite) do-
main that specifies the possible values of the variable, and the set of domains
is D, D = {dom0, dom1, …, domn}. C is a set of constraints specifying re-
strictions on the allowed combinations of variable value assignments. A solu-
tion to a constraint satisfaction problem is a set of assignments to each varia-
ble {v0 = x0, v1 = x1, …, vn = xn} such that each xi domi and the assignments
are consistent with the set of constraints C (Mackworth & Freuder, 1985).
When representing a configuration problem, each part to be selected and each

11 An essay in (Sinz et al., 2007) that is based on the Configuration Workshop of the 17th European Con-
ference on Artificial Intelligence (ECAI 2006).

Previous work

30

configurable attribute is represented as a variable, and the domain of the vari-
able is defined to include the respective possible values. There are two subsets
of constraints C = CCM CReq. CCM specifies configuration model relations be-
tween allowed values, e.g., “incompatibility” and “requires” constraints be-
tween components or their attribute values. CReq specifies the set of customer
requirements. A challenge for modeling with basic CSP is that many configura-
tion problems are dynamic in the sense that when, e.g., a component is select-
ed into a configuration, some parameters, parts or connections related to that
component need to be determined, leading to a need to introduce new varia-
bles or constraints. Dynamic CSP (DCSP; (Mittal & Falkenhainer, 1990; Soin-
inen & Gelle, 1999) and Generative CSPs (Fleischanderl et al., 1998;
Stumptner et al., 1998) address this problem.

Several logic-based methods have been applied to solve configuration prob-
lems successfully. These include direct programming in Prolog or through a
higher-level modeling layer (e.g., Searls & Norton, 1990). Description logics
(e.g., Baader, 2009) have been applied (McGuinness & Wright, 1998b; Wright
et al., 1993; Wright, McGuinness, Foster, & Vesonder, 1995). Constraint logic
programming has also been applied (Sharma & Colomb, 1998). Answer set
programming (ASP) makes it possible to express the problem as a theory con-
sisting of logic program rules with clear declarative semantics, and the stable
models of the theory correspond to the solutions (answer sets) to the problem
(Simons et al., 2002). The theories are expressed in weight constraint rule lan-
guage (WCRL). WCRL is equipped with weight constraints for representing
weighted choices with lower and upper bounds and with conditional literals
restricted by domain predicates to encode the sets of atoms over which the
choices are made. Weight constraint rules have been applied directly to model
configuration (Schenner, Falkner, Ryabokon, & Friedrich, 2013; Syrjänen,
2000) and reconfiguration (Friedrich, Ryabokon, Haselböck, Schenner, &
Schreiner, 2011; Schenner et al., 2013) problems in research systems. Fur-
thermore, a method has been proposed to translate configuration domain
modeling concepts into weight constraint rules (Soininen, 2000; Soininen et
al., 2001). Following this idea, an experimental system, OOASP, showed the
feasibility of checking a configuration, completing a configuration, and per-
forming reconfiguration (Schenner et al., 2013).

Sometimes different problem-solving methods have been combined, such as
description logic with constraint satisfaction (Junker & Mailharro, 2003a).

Previous work left room for a configurator that would be based on high-level
modeling conceptualization and the idea of translation of configuration
knowledge into weight constraint rules, a form of logic programs (Soininen,
2000; Soininen et al., 2001).

Research Question RQ2: How to construct a practical and computationally
well-founded sales configurator?

Previous work

31

2.5 Recommendation of configurable offerings

Recommender systems support users in selecting relevant items (e.g., books,
movies, insurance policies) in cases in which they do not have sufficient per-
sonal experience of the alternatives (e.g., Resnick & Varian, 1997); Burke,
(2002). In the context of recommender systems, the term feature is often used
to refer to a distinguishing characteristic of an item. Here, features can be
thought of as attributes. For example, the feature color of a personal comput-
er PC1 might have value red, and another computer PC2 might have value
color = black.

Recommender systems have been relatively widely applied to recommend
simple products such as books and movies. For example, Amazon.com applies
these technologies widely (e.g., Linden, Smith, & York, 2003). However, the
capability to support configuration tasks with recommendation technologies is
still in its infancy.

Next, basic recommendation technologies are outlined, followed by motiva-
tion and identification of research gaps in the context of configurable offerings.

2.5.1 Basic recommendation technologies

An active user is a user whose decision making the system currently supports,
typically in a personalized way. We omit discussion about non-personalized
approaches such as setting static defaults in configuration models.

Collaborative filtering (Adomavicius & Tuzhilin, 2005; Konstan et al., 1997)
is one of the most commonly used recommendation technologies. It provides
recommendations based on the opinions of the active user and other users
(e.g., ratings or purchasing data). The basic idea is to identify users who are
similar to the active user and to recommend their highly rated items that are
unknown to the active user. A similarity function determines the similarity of
opinions about items to calculate nearest neighbors, which are users with sim-
ilar preferences.

Content-based filtering (e.g., Pazzani, 1999) recommends items similar to
those which the active user has preferred in the past. Items are described by a
number of keywords or features. A user model contains previous opinions
about items; these are often presented as keywords or features as well. A simi-
larity function is used to calculate nearest neighbors, which are in this case
those items with the highest similarity compared with the preference infor-
mation given in the user profile (Burke, 2000). The approach is typically ap-
plied for recommending text-based items such as articles or Web pages.

Utility-based recommendation estimates the relative satisfaction or desira-
bility of consumption of an item, i.e., utility for the customer, and recom-
mends items with the highest utility. Here, multi-attribute utility theory
(MAUT) (Dyer, 2005; Von Winterfeldt & Edwards, 1986) is exploited in its
additive form. Domain-specific interest dimensions are identified. For person-
al computers, interest dimensions could be economy, reliability, graphics per-
formance and weight. Items are given numeric utility values with respect to
each interest dimension. The user specifies his preferences in terms of im-

Previous work

32

portance (weight) of each interest dimension. Given this information, item
utilities can be computed for the active user by summing up the weights multi-
plied by the utilities of the interest dimensions.

Compromise-driven retrieval (McSherry, 2003) recommends items that are
characterized by attributes. The active user specifies the desirable values of
some attributes, and the system retrieves items that are similar. In McSherry’s
terms, similarity is defined slightly nonintuitively, based on the idea that most
users would like to maximize or minimize the values of many numeric product
attributes. These attributes are denoted as more-is-better (e.g., resolution or
optical zoom ratio of digital cameras) or less-is-better (e.g., price or weight).
Furthermore, for nearer-is-better attributes, users prefer a high similarity
between their preferences and the corresponding product. Utility of a product
is the sum of weighted attribute similarity values. McSherry aims to support
making compromises by identifying and presenting only cases that have simi-
lar compromises, hence the name compromise-driven retrieval.

Knowledge-based recommenders exploit explicit information about items
and user requirements and how they can be satisfied (Burke, 2000; Felfernig,
Isak, Szabo, & Zachar, 2007). Constraint-based recommendation (Felfernig &
Burke, 2008) is a knowledge-based approach wherein alternative items and
potential customer requirements are described on the basis of a set of features
and the corresponding constraints. Felfernig et al. (2007) describe a system in
which filter constraints match customer requirements to suitable items. Com-
patibility constraints ensure the consistency of requirements. In addition,
explanation and repair functionalities are provided to support the user in re-
solving inconsistencies.

Case-based recommendation (Burke, 2000) is another type of knowledge-
based recommendation. In contrast to content-based filtering and collabora-
tive filtering, elementary properties of items (e.g., PC price, hard-disk size)
from the previous recommendation sessions are taken into account rather
than extracted keywords, categories, or the identity of the user. Case-based
reasoning exploits similarity functions and Bayes predictors on previous ses-
sions to determine interesting items and feature settings fitting the wishes and
needs of users. Bayes predictors allow the prediction of interesting items on
the basis of their probability of being selected given the existing user prefer-
ences. Naïve Bayes predictors assume that variables are independent, which
makes them computationally more feasible but potentially less accurate than
Bayes predictors that take into account dependencies between variables. Naïve
Bayes predictors have been applied for content-based filtering (Pazzani, 1999)
and case-based recommendation (Cöster, Gustavsson, Olsson, & Rudström,
2002).

For configuration purposes, Geneste and Ruet (2001) proposed a case-based
approach: identify a similar configuration (case) and adapt it to solve the cur-
rent configuration task. Cöster et al. (2002) proposed three case-based algo-
rithms for recommending configurable offerings. Two of them are based on
naïve Bayes predictors: the naïve Bayes voter recommends individual feature
values, and the most popular choice recommends feature values for the set of

Previous work

33

features for which the user does not have a value, typically to complete the
configuration. The weighted majority voter recommends individual feature
values. It is computationally and conceptually simpler than naïve Bayes voter
and most popular choice.

Hybrid approaches attempt to combine the benefits of different approaches
to provide better recommendations, and challenges may also follow (Ado-
mavicius & Tuzhilin, 2005; Burke, 2002).

2.5.2 Recommendation of configurable offerings

As Aldanondo, Véron, & Fargier (1999) recognized, a configurator usually has
to work in a situation in which a customer is looking for a solution, typically
without explicitly formulated needs and with a varying level of knowledge
about the possible solutions. It is the task of the supplier (possibly through a
configurator) to understand the customer’s need and to find a product that
meets that need. However, customers usually do not know their (detailed)
preferences beforehand; preferences are constructed (Bettman, Luce, & Payne,
1998; Häubl & Murray, 2003) within the scope of a configuration session.12

Challenges of choice navigation may hinder the sales success of configurable
offerings. Especially nonexpert users who configure products or services may
be overwhelmed by the offered set of alternatives. In such a situation, a user
may become dissatisfied or decide against making a choice—a phenomenon
known as mass confusion (Huffman & Kahn, 1998).

An approach to reduce potential for mass confusion is to provide personal-
ized recommendations for individual selections or for completing a configura-
tion (Ardissono et al., 2002; Ardissono et al., 2003; Cöster et al., 2002; Steg-
mann, Leckner, Koch, & Schlichter, 2006; Stegmann, Koch, Lacher, Leckner,
& Renneberg, 2003).

Numerous authors (e.g., Falkner, Felfernig & Haag, (2011); Resnick & Vari-
an, (1997); Stegmann et al., (2006)) have proposed excluding (filtering out)
some features (e.g., attributes) or alternatives (e.g., attribute values) that could
be determined uninteresting from the customer’s point of view. A similar idea
is to recommend features (configuration decisions) to configure next based on
the estimated interest of the user (Falkner et al., 2011; Felfernig & Burke,
2008; Wang & Tseng, 2011).

Yet another approach is to provide personalized preconfigured packages
(proposals for complete configurations), e.g., in the context of tourism packag-
es (Zanker, Aschinger, & Jessenitschnig, 2007).

Use of recommendation in the context of configurable products and services
such as financial services, personal computers, or cars is relatively limited, and
few commercial configurators apply recommendation technologies; despite
some efforts we were unable to find literature showing substantial deploy-
ments. An exception (with limited configuration functionality) was (Felfernig
et al., 2007).

12 Of course, some customers may know in detail both their needs and the available offering.
For such users, recommendation support may not provide significant benefits.

Previous work

34

To sum up, the author sees the need for the recommendation of configurable
offerings, but the proposed approaches have not been used widely, and even
“toy examples” are relatively few. Therefore, we ask:

Research Question RQ3: Can users be effectively supported in finding suit-
able products and services with personalized recommendations?

2.6 Mass customization and configuration of services

2.6.1 Services—a minimal overview

Despite a consensus on the importance of services, there is no consensus on
the exact definition. In this work,13 we apply the following definition “reluc-
tantly” proposed by Grönroos (2007): “A service is a process consisting of a
series of more or less intangible activities that normally, but not necessarily
always, take place in interactions between the customer and service employees
and/or physical resources or goods and/or systems of the service provider,
which are provided as solutions to customer problems” (p. 52). Prominent
service definitions consider processes central to the nature of services (Fitz-
simmons & Fitzsimmons, 2004; Grönroos, 2007; Vargo & Lusch, 2004a).

Services are often attributed with characteristics that differentiate them from
tangible goods: intangibility, heterogeneity, the inseparability of production
and consumption, and perishability, (collectively known as the IHIP charac-
teristics; (Grönroos, 2007; Zeithaml, Parasuraman, & Berry, 1985). Another
commonly mentioned service characteristic is no change of ownership; service
transactions do not usually result in the change of ownership (Lovelock &
Gummesson, 2004). But not all of these characteristics apply in all service
contexts, and the usefulness and general correctness of these characteristics
are being debated (Edvardsson, Gustafsson, & Roos, 2005; Lovelock &
Gummesson, 2004; Vargo & Lusch, 2004b).

The field of services is extremely diverse. Therefore numerous service typol-
ogies have been presented (Chesbrough & Spohrer, 2006; Cook, Goh, &
Chung, 1999; Edvardsson et al., 2005; Lovelock, 1983; Silvestro, Fitzgerald,
Johnston, & Voss, 1992; Zeithaml et al., 1985). For example, Cook et al. (1999)
listed about 40 classification schemes of services presented in previous work.

Offerings usually consist of a mix of tangible goods and services. In other
words, there is a spectrum from pure tangible goods to pure services (Kotler,
1988; Levitt, 1981). Services are not only provided in the traditional service
sector. Manufacturers of goods offer invoiced or bundled services such as in-
formation, logistics, software, and upgrades and hidden services such as in-
voicing and complaint handling (Grönroos, 2007).

13 The scope of this work excludes Web services, “the computing paradigm that utilizes ser
vices as fundamental elements for developing applications” (Papazoglou & Georgakopoulos,
2003, p. 25).

Previous work

35

2.6.2 Mass customization and configuration of services

Mass customization of services can potentially provide both good fit with cus-
tomer needs and the benefits of standardization (Bowen & Youngdahl, 1998;
Da Silveira, Borenstein, & Fogliatto, 2001; Gilmore & Pine, 1997; Hart, 1995;
Harvey, Lefebvre, & Lefebvre, 1997; McLaughlin, 1996; Pine, 1993; Sundbo,
2002). However, explicit research on service mass customization is relatively
sparse, and a need for more research has been identified (Beckett, 1996; Da
Silveira et al., 2001; Duray, Ward, Milligan, & Berry, 2000; Heiskala et al.,
2007; McLaughlin, 1996). Lately, there has been significant interest in mass
customization of services. For example, the MCPC 2007 conference included a
session on service mass customization, and the proceedings of the IMCM &
PETO conference in 2008 were titled “Mass Customization Services” (Ed-
wards, Blecker, Salvador, Hvam, & Friedrich, 2008).

Results of research on goods mass customization may not be directly appli-
cable to services, because of the characteristics of services (Da Silveira et al.,
2001; Harvey et al., 1997). On the other hand, products and services are often
discussed without much differentiation between services and physical prod-
ucts (see, e.g., Gilmore & Pine, 1997; Hart, 1995; Pine, 1993).

These differing views raise a question: is configuration of services business
as usual, or is there anything that distinguishes configuration of services from
that of physical goods?

Specific literature on the relation between configuration approach and ser-
vices is scant (Heiskala, Paloheimo, & Tiihonen, 2005). Previous work has
suggested that services are amenable to the configuration approach: The idea
of composing services according to customer requirements from pre-designed
service modules or components to achieve a good fit to customer requirements
and efficiency (of mass customization) has been recognized by several authors
(Ardissono et al., 2003; Baida, Akkermans, & Gordijn, 2003; Böhmann,
Junginger, & Krcmar, 2003; Dausch & Hsu, 2006; McLaughlin, 1996; Meier &
Massberg, 2004; Meyer & DeTore, 2001; Stolze & Field, 2000; Sundbo, 1994).
Such composition effectively suggests service configuration. The configuration
approach to mass customizing services has been applied or proposed in several
industries. These include financial services (Felfernig, 2007; Haag, 2008;
Junker & Mailharro, 2003b), telecommunications services (Oracle, 2004;
2009; SAP, 2001; 2005), travel services (Goy & Magro, 2004a; Goy & Magro,
2004b; Werthner & Ricci, 2004), and maintenance services of industrial goods
(Dausch & Hsu, 2003; 2006; Meier & Massberg, 2004).

Configurators developed primarily for goods are indicated to support config-
uration of services. Twenty of 30 commercial configurator vendors studied by
Anderson (2005) indicated that their configurators supported services. Only
two vendors described their modeling concepts, and neither introduced any
service-specific concepts. No modeling examples were found. Still, major busi-
ness software vendors such as Oracle and SAP provide functionality at least for
configuring telecommunications services (Oracle, 2004; 2006; SAP, 2001;
2005). It is evident that financial services are also configured (Anderson,
2005; Felfernig et al., 2007; Haag, 2008).

Previous work

36

To sum up, we were unable to find adequate overviews on service configura-
tion to understand whether service configuration differs from the configura-
tion of physical products. Questions such as the following remained without
answers:

 Are processes related to configurable services identical to those for phys-
ical products? If not, what are the differences?

 What variation is offered in the context of configurable services?

 What is the nature of components or modules of services?

 Do service characteristics such as IHIP affect service configuration?

 What kinds of services are amenable to mass customization by configu-
ration?

 Can configurators designed for physical products be applied to manage
offered variation of services?

Research Question RQ4: How does service configuration differ from the
configuration of physical products?

By now, the research questions have been identified. The following Sections

3 to 6 summarize the corresponding results that are evaluated in Section 7 and
discussed in Section 8. Finally, Section 9 presents conclusions. A more de-
tailed overview of the structure of this work was provided in Section 1.4 (see p.
19).

Conceptualization for configuration knowledge

37

3. Conceptualization for configuration
knowledge

This section summarizes a conceptualization for configuration knowledge that
synthesizes and extends earlier approaches (I). The conceptualization defines
objects that are of primary interest in configuration knowledge as well as the
key relations among these objects. We prefer to call it a conceptualization be-
cause there is no detailed and explicit formalization that would be required for
it to be called ontology (Gruber, 1993).

The basic structure of the conceptualization is presented in Figure 7. Please
note the example in Section 3.8 (Figure 8, p. 42). A set of configuration model
concepts forms the top-level taxonomy. Concepts and classes defined at this
(meta)level are applied to represent configuration models. This configuration
model knowledge specifies the entities that can appear in a configuration,
their properties, and the rules on how the entities and their properties can be
combined. Individuals (instances) of configuration model concepts describe
individual configurations and thus represent configuration solution
knowledge. Finally, requirements knowledge specifies the systematized re-
quirements on the configuration to be constructed. Requirements knowledge
can be specified with the same concepts as configuration model knowledge and
configuration solution knowledge, although it plays a different role in problem
solving.

The conceptualization covers connection-based (Mittal & Frayman, 1989),
resource-based (Heinrich & Jüngst, 1991), structure-based (e.g., Cunis et al.,
1989), and function-based (Najmann & Stein, 1992) approaches presented in
the literature. It integrates the previous main approaches to configuration
knowledge modeling while treating the main concepts uniformly with respect
to several criteria.

3.1 Types, individuals, and classification

Types and individuals clearly distinguish between the entities that occur in
configuration model knowledge and configuration solution knowledge. A con-
figuration can contain individuals of subtypes of the following main types of
configuration model knowledge: component, port, resource, and function.

The main types are organized in a classification hierarchy in the usual man-
ner (e.g. Rumbaugh, Blaha, Premerlani, Eddy, & Lorensen, 1991). A type has a

Conceptualization for configuration knowledge

38

set of property definitions such as attribute, part, and port definitions. A type
inherits the properties of its supertypes in the classification hierarchy. When a
type inherits definitions from a supertype, the type can use the inherited data
“as such,” or it can “modify” the inherited data by means of refinement. Re-
finement is semantically based on the notion that the set of potential valid in-
dividuals directly of the subtype is smaller than the set of valid individuals
directly of the supertype.

A type is either abstract or concrete. Abstract types are used as supertypes
in a taxonomy that enables gathering common knowledge related to their sub-
types. Only individuals that are directly of a concrete type can occur in a com-
plete configuration as they are accurate enough to be used in an unambiguous
configuration.

A component type is either dependent or independent. A valid component
individual that is directly of an independent component type may exist in a
configuration without being a part of something, whereas a valid component
individual that is directly of a dependent type may not.

3.2 Attributes

Component, port, resource, and function types can define ATTRIBUTES. These
represent the parameters, derived or fixed properties of interest that are to be
represented as the variables or constants of an individual of the type. Attrib-
utes have a name and a value type. Value types can be formed from basic value
types Boolean, integer, string, or float. Some attributes have fixed values, and
others can be given a value. Attributes can be necessary or optional—an op-
tional attribute does not have to have a value in a complete configuration,
whereas a necessary attribute must have a value.

Examples of attributes include the physical dimensions of parametric com-
ponent types, surface material, color, resistance, and capacity.

Figure 7. Basic structure of the conceptualization (I).

Configuration type

Component type Resource type Port type

Configuration model concepts,
i.e.configuration specific classes
and relation definitions

Configuration model, i.e.
types, property definitions
and constraints

Configuration, i.e.
individuals and their
properties

Legend

Module Displ-power Video-in

...

...

Module#1 Module#2 Video-in#1 ...

Class Instance direct-subclass-of or
direct-instance-of

Conceptualization for configuration knowledge

39

3.3 Component types and compositional structure—parts

A component type represents a distinguishable entity in a product that is
meaningful to product configuration in the sense that a configuration is com-
posed of component individuals of their respective component types.

The compositional structure is important for configuration because products
are commonly described in terms of their structure for design, manufacturing,
or maintenance purposes. The conceptualization directly supports generalized
product structures with a varying number of mandatory, optional, and alterna-
tive parts via PART DEFINITIONS that can be specified in component types and
function types. The semantics of a part definition is that a valid individual of
the whole type has the number of part individuals specified by the cardinality
as parts with the specified part name. Each individual as a part must be of one
of the possible part types (allowed types for brevity). In other words, a part
definition defines a named part “role,” which is to be filled by individual(s) of
types that are viable for that role. For instance, component type (table) Lamp
could have part definitions for roles Lampshade and Stand. Part definitions are
either exclusive or shared. A valid exclusive part, i.e. a component individual
occurring as a part with a part name that indicates it as exclusive, must not
occur as a part of another component individual. In the shared case, there is
no such restriction. The conceptualization also allows component types to
specify whether their individuals can be shared.

The conceptualization allows has part inheritance definitions that specify
how the properties of component individuals of whole types are dependent on
the properties of parts and vice versa. These dependencies can be straightfor-
ward, such as parts inheriting the color of the whole; or they may be more
complex, such as the weight of the whole being the sum of the weights of its
parts.

3.4 Topology—ports

Topological concepts port type and a port individual represent how compo-
nent individuals can be connected together to form a working product individ-
ual. Port definitions effectively represent the compatibility of component indi-
viduals and specify the possible topologies of the product: the idea is that
component individuals can be connected only if they have compatible interfac-
es represented as ports. Some connections may be mandatory for creating a
functional product, and other connections may be optional. Connections can
be physical or logical.

Component types specify their connection possibilities by PORT DEFINITIONS.
A PORT TYPE is a definition of a connection interface. A PORT INDIVIDUAL repre-
sents a “place” wherein a component individual of some other port individual
can be connected. A port type has a COMPATIBILITY DEFINITION that defines a
set of port types whose port individuals can be connected with the port indi-
viduals of that port type.

Conceptualization for configuration knowledge

40

3.5 Resources

Resource-oriented concepts model the production and use of some entity, such
as power or expansion slots. The underlying idea is that some component indi-
viduals produce a resource and other component individuals use it. There
must be enough production to cover use.

Resource production and use must be either satisfied or balanced. If the
quantity of a resource produced is at least equal to the quantity of the resource
used, the resource is satisfied. If the quantity of a resource produced is equal to
the quantity of the resource used, the resource is balanced. A computation
definition of a resource type specifies whether the resource must be satisfied or
balanced. In addition, the computation definition specifies how the production
and use of the resource type by several component individuals are combined.
This is done through a total production function and a total use function,
making it possible to deviate from the prototypical cumulative addition of con-
sumption and production. Resource types can be characterized with attributes.

Component types specify with production definitions and use definitions the
resource types their individuals produce and use. Generalizations in these def-
initions include configurable resource types to produce or consume (a set of
possible resource types), a configurable amount (magnitude range), con-
straints on allowed attribute values of the resource to be consumed or pro-
duced (property definitions), and a context. Satisfying or balancing resource
production and consumption may be restricted to a specific context; a resource
is available only to component individuals that are in the same context as the
producing component individual. A context can be defined through composi-
tional structure, topological structure, type of component individuals, or a
combination of these methods.

3.6 Functions

Function-oriented concepts represent the functionality that a product individ-
ual provides to the customer, the product’s user, or the environment. The idea
of functions is to provide a non-technical view to the functionality and features
of the product to be configured. These are then mapped to component individ-
uals, attribute values, and connections that implement the desired functionali-
ty and features. The basic concepts are FUNCTION TYPE and corresponding in-
dividual FUNCTION. Function types can specify their compositional structure
with the same mechanisms as component types. However, function types can-
not specify resources and ports.

3.7 Constraints

In the configuration model, constraints provide a general mechanism for spec-
ifying the interdependencies of entities. A constraint is a formal rule, logical or
mathematical or a mixture of these, specifying a condition that must hold in a
correct configuration. Constraints are used when the other concepts do not

Conceptualization for configuration knowledge

41

capture the intended meaning adequately or conveniently. A constraint may
specify arbitrarily complex interactions between types, individuals of types,
and their properties using the terminology of the concepts.

Constraints can be divided into constraint sets that limit the allowed config-
urations from specific points of view on the product. One may check a configu-
ration’s correctness from a given point of view by checking whether the corre-
sponding constraint set is satisfied. For example, technical and marketing con-
straints could form corresponding constraint sets. The technical constraints
limit the configurations on the basis of which combinations are technically
feasible. Marketing constraints limit the combinations on the basis of product
policy, i.e., which of the technically feasible combinations a company is willing
to sell.

3.8 Example

We modeled a case product, heavy rock-drilling machine Ranger by Tam-
rock,14 without computer support (Tiihonen et al., 1998). A Ranger (Figure 8)
consists of a body, a tracked crawler base, a boom, and drilling equipment. The
body is divided into a power unit, a cabin, a fuel oil tank, and a hydraulic oil
tank. The Ranger product family has three alternatives in the main functional
property (drilling dimension) and numerous alternatives of secondary proper-
ties. Altogether there are more than 200,000 possible variants, but Tamrock
regarded 72 of these as substantially different.

Here follows an example of a part definition: Ranger has a part definition
Power unit, which is fulfilled with an individual of component type Power unit
assembly. The role Engine of Power unit assembly is filled with an individual of
component type Engine block or one of its subtypes. Here, the abstract compo-
nent type Engine block is modeled as a supertype of three concrete component
types Engine R, Engine S, and Engine R w/o emission control. These types inherit
the properties of Engine block but differ in some aspects. The type of the feeder
is dependent on the type of Rockdrill. This dependency is modeled using port
types and their compatibilities, because Rockdrill needs to be connected to the
Boom. The power requirement of rock drills varies. This is modeled by re-
sources. The engines produce different amounts of Power. The rock drills use
this resource, represented at the bottom of Figure 8. The use of Power must be
satisfied, i.e., it must be produced in at least the amount in which it is used.

14 Currently Sandvik Mining and Construction

Conceptualization for configuration knowledge

42

Engine
block

Power unit
assembly

Engine R Engine S

Engine R
w/o emission control

Engine

[1]

Drilling boom assembly

Boom &
Feeder

Rockdrill

Boom and
 Feeder

LDA

[1]

HL500 HL600 HL700

Normal
track

Three edge
track

Track

Track

Drive
unit

Winch

Cabin

languange:
{GB,D,FIN,
N,DK,F,E,

P,I,CR}

Power

108 KW

119 kW

135 kW

135 kW
108 kW

108 kW

Hose reel

Always
with
LDA

[0,1]

Hose
reel

[1]

Boom

DA

[1]
Drill attachment

HDA

Boom

HBA

LDA HDA HDA

Caterpillar
drive

Crawler
assembly

[1]

Power unit

[1] Abstract
component type

Generalization
 (classification)

Port type

Resource
type

Resource production
and use

Constraint

Part definition with part
name and cardinality

[n,m]

Crawler
base

Cabin

[1]

[1]

Rockdrill

Drilling module
[1]

Concrete
component type

Winch

[1]

part name

LBA

BA

Legend

amount

[2 identical]

[0,1]

1 1
1 1 1

1

Figure 8. Tamrock Ranger modeled for demonstration and initial evaluation of the concep-
tualization (Tiihonen et al., 1999)

WeCoTin Configurator

43

4. WeCoTin Configurator

This section presents a domain-independent sales configurator called
WeCoTin (an acronym for Web Configuration Technology). WeCoTin is the
main Design Science artifact of this work. A number of other Design Science
artifacts are discussed; these are identified in 0 on page 19.

Requirements of WeCoTin are discussed in Section 4.1, followed by an over-
view of the system and its architecture (Section 4.2). Next, WeCoTin Configu-
ration Tool for end users is described in Section 4.3. WeCoTin Modeling Tool
for modelers and Product Configuration Modeling Language (PCML) are de-
scribed in Section 4.4. User interface modeling and generation are the topic of
Section 4.5. Section 4.6 outlines the management of price and delivery time.
Finally, Section 4.7 briefly discusses how weight constraint rules are applied to
provide the inferences required by WeCoTin. Note that the multi-faceted eval-
uation of WeCoTin is postponed until Section 7.1.2, and Section 8.3.2 answers
research question RQ2.

4.1 Requirements

In this section, we present central requirements specific to a practical web-
based configurator. The requirements have been identified in joint projects
with the manufacturing industry and in the previous work of PDMG (Tiihonen
& Soininen, 1996; Tiihonen & Soininen, 1997a; Tiihonen et al., 1998). We add
supporting references from previous work.

Products evolve over time as new features are introduced and designs are
improved or corrected. Product evolution inevitably leads to corresponding
new configuration model versions—the pace of change may be high (McGuin-
ness & Wright, 1998a). Long-term management of configuration models has
often been problematic; an extreme example was the R1/XCON system
(McDermott, 1993). To facilitate long-term management, product experts such
as product managers should be able to model the products (Felfernig et al.,
2002; Hedin, Ohlsson, & McKenna, 1998; Hvam, Riis, & Hansen, 2003;
McGuinness & Wright, 1998b). This avoids the cost of experts such as
knowledge engineers or programmers who are traditionally needed to main-
tain configurators. Modeling by product experts also eliminates the error-
prone communicating of product knowledge to separate modelers.

WeCoTin Configurator

44

Modeling should be easy for product experts to understand; it should also be
declarative, allowing the modeler to specify what kind of product individuals
are valid, instead of procedural, which requires specifying how to create them
(Ardissono et al., 2003; Axling & Haridi, 1996; Felfernig et al., 2000b; Fleis-
chanderl et al., 1998; Mailharro, 1998; McGuinness & Wright, 1998b; Sabin &
Weigel, 1998; Stumptner et al., 1994; Stumptner et al., 1998; Yu & Skovgaard,
1998). The modeling language should be object-oriented to divide configura-
tion models into relatively independent pieces with low complexity and to ex-
ploit their common properties (Hvam et al., 2008; Mailharro, 1998; McGuin-
ness & Wright, 1998a; Slater, 1999; Stumptner et al., 1998). Furthermore, the
modeling language should be straightforward to model typical configuration
phenomena such as alternative components in a product structure.

The user interface for end users should require little work and no program-
ming to create and maintain when products change. This requirement was
independently documented by Attardi, Cisternino, & Simi, (1998). In addition
to fluent modeling, advanced long-term management requires support for
modeling the evolution of products, components, and their interdependencies
in a way that resembles configuration management (CM) (Buckley, 1993) and
product data management (PDM) (Männistö, 2000). It should, moreover, be
possible to deploy efficiently configuration models to salespeople and custom-
ers without the risk of using outdated configuration models (Barker et al.,
1989), and multiple users should be able to configure products simultaneously.
Configurations should be exportable to e-commerce, enterprise resource plan-
ning (ERP), or PDM systems for further order processing (Ardissono et al.,
2003; Forza & Salvador, 2006; Haag, 1998; Sabin & Weigel, 1998).

Fundamentally, a configurator must check a configuration for completeness
(i.e., that all the necessary selections are made) and consistency (i.e., that no
rules are violated) with respect to the configuration model (Barker et al., 1989;
Fleischanderl et al., 1998; Heatley, Agarwal, & Tanniru, 1995; Sviokla, 1990).
It should be impossible to order an inconsistent or incomplete configuration.

The user should be further supported by a configurator that fully deduces the
consequences of previous selections (McGuinness & Wright, 1998a). This
means, for example, automatically making selections implied by the previous
selections, identifying alternatives incompatible with them, and ensuring at
each stage of the configuration task that the user does not end up in a “dead
end” that, because of previous selections, cannot be completed into a con-
sistent configuration. In addition, explanations for any incompatibility of se-
lections should be available (Feldkamp, Heinrich, & Meyer-Gramann, 1998;
Haag, Junker, & O'Sullivan, 2006). This helps users learn the product and its
restrictions. It should be possible, however, to make incompatible selections,
which can help an expert user modify the configuration quickly (Forza & Sal-
vador, 2006).

Ease and flexibility of use for non-expert users of a web-based configurator
imply a number of requirements. The user should be kept aware of selections
that have been made and that must still be made, and the state of complete-
ness (complete, incomplete) and consistency (consistent, inconsistent) of the

WeCoTin Configurator

45

configuration (Haag, 1998). It should be possible to guide a non-expert user
through selections, but allow experts to make selections in a different order
(John & Geske, 1999). Further, the configurator should be accessible to any
customer who can use a web browser. Preferably, a configurator should be
available in the user’s language (Hvam et al., 2008).

Finally, an interactive configurator should provide adequate performance in
terms of length and predictability of response time. According to (Nielsen,
1993 p. 135), about 0.1 second is the limit that allows the user to feel that the
system is reacting instantaneously, and about 1 second is the limit for the us-
er’s flow of thought to stay uninterrupted.

4.2 WeCoTin overview

WeCoTin consists of two main components: a graphical modeling environ-
ment Modeling Tool (Figure 9, right) and a web-based application WeCoTin
Configuration Tool that supports the configuration task (Figure 9, left.)

4.3 WeCoTin Configuration Tool

WeCoTin enables users to configure products over the web using a standard
browser. The component WebUIServlet (Figure 9, upper left) acts as a presen-
tation layer that dynamically generates the user interface for end users. The
interface consists of several parts; these are indicated with a letter and descrip-
tion in Figure 10. The configuration tree (Figure 10, B) gives an overview of
the configuration: compositional structure is shown, along with attributes and
their values. Selections already made and selections still to be made are shown,
and links facilitate a free order of making selections. The status area (top left,
Figure 10, C) indicates the status of the configuration in terms of consistency
and completeness and shows calculation results such as the price and estimat-
ed delivery time. The three possible states of a configuration and correspond-
ing symbols are shown at the bottom right, Figure 10, D.

A group of questions related to a product individual, derived from the con-
figuration model and user interface generation information (see Section 4.5),
is represented in the question area (Figure 10, A). The 6-Speed Transmis-
sion in Figure 10 is incompatible with current selections. The user is in-
formed about inconsistencies by collecting the error messages of violated con-
straints—area F of Figure 10 shows an example. Configuration process in a
wizard-style pre-determined order is available via the “Next” button.

4.4 Modeling Tool and PCML

Modeling Tool is used for creating and editing configuration models and in-
formation needed to generate a user interface for end users.

Configuration models are expressed in Product Configuration Modeling
Language (PCML). PCML is object-oriented and declarative. PCML is concep-

WeCoTin Configurator

46

tually based on a function-oriented subset of the configuration knowledge con-
ceptualization (publication I, Section 3).15

Functions of the conceptualization are called features in the implementation.
The main concepts of PCML are feature types and their compositional struc-
ture, attributes, and constraints. Feature types define the subfeatures (parts)
and attributes of their individuals that can appear in a configuration. A feature
type defines its compositional structure through a set of subfeature defini-
tions. A subfeature definition specifies a subfeature name, a non-empty set of
possible subfeature types (allowed types for brevity) and a cardinality indi-
cating the valid number of subfeatures. One feature type is the configuration
type: an individual directly of that type serves as the root of the compositional
structure.

15 Originally, WeCoTin was developed with component oriented modeling rather than being
feature oriented. The decision to focus WeCoTin purely on sales configuration caused the
renaming of concepts. Feature types were called component types, and subfeatures were
called parts.

PCML
XML

Compiled PCML
BCRL, XML

Compiled PCML,
WCRL, BCRL

E-commerceE-
commerce

ERP

Modeling
Environment

User Interface

Configuration
tool

Configurator Server

Ordinary Web
Browser

WebUI servlet

Ordinary
servlet engine

Model Manager

Repository

Inference
engine

interface

Configuration
modeling core

Inference
Engine
(lparse)

Configuration
modeling core

Model
Management

interface

Inference
engine

interface

Inference
Engine

(smodels)

HTTP (POST) / HTML

RMI

E-commerce
ERP
PDM

Session
manager

Integration
modules

ODBC

ODBC

Modeling tool

Figure 9. WeCoTin architecture overview: Configuration Tool on the left and Modeling Tool on
the right. Publication II contains a single-column version of this unpublished figure.

WeCoTin Configurator

47

Figure 10. WeCoTin Configuration Tool user interface for end users (II). A: questions to answer
and wizard-style “Next” button; B: the configuration tree gives an overview and free order of
navigation; C: status, usually the price and one of the alternatives in D; E: the toolbar for
other actions.

An attribute definition of a feature type consists of an attribute name, an at-
tribute value type, and a necessity definition indicating if the attribute must
be assigned a value in a complete configuration. Supported value types are
Boolean, integer, and (enumerated) strings.

Feature types are organized in a class hierarchy in which a subtype inherits
the attribute and subfeature definitions of its supertypes. A predefined root
feature type with the name “Feature” serves as the root of the class hierarchy.
A feature type is either abstract or concrete. Only an individual directly of a
concrete type can be used in a configuration. Multiple inheritance among fea-
ture types is allowed. A feature type can specify defaults for attributes and sub-
feature realizations. Pre-selection packages support different sets of default

WeCoTin Configurator

48

values to model market-area specific defaults and “customer standards” speci-
fying combinations of selections that have been agreed with a customer
(Pasanen, 2003). Defaults in pre-selection packages can be reinforced with
soft or hard constraints (Pasanen, 2003).

PCML significantly simplifies the conceptualization of publication I. Details
of aspects that have been excluded from PCML are discussed in Section 3.6 of
publication II.

The Feature type tree displays the classification hierarchy (Figure 11, A) and
serves as a starting point for editing all aspects of the types. The compositional
structure is shown in the subfeature hierarchy tree (Figure 11, B). The feature
type overview (Figure 11, C) allows addition or removal of attributes and
change to the concreteness or the name of the currently selected type. The tab
Attributes shows an overview of the attributes of the selected feature type.
Special support is provided for defining enumerated attributes.

A save operation stores the graphically edited configuration model as PCML.
The tool also compiles the configuration models for use in WeCoTin Configu-
ration Tool. The semantics of PCML are provided by mapping it to Weight
Constraint Rules (Soininen et al., 2001). The basic idea is to treat the sentenc-
es of the modeling language as shorthand notations for a set of sentences in
the weight constraint rule language (WCRL).

Constraints associated with feature types define conditions that a correct
configuration must satisfy. A constraint has a name and a constraint expres-
sion. Hard constraints define conditions that a correct configuration must
satisfy. A configuration is considered consistent if and only if no hard con-
straint in any feature individual is violated. If any hard constraint is broken,
the purchase process cannot be completed—for example, placing the configu-
ration into the shopping cart is prevented. In contrast, a violated soft con-
straint issues a warning to the user, who can suppress or “silence” the warn-
ings. However, depending on the modeler decision, the user may be required
to review or even explicitly accept all warnings before proceeding in the acqui-
sition process.

Modeling Tool provides several ways to define constraints: textually, graph-
ically, and as table constraints. For details, see publication II.

4.5 User interface modeling and generation

A web-based user interface for the end user is generated without program-
ming. The idea is that each selectable attribute or subfeature of a component
individual being configured generates a question. The configurator automati-
cally chooses a suitable input control type for each question (e.g., radio but-
tons, list box, etc.). On the other hand, the modeler can override the selection.
Furthermore, the modeler can define for a feature type how the questions in an
individual of that type are grouped and ordered. In the example of Figure 10,
attributes Motor and Transmission of feature type WeCoTinCar were put to
the first group named Basic. Thus, they are shown together in the question
area (Figure 9, A). Normally, all questions of a group are answered before con-

WeCoTin Configurator

49

sequences are deduced, but the modeler can mark some questions as requiring
immediate inference. Further, the modeler can give a display name in different
languages to feature types, subfeatures, possible values in attribute domains,
and so forth. Display names were given, for instance, to the attribute values of
Motor attribute in the example. Editing tools are provided for defining layouts
and display names (aka resources). Multiple layouts and resources provide
flexibility and support multiple languages for users.

Web page templates define the general look of the user interface. They sup-
port a configurator’s maintainability by separating the definition of visual ap-
pearance from the product-dependent parts of the user interface.

4.6 Determining price and delivery time

WeCoTin has two mechanisms for determining prices. The basic pricing
mechanism is applicable to simple additive prices; the more complex ad-
vanced calculation mechanism enables freely specifiable calculations as a
function of the current configuration, the configuration model, and data in
specific databases or XML files when it contacts the configuration server. Typ-
ical uses are determining the price, the delivery time, and possibly the cost.
For details, please refer to publication II.

4.7 Inference with weight constraint rules and Smodels

In this subsection, we give an overview of how inference is provided for PCML
configuration models.

Figure 11. Configuration model in Modeling Tool showing the attributes of feature type
WeCoTinCar and the enumeration attribute editor for attribute Motor (II).

WeCoTin Configurator

50

WeCoTin Configurator Server uses as the inference engine an implementa-
tion of the weight constraint rule language (WCRL) called Smodels (Simons et
al., 2002). Smodels is a system that follows the Answer Set Programming
(ASP) paradigm, in which the problem is expressed as a theory consisting of
logic program rules with clear, declarative semantics, and the stable models of
the theory correspond to the solutions (answer sets) to the problem (Simons
et al., 2002). The main functionality of the Smodels system is to compute for a
WCRL program a desired number of stable models that are constrained by
requirements specified as a compute statement.

The Smodels system is based on a two-level architecture wherein the first
phase, a front-end lparse, compiles a WCRL program with variables into sim-
ple basic rules (BCRL) containing no variables. This potentially costly compila-
tion process is performed off-line. The search for models of BCRL programs is
handled by an efficient linear-space search procedure called smodels. Smodels
is implemented in C++ and offers application program interfaces (API)
through which it can be integrated into other software.

For a final step of modeling, the component inference engine interface in
Modeling Tool (Figure 9) compiles a PCML configuration model into a WCRL
program, and further, using lparse, to BCRL. The compilation process limits
possible configurations to a finite size in a semantically justified way and ap-
plies symmetry breaking. The generated WCRL program includes the follow-
ing types of sentences:

 A set of standard axioms called the ontological definitions.

 A set of sentences representing the configuration model, including the
feature type hierarchy, the compositional structure, and the attributes.

 A set of sentences representing the constraints of the model.

 A set of ground facts representing the individuals out of which a configu-
ration can be constructed.

 A set of sentences for symmetry breaking.
The BCRL form of the configuration model is loaded into the smodels search

procedure to repetitively configure a product. The Smodels interface translates
the user requirements, represented as attribute values and feature individuals
in a configuration, into a compute statement that is sent through the API to
smodels. The compute statement requires that some atoms be true and/or that
some atoms be false. The consistency of the requirements is checked by
smodels by trying to compute a configuration that satisfies the requirements.
Deducing the consequences of requirements is based on computing an effi-
cient approximation of the set of configurations satisfying the requirements.
Intuitively, the approximation contains a set of facts that must hold for the
configurations satisfying the requirements, a set of facts that cannot be true for
the given requirements, and a set of unknown facts (Simons et al., 2002).
Based on this approximation, the inference engine interface generates a new
configuration and hands it to Configurator Server. The Configurator Server
uses its calculation subsystem to compute results such as price or delivery time
before the configuration is returned to the Configuration Server.

Recommendation of configurable offerings

51

5. Recommendation of configurable
offerings

Integrating recommendation functionality with configurators was motivated in
Section 2.5. Next, we summarize scenarios for applying recommendation func-
tionality to support configuration tasks (Section 5.1), and outline the applica-
bility of recommendation technologies to the support of configuration tasks
(Section 5.2). We propose extensions to the existing recommendation algo-
rithms (Section 5.3). These extended algorithms are the Design Science arti-
facts of this section. This section is based on publication III. Evaluation is de-
ferred until Section 7.1.3.

5.1 Scenarios for recommending configurable offerings

Various scenarios for the recommendation of configurable offerings were iden-
tified in publication III. A primary application of recommendation technolo-
gies is to support the user in choice navigation. In these scenarios, recommen-
dation functionalities could focus on:

 Selecting a suitable base product to configure (such as a car model).

 Recommending a complete configuration (such as a complete PC for
gaming or a tractor for peat harvesting including suitable wheels, air in-
take filters, and other equipment).

 Recommending how to complete a configuration (e.g., to propose still-
unspecified details of a PC).

 Recommending a subconfiguration (e.g., a storage subsystem suitable
for a type of use such as a PC storage subsystem for high-definition (HD)
video editing).

 Recommending individual attribute values or component selections
(e.g., a mobile data connection for a salesperson).

An obvious way to convey recommendations is to present them as defaults in
the user interface. Numerous other alternatives exist, such as ordering of the
alternatives so that recommended ones are shown first.

Another type of scenario for applying recommendation technologies in the
context of configuration systems is related to inconsistent requirements. If no
configuration can be found for a given set of user requirements, a possible ap-
proach is to calculate and present diagnoses (repair alternatives) (Felfernig et

Recommendation of configurable offerings

52

al., 2009; Felfernig & Schubert, 2011; Tiihonen, Felfernig, & Mandl, 2014). A
diagnosis is a set of user requirements that have to be removed or changed to
enable a configuration to be found. Of special interest are minimal diagnoses
that contain as few alterations as possible. Quite often a large number of alter-
native diagnoses are possible. Personalized recommendation and personaliza-
tion can help identify preferred diagnoses.

Yet another scenario is to apply recommendation technologies to select
(rank) non-configurable products that become part of a configuration (IV). For
example, in the configuration of a mobile package, a phone (or a mobile termi-
nal) is selected. Alternatives are ranked in a personalized manner, such as by
the multi-attribute utility theory (MAUT) or by similarity of product features
to the user’s preferences.

Finally, numerous authors have proposed to exclude (filter out) some fea-
tures (e.g., attributes) or alternatives (e.g., attribute values) that can be deter-
mined uninteresting from the customer’s point of view (see, e.g., Resnick &
Varian (1997), Stegmann et al. (2006), Falkner et al. (2011)). A similar idea is
to recommend features (configuration decisions)—what remaining selectable
attribute or part selection would be of most interest to the user to configure
next (Falkner et al., 2011; Felfernig & Burke, 2008; Wang & Tseng, 2011).

5.2 Selection of recommendation techniques

Characteristics of the main recommendation technologies (see Section 2.5.1)
were analyzed with respect to the requirements of supporting interactive sales
configuration (III). Here, we concentrate on techniques that can be applied to
support feature value selection.

The widely applied collaborative filtering and content-based recommenda-
tion techniques are challenging to apply in the context of many sales configu-
ration scenarios: Traditional collaborative filtering becomes challenging if an
individual customer purchases too few configurable products to establish a
dense enough user profile to be suitable for generating recommendations. A
major challenge of applying content-based filtering to recommend configura-
ble offerings is that—besides the availability of accurate textual component
descriptions—building a user profile requires repetitive configurations of one
user. Furthermore, a profile may soon become outdated in rapidly evolving
domains such as PCs.

Utility-based recommendation technologies (see Section 2.5.1) can be ap-
plied in the context of recommendation, for example to suggest individual at-
tribute values or component selections based on their utilities. Felfernig et al.
(2007) give an example in the financial-services domain. In addition, Ardis-
sono et al. (2003) discuss utility-based approaches in the configuration con-
text.

Knowledge-based recommenders exploit explicit information about items
and user requirements and how those can be satisfied (Burke, 2000; Felfernig
et al., 2007). Creating and maintaining explicitly formulated recommendation

Recommendation of configurable offerings

53

knowledge may be resource intensive. On the other hand, users may benefit
from expert knowledge embedded in recommendations.

In publication III, we examined the idea of case-based recommendation of
configurable offerings because the technique does not require explicit
knowledge engineering. Furthermore, the case-based techniques adapt the
idea of collaborative recommendation: selections of other, similar users are
applied to determine recommendations on the level of individual features and
feature value combinations.

5.3 Proposed extensions to recommendation algorithms

We propose extensions to the case-based recommendation algorithms of
Cöster et al. (2002). The goal was to indicate potential improvements for im-
proving prediction quality in future system developments. Next, we outline the
extensions (III).

We considered, for simplicity, only “flat” configuration models consisting of
a fixed set of features (static structure and connections), each having a finite
domain of possible values.

When determining recommendations, the algorithms of Cöster et al. (2002)
take into account equal feature values, and all features are considered equally
important. The proposed extensions include (1) feature importance weights to
take into account the varying importance of features to the customer, and (2)
taking into account similarity of feature values (i.e. offered alternatives). Fur-
thermore, a simple nearest-neighbor algorithm was introduced.

The intuition of taking into account feature importance weights is that, be-
cause the importance of configurable aspects from a customer’s point of view
varies, determining recommendations should take this into account. Aspects
with higher importance (which is represented as greater weight) should influ-
ence the recommendations more significantly than those with less weight.

The intuition of taking similarity into account is that, for example, in the case
of recommending a hard disk, a 500 gigabyte (GB) hard disk may be quite sim-
ilar to a 400 GB or 600 GB hard disk, but 200 GB or 1,500 GB would probably
satisfy different purposes.

Next, an example product and applied notation will be presented (Section
5.3.1), and the concepts of similarity and distance are introduced (Section
5.3.2). Then we outline how similarity was integrated into weighted majority
voter (Section 5.3.4) and naïve Bayes voter (Section 5.3.5) algorithms, and
importance weights into the nearest neighbor (Section 5.3.3) and weighted
majority voter algorithms. For brevity, we omit discussion of most popular
choice, which is similar to the naïve Bayes voter.

5.3.1 Example product and notation

The product of the example is a PC that has as selectable features

 a motherboard out of 4 types (),

 a hard disk out of 3 types (),

Recommendation of configurable offerings

54

 an optical drive out of 4 types (),

 a processor out of 3 types (), and

 Optionally, a graphics card out of 3 types ().

 The amount of memory is specified in gigabytes ().
Intended usage is characterized by three features:

 video editing: no, standard definition, or high definition (
);

 photo editing: no, standard, or advanced (); and

 gaming (no, or 2d), 3d, or advanced 3d ().
A complete configuration specifies a value for each feature. Furthermore, a

valid configuration is complete and consistent with a defined set of con-
straints. For brevity, we omit the constraints and further properties of the
components because they are not necessary for understanding the recommen-
dation algorithms and the proposed extensions. For the interested reader, con-
straints and other details of the product of the example are available in publi-
cation III. Table 4 exhibits five previous valid configurations, and an incom-
plete configuration of the active user , for whom suitable feature values will
be recommended.

Previous complete and consistent configurations specify consistent values for
all the existing features (see Table 4). The th configuration is re-
ferred to as . The value of feature in configuration is referred to as

, and index can also be referred to with the name of the feature. For exam-
ple, represents feature video (), and thus and (see
Table 4). When referring to the profile of the active user, we use index : for
example, refers to the value of feature for the active user. The set of spec-
ified features in the active user profile is , in the example ; see
the last row of Table 4. The set of features for which the active user profile does
not have a value is , in the example . Finally,

 returns the domain (possible values) of feature .
The nearest neighbor and weighted majority voter algorithms apply feature

importance weights. The example applies the following distribution: video
editing , photos , gaming , processor

, motherboard , amount of memory ,
hard disk , graphics card , and optical drive

. These weights could stem from direct customer specifications,
representative preferences from statistical samples, or the application of utility
constraints, as documented by Felfernig et al. (2007).

Recommendation of configurable offerings

55

Table 4. Configurations from the previous configuration sessions, and the active-user profile
(). Adapted from publication III.

k

1 no no 2d as a1 1 h2 none dr ba

2 no std 2d as a2 1 h5 g2 dw st

3 sd std adv i4 i2 3 h5 g9 dw ad

4 hd adv adv i9 i2 4 h9 g9 bw ad

5 sd adv 3d i4 i1 2 h9 g8 dw st

u no no 3d

5.3.2 Distance and similarity

To support the idea of taking into account similarity of feature values in de-
termining recommendations, we aim to express similarity numerically. We
determine similarity through the concept of distance. Distance be-
tween any two feature values and of feature is normalized to be usually
in range 0 to 1.16 Here, a distance of 0 means equal values, and the distance
between (for instance) the smallest and the largest value (maximum distance)
would be approximately 1. We define similarity as .
Thus, equal values have a similarity of 1, and the most distant values have a
similarity of about 0.

We determine distance with the heterogeneous value difference
metric (HVDM) (Wilson & Martinez, 1997). HVDM copes with symbolic (nom-
inal) and numeric features in a relatively simple yet uniform manner. To de-
termine distance between symbolic values, the HVDM needs training: distance
is determined based on the correlation of attribute values and their classifica-
tion. To oversimplify slightly, the closer the probability of a pair of feature val-
ues being present in identically classified configurations, the more similar
these feature values are considered to be. In the example, we take a simplistic
view, and consider a configuration to belong to one of three classifications—
basic (), standard (), or advanced ()—that represent the configuration’s
sophistication level. This classification is used as the classifier for HVDM (see
column in Table 4.)

5.3.3 Nearest Neighbor

The idea of the nearest neighbor is simple: determine a neighbor configura-
tion, which is closest to the known parts of the active user’s profile, and rec-
ommend the feature values of this nearest neighbor for the remaining features.
The distance of the configuration of the active user and neighbor config-
uration is defined as the sum of distances between corresponding fea-
ture values, weighted by feature importance weights (). Only features that
have a value in the active user’s configuration are taken into account.

16 According to (Wilson & Martinez, 1997), it is customary to normalize values so that possible outliers
(exceptionally large or small values) do not have an effect on the range. For example, 95% of values are
used to determine the range.

Recommendation of configurable offerings

56

A nearest-neighbor configuration with the smallest distance is identified
among those configurations which complete the active user’s configuration in
a consistent manner. Recommendations are feature values of this nearest-
neighbor configuration. In the example, the nearest neighbor relative to the
user profile is : , ; ,

; , Total weighted dis-
tance . But completing the user configuration with
the values of would create an inconsistent configuration (for details, see
III). Therefore the feature values of the nearest consistent neighbor are
recommended, e.g. processor and motherboard .

5.3.4 Weighted Majority Voter

The weighted majority voter (Cöster et al., 2002) recommends individual fea-
ture values based on each neighbor configuration “voting” for its feature val-
ues. One vote to give (weight 1) is gained for each feature value that is identical
in the voting configuration and the active user’s already-specified configura-
tion. For example, if a configuration has 4 features that have the same value as
already specified by the active user, the configuration votes with 4 votes for its
feature values. A feature value with most votes from all neighbors is recom-
mended. For example, the weight of for the active user is , because
photo editing and video editing match (, and

). Thus, would contribute by recommending its feature values by giv-
ing votes to its feature value settings of the yet-unspecified features: ,

, , , , and . As a sum of all neighbor
configurations voting for their feature values with their neighbor weight, the
following feature values get most votes: (3 votes), (2),

 (3), (2), (2), and (2).
In publication III, we proposed an extension to the approach of Cöster et al.

(2002). The extension is an alternative way of determining the neighbor
weights: Neighbor weights (votes) are determined by the similarity of neigh-
bor and user profile feature values instead of equality. This could improve
prediction quality in the presence of similar feature values. Values similar to
the user’s existing selections in a previous configuration would also contribute
to the weight of the neighbor. Second, the importance of individual features for
a user (feature importance weights) is taken into account. Here, the similarity
of feature values is further weighted (multiplied) with the feature importance
weight.

For example, the weight neighbor of () = . With
the alternative weights, processor () gets most votes (0.191). Here, the
modified algorithm provided the same feature values with most votes as the
original algorithm.

17 For brevity, the calculation of distance between individual feature values is omitted; see publication
III.

Recommendation of configurable offerings

57

5.3.5 Naïve Bayes voter

The naïve Bayes voter (Cöster et al., 2002) recommends individual feature
values. To determine a recommendation for feature fj, a probability predictor
is determined for each possible feature value v . A feature value
with the highest probability predictor will be recommended.

The naïve Bayes voter applies the idea of the Bayes theorem:

)(
)()|()|(

AP
BPBAPABP

Here, and are Boolean-valued random variables representing occurrence
of corresponding events, and and are the probabilities of these
events. denotes the conditional probability of event given that event

 has taken place, and the conditional probability of event given
event .

In the case of the naïve Bayes voter, event represents the fact that feature
 has value . Event represents the fact that a configuration has the combi-

nation of feature values already specified by the active user in . Thus,
is the conditional probability of the active user’s current value combination for
already specified features, given that feature has value . Finally, is
the probability of the feature having value , given the partial configuration
of the active user.

Applying this idea, the naïve Bayes voter calculates a basic probability
and a conditional probability . The divisor is omitted to simplify
calculations—it would be the same for all feature values to be compared.

The conditional probability part determines a probability of the ac-
tive user’s current value combination (the feature values of .), given those
neighbor configurations that have feature . For each feature , a
conditional probability estimate for the current value of the active
user is calculated. The conditional probability for the combination of val-
ues in is the product of individual feature value probability estimates, utiliz-
ing the naïve Bayes independence assumption.18 This part of the original for-
mula is not affected by the proposed extension. For details, please see publica-
tion III.

In the original formula (Cöster et al., 2002), the basic probability for
value of feature is simply the proportion of configurations having that fea-
ture value. For example, feature optical drive for value gives

 because of neighbor configurations have value
for .

The proposed extension of the naïve Bayes voter (III) potentially improves
the prediction accuracy in the presence of similar feature values. Here, we take
into account similar feature values in neighbor configurations instead of re-
quiring them to be equal when determining feature values to recommend.
Note that adding feature importance weights remains future work.

18 The Naïve Bayes independence assumption considers that features are conditionally independent of
each other, i.e. value of one feature does not affect the distribution of values of other features. While this
assumption is usually false, in many applications good results can be obtained.

Recommendation of configurable offerings

58

To take similar feature values into account, we modify the determination of
the basic probability . We give each feature value support when neighbor
configurations have feature values within a predefined maximum distance ,
instead of requiring equal feature values. The idea is to diminish support
quickly when the distance increases, and hence a quadratic formula was pro-
posed:),(,)),(1(),(2 yxdifyxdyxs

jjj fff . When only equal val-

ues are taken into account. Supports of different feature values are scaled so
that the sum of scaled supports is 1. Applying the similarity-based basic prob-
ability formula with a (very large) = 0.8 yields alternative basic probabili-
ties, such as . In this example, the same recommenda-
tions result as with the original formula. For example, optical drive is rec-
ommended.

Sales configuration of services

59

6. Sales configuration of services

This section discusses configuration of services with the focus on the following
questions:

 What variation is offered for services in practice?

 Can configurators designed for physical products be applied to manage
the offered variation of services?

Publication V analyzed three real service cases with configurable offerings to
identify the variation offered and the configuration-related processes.19

The mode of research was exploratory. The first case concerned the mainte-
nance services of an elevator manufacturer in a business-to-business setting.
The second case involved insurance, and the third case telecommunications
services, both representing business-to-consumer (B2C) offerings.

In all these cases, service contracts were configured, and they exhibited
characteristics of configurable products as defined by Tiihonen et al. (1998):

 Each contract was adapted to the individual needs of a customer.

 The offering was pre-designed to meet a given range of different custom-
er requirements.

 Each solution was specified as a combination of pre-designed service el-
ements (corresponding to component types and individuals, more or less
distinct building blocks of the service solution or another service ele-
ment) and their parameters.

 There was no need to design new service elements within the scope of
the sales delivery process.

6.1 Offered variation in configurable service products

The classical Ws (what, when, who, where, how, and why) have been found
useful characteristics for describing services (Dumas et al., 2002). We followed
this idea to characterize variation offered in the service contracts of the case
companies. Each W was considered as a potential source of offered variation.

19 An extended and improved version of publication V was published at the MCPC 2007 conference (Tii-
honen et al., 2007). The review process of MCPC 2007 provided no reviewer comments, only ac-
ceptance. Therefore, we present publication V as part of this thesis. In comparison with publication V, the
MCPC version adds details about taking configurators designed for physical products and applying them
to services.

Sales configuration of services

60

Next, in the context of each W, the line of though showing the potential for
offered variation is identified, and examples from the cases are presented. The
views are not mutually exclusive: a service element or a parameter can pertain
to several views.

What-variation
What the customer receives as the outcome of the service is a central aspect of
the “service package” (Grönroos, 2007). What-variation corresponds to tradi-
tional configuration of physical products—defining what the customer gets.
Typically, what-variation manifested itself via optional and alternative service
elements or as parameter values of service elements. For example, assisting
workforce for official inspections arranged by the service provider was an op-
tional service element in the context of maintenance contracts. The broadband
connections had available three alternative security service elements.

When-variation
Time plays a central role in most services (Lovelock & Gummesson, 2004).
When-variation relates to the temporal aspects of service as a whole or some
of its elements, such as temporal availability or response time. For example,
the maintenance case included as options corrective maintenance during eve-
nings or weekends.

With what? Who? How?
Grönroos’ definition of service (refer to Section 2.6.1 on page 34) includes that
service employees, physical resources or goods and/or systems of the service
provider interact with the customer. It is possible to offer variation on both
human and physical resources (who, with what) and the way of interacting
(how), for example, in terms of such characteristics as the skills or qualifica-
tions of human resources or in terms of the characteristics of physical ele-
ments such as the type, quality or sophistication of equipment used in service
delivery, or the way of delivering service elements.

With-what and how-variation were offered in the context of reporting and
payment. For example, it was possible to specify with what and how stake-
holders were informed about major maintenance events, such as an e-mail
and/or a text message (SMS) after a repair’s completion. Billing could be con-
figured to be electronic or paper-based, and payment to be regular or direct-
debit.

The cases, initially surprisingly, did not have offered variation on the charac-
teristics of human resources. A natural explanation is that that core service
was based on human delivery in the elevator maintenance case only. In the
case, customers buy from a large company and it may be natural to assume
that the personnel is qualified and has sufficient experience. Thus, the nature
of the case services may explain that there was no offered variation of human
resources.

Sales configuration of services

61

To Whom
As Chowdhury & Miles (2006) summarized previous work, “customer-induced
uncertainty depends on the diversity of customers, whether customers are op-
portunistic, and the significance of each customer” (p. 123). We noticed that
the properties of the service recipient, whether a person, equipment, or infor-
mation, could significantly affect the availability of the service, service deliv-
ery, or pricing. Furthermore, a number of stakeholders beyond the direct ser-
vice recipient might have an effect. For example, they might affect service re-
quirements, reporting, or purchase decisions.

The service recipient was always specified in the service contracts. The avail-
ability of some service elements depended on the properties of the service re-
cipient. For example, all-inclusive maintenance contracts were not available
for old elevators, and voluntary health insurance was not available to persons
above a specific age. In insurance and maintenance cases, pricing was affected
by the properties of the service recipient.

Where
A significant factor of service delivery process concerns where service is deliv-
ered, especially in terms of who goes to whom to facilitate service delivery
(Lovelock, 1983). Service delivery location may have a significant effect on
total customer sacrifice and is thus a potential source of offered variation.

“Where” or “who moves” variation was not actively offered in the cases. The
maintenance case concerned large, permanently installed equipment that must
be maintained at the site. Similarly, this aspect was not central in the insur-
ance and broadband services. Some car-related insurance policies allowed the
insurance company to determine where a repair would be performed, while
other policies allowed the customer to make the decision.

Why
We did not encounter any explicit why-view-related sources of offered varia-
tion in the configurable service offerings. It was evident, however, that reasons
for buying a service solution affect the suitable solution.

6.2 Sources of variation in relationship-based services

We identified a number of potential and realized sources of offered variation in
the context of services based on a formal relationship. These include pricing,
paying and billing, information and reporting, ownership and intellectual
property rights, and loyal customer benefits.

Paying and invoicing
Paying and invoicing were hidden services (Grönroos, 2007) in which varia-
tion was offered. The insurance case (B2C) offered a configurable number of
yearly payments and a selectable due date. The telecommunications case
(B2C) offered alternative levels of billing itemization, e.g., with respect to per-
use charges. The maintenance case offered paper-based or electronic invoices
and options for grouping of billing targets for business-to-business customers.

Sales configuration of services

62

Information and reporting
Provision of information and extranet services are both often hidden services
(Grönroos, 2007). In the maintenance case, configurable notifications about
service events were available, e.g., for equipment breakdowns. The scope of
information and push-style reports available via extranet were configurable,
and alarms on repair costs exceeding a pre-determined value or a specific
number of faults were available.

Pricing and discounts
Pricing models and discounts for services and products are a complex phe-
nomenon (de Miranda, Baida, & Gordijn, 2006; Dumas et al., 2002; Lovelock,
1983). We encountered three basic types of price elements: one-time, recur-
ring (periodic), and pay-by-use. The telecommunications case included one-
time as initiation price elements when the service contract was initiated. Peri-
odic price elements such as monthly, quarterly, or yearly fees were common.
Transaction-based pay-per-use price elements were also common. For exam-
ple, in many pricing schemes, mobile phone calls and text messages (SMS)
were charged by use. Allocation of the total service cost to different kinds of
price elements varied significantly. Often different combinations of periodic
and pay-per-use were offered: increased periodic payments included increased
amount of included use or offered reduced pay-per-use rates. In addition, the
maintenance case offered different combinations of transaction and periodic
fees.

Loyal customer benefits
Various loyal customer benefits can be offered, thanks to the long-term nature
of contract-based services. In the B2C telecommunications case, the company
offered a number of mutually exclusive loyal-customer benefit programs.

Ownership and intellectual property rights
Ownership and intellectual property rights of information or intangible deliv-
erables can be agreed. For example, who owns databases gathered in remote
monitoring of equipment or the detailed maintenance history? These were not
configurable options in the cases. In a case company, these considerations re-
quired case-specific negotiations.

6.3 Services and configurators for physical products

We experimented with modeling of elevator maintenance contracts, mobile
subscriptions, and insurance policies with the WeCoTin configurator. The goal
was to evaluate if existing real-world offerings could be modeled and config-
ured, as well as to identify possible shortcomings. WeCoTin served as an ex-
ample of a modern configurator designed for configuring goods.

Modeling of contract-based service offerings was possible, and no significant
challenges were encountered. It was straightforward to model service elements
as feature types, some of which had parameters (modeled as configurable at-
tributes). Optional and alternative service elements were modeled as allowed

Sales configuration of services

63

types in subfeature definitions with cardinality “0 to 1” or “1 to 1.” No car-
dinalities were encountered with a maximum higher than 1. The compositional
structure was narrow and shallow.

Parameters were always needed for the service solution represented by the
configuration type. Often some service elements were parametric. Thus, at-
tributes were a very useful modeling mechanism. Classification hierarchy and
refinement were useful; we often modeled different service products of a fami-
ly as subtypes of a common supertype. Refinement reflected different variation
possibilities in subtypes; the possible values of attributes (domains), and
sometimes the allowed types of subfeature definitions were refined.

Configuration rules required for ensuring consistent specifications were not
common: there was little need for constraints to enforce them. However, the
customer or other stakeholders, related equipment, environment, or their
properties often had to be modeled to verify that some services, service ele-
ments, or values for their parameters were available, or that they could be
priced. This resulted in feature types that actually represented properties of
stakeholders. Constraints were used to model the dependencies.

We did not model the prices of the offerings to constrain the required model-
ing effort. As identified in Section 6.2, instead of one price typical for goods
configuration, the telecommunications case would have required at least two:
the initiation and periodical fees needed to be kept separate. Estimating the
total cost of customership of different solutions would have been useful.

Another modeling requirement new to us was the need to assign different
stakeholders as the resources of service activities. Roles of stakeholders can
vary through, say, different selections in what- or by-whom-variation. The
same stakeholder can act as a resource in several activities. Therefore model-
ing with compositional structure with exclusive parthood of PCML (one indi-
vidual cannot be a part of several whole individuals simultaneously) is not
practical.

Based on hands-on modeling and vendor claims, we conclude that at least
some (and probably most) configurable service offerings can be modeled and
configured with traditional configurators. We felt a conceptual mismatch in
modeling, however, because thinking in feature types (or component types)
did not seem natural for services. Furthermore, the required scope of modeling
is broader, because relevant stakeholders, equipment, or environment must be
modeled to verify availability or determine pricing.

The conceptual mismatch led to the development of four-worlds model
(4WM) for sales configuration of services (Heiskala, 2005; Heiskala et al.,
2005; Heiskala et al., 2006). 4WM divides object types into four mutually ex-
clusive worlds. The service solutions world contains “normal” configuration
modeling concepts to capture the specifications to which the service is to be
delivered. Extensions include concepts for describing the recipient(s) of ser-
vice (such as persons or physical systems) and the environment relevant to the
recipient(s). These are captured by the objects-of-service world. Requirements
to be satisfied, such as goals or benefits sought from the service, non-
functional requirements such as performance, security or reliability, prefer-

Sales configuration of services

64

ences, and other factors captured by the needs world. Further, the process
world makes it possible to configure the service delivery process and the re-
sources required to carry it out. 4WM seems to provide an adequate conceptu-
al basis for modeling configurable services for sales purposes.

Based on the concepts of 4WM, the Service Configuration Modeling Lan-
guage SCML (unit ID 13 in Figure 6, p. 22) was specified (Anderson, 2005). It
makes it possible to express configuration models of services with a PCML-like
syntax and improved conceptual match. A front-end for WeCoTin was devel-
oped that compiled configuration models expressed in SCML into PCML (An-
derson, 2005). This enabled configuration of services with WeCoTin based on
configuration models expressed with SCML. To constrain the scope of this
work, a more detailed discussion about 4WM and related artifacts is omitted.

Evaluation

65

7. Evaluation

This work applies two proposed points of view of Design Science research
evaluation. In addition, the relation of this work to the guidelines of Design
Science research of Hevner et al. (2004) will be outlined. The discussion em-
beds the identification of the contributions.

Hevner et al. (2004) emphasize the artifact as the output of research and see
utility as the main criterion. They also recognize additions to the “knowledge
base” as contributions. They provide seven guidelines of Design Science re-
search. According to the guideline “#3 Design Evaluation,” the utility, quality,
and efficacy of a design artifact must be rigorously demonstrated via well-
executed evaluation methods. Peffers, Tuunanen, Rothenberger, & Chatterjee,
(2007) build on Hevner et al. by considering that a complete Design Science
research methodology requires three major components: principles, practices,
and procedures. Of these, “a procedure that provides a generally accepted pro-
cess for carrying it20 out” was missing from Hevner et al. (p. 50). Peffers et al.
(2007) see evaluation as “observ[ing] and measur[ing] how well the artifact
supports a solution to the problem. This activity involves comparing the objec-
tives of a solution to actual observed results from the use of the artifact in the
demonstration” (p. 56). The guideline of Hevner et al. and the framework of
Peffers et al. form a basis to evaluate the artifacts of this work.

On a higher level of abstraction, Gregor (2006) identifies five theory types in
research. Relevant to Design Science is theory type V: design and action,
which “Says how to do something. The theory gives explicit prescriptions (e.g.,
methods, techniques, principles of form and function) for constructing an arti-
fact.” (p. 620). Gregor and Jones (2007, p. 322) further elaborate that the pri-
mary output of Design Science is Information Systems Design Theory (ISDT).
ISDT “shows the principles inherent in the design of an IS artifact that accom-
plishes some end, based on knowledge of both IT and human behavior. The
ISDT allows the prescription of guidelines for further artifacts of the same
type.” Thus, contributions are not the artifacts themselves. Rather, contribu-
tions are more general prescriptions for artifacts of the same type.

Artifact evaluation takes place in Section 7.1. An ISDT for sales configurators
is presented in Section 7.2, and the relation to the guidelines of Design Science
research is outlined in Section 7.3.

20 ‘it’ refers to ‘research’

Evaluation

66

7.1 Artifact evaluation

The next sub-subsections evaluate the main artifacts with respect to the third
guideline of Design Science research (Hevner et al., 2004) and the methodolo-
gy of Peffers et al. (2007). Finally the contributions of this work’s service con-
figuration branch are identified.

7.1.1 Conceptualization for configuration knowledge

The utility of a configuration conceptualization is not easy to characterize:
benefits, if any, will be realized only when the conceptualization is implement-
ed as a component of deployed systems. Stvilia (2007) suggests that it is essen-
tial for an ontology evaluation model that the model measures “how complete-
ly, consistently, or accurately the ontology represents the domain concepts in
relation to the general cultural context and the context of a particular activity
system”. In this spirit, real cases were modeled.

Demonstration and initial evaluation of the conceptualization was provided
by modeling a case product (heavy rock-drilling machine Ranger by Tamrock)
without computer support; see the example in Section 3.8 (p. 42). The concep-
tualization was found to cover the relevant modeling needs fairly well (Tii-
honen et al., 1998). It was possible to model the offered variation of the case
product with the conceptualization. The conceptualization matched the model-
ing needs of the case product. Compositional structure was used significantly.
The need for ports or resources was not as crucial—even some effort was re-
quired to find realistic examples. This absence of need for ports and resources
may be explained by a structure-oriented thinking pattern in the case compa-
ny. Information technology support for modeling was considered necessary for
the full-scale use of the conceptualization.

Two further modeling efforts were performed independently outside PDMG
(Niemi, 2007). The modeled products were reach trucks for multi-purpose
material handling, the Rocla Humanic product family, and a Nokia mobile-
phone hardware product platform. It was possible to model the offered varia-
tion of the products with the conceptualization. Modeling was performed
without IT support, and it was considered that such support would be essential
for “every-day-usage.” Ports were very useful in the mobile-phone case. Re-
sources were not applied. Challenges for modeling were encountered in ex-
pressing allowed module combinations, because numerous constraints were
needed.

All modeling efforts indicated that the conceptualization could capture the
products’ offered variation completely and accurately. The relevance and use-
fulness of the central concepts varied by domain, as could be expected. But
fluent modeling would require appropriate computerized support for defining
the individuals of concepts, their compositional and taxonomical hierarchies,
and the constraints. The author of this thesis considers the conceptualization
to be a major contribution to the state of the art during the publication of pub-
lication I.

Evaluation

67

7.1.2 WeCoTin Configurator

Evaluation of WeCoTin was multi-faceted. High-level efficacy and utility of
WeCoTin were demonstrated by practical case examples. Next, more details
will be provided on model characterization and the usefulness of modeling
mechanisms, evaluation of Modeling Tool, and empirical evaluation of run-
time performance.

Model characterization and usefulness of modeling mechanisms
WeCoTin and PCML were used to model and support the configuration tasks
of several industrial domains (publication II, Tiihonen, 2009; Tiihonen, 2010).
The sales configuration view of 14 real-world products was modeled in their
entirety (some with extra demonstration features, one in 2 variants), and 8
partial products or concepts. These offerings came from 10 companies or or-
ganizations representing machine industry, healthcare, telecommunications
services, insurance services, maintenance services, software configuration, and
construction. One configuration model was exceptionally large and semi-
automatically generated, identified as the Linux model.

A number of characterizing metrics based on static configuration model
analysis were developed. Modeling Tool was instrumented to calculate the
metrics. A subset of the metrics is presented in Table 5.

Average numbers below do not include the exceptionally large Linux model.
The configuration models were typically relatively small. The numbers of ab-
stract, concrete, and total feature types (columns “Abstract types,” “Concrete
types,” “Total types,” respectively, in Table 5) contribute to the size of a config-
uration model. Another way to characterize the size of configuration models is
through the number of questions. For example, a selectable attribute value or a
subfeature of a feature individual being configured generates a question during
a configuration process. The average number of questions in a configuration
model (‘Questions’ in Table 5) was 61 questions per configuration model and
5.4 questions per concrete type. Often both attribute and subfeature defini-
tions concentrated on the configuration type (“% root questions” in Table 5).

Attributes were the main mechanism for modeling offered variation; all 26
models defined attributes, and on the average 83% of questions originated
from attributes and the remaining 17% from subfeatures (parts). The number
of effective attributes of the configuration model (“Effective attributes” in Ta-
ble 5) is the sum of inherited and locally defined attributes in concrete types.

Although applied more sparingly than attributes, compositional structure
was an important modeling mechanism. An indication of the use of composi-
tional structure is given by the number of effective (inherited and locally de-
fined) subfeatures in concrete types (“Effective subfeatures” in Table 5.)

Taxonomical hierarchy and inheritance were used significantly. On the aver-
age, 59% of feature types were subtypes of some abstract type (other than the
root of the feature type hierarchy Feature, “Subtypes,” and “% as subtypes” in
Table 5.) Inheritance significantly saved modeling effort necessary for larger
models. In these models, almost half (49%) of effective attributes were inherit-
ed (“% inherited” in Table 5.) Refinement was useful for limiting the domain of

Evaluation

68

allowed values or allowed types in subtypes. Inheritance of the compositional
structure (“% inherited subfeatures” in Table 5) was also useful, although it
was applied only in about 31% of the models because the compositional struc-
ture was shallow and often concentrated on the configuration type.

The number of constraints (“Constraints” in Table 5) varied widely (median
was 13 per model), and inheritance of constraints was applied to some extent;
abstract feature types defined about 2 constraints per model.

Floating or fixed-point numbers or integers with very large domains would
have been useful in the insurance and compressor domains. The cases includ-
ed, for instance, a freely specifiable amount of insurance coverage, specifica-
tion of the apartment size in m², or the calculated capacity of a compressor.
These were managed by discretizing. Neither explicit resource modeling nor
topological modeling (e.g., ports) was needed.

The “basic” price calculation mechanism with only additive prices was ap-
plied for four real products and three demonstration models (“bas” in the col-
umn “Price” of Table 5). The “advanced” calculation mechanism (Nurmilaakso,
2004) determined the price for three products (“adv” in the column “Price”).
Prices were often omitted, either in response to indicated sensitivity or in or-
der to constrain modeler resource usage. The basic price calculation mecha-
nism would have been sufficient for other products except compressors and
insurance products.

Evaluation of Modeling Tool
The researchers using Modeling Tool considered the editing facilities generally
very adequate. The visual-type and compositional-structure hierarchies, the
fluent attribute domain editing, and the graphical constraint editor all facili-
tated efficient modeling. Table constraints were very useful. Global renaming
support of objects without the need for text-based search and replace was con-
venient and likely to reduce potential for errors.

User interface development was rapid because product dependent parts were
generated dynamically. Drag-and-drop layout definition and resources with
automatically generated default display names were effective. In some cases, it
would have been useful to include questions related to several feature individ-
uals to a single end-user interface question form. Ability to hide some alterna-
tives dynamically instead of graying them would also have been useful.

Some useful basic functionalities were not implemented, which created extra
effort and potential sources of error. For example, lack of inheritance of lay-
outs and resources caused extra work, and editing price lists and calculations
as XML was considered error-prone and not very convenient.

Empirical evaluation of performance
Performance testing of configurators is essential, as the complexity class of a
configuration task is at least NP-complete in most formalisms, including the
one in this work (Mackworth, 1977; Soininen, Gelle, & Niemelä, 1999; Soin-
inen, 2000; Soininen et al., 2001; Syrjänen, 2000). A method for empirical
performance testing of configurators was presented and applied to four real-
world products (Tiihonen et al., 2002). The method allows performance test-

Evaluation

69

ing of configurators in terms of execution time and using real-world configu-
ration models with random requirements. The test method simulates a naïve
user requiring attribute values or particular subfeature realizations. Test cases
with a varying number of requirements were generated following this idea.
Performance tests using the method were performed with four first-modeled
real-world products, a vehicle, and three compressors. For each configuration
model, we generated 100 test cases with 2 requirements, 100 test cases with 4
requirements, and so on, up to the total number of questions in each configu-
ration model.

Table 5. Main characterizations of the configuration models (Adapted from II and Tiihonen,
2010).

Model Total types
A

bstract types

C
oncrete types

Subtypes

%
 as subtypes

Q
uestions

%
 root questions

C
onstraints

Price

 Effective
 attributes

 %
 inherited

Effective subfea-
tures

%
 inherited subfea-

tures

1 C FM 9 2 7 4 44 31 58 17 adv 27 22 4 50
2 C FM sc 9 2 7 4 44 31 58 17 adv 27 22 4 50
3 C FS 3 0 3 0 0 24 88 14 adv 23 0 1 0
4 C FX 1 0 1 0 0 20 100 23 adv 20 0 0 -
5 C FL 9 2 7 4 44 28 64 13 no 24 17 4 50
6 C M 3 0 3 0 0 23 91 14 no 22 0 1 0
7 KO old 5 0 5 0 0 28 79 13 no 26 0 2 0
8 KO new 15 3 12 7 47 77 4 1 no 58 81 19 47
9 Bed 31 8 23 27 87 34 76 10 bas 31 0 3 0
10 Fireplace 7 1 6 4 57 4 75 0 no 2 0 2 0
11 Pasi 5 1 4 2 40 79 95 13 no 77 3 2 0
12 Dental 64 11 53 43 67 109 3 36 no 76 70 33 79
13 X-ray 11 2 9 4 36 37 41 3 no 32 44 5 40
14 Vehicle 28 4 24 9 32 24 75 7 bas 8 0 16 0
15 Ins 1 8 2 6 5 63 30 20 4 no 20 10 10 0
16 Ins 2 62 13 49 56 90 49 20 0 no 19 58 30 27
17 Ins 3 11 3 8 5 45 41 29 14 no 29 0 12 0
18 Ins 4 37 11 26 34 92 242 5 84 no 189 26 53 51
19 Mob 1 4 0 4 0 0 18 56 6 bas 15 0 3 0
20 Mob 2 39 9 30 38 97 65 25 28 bas 52 29 13 0
21 Mob 3 5 1 4 3 60 21 38 6 no 20 60 1 0
22 Broad 66 15 51 64 97 485 1 43 no 453 89 32 6
23 Linux 626 1 625 624 100 4369 14 2380 no 3745 67 624 0
24 Iced 8 2 6 5 63 4 75 3 bas 2 0 2 0
25 Wcar 6 1 5 2 33 10 60 3 bas 8 25 2 0
26 CarDis 10 2 8 5 50 12 58 3 bas 9 22 3 0
Total 1082 96 986 949 5985 2755 5014 881
Total no Linux 456 95 361 325 1526 375 1269 257
Average 18 4 14 13 48 227 50 106 193 25 34 16
Avg. no Linux 24 5 19 18 59 61 52 15 51 23 10 17
Median 9 2 7 5 46 31 58 13 25 19 4 0
Min 1 0 1 0 0 4 1 0 2 0 0 0
Max 626 15 625 624 100 4369 100 2380 3745 89 624 79

Evaluation

70

Table 6 shows a representative example of the results: performance in the
context of the largest tested compressor model. We evaluated the performance
of finding both one and all configurations that satisfy the requirements. Each
row lists the number of requirements (“#req”) and the number of satisfiable
cases (“#sat”). Note that the sum of satisfiable and unsatisfiable cases is 100.
“Find first” gives the average smodels duration of finding one configuration
that satisfies the requirements, and “Unsat” gives the average smodels dura-
tion to determine unsatisfiability. “Find all” gives the average number of con-
figurations per satisfiable case (“#cfgs/case”) and the average rate of configu-
rations found per second (“#cfgs/s”).

Table 6. ESVS compressor results with test cases (II, Tiihonen et al., 2002).

1 Compr FM
Find first (s)

Find all
 Unsat (s) #req #sat #cfgs / case #cfgs /s

2 89 0,37 189441067 88238 0,30
4 61 0,35 18987439 76849 0,28
6 25 0,34 2234799 72687 0,29
8 9 0,33 211432 19957 0,28

10 4 0,31 1920 263 0,29
12 1 0,32 15552 526 0,29

14-28 0 - - - 0,30

We obtained additional performance evaluation by configuring all the char-

acterized products using the WeCoTin user interface (Linux only partially)
with a 2.4 GHz Intel Core 2 Duo laptop. All configuration models had a feeling
of instant response, except the “Broadband” model’s response time was slight-
ly more than 3 seconds before an attribute with 436 possible values was speci-
fied, after which the response time decreased to less than a second. Linux was
too slow to be usable. Also, the compilation time from PCML to WCRL and
then to BCRL was very satisfactory: a script that compiled all the characterized
configuration models, except Linux, and a few additional test and sample
models ran in 32 seconds. The results indicated good performance, and no
phase transition behavior with an increasing number of requirements was
found.

Utility and efficacy of WeCoTin
The PCML modeling language of WeCoTin allows efficient modeling of prod-
ucts for web-based sales configuration and seems suitable for engineers with-
out background in programming or artificial intelligence. The amount of work
required to create a configuration model depended to a large extent on the
knowledge acquisition and validation work. The convenience of graphical con-
straint modeling, without the need to remember the PCML syntax and without
typing in element names or values, was considered a valuable asset in model-
ing.

Systematic testing and ad-hoc results indicate adequate performance with
the case products. There were no test cases with repeatable significantly inferi-
or performance. In addition, there was no significant change of performance
as a function of the number of requirements. The average configurations per
second results show weakening with an increasing number of requirements.

Evaluation

71

This weakening seems, however, to be mostly illusory, because the number of
configurations with many requirements is small—smodels duration comes
mostly from reading of the BCRL program and from setting up of the compu-
tation. The Smodels inference engine appears to be efficient enough for practi-
cal use.

No critically constrained problems were found, and no phase transition be-
havior was apparent. As expected, the number of configurations seems to de-
crease exponentially as the number of requirements increases. Minor excep-
tions due to random requirements were encountered.

In summary, the capabilities of PCML or WeCoTin did not limit the scope of
modeling, and the PCML concepts were adequate for modeling the case prod-
ucts. On the basis of acquired experiences, WeCoTin is suitable for e-
commerce. It still lacks, however, full field testing in the form of commercial
deployments.

The author of this thesis considers WeCoTin to be a major Design Science
contribution. Related minor contributions are PCML, the method for system-
atic-configurator run-time performance testing, and the method for configura-
tion model characterization.

7.1.3 Recommendation of configurable offerings

To demonstrate the usefulness of recommendation technologies in the context
of configuration, a prototype configurator system with recommendation func-
tionality was constructed (IV, Felfernig et al., 2010). The system RecoMobile
supported personalized configuration of mobile subscriptions and the selec-
tion of a bundled mobile phone. Recommendation functionality was integrated
into RecoMobile by determining dynamically default feature values.

Utility of feature value recommendation in the context of configurable offer-
ings was shown with a user study. N = 546 users (mostly students, no real cus-
tomers) from Austria, Finland, and Italy used RecoMobile. We compared per-
sonalized versions of the RecoMobile configurator (feature value recommenda-
tion provided) with otherwise identical versions without feature value recom-
mendation (static default feature values). Configurations created without rec-
ommendation support were used as the basis for deriving recommendations
for feature value recommendations.

Recommendations of personalized RecoMobile versions were determined
with nearest-neighbor or extended naïve Bayes voter algorithms. The feature
value with the highest naïve Bayes predictor or the feature value of the nearest
neighbor was recommended. Only feature values consistent with the user’s
current feature values were recommended.

First, the user specified values for some features that characterized needs
such as usage for Internet access, photography, or the form factor of the phone
(see Figure 12). When the user entered a later question page, the default values
of features were determined by application of the recommendation algorithms
(for personalized versions), or static defaults were provided (non-personalized
versions).

Evaluation

72

After a configuration session, the user answered to a number of evaluation
questions related to hypotheses H1 to H8 on an 11-point Likert scale (see Table
7). When the evaluation results of users were compared with and without fea-
ture recommendation support, it was possible to show statistical significance
(Student’s T-test, one-tailed distribution, two-sample equal variance T-Test,
see Table 8) of three hypotheses (H2, H4, and H7), marked with an asterisk in
Table 7 and Table 8. The users

 (1) were significantly (p < 0.05) more satisfied with the overall quality of
the configuration process,

 (2) perceived that the quality of the system in terms of support for find-
ing the best options was significantly higher (p < 0.05), and

 (3) had their expectations regarding the solution better fulfilled with the
personalized versions (p < 0.05).

For other hypotheses H1, H3,H5,H6, and H8 tendencies toward benefits of
recommendation support were identified, but significance values stayed above
0.05 (but below 0.2). We expected that the average interaction time per page
would be lower with personalized versions (H9) than with non-personalized
versions. Surprisingly, the opposite was true (p < 0.17). A possible explanation
is that users with recommendation support invested more time in evaluating
the alternatives because they became more interested in the offered alterna-
tives than users without recommendation support. This could have led to bet-
ter solutions (H7).

Table 7. Overview of hypotheses H1..H9 (Felfernig et al., 2010).

Id Hypothesis
Evaluation question

H1 Personalized configurators increase a user’s confidence in his or her product decision
How confident are you in having selected the most suitable phone and subscription?

*H2 Users of a personalized configurator are more satisfied with the quality of the configu-
ration process
How satisfied were you with the overall quality of the selection process?

H3 Personalized configurators increase a user’s trust in the presented configuration
solution
How high is your degree of trust in the recommendations given by the system?

*H4 Personalized configurators better support users in finding the best options
How do you estimate the quality of the system in terms of supporting you in finding
the best options?

H5 The probability of reusing the configurator is higher with personalized versions
How high is the probability that you would use the system again?

H6 The probability of recommending the configurator to other users is higher with per-
sonalized versions
How high is the probability that you would recommend the system to another user?

*H7 A user’s expectations regarding the solution are better fulfilled with the personalized
versions
Does the combination of phone and subscription options fulfill your expectations?

H8 Personalized configurators trigger a higher purchase probability than non-
personalized ones
Assume that you need a new phone. How high is the probability that you would pur-
chase the selected mobile phone?

H9 The average interaction time per page is lower with personalized versions

Evaluation

73

Table 8. Evaluation results for hypotheses H1..H9, adapted from Felfernig et al., (2010).

Id Non-personalized Personalized 95% significance? (p value)
H1 5.33 (2.94) 5.73 (2.65) no (p = 0.181)
*H2 5.57 (2.0) 6.31 (2.19) yes (p = 0.0184)
H3 4.83 (2.56) 5.20 (2.45) no (p = 0.178)
*H4 5.05 (2.68) 5.74 (2.29) yes (p = 0.0323)
H5 4.43 (3.11) 5.07 (2.88) no (p = 0.0853)
H6 4.38 (2.99) 5.05 (2.90) no (p = 0.0765)
*H7 4.67 (2.33) 5.46 (2.65) yes (p = 0.0306)
H8 4.24 (3.44) 4.73 (3.02) no (p = 0.162)
H9 3.0 min. (1.05) 3.27 min. (1.67) no (p = 0.154)

Results of this study show that configuration technologies can indeed support
users in their configuration task—the recommendation experiment RecoMobile
indicated the usefulness of recommendation technologies.

The author of this thesis considers the proposed extended recommendation
algorithms for feature value recommendation to be Design Science contribu-
tions. They can potentially provide more relevant recommendations than the
original algorithms. Confirming the utility of the recommendation-supported
configuration approach is an additional contribution.

Figure 12. RecoMobile customer requirements, adapted from (Felfernig et al., 2010).

Evaluation

74

7.1.4 Relation between services and the configuration approach

The services branch of research provided insights that the author of this work
is not aware of in previous work, which offers minor contributions:

 Analysis of offered variation of case service offerings and identification
of specific sources of offered variation in services based on a formal rela-
tionship.

 Recognition that the required scope of service configuration modeling is
broader than in modeling of the offered variation of physical products
(process, stakeholders and their properties).

 Recognition that reconfiguration seems to be more important in the con-
figuring of contract-based services than in that of most physical prod-
ucts.

 Verification that basic service contract sales configuration with configu-
rators designed for physical products is possible, but a conceptual mis-
match in modeling is possible too.

 Recognition that reconfiguration, process modeling, and management of
several non-commensurate prices may be required to fully support ser-
vice contract configuration.

7.2 Sales Configurator Information Systems Design Theory

According to Gregor (2006), a recipe-like prescription exists when theory ena-
bles an artifact to be constructed by describing a method or structure for its
construction. Gregor and Jones (2007) further refine the idea into elements of
information system theory. They have identified 8 components; see Table 9.

Table 9. Components of Information Systems Design Theory (Gregor & Jones, 2007, p. 322).

Component Description
Core components
1) Purpose and scope ”What the system is for,” the set of meta-requirements or goals that specifies

the type of artifact to which the theory applies and in conjunction also defines
the scope, or boundaries, of the theory.

2) Constructs Representations of the entities of interest in the theory.
3) Principle of form and
function

The abstract “blueprint” or architecture that describes an IS artifact, either
product or method / intervention.

4) Artifact mutability The changes in state of the artifact anticipated in the theory, that is, what
degree of artifact change is encompassed by the theory.

5) Testable propositions Truth statements about the design theory.
6) Justificatory
knowledge

The underlying knowledge or theory from the natural or social or design sci-
ences that gives a basis and explanation for the design (kernel theories).

Additional components
7) Principles of imple-
mentation

A description of processes for implementing the theory (either product or
method) in specific contexts.

8) Expository instantia-
tion

A physical implementation of the artifact that can assist in representing the
theory both as an expository device and for purposes of testing.

In this work, a partial prescription for a sales configurator was proposed; we
call it sales configurator information systems design theory (SCISDT). Table
10 summarizes WeCoTin in this framework, and the following sub-subsections
discuss each component. SCISDT is partial, because it does not address all
aspects of a sales configurator. SCISDT also applies other contributions as
subsystems, such as Smodels.

Evaluation

75

7.2.1 Purpose and scope

Companies with a mass-customization strategy need to provide choice naviga-
tion capability (Salvador et al., 2009). Configurators are the primary means to
this end. In the scope of this work, generic configurators, aka configuration
toolkits, enable the creation of configurator instantiations for individual com-
panies or product lines. Configurators can provide numerous other benefits.
On the other hand, taking a configurator into use, and operating and keeping it
up to date, also incurs significant costs; the total cost of configurator owner-
ship should be justifiable.

Although there are numerous individual configurator instantiations and ge-
neric-purpose configurators that enable such instantiations to be created, it
was deemed that none met all the desirable properties that we considered im-
portant: A (sales) configurator should

 be easy to set up without programming,

 enable fluent product modeling of products based on a well-founded
high-level modeling conceptualization, and

 be easy to maintain.
In addition, we wanted to experiment with applying a novel logic-based

method for problem solving that would enable high-level configuration model-
ing and consistent and complete inference.

Table 10. Components of Sales Configurator Information Systems Design Theory (SCISDT).

Core component Description (as explicated by WeCoTin)
1) Purpose and scope A web-based sales configurator that fulfills a set of major requirements identified in

Section 4.1.
2) Constructs Concepts of configuration knowledge, product configuration modeling language

PCML, weight constraint rule language.
3) Principle of form
and function

A high-level architecture and main functions of components was presented along
with main working principles (II, Anderson & Pasanen, 2003; Tiihonen et al., 2003;
Tiihonen & Anderson, 2005)

4) Artifact mutability WeCoTin has several internal interfaces that enable replacement of major compo-
nents. It has also been designed to be flexible in numerous aspects, such as dif-
ferent ways to determine prices, and support for several languages.

5) Testable proposi-
tions

The main propositions were capability to model and configure real products. An-
other proposition is adequate performance. These aspects were tested with highly
satisfactory results.

6) Justificatory
knowledge

The modeling constructs of PCML were given clear formal semantics by mapping
them to the weight constraint rule language. This mapping also enables sound and
complete inference by the Smodels system. Additional practical justification is
provided by the expository instantiation (element 8 below.)

7) Principles of im-
plementation

Steps to apply WeCoTin have been provided (Tiihonen & Anderson, 2005). Suc-
cessful implementation requires also the other core capabilities of mass customiza-
tion: solution space development and robust process (Salvador et al., 2009).

8) Expository instanti-
ation

WeCoTin sales configurator and augmenting 26 configuration models.

7.2.2 Constructs

ISDT constructs represent the entities that are of interest in the theory, and
corresponding terms should be defined as clearly as possible (Gregor & Jones,
2007).

In the context of this work, it is somewhat challenging to draw the line be-
tween the constructs and principles of form and function. Relevant ISDT con-
structs include at least the conceptualization of configuration knowledge, and

Evaluation

76

object-oriented product configuration modeling language (PCML). A sales
configurator (WeCoTin) as a whole and its major parts (Modeling Tool, Con-
figuration Tool) also belong to the relevant ISDT constructs.21 Underlying
these as subsystems are Smodels, the weight constraint rule language (WCRL),
and the method of translating configuration knowledge to WCRL. These un-
derlying subsystems were developed outside the scope of this work.

It is noteworthy that the conceptualization was constructed in such a way
that that it retains the natural thinking patterns used in companies to describe
the variation of product families. Compositional structure of products and con-
figurable attributes are the main mechanisms for capturing offered variation.
Taxonomy with inheritance generalizes the approach. The full conceptualiza-
tion also supports connection-oriented concepts and resources that have prov-
en to be useful in earlier work. All these can be given formal semantics by
mapping them to formal constructs (see Section 7.2.3).

7.2.3 Principle of form and function

Principles of form and function “define the structure, organization, and func-
tioning of the design product or design method. The shape of a design product
is seen in the properties, functions, features, or attributes that the product
possesses when constructed” (Gregor & Jones, 2007, p. 325).

A configurator should have separate environments for the modelers and end
users—the concerns are separate. Nevertheless, WeCoTin offers the modeler
the capability to rapidly test the created or edited configuration model.

WeCoTin was built on a layered architecture. We propose this as a significant
principle of configurator construction. This provided a clear separation of

 formal inference, which in this case is logic-based;

 high-level modeling concepts, which can be provided with formal seman-
tics and automatically mapped to a form suitable for inference; and

 the end-user interface, which does not require programming—in this
case generation of the user interface is facilitated by the high-level mod-
eling language.

The main functions of a configurator include checking for the consistency
and completeness of a configuration, with the capability to prevent from order-
ing a product based on a configuration that does not meet these criteria. Price
is an integral element that must be managed within the scope of a configura-
tion task.

A hierarchy of modeling languages is also present: the high-level configura-
tion modeling language (PCML) is aimed to be adequate for modelers. This is
compiled into a formal weight constraint rule language with variables. Finally,
WCRL is compiled into a simple basic constraint rule language without varia-
bles.

21 We consider these instantiations as ISDT constructs because they are concepts of interest in
SCISDT. They are not constructs in the terminology of (Hevner et al., 2004)applied elsewhere
in this thesis.

Evaluation

77

The view of the author of this thesis is that future configurators should sup-
port recommendation functionality to support users with choice navigation.
Case-based recommendation approaches investigated in this work seem to be
potentially viable, but further research is required. In addition, future configu-
rators should provide recently identified user support capabilities to avoid the
product variety paradox where increased offered variety may decrease sales
volume (Trentin, Perin, & Forza, 2013). These capabilities are focused naviga-
tion, flexible navigation, easy comparison, benefit-cost communication, and
user-friendly product-space description capabilities (Trentin et al.,
2013)(Trentin et al., 2013).

7.2.4 Artifact mutability

WeCoTin has several internal interfaces that enable replacement of major
components. For example, it is expected that Smodels could be relatively easily
replaced with another inference engine based on weight constraint rules.
There are interfaces for configuration model manipulation and manipulation
of configurations. These make it easier to create different modeling environ-
ments and user interfaces for end users.

WeCoTin has also been designed to be flexible in numerous respects, such as
different ways to determine prices, and built-in support for several end-user
languages and tax models. Product changes do not require programming
changes in the user interface for end users: a template gives the general visual
appearance, and WeCoTin generates the product-specific part (the modeler
can change the input control types and determine their sequencing).

But architectural mutability and suitability for generic tasks including di-
mensioning and connections could potentially be higher. Generic dimension-
ing tasks would require integrating additional inference or calculation mecha-
nisms; user-specified connections would require appropriate user interface
support. In some configuration tasks, a dynamically determined flow of the
configuration process based on previous answers would be necessary. There
are no specific provisions for these needs.

7.2.5 Testable propositions

The main propositions were capability to model and configure real products
and adequate performance in this context. These aspects were tested with
highly satisfactory results.

Using WCRL and Smodels to provide inference seems to be a feasible propo-
sition for building a sales configurator. The typical approach in previous work
has been based on constraint satisfaction.

7.2.6 Justificatory knowledge

The configuration knowledge conceptualization is based on a synthesis of pre-
vious work and additional experiences from interviews in ten companies and

Evaluation

78

two case studies (Soininen & Tiihonen, 1995; Tiihonen, 1994; Tiihonen, 1999;
Tiihonen & Soininen, 1997a); see also research unit 1 in 0, p. 19.

PCML allows the offered variation of products to be expressed on a high level
that product experts can understand. Furthermore, the modeling concepts of
PCML were given clear formal semantics by being mapped to a weight con-
straint rule language. This mapping enables sound and complete inference by
the Smodels system, giving a foundation to the claim that, if a sales configura-
tor is built on such well-founded principles, a working sales configurator can
be implemented.

7.2.7 Principles of implementation

We omit to address this optional component of an ISDT with respect to the
construction of generic configurators. Providing sound principles might re-
quire several applications of the SCISDT.

To produce individual configurator instantiations, one should bear in mind
that implementing a configurator is not just an IT project. Additional existing
capabilities are required. These include other core capabilities of mass custom-
ization, namely solution space development and robust process as identified
by Salvador et al. (2009). Concrete steps to apply WeCoTin have also been
provided (Tiihonen & Anderson, 2005).

7.2.8 Expository instantiation

The WeCoTin sales configurator and the numerous configuration models work
as an expository instantiation of the SCISDT. WeCoTin exhibited good per-
formance and was capable of modeling and configuring all the case products.

As side results, new methods of characterizing configuration models and
measuring configurator performance were developed.

Numerous configuration models based on the offered variation of real offer-
ings were developed. These show how WeCoTin could be applied in respective
companies to provide choice navigation support.

7.2.9 Identification of contributions

The author considers SCISDT (and expository instantiation WeCoTin) to be
the most significant contributions of this thesis. As a side result, it was shown
that configuration knowledge translated into a form of logic programs (Soin-
inen, 2000; Soininen et al., 2001) can act as a basis for a configurator and that
inference based on the stable-model semantics of logic programs can indeed
provide a basis for constructing a practically applicable sales configurator.

7.3 This work and the guidelines of Design Science

Full discussion about the relation of this work and the guidelines of Design
Science research (Hevner et al., 2004) is omitted, because most relevant as-
pects have already been addressed by the evaluation via the ISDT approach. A

Evaluation

79

summary of this work with respect to “Design-Science Research Guidelines”
(Hevner et al., 2004) is presented in Table 11.

Table 11. This work versus “Design-Science Research Guidelines” of Hevner et al. (2004).

Guideline Description
#1: Design as
an Artifact

Viable artifacts (WeCoTin configurator, configuration conceptualization, recommendation
algorithms) have been produced.

#2: Problem
Relevance

The business relevance of sales configuration was identified in the Introduction and Previ-
ous Work sections of this work.

#3: Design
Evaluation

The utility and efficacy of the artifacts were discussed above. In addition, a partial infor-
mation systems design theory (SCISDT) was proposed.

#4: Research
Contributions

The author of this work claims that clear contributions exist. An outline of the contributions
of this work was identified in Section 1.3.2 (Figure 4, p. 19). Sections 7.1 and 7.2 discuss
the contributions with more details.

#5: Research
Rigor

Relevant applicable knowledge from the knowledge base has been sought and selectively
taken into account in the production of the artifacts. Performing systematic literature re-
views could have revealed some information in the knowledge base that was omitted.
Adequate Design Science methods have been applied.

#6: Design as
a Search
Process

The development process was stepwise: often a limited baseline of functionality was de-
veloped first, and functional extensions were developed, prioritized by modeling experi-
ments and heuristic “touch” on the importance of requirements. In some cases, design-
test iterations were performed to produce satisfactory functionality. For example, significant
aspects of the user interface for end users were re-designed and re-implemented after
usability tests (Talja, 2006), and the “advanced calculation mechanism” (Nurmilaakso,
2004) was added.

#7: Commu-
nication of
Research

Publications annexed to this work exhibit scientific, mainly technical communication with
some managerial insights. But managerial and professional communication could have
been more extensive. In addition, more ambitious selection of publication forums might
have been appropriate.

Discussion

81

8. Discussion

This section begins with a comparison with related work (Section 8.1), fol-
lowed by discussion on the threats of validity (Section 8.2). Next, answers to
the research questions are explicated (Section 8.3). Finally, avenues for future
research are identified (Section 8.4).

8.1 Related work

8.1.1 Conceptualizations for Configuration knowledge

A similar synthesis as publication I, based on a representation that employs
Unified Modeling Language (UML) (Rumbaugh et al., 1999) with specific ste-
reotypes and Object Constraint Language (OCL) (Warmer & Kleppe, 2003),
was proposed for modeling configuration knowledge (Felfernig, Friedrich, &
Jannach, 2000a; Felfernig et al., 2000b; Felfernig et al., 2002; Felfernig, Frie-
drich, Jannach, Stumptner, & Zanker, 2003; Felfernig, 2007). The stereotypes
include the connection-oriented and resource-oriented concepts along with a
taxonomical hierarchy of component types (Felfernig et al., 2000a; Felfernig et
al., 2000b; Felfernig et al., 2002; Felfernig, 2007). The benefits of UML in-
clude its being widely known in the software industry. Publication I did not
specify a syntax for constraints. On the other hand, OCL is potentially difficult
for modelers. Many details of the concepts synthesized in publication I have
been omitted from the UML-based approach.

8.1.2 Logic-based configurators

The author is not aware of previous explicitly presented information system
design theories in the domain of configurators. Previous work includes config-
urators applying numerous problem-solving methods (see Section 2.4.2). Here
we concentrate on logic-based systems, because they are a major ingredient of
SCISDT. Previously weight constraint rules were applied directly to model in-
dividual configuration problems (Syrjänen, 2000). WeCoTin differs by the
general purpose, multi-domain approach, and high-level configuration of spe-
cific modeling concepts with corresponding tools for modeling.

Numerous other logic-based methods have been applied in configurators.
Description logic has been applied (McGuinness & Wright, 1998b; Wright et
al., 1993; Wright et al., 1995). It is not entirely clear, however, what role de-

Discussion

82

scription logics play as an inference engine for supporting the actual configu-
ration task. According to McGuinness & Wright (1998b), the system was used
to deduce logical implications (deductive closure) of the basis user inputs. Ac-
cording to Wright et al. (1995), this system has been augmented in the case of
larger products with external search algorithms and special-purpose algo-
rithms—description logic was used to check the integrity of the results.

Constraint logic programming (CLP) has been applied for configuration
problems (Sharma & Colomb, 1998). The implementation was based on the
ECLiPSe constraint logic programming environment using the Finite Domains
(FD) library. In this implementation, a high-level language was developed to
model configuration knowledge, and it was based on concepts similar to a sub-
set of publication I. The language included taxonomical hierarchy of compo-
nent types and their attributes, ports, and part relationships. Configuration
models expressed in this language were then translated into CLP programs,
which enabled configuration based on expressed requirements. Results indica-
tive of adequate performance in automatic configuration were achieved.
Sharma and Colomb’s work bears many similarities to the approach of this
work. Detailed comparison, however, is difficult for lack of details. We go fur-
ther with published empirical evaluation of the system and efficacy of model-
ing. Furthermore, we have provided a partial ISDT (SCISDT) for sales configu-
rators.

As in WeCoTin, weight constraint rules are applied in the OOASP framework
(Schenner et al., 2013) in order to combine high-level object-oriented configu-
ration modeling with an underlying inference system that follows the answer
set programming (ASP) paradigm. OOASP is an experimental framework that
consists of a set of logic program files (*.lp). It can provide inference for a
number of use cases: checking a configuration, completing a configuration,
reconfiguration “reconciliation,” and choosing the best knowledge base for
reconciliation. The latter two use cases are not supported by WeCoTin. Fur-
thermore, OOASP supports arbitrary associations that make it possible, for
example, to define product topology or compositional structure. In contrast,
the only association type of PCML/WeCoTin defines the compositional struc-
ture. On the other hand, OOASP lacks user interfaces for modelers and end
users, and the modeler should be proficient in weight constraint rule language.
Furthermore, OOASP has been evaluated only as a demonstrator of the ASP
approach.

Many (if not most) configurators infer the consequences of configuration de-
cisions and check consistency during the configuration process. WeCoTin
checks “behind the scenes” during the configuration process that there exists a
way to complete the configuration—that is, it detects dead ends. We are not
aware of other configurators that provide this functionality.

8.1.3 Configuration modeling and performance testing

When configuration models are characterized in previous work, usually the
number of component types and/or connections is specified (Fleischanderl et

Discussion

83

al., 1998; Mailharro, 1998; Sharma & Colomb, 1998; Syrjänen, 2000). We are
not aware of previous work with a deeper characterization of configuration
models, such as application of inheritance, characterization of compositional
structure, and other modeling mechanisms.

We are only aware of limited configurator performance testing in previous
work; Syrjänen (2000) configured the main distribution of Debian
GNU/Linux using configuration models expressed by an extension of normal
logic programs. Syrjänen’s approach seems to perform better than ours, as the
Debian configuration models are substantially larger. But modeling in this
work was performed on a higher-level conceptualization that did not offer op-
portunities for the manual tweaking of performance. Other previous perfor-
mance and modeling experiments have not provided enough details to allow
detailed performance comparison. These include Sharma and Colomb (1998)
and Mailharro (1998). Sharma and Colomb (1998) configured thin Ethernet
cabling with developed constraint-logic-based language. Mailharro (1998)
used the Ilog system to configure the instrumentation and control hardware
and software of nuclear power plants. Syrjänen and Mailharro applied larger
products for testing than the systematically tested products of this work. On
the other hand, performance testing in this work differs from previous work in
that it applied configuration models of several products and varying numbers
of random requirements that could reveal phase transition behavior.

The CLib configuration benchmarks library contains 21 configuration prob-
lems (Subbarayan, 2005). These benchmarks include the systematically tested
cases of this work. We selected to test performance only on our “own” models
whose semantics were known and that were expressed in a form that facilitat-
ed PCML modeling with the original problem structure. This is not the case for
problems expressed in conjunctive normal form, such as those integrated into
CLib based on the idea of Sinz, Kaiser, & Kuchlin, (2003).

8.1.4 Recommendation of configurable offerings

Falkner et al. (2011) provided an overview of recommendation technologies for
configurable offerings with broader scope than this work. They provided an
overview of recommendation (1) of features (determine which features to ex-
clude from being asked from the user, or rank features to determine which
features to configure next), (2) of explanations (in case of conflicting require-
ments, recommend (minimal) sets of requirements that must be changed or
deleted for a solution to be found), and (3) of feature values. Of these, the au-
thor of this work sees (1) and (2) as important topics, but outside the scope of
this work. With respect to (3), the overview of publication III is more detailed
than the work of Falkner et al. (2011). Publication IV provides some empirical
evaluation, which is absent from Falkner et al. (2011).

The CAWICOMS Workbench (Ardissono et al., 2003) had utility-based rec-
ommendation support. The interests and skills of users were identified on sev-
eral dimensions and represented in a user model. For example, in the context
of telecommunications equipment, interest in product reliability could be a
dimension. Persons interested in high product reliability would get recom-

Discussion

84

mendations on options that enhanced reliability. For less-skilled users, ques-
tions related to some features would not be shown, and, e.g., dynamic defaults
would be applied. In comparison, the CAWICOMS approach is more dynamic
than the approach of publication IV because of its totally dynamic user inter-
face, and its recommendation support extends to the recommendation of fea-
tures (questions). On the other hand, the case-based approach of III and IV
can potentially work with less knowledge engineering effort. Furthermore, this
work provided evaluation with users (IV).

VITA financial-service recommenders identify combinations of financial
products to create a portfolio that matches the needs of the individual custom-
er or the family (Felfernig et al., 2007). Here, the configuration task is usually
simple in terms of compatibility, but finding a combination of suitable finan-
cial products may be challenging. The VITA financial-service recommenders
(Felfernig et al., 2007) are based on the MAUT approach, and they have been
applied in production use. Stolze & Field (2000) help users select suitable in-
surance products from a catalog of fixed products or products with limited
configurability, such as the deductible in case of insurance products. They use
a scoring system wherein the user selects affecting factors and explicitly gives
importance values. This calculation seems to be a variation of the MAUT ap-
proach. The idea is to find a suitable solution from the offerings of different
providers.

The proposed algorithms build on the ideas of Cöster et al. (2002). This work
goes further because it provides empirical validation. Missing validation is
common in previous work—we were unable to find evaluations of performance
of recommendation systems in the context of configurable offerings.

Cunningham et al. (2001) described a system that supports selecting a base
product to configure with recommendation technologies. Actual configuration
is supported with “ordinary” configuration techniques. No evaluation with
users was provided. A similar WeCoTin extension, “CCCP—a Tool for Compar-
ing Configurable Products” was developed (Heiskala, Anderson, Huhtinen,
Tiihonen, & Martio, 2003).

Zanker, Aschinger, and Jessenitschnig applied direct constraint-based mod-
eling for planning personalized tourist agendas with flights, accommodation,
and activities (2010). Again, no evaluation was provided. The aim was also
different: to calculate a small number of substantially differing bundles for the
user to select from.

8.1.5 Service configuration

The idea of service configuration can be considered relatively well known in
the literature, as discussed in Section 2.6.2. Explicit discussion on service con-
figuration, however, is relatively scant. Heiskala et al. (2005) presented a con-
ceptual analysis of whether the benefits and challenges of mass customization,
configuration, and configurators are relevant in service settings, taking the
IHIP characteristics as the basis of analysis.

Discussion

85

This work indicated that is often necessary to model the customer, related
equipment, other stakeholders, and properties of all of these. A similar view
has been expressed by several authors (Dausch & Hsu, 2006; Ma, Tseng, &
Yen, 2002; Stolze & Field, 2000; Wimmer, Mehlau, & Klein, 2003; Winter,
2001).

The view of the author of this work differs from that of Winter (2001), who
said, “While maximum flexibility has been the foundation of product models in
mechanical engineering, service product variants primarily reflect regulations,
pricing rules, customer properties, or risk properties. Therefore, more con-
straints have to be represented in general” (p. 205). The cases of this work re-
quired a relatively small number of constraints.

The pricing models encountered in this work were compliant with those
identified in previous work by Lovelock (1983) and de Miranda et al. (2006).

8.2 Threats of validity

According to (Bryman & Bell, 2007, p.42), validity of research is concerned
with the integrity of conclusions. Shadish, Cook, and Campbell (2002) are
more specific: they emphasize the role of inference as the subject of validity
and define validity as “the truth of, correctness of, or degree of support for an
inference” (p. 513). They distinguish four main types of validity. Next to be
addressed here are plausible threats to the main types of validity.

Statistical conclusion validity
Statistical conclusion validity concerns “the validity of inferences about the
correlation (covariation) between treatment and outcome” (Shadish et al.,
2002, p. 38). In this thesis, it pertains only to the evaluation of the utility of
the recommendation approach, specifically to the performed tests of hypothe-
ses H1 .. H9. The first author of publication IV verified that assumptions of the
applied test (Student’s T-test, one-tailed distribution, two-sample equal vari-
ance T-Test) were not violated. The participants of the on-line user study were
mostly recruited from the students and faculty of four universities via e-mail
and bulletin board advertisements. This is likely to introduce sampling bias
with respect to the age and educational background; possibly also the distribu-
tions of profession, gender, and other background factors are biased. The sta-
tistical significance of three hypotheses was confirmed at 95% level of confi-
dence, and other hypotheses H1..H8 could have been confirmed only at 80%
level of confidence (0.0765 < p <0.178), which is not sufficient. However, all
these hypotheses exhibit a tendency to the direction of benefit provided by
recommendation technology. This makes it less likely that the hypotheses
would have been confirmed as a result of random chance caused by the testing
of multiple hypotheses, known as the multiple comparisons problem. Configu-
ration sessions with personalized configurators took longer (p = 0.154, H9),
which was contrary to the original assumption. As a whole, it seems safe to
claim that recommendation technology can provide benefits to users.

Discussion

86

Construct validity
Construct22 validity concerns “the validity of inferences about the higher order
constructs that represent sampling particulars” (Shadish et al., 2002, p. 38). A
plausible threat to construct validity comes from conceptualization of compo-
sitional structure. Compositional structure was conceptualized through PART

DEFINITIONS (aka subfeature definitions) with semantics that a valid individual
of the whole type has the number of part individuals specified by the cardinal-
ity as parts with the specified part name. Each individual as a part must be of
one of the possible part types. These concepts may match neither those of
practitioners nor those of other researchers. Numerous products were mod-
eled, however, and the concepts accurately model the compositional structure
of configurable products with a good match to the modeling needs. It is plausi-
ble that the concepts would be simple to explain to practitioners.

Internal validity
Internal validity concerns “the validity of inferences about whether observed
covariation between A (the presumed treatment) and B (the presumed out-
come) reflects a causal relationship from A to B as those variables were ma-
nipulated or measured” (Shadish et al., 2002, p. 38). Internal validity is sub-
ject to author bias. Configuration modeling efficacy results are particularly
problematic, because all modeling and evaluation of modeling were performed
by researchers who were involved in WeCoTin development and who were
used to modeling. Furthermore, the author of this work defined the configura-
tion model used in RecoMobile recommendation experiment. It might be that
some aspects that are relevant to users were omitted, which might affect the
satisfaction of corresponding users.

External validity
External validity concerns “the validity of inferences about whether the cause-
effect relationship holds over variation in persons, settings, treatment varia-
bles, and measurement variables” (Shadish et al., 2002, p. 38). The main arti-
fact WeCoTin configurator has been evaluated with a subset of relevant views
(performance, the characterization of configuration models, and applied mod-
eling concepts). A number of aspects, however, can threaten the external valid-
ity of WeCoTin’s claimed practicality and utility. In other words, it may be the
case that WeCoTin does not provide claimed utility or is not practically appli-
cable in generalized settings. Plausible threats to the external validity are dis-
cussed next.

Case selection by convenience. The cases, ten companies with 22 prod-
ucts that were modeled and configured, were selected by convenience from
either existing or potential research partners. The case companies are real and
relevant, and represent industries that are typical in Finland: manufacturers of
investment goods, especially the machine-building sector, augmented with
healthcare equipment manufacturers. Each case product can be configured

22‘Construct’ in ’construct validity’ is should not be confused with term ‘construct’ in the
sense of (Hevner et al., 2004) applied in the rest of this thesis.

Discussion

87

with direct selections; little search is required. The modeled cases do not cover
the most challenging configuration tasks, such as telecommunications net-
works. Generalizing the claims of applicability of WeCoTin to other types of
companies or products requires careful judgment.

Configuration modeling may require modeling expertise. All mod-
eling was performed by researchers who were involved in configuration topics
and WeCoTin development. Modeling expertise could be needed to model
products with WeCoTin—at least, the efficacy of modeling is subject to model-
er background.

Incomplete validation of the configuration models. Five configura-
tion models from three companies were test-used by company representatives.
In addition, configuration demonstrations and immediately following focus
groups were used to validate seven additional configuration models. Neverthe-
less, most configuration models were applied only as demonstrations, and
modeling errors could have been left unnoticed. Many details were changed in
iteration toward complete models, but such changes were minor with respect
to selection and application of modeling concepts. Thus, it is reasonable to
assume that a more thorough validation would not have revealed requirements
that cannot be met with WeCoTin.

No real customers. No operational use of WeCoTin has taken place. Vali-
dation in a full business context with real end users is thus missing. The Reco-

Mobile experiment was not performed with real customers, which might affect
the results.

Summary
Despite the identified threats to validity, the rigor of the evaluation of
WeCoTin can be considered very high among evaluations of configurators. On
the other hand, some commercial systems are widely applied in industrial set-
tings, whereas WeCoTin lacks this form of validation. Applicability of the arti-
fact to real-world problems was demonstrated, and ability to generalize exists
in the sense that the configuration tasks from different industries can be sup-
ported. Nevertheless, it is easy to identify configuration tasks that cannot be
fully supported.

8.3 Answers to the research questions and contributions

8.3.1 RQ1: What are the concepts central to configuration knowledge?

We consider the main concepts of publication I to be central. Publication I
covers the connection-based (Mittal & Frayman, 1989), resource-based (Hein-
rich & Jüngst, 1991), structure-based (e.g., Cunis et al., 1989), and function-
based (Najmann & Stein, 1992) approaches. It also extends the previous con-
ceptualizations in several ways. The main concepts are component, function,
port, and resource. These are treated uniformly with respect to several crite-
ria: defined both as types and as individuals, organized in classification taxon-
omies, and having attribute definitions. Furthermore, the types can be speci-
fied as abstract or concrete. Component and function types can specify config-

Discussion

88

urable compositional structure with part definitions, where allowed types that
can realize a part, cardinality, and part name are specified.

For sales configuration of some products, a subset of the concepts is enough.
We conclude, based on modeling (and configuring) without difficulties and
with an acceptable conceptual match, the sales view of real-world products (14
fully, 8 partially) that the function-oriented subset of the configuration con-
ceptualization is useful for modeling configuration knowledge. In other words,
by modeling the sales configuration view of several products with WeCoTin, it
is possible to narrow down the set of central concepts. The most central con-
cepts include typed objects, their attributes, subfeature (part-) definitions, and
constraints. Typed objects can be called “components,” “functions,” “features,”
or “objects.” In the context of sales configuration, the author of this work pre-
fers “feature.” It is important to have available compositional structure that
distinguishes the part name (“role”) and specifies allowed types and cardinali-
ty. Inheritance and abstract types must be supported. Topological concepts
and resource-based concepts, while important, are not as essential. But it is
difficult to imagine effective configuration modeling of complex telecommuni-
cations equipment or computer systems without support for connection-based
and resource-based concepts.

The set of concepts of publication I is not minimal in the formal sense. In the
view of the author of this thesis, this is not a problem: the clarity of configura-
tion models should not be compromised by strictly minimizing the number of
concepts; the conceptualization has a good balance between minimizing the
number of concepts and making configuration models understandable.

8.3.2 RQ2: How to construct a practical and computationally well-
founded sales configurator?

A partial information systems design theory (ISDT) for sales configurators
(SCISDT) fulfilling a set of major requirements was presented. SCISDT aims to
provide a recipe-like prescription for the construction of similar artifacts. The
major ingredients include a high-level object-oriented configuration modeling
language that is based on a well-founded conceptualization, a method of trans-
lating configuration models into weight constraint rules, and an inference en-
gine based on weight constraint rules. A high-level architecture and the main
functions of major components were presented along with the main working
principles. SCISDT is based on the design of WeCoTin, a sales configurator
that supports mass customization of complex products. WeCoTin is computa-
tionally well founded because it was constructed based on the idea of transla-
tion of configuration knowledge into weight constraint rules (Soininen, 2000;
Soininen et al., 2001). This principle provides theoretical grounding and al-
lows for sound and complete inference. In addition, WeCoTin incorporates
tools that allow graphical configuration modeling, semi-automatic generation
of user interfaces, and several other aspects that ease long-term management.
WeCoTin works as an expository instantiation of SCISDT.

The utility and efficacy of WeCoTin were evaluated. Applicability of WeCoTin
and its modeling capabilities to industrial problems were evaluated; the creat-

Discussion

89

ed configuration models were characterized in terms of size and modeling con-
cepts that were applied. The created and evaluated sales configuration models
were small, but representative of the Finnish industry. The modeling language
of WeCoTin (PCML) was adequate for modeling the products. WeCoTin had
demonstrably adequate performance with the four models that were systemat-
ically tested and ad-hoc manual configuration with other configuration mod-
els. An exception to this sufficient performance is the large Linux model, in
which achieving sufficient performance would require at least the capability to
control when full inference was performed, and possibly other optimizations.

We claim that the main artifact of this thesis, the WeCoTin configurator, is a
practical sales configurator in terms of a number of key aspects. Its generaliza-
tion as the SCISDT provides the “recipe” that answers RQ2.

8.3.3 RQ3: Can users be effectively supported in finding suitable prod-
ucts and services with personalized recommendations?

We provided an overview of the approaches to integrate recommendation of
configuration settings (feature values) with configuration technologies. This
integration shows potential for reducing the so-called mass confusion phe-
nomenon (Huffman & Kahn, 1998) that prevents users from identifying prod-
ucts and services fitting their wishes and needs.

We proposed extensions to already existing case-based recommendation al-
gorithms to integrate importance weights and similarity metrics with a classi-
fication approach that has not, to the knowledge of the author of this thesis,
been applied in the recommendation of configurable offerings.

A basic evaluation of the case-based collaborative recommendation approach
was provided by a user study in which test subjects (N = 546) configured mo-
bile subscriptions and selected a phone, both with and without recommenda-
tion support. Recommendation support was provided by application of the
nearest-neighbor and extended naïve Bayes voter algorithms to calculate fea-
ture value recommendations. All eight hypotheses based on user evaluation
exhibited a tendency to the direction of benefit provided by recommendation
technology. It was also possible to show in a statistically significant way (p <
0.05) that users with recommendation support (1) were more satisfied with the
overall quality of the configuration process, (2) perceived that the quality of
the system in terms of support for finding the best options was significantly
higher, and (3) had their expectations regarding the solution better fulfilled.
But the improvement was relatively small—for example, satisfaction with the
configuration process increased from 5.57 to 6.31 on an 11-point Likert scale.

We believe that equipping configurators with personalized recommendation
of feature values will be a major source of additional support for users per-
forming choice navigation in the context of a mass customization strategy.
Recommendation support can potentially extend the range of configurable
offerings that can be configured as self-service in such scenarios as e-
commerce.

Discussion

90

For the reasons mentioned above, we give a positive answer to the research
question RQ3. Future work is needed, however, to bring these functionalities
to commercial systems and to generalize the approach.

Discussion

91

8.3.4 RQ4: How does service configuration differ from the configuration
of physical products?

Configuration of services was addressed in the context of service contract con-
figuration of telecommunications, maintenance service, and insurance offer-
ings. The offered variation of the case services contained what-variation defin-
ing the desired service outcome, some temporal aspects of when-variation, and
limited with-what-, how-, and where-variation. Surprisingly, no who-
variation was identified in the sense that service personnel or their skills would
have been selected. Through what-variation, it was sometimes possible to con-
figure the extent of customer participation. A formal relationship brought
about certain sources of variation: pricing options, paying and billing, infor-
mation and reporting, service quality attributes (promised performance and
response time, the availability of maintained equipment), and even loyal-
customer benefits. Ownership and intellectual-property rights were not con-
figured.

The properties of a customer, equipment within the scope of service, other
stakeholders (to whom), and the environment influenced service availability,
feasible parameter values, and pricing. This extends the scope of modeling
beyond the service product itself to ensure the correctness of the configuration
and pricing. Furthermore, explicitly modeling service delivery processes and
resources may be required to clarify the customer’s role and help manage ex-
pectations. Complex customership and service provider’s partner networks
potentially complicate configuration modeling. If subcontractors are used, for
example, the customer may be interested in who they are or what their qualifi-
cations are.

Service contract configuration sometimes required the management of sev-
eral non-commensurate prices, such as initiation, periodic, and pay-per-use
prices. In such services as telecommunications or insurance, the installed base
of service contracts needs to be managed so that reconfiguration is possible to
match a customer’s changed needs. Furthermore, sometimes service processes
need to be configured to deliver the configured service.

The extended scope of modeling may lead to a conceptual mismatch with
terminology such as component or feature types. In addition, modeling con-
figurable processes are not convenient. Despite these challenges, we conclude
that at least some, and probably most, configurable service offerings can be
modeled and configured with traditional configurators. Reconfiguration and
management of several prices may require additional support.

Discussion

92

8.4 Future research

Applying SCISDT independently would verify it and provide further evidence
on applying weight-constraint-rule-based inference with a high-level modeling
conceptualization and language.

WeCoTin could be extended. Potential extensions include repair functionali-
ty of inconsistent configurations, personalized recommendations, optimization
support, enhanced ways to express requirements, visualization, improved end-
user interface (with enhanced capabilities for supporting the end user to pre-
vent the product variety paradox (Trentin et al., 2013) and dynamic aspects
such as the sequence of questions depending on previous answers), and sup-
port for reconfiguration. “Syntactic sugar” could be offered: a minor inconven-
ience was apparent in the case of an optional subfeature (cardinality 0 to 1),
and exactly one allowed type: it was difficult to invent a name for the feature
type and the subfeature. For example, an optional radio would be described
with a subfeature definition named radio and a feature type radio.

The proposed configuration knowledge conceptualization could be extended
on many fronts. Geometric knowledge could be included to facilitate visualiza-
tion, spatial layout design, and so on. In the context of service configuration,
there is a need to model processes (activities and their resources). Optimality
knowledge could guide the configuration process. Further extensions could
cover pricing, costs, and other sacrifices. Mixin types (Hedin et al., 1998)
could potentially offer a simpler alternative to multiple inheritance by provid-
ing the reuse of attribute specifications and constraints in main types.

Recommendation of configurable offerings provides numerous research op-
portunities. Nearest to this work, recommendation algorithms should be ex-
tended to cope with structurally varying configurations that make the set of
features dynamic. There remains to evaluate how well recommendation algo-
rithms perform. Furthermore, alternative ways to determine similarity of sym-
bolic-feature values should be studied.

One opportunity is constructing a generic service configurator that has a ser-
vice-specific modeling conceptualization such as the four-worlds model
(Heiskala, 2005; Heiskala et al., 2005; Heiskala et al., 2006). Such a configu-
rator would provide a good conceptual match for service configuration model-
ing. One interesting approach in this direction would be to apply metamodel-
ing languages such as NIVEL (Asikainen & Männistö, 2010)—it could become
straightforward to define configuration languages resembling PCML with a
good conceptual match in such domains as software configuration or services.

Conclusions

93

9. Conclusions

Configurators have been a success story for artificial-intelligence techniques
because of their fundamentally well-defined basic problem. This work contin-
ues on the same track, but it has taken a somewhat higher-level point of view:
the primary interest has been to provide useful information systems, not actu-
ally to investigate AI technologies themselves.

By the Design Science research approach, a number of artifacts supporting
sales configuration of physical products and services were developed, aiming
to advance practically applicable configurators. The main artifact in the center
of research was the WeCoTin sales configurator. Other artifacts contribute to
the foundations of WeCoTin, to its evaluation, or to potential extensions of it.

We presented a configuration conceptualization that combined the ideas of
previous approaches and extends them. Its main concepts are component,
function, port, and resource. These main types are treated uniformly with re-
spect to several criteria: defined both as types and individuals, organized in
classification taxonomies, and equipped with attributes. Components and
functions can have configurable compositional structure where a part defini-
tion specifies allowed types, cardinality, and a part name. We believe that we
have struck a good balance between minimality and expressiveness.

Enabled by the novel principles of WeCoTin artifact, we proposed an infor-
mation systems design theory (SCISDT) for sales configurators. WeCoTin con-
sists of a graphical modeling environment Modeling Tool and a Web-based
Configuration Tool that supports the configuration task. The modeling lan-
guage has clear formal semantics, provided by mapping it to a form of logic
programs. WeCoTin and SCISDT are based on a well-founded modeling con-
ceptualization and a corresponding high-level object- and feature-oriented
modeling language with clear formal semantics, which are provided by the
modeling language’s mapping to weight constraint rules—a form of logic pro-
grams. Modeling Tool enables efficient graphical modeling and includes sever-
al functions that support long-term management, such as semi-automatic gen-
eration of user interfaces. Configuration Tool provides sales configuration
functionality for e-commerce. It applies an inference engine based on weight
constraint rules (Smodels) to provide consistent and complete inference. Early
phases on the track to WeCoTin also affected the development of Smodels.

Evaluation of WeCoTin was multi-faceted. It included the characterization of
26 sales configuration models and run-time performance analysis, both with
developed new methods. The method for empirical run-time performance

Conclusions

94

evaluation simulates a naïve user entering random requirements to a configu-
rator equipped with a real-world configuration model. Performance of the in-
ference engine of WeCoTin (smodels) was on a practical level. We expect that
adequate performance would apply to many other products that were suitable
for Web-based sales configuration.

WeCoTin has been commercialized. 23 This commercialization constitutes
market-based validation of pragmatic relevance “weak market test” of a con-
struct24 (Kasanen, Lukka, & Siitonen, 1993). Kasanen et al. contend that ideas
and constructs compete in markets, and an idea’s commercial adoption con-
tributes to its significance. In their view, “even the weak market test is relative-
ly strict—it is probably not often that a tentative construction is able to pass it.”

The modeling language PCML allowed efficient modeling of products for
web-based sales configuration. Such mechanisms as inheritance and composi-
tional structure with refinement were useful. The current view of the author is
that, with otherwise the same modeling mechanisms (compositional structure,
taxonomy including inheritance, attributes, and constraints), it is largely irrel-
evant what the basic objects are called: “features” as in WeCoTin, “compo-
nents” as in an earlier version of WeCoTin and most of the literature, “func-
tions” as in conceptualization, or just “objects.”

The author awaits with interest any evidence on whether the SCISDT has an
effect on future configurator development, including the use of a weight con-
straint rule language as the formal basis.

The author holds that recommender-supported configuration systems have
significant potential to support the mass customization strategy, reduce mass
confusion, and make complex products and services accessible to larger audi-
ences, even in self-service e-commerce scenarios. Thus, an overview of feature
value recommendation technologies for configurable offerings was provided.
Existing case-based feature value recommendation algorithms were extended
by integrating importance weights and similarity metrics. A basic evaluation of
the case-based collaborative approach was provided by an empirical study.
Users evaluated systems with recommendation support higher with respect to
all research hypotheses. Three hypotheses indicating improved choice naviga-
tion support were statistically significant, and five other hypotheses showed
improvement without statistical significance. Based on this, it seems safe to
claim that recommendation technology can, indeed, provide benefits to users.
Future work is needed to generalize the algorithms and to integrate recom-
mendation into widely applied configuration systems.

The offered variation of configurable services and the applicability of config-
urators designed for physical products to configuring services were analyzed in
three industries. The offered variation contained what-variation defining the
desired service outcome, some temporal aspects of when-variation, and lim-
ited with-what-, how-, and where-variation. The properties of a customer and

23 Variantum Oy, http://www.variantum.com/joomla/en/products/varisales sales
configurator
24 ‘Construct’ of (Kasanen, Lukka, & Siitonen, 1993) is any subtype of ‘artifact’ of (Hevner et
al., 2004) and terminology of this thesis.

Conclusions

95

other stakeholders (to whom), related equipment, and the environment influ-
enced service availability and pricing. Limited process configuration was also
required. The required scope of modeling extended beyond the service product
itself to ensure the correctness of the configuration and pricing. A conceptual
mismatch arises in application of traditional configuration modeling concepts
such as component or feature types. Despite these challenges, traditional con-
figurators can manage sales configuration of some, and probably most, config-
urable service offerings. Extended configurator support may be required to
manage several non-commensurate prices (e.g., initiation, periodic, and pay-
per-use price elements) and reconfiguration; the service contents need to be
adjusted when customer needs, equipment, environment, or other relevant
aspects change.

This work contributed toward practical support for configuration of physical
and service offerings. The main contributions include a conceptualization for
modeling the offered variation of configurable offerings, a novel sales configu-
rator instantiation based on weight constraint rules and a corresponding in-
formation systems design theory (SCISDT), understanding about the relation-
ship of services and configuration, and ways to determine personalized feature
value recommendations to help users in choice navigation.

96

References

3DSEnovia. (2012). ENOVIA Variant Configuration Central. Vélizy Villacoublay Cedex, France: Dassault Sys
tèmes.

Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: a survey of
the state of the art and possible extensions. Knowledge and Data Engineering, IEEE Transactions On,
17(6), 734 749. doi:10.1109/TKDE.2005.99

Aldanondo, M., Hadj Hamou, K., Moynard, G., & Lamothe, J. (2003). Mass customization and configuration:
Requirement analysis and constraint based modeling propositions. Integrated Computer Aided Engi
neering, 10(2), 177 189.

Aldanondo, M., Rouge, S., & Véron, M. (2000). Expert configurator for concurrent engineering: Cameleon
software and model. Journal of Intelligent Manufacturing, 11(2), 127 134.

Aldanondo, M., Véron, M., & Fargier, H. (1999). Configuration in manufacturing industry requirements,
problems and definitions. IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference
on Systems, Man, and Cybernetics, Tokyo. Vol. 6 1009 1014. doi:10.1109/ICSMC.1999.816691

Anderson, A. (2005). Towards tool supported configuration of services. (M. Sc., Helsinki University of Tech
nology, Department of Computer Science and Engineering).

Anderson, A., & Pasanen, M. (2003).WeCoTin Requirements and architecture (unpublished). Espoo, Finland:
Helsinki University of Technology, Software Business and Engineering Institute.

Ardissono, L., Felfernig, A., Friedrich, G., Goy, A., Jannach, D., Meyer, M. H., Petrone, G., Schäfer, R., &
Zanker, M. (2002). Personalizing on line configuration of products and services. 15th European Con
ference on Artificial Intelligence (ECAI 2001), Lyon, France. 225 229.

Ardissono, L., Felfernig, A., Friedrich, G., Goy, A., Jannach, D., Petrone, G., Schäfer, R., & Zanker, M. (2003).
A framework for the development of personalized, distributed web based configuration systems. AI
Magazine, 24(3), 93 110. doi:10.1609/aimag.v24i3.1721

Artale, A., Franconi, E., Guarino, N., & Pazzi, L. (1996). Part whole relations in object centered systems: An
overview. Data & Knowledge Engineering, 20(3), 347 383. doi:10.1016/S0169 023X(96)00013 4

Asikainen, T., & Männistö, T. (2010). A metamodelling approach to configuration knowledge representa
tion. International Journal of Mass Customisation, 3(4), 333 350. doi:10.1504/IJMASSC.2010.037649

Attardi, G., Cisternino, A., & Simi, M. (1998). Web based configuration assistants. Artificial Intelligence for
Engineering Design, Analysis and Manufacturing (AI EDAM), 12(4), 321 331.

Axling, T., & Haridi, S. (1996). A tool for developing interactive configuration applications. The Journal of
Logic Programming, 26(2), 147 168. doi:10.1016/0743 1066(95)00097 6

Baader, F. (2009). Description logics. In S. Tessaris, E. Franconi, T. Eiter, C. Gutierrez, S. Handschuh, M.
Rousset & R. A. Schmidt (Eds.), Reasoning Web. Semantic Technologies for Information Systems (pp.
1 39). Berlin, Heidelberg: Springer. doi:10.1007/978 3 642 03754 2

Baida, Z., Akkermans, H., & Gordijn, J. (2003). Serviguration: towards online configurability of real world
services. ICEC '03 Proceedings of the 5th international conference on Electronic commerce, Pitts
burgh, Pennsylvania, USA. 111 118. doi:10.1145/948005.948020

Barker, V. E., O'Connor, D. E., Bachant, J., & Soloway, E. (1989). Expert systems for configuration at Digital:
XCON and beyond. Communications of the ACM, 32(3), 298 318. doi:10.1145/62065.62067

References

97

Beckett, S. B. (1996). Achieving competitive advantage through customer value: exploring mass customiza
tion as a strategy for service organizations. (Ph. D., The University of Texas at Arlington).

Bettman, J. R., Luce, M. F., & Payne, J. W. (1998). Constructive consumer choice processes. Journal of Con
sumer Research, 25(3), 187 217. doi:10.1086/209535

Blecker, T., Friedrich, G., Kaluza, B., Abdelkafi, N., & Kreutler, G. (2005). Information and management sys
tems for product customization. Boston: Springer.

Böhmann, T., Junginger, M., & Krcmar, H. (2003). Modular service architectures: a concept and method for
engineering IT services. Proceedings of the 36th Annual Hawaii International Conference on System
Sciences (HICSS'03),Waikoloa, HI, USA. CDROM, 10 pp. doi:10.1109/HICSS.2003.1174189

Bowen, D. E., & Youngdahl, W. E. (1998). "Lean" service: in defense of a production line approach. Interna
tional Journal of Service Industry Management, 9(3), 207 225. doi:10.1108/09564239810223510

Bryman, A., & Bell, E. (2007). Business research methods (2nd ed.). Oxford, UK: Oxford university press.
Buckley, F. J. (1993). Implementing Configuration Management: Hardware, Software and Firmware IEEE

Press Piscataway, NJ, USA.
Burke, R. (2000). Knowledge based recommender systems. In A. Kent (Ed.), Encyclopedia of Library and

Information Systems Volume 69 (pp. 180 201). New York, NY, USA: Marcel Dekker.
Burke, R. (2002). Hybrid recommender systems: survey and experiments. User Modeling and User

Adapted Interaction, 12(4), 331 370. doi:10.1023/A:1021240730564
Chesbrough, H., & Spohrer, J. (2006). A research manifesto for services science. Communications of the

ACM, 49(7), 35 40, 33 34 (bibliography). doi:10.1145/1139922.1139945
Chowdhury, S., & Miles, G. (2006). Customer induced uncertainty in predicting organizational design: Em

pirical evidence challenging the service versus manufacturing dichotomy. Journal of Business Re
search, 59(1), 121 129. doi:10.1016/j.jbusres.2005.02.006

Cook, D. P., Goh, C., & Chung, C. H. (1999). Service typologies: a state of the art survey. Production and Op
erations Management, 8(3), 318 338. doi:10.1111/j.1937 5956.1999.tb00311.x

Cöster, R., Gustavsson, A., Olsson, T., & Rudström, Å. (2002). Enhancing web based configuration with rec
ommendations and cluster based help. AH'02 Workshop on Recommendation and Personalized in e
Commerce,Málaga, Spain. 30 40.

Cunis, R., Günter, A., & Strecker, H. (Eds.). (1991). The PLAKON Book [German: Das PLAKON Buch: Ein Ex
pertensystemkern für Planungs und Konfigurierungsaufgaben in technischen Domänen]. London, UK:
Springer Verlag.

Cunis, R., Günter, A., Syska, I., Peters, H., & Bode, H. (1989). PLAKON an approach to domain independent
construction. Proceedings of the Second International Conference on Industrial and Engineering Ap
plications of Artificial Intelligence and Expert Systems (IEA/AIE 89), Tullahoma, TN, USA. Vol. 2 866
874. doi:10.1145/67312.67359

Cunningham, P., Bergmann, R., Schmitt, S., Traphöner, R., Breen, S., & Smyth, B. (2001). Websell: Intelligent
sales assistants for the world wide web. Künstliche Intelligenz, 15(1), 28 32.

cyLEDGE. (2013). International Configurator Database, 2013. Retrieved 2/6, 2014, from
http://www.configurator database.com/services/configurator database

Da Silveira, G., Borenstein, D., & Fogliatto, F. S. (2001). Mass customization: Literature review and research
directions. International Journal of Production Economics, 72(1), 1 13. doi:10.1016/S0925
5273(00)00079 7

Damiani, S. R., Brand, T., Sawtelle, M., & Shanzer, H. (2001). Oracle configurator developer user’s guide,
release 11i. Redwood City, CA, USA: Oracle Corporation.

Darr, T., Klein, M., & McGuinness, D. L. (1998). Special issue: configuration design. Artificial Intelligence for
Engineering Design, Analysis and Manufacturing (AI EDAM), 12(4), 293 294.

Dausch, M., & Hsu, C. (2003). Mass customize service agreements for heavy industrial equipment. Proceed
ings of the IEEE International Conference on Systems, Man and Cybernetics, Washington, DC, USA.
Vol. 5 4809 4814. doi:10.1109/ICSMC.2003.1245744

Dausch, M., & Hsu, C. (2006). Engineering service products: the case of mass customising service agree
ments for heavy equipment industry. International Journal of Services Technology and Management,
7(1), 32 51.

98

de Miranda, B., Baida, Z., & Gordijn, J. (2006). Modeling pricing for configuring e Service bundles. Paper
presented at the 19th Bled eCommerce Conference, Bled, Slovenia. paper 48, 13 pp. Retrieved from
https://domino.fov.uni
mb.si/proceedings.nsf/Proceedings/E09F565B4061153EC125718000315426/$File/16_Miranda.pdf;

Desisto, R. P. (2004). Constraints still key for product configurator deployments. (No. T 22 9419). Stamford,
CT, USA: Gartner, Inc.

Dumas, M., O'Sullivan, J., Heravizadeh, M., Edmond, D., & Ter Hofstede, A. (2002). Towards a Semantic
Framework for Service Description. Semantic Issues in E Commerce Systems, IFIP TC2 / WG2.6 Ninth
Working Conference on Database Semantics, Hong Kong. 277 291. doi:10.1007/978 0 387 35658
7_17

Duray, R., Ward, P. T., Milligan, G. W., & Berry, W. L. (2000). Approaches to mass customization: configura
tions and empirical validation. Journal of Operations Management, 18(6), 605 625.
doi:10.1016/S0272 6963(00)00043 7

Dyer, J. S. (2005). MAUT—multiattribute utility theory. In J. Figueira, S. Greco & M. Ehrogott (Eds.),Multiple
criteria decision analysis: state of the art surveys (pp. 265 292). New York: Springer. doi:10.1007/0
387 23081 5_7

Edvardsson, B., Gustafsson, A., & Roos, I. (2005). Service portraits in service research: a critical review. In
ternational Journal of Service Industry Management, 16(1), 107 121.
doi:10.1108/09564230510587177

Edwards, K., Blecker, T., Salvador, F., Hvam, L., & Friedrich, G. E. (Eds.). (2008).Mass Customization Services.
Proceedings of the Joint Conference of the International Mass Customization Meeting 2008
(IMCM'08) and the International Conference on Economic, Technical and Organisational Aspects of
Product Configuration Systems (PETO'08). Copenhagen, Denmark:

Falkner, A., Felfernig, A., & Haag, A. (2011). Recommendation technologies for configurable products. AI
Magazine, 32(3), 99 108. doi:10.1609/aimag.v32i3.2369

Faltings, B., & Freuder, E. C. (1998). Special Issue on configuration. IEEE Intelligent Systems, 13(4), 32 33.
doi:10.1109/MIS.1998.708430

Feldkamp, F., Heinrich, M., & Meyer Gramann, K. D. (1998). SyDeR—System design for reusability. Artificial
Intelligence for Engineering Design, Analysis and Manufacturing (AI EDAM), 12(4), 373 382.

Felfernig, A., Isak, K., Szabo, K., & Zachar, P. (2007). The VITA financial services sales support environment.
22nd AAAI Conference on Artificial Intelligence (AAAI 07), Vancouver, Canada. Vol. 22(2) 1692 1699.

Felfernig, A. (2007). Standardized configuration knowledge representations as technological foundation for
mass customization. Engineering Management, IEEE Transactions On, 54(1), 41 56.
doi:10.1109/TEM.2006.889066

Felfernig, A., & Burke, R. (2008). Constraint based recommender systems: technologies and research issues.
Proceedings of the 10th international conference on Electronic commerce (ICEC '08), Innsbruck, Aus
tria. 17 26. doi:10.1145/1409540.1409544

Felfernig, A., Friedrich, G. E., & Jannach, D. (2000a). Generating product configuration knowledge bases
from precise domain extended UML models. 12 th International Conference on Software Engineering
and Knowledge Engineering (SEKE 2000), Chicago, IL, USA. 284 293.

Felfernig, A., Friedrich, G., Jannach, D., Stumptner, M., & Zanker, M. (2003). Configuration knowledge rep
resentations for Semantic Web applications. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing (AI EDAM), 17(1), 31 50. doi:10.1017/S0890060403171041

Felfernig, A., Friedrich, G., Jannach, D., & Zanker, M. (2002). Configuration knowledge representation using
UML/OCL. UML 2002 — The Unified Modeling Language Model Engineering, Concepts, and Tools,
5th International Conference, Proceedings (LNCS), Dresden, Germany. Vol. 2460 49 62.
doi:10.1007/3 540 45800 X_5

Felfernig, A., Friedrich, G., Schubert, M., Mandl, M., Mairitsch, M., & Teppan, E. (2009). Plausible Repairs for
Inconsistent Requirements. 21st International Joint Conference on Artificial Intelligence (IJCAI 09),
Pasadena, California. 791 796.

References

99

Felfernig, A., Friedrich, G. E., & Jannach, D. (2000b). UML as domain specific language for the construction
of knowledge based configuration systems. International Journal of Software Engineering and
Knowledge Engineering, 10(4), 449 469. doi:10.1142/S0218194000000249

Felfernig, A., Mandl, M., Tiihonen, J., & Schubert, M. (2010). Personalized Product Configuration. Paper
presented at theMultikonferenz Wirtschaftsinformatik 2010, 24. PuK Workshop: Planung/Scheduling
und Konfigurieren/Entwerfen, Göttingen, Germany. 2251 2263. Retrieved from
http://webdoc.sub.gwdg.de/univerlag/2010/mkwi/

Felfernig, A., & Schubert, M. (2011). Personalized diagnoses for inconsistent user requirements. Artificial
Intelligence for Engineering Design, Analysis and Manufacturing (AI EDAM), 25(2), 175 183.
doi:10.1017/S0890060410000612

Felfernig, A., Stumptner, M., & Tiihonen, J. (2011). Special issue: configuration. Artificial Intelligence for
Engineering Design, Analysis and Manufacturing (AI EDAM), 25(2), 113 114.
doi:10.1017/S0890060410000569

Fitzsimmons, J. A., & Fitzsimmons, M. J. (2004). Service management: operations, strategy, and information
technology (4th ed.). New York, NY, USA: McGraw Hill/Irwin.

Fleischanderl, G., Friedrich, G. E., Haselböck, A., Schreiner, H., & Stumptner, M. (1998). Configuring large
systems using generative constraint satisfaction. IEEE Intelligent Systems, 13(4), 59 68.
doi:10.1109/5254.708434

Forza, C., & Salvador, F. (2002a). Managing for variety in the order acquisition and fulfilment process: The
contribution of product configuration systems. International Journal of Production Economics, 76(1),
87 98. doi:10.1016/S0925 5273(01)00157 8

Forza, C., & Salvador, F. (2002b). Product configuration and inter firm co ordination: an innovative solution
from a small manufacturing enterprise. Computers in Industry, 49(1), 37 46.

Forza, C., & Salvador, F. (2006). Product information management for mass customization: connecting cus
tomer, front office and back office for fast and efficient customization. Hampshire, UK; New York, NY,
USA: Palgrave Macmillan.

Frayman, F., & Mittal, S. (1987). COSSACK: a constraint based expert system for configuration tasks. In D.
Sriram, & R. A. Adey (Eds.), Knowledge Based Expert Systems in Engineering: Planning and Design
(pp. 143 166). Woburn, MA, USA: Computational Mechanics Publications.

Friedrich, G. E., Ryabokon, A., Haselböck, A., Schenner, G., & Schreiner, H. (2011). (Re)configuration based
on model generation. Paper presented at the Second Workshop on Logics for Component Configura
tion (LoCoCo 2011), vol 65 of EPTCS, Perugia, Italy. Vol. 65 of Electronic Proceedings in Theoretical
Computer Science (EPTCS) 26 35. doi:10.4204/EPTCS.65.3

Geneste, L., & Ruet, M. (2001). Experience based configuration. 17th International Joint Conference on Arti
ficial Intelligence (IJCAI 2001), Configuration Workshop, Seattle, WA, USA. 45 49.

Gilmore, J. H., & Pine, B. J. 2. (1997). The four faces of mass customization. Harvard Business Review, 75(1),
91 101.

Goy, A., & Magro, D. (2004a). Dynamic configuration of a personalized tourist agenda. Proceedings of the
IADIS International Conference WWW/Internet 2004 (ICWI 2004),Madrid, Spain. 619 626.

Goy, A., & Magro, D. (2004b). STAR: a Smart Tourist Agenda Recommender. 16th European Conference
on Artificial Intelligence (ECAI 2004), Configuration Workshop, Valencia, Spain. 8 1 8 8.

Gregor, S. (2006). The nature of theory in information systems.MIS Quarterly, 30(3), 611 642.
Gregor, S., & Jones, D. (2007). The anatomy of a design theory. Journal of the Association for Information

Systems, 8(5), 312 335.
Grönroos, C. (2007). Service management and marketing: customer management in service competition

(3rd ed.). Chichester, England: John Wiley & Sons.
Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge Acquisition,

5(2), 199 220. doi:10.1006/knac.1993.1008
Günter, A., & Hotz, L. (1999). KONWERK A Domain Independent Configuration Tool. Configuration Papers

from the AAAI Workshop, 1999. AAAI Technical Report WS 99 05, 125 126.
Haag, A. (2008). What Makes Product Configuration Viable in a Business? 18th European Conference on

Artificial Intelligence (ECAI 2008), Configuration Workshop, Patras, Greece. 53 54.

100

Haag, A., Junker, U., & O'Sullivan, B. (2006). A Survey of Explanation Techniques for Configurators. 17th
European Conference on Artificial Intelligence (ECAI 2006), Configuration Workshop, Riva del Garda,
Italy. 8 13.

Haag, A. (1998). Sales configuration in business processes. IEEE Intelligent Systems, 13(4), 78 85.
doi:10.1109/5254.708436

Haag, A., Junker, U., & O'Sullivan, B. (2007). Explanation in product configuration. IEEE Intelligent Systems,
22(1), 83 85.

Hales, H. L. (1992). Automating and integrating the sales function: how to profit from complexity and cus
tomization. Enterprise Integration Strategies, 9(11), 1 9.

Hansen, C., & Andreasen, M. M. (2002). Two approaches to synthesis based on the domain theory. In A.
Chakrabarti (Ed.), (pp. 93 108). London: Springer. doi:10.1007/978 1 4471 3717 7_6

Hart, C. W. L. (1995). Mass customization: conceptual underpinnings, opportunities and limits. International
Journal of Service Industry Management, 6(2), 36 45. doi:10.1108/09564239510084932

Harvey, J., Lefebvre, L. A., & Lefebvre, E. (1997). Flexibility and technology in services: a conceptual model.
International Journal Operations & Production Management, 17(1), 29 45.
doi:10.1108/01443579710157970

Häubl, G., & Murray, K. B. (2003). Preference construction and persistence in digital marketplaces: The role
of electronic recommendation agents. Journal of Consumer Psychology, 13(1 2), 75 91.
doi:10.2139/ssrn.964192

Heatley, J., Agarwal, R., & Tanniru, M. (1995). An evaluation of an innovative information technology — the
case of Carrier EXPERT. Journal of Strategic Information Systems, 4(3), 255 277. doi:10.1016/0963
8687(95)96805 I

Hedin, G., Ohlsson, L., & McKenna, J. (1998). Product configuration using object oriented grammars. System
Configuration Management: ECOOP'98 SCM 8 Symposium. Brussels, Belgium. Vol. LNCS 1439 107
126. doi:10.1007/BFb0053882

Heinrich, M., & Jüngst, E. W. (1991). A resource based paradigm for the configuring of technical systems
from modular components. Seventh IEEE Conference on Artificial Intelligence Applications (CAIA 91),
Miami Beach, FL, USA. Vol. i 257 264. doi:10.1109/CAIA.1991.120878

Heinrich, M., & Jüngst, E. W. (1996). Configuring Technical Systems from Modular Components. Configura
tion—Papers from the 1996 AAAI Fall Symposium. Technical Report FS 96 03. 111 118.

Heiskala, M. (2005). A conceptual model for modeling configurable services from a customer perspective.
(M.Sc. (Eng.), Helsinki University of Technology, Department of Electrical and Communications Engi
neering).

Heiskala, M., Anderson, A., Huhtinen, V., Tiihonen, J., & Martio, A. (2003). A Tool for Comparing Configura
ble Products. 18th International Joint Conference on Artificial Intelligence (IJCAI '03), Workshop on
Configuration, Acapulco, Mexico. 64 69.

Heiskala, M., Paloheimo, K., & Tiihonen, J. (2005). Mass Customisation of Services: Benefits and Challenges
of Configurable Services. Frontiers of e Business Research (FeBR) 2005, Conference proceedings of
eBRF, Tampere, Finland. 206 221.

Heiskala, M., Paloheimo, K., & Tiihonen, J. (2007). Mass customization with configurable products and con
figurators: a review of benefits and challenges. In T. Blecker, & G. Friedrich (Eds.), Mass customiza
tion information systems in business (1st ed., pp. 1 32). Hershey, PA, USA & London, UK: IGI Global.
doi:10.4018/978 1 59904 039 4.ch001

Heiskala, M., Tiihonen, J., Anderson, A., & Soininen, T. (2006). Four Worlds Model for Configurable Services.
Customer Interaction and Customer Integration. Proceedings of the Joint Conference IMCM'06 & PE
TO'06, Hamburg, Germany. 199 216.

Heiskala, M., Tiihonen, J., & Soininen, T. (2005). A Conceptual Model for Configurable Services. 19th Inter
national Joint Conference on Artificial Intelligence (IJCAI 05), Configuration Workshop, Edinburgh,
Scotland, UK. 19 24.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems research. MIS
Quarterly, 28(1), 75 105.

References

101

Hotz, L., & Günter, A. (2014). Konwerk. In A. Felfernig, L. Hotz, C. Bagley & J. Tiihonen (Eds.), Knowledge
based Configuration From Research to Business Cases (1st ed., pp. 281 295). Waltham, MA, USA:
Morgan Kaufmann Publishers.

Huffman, C., & Kahn, B. E. (1998). Variety for sale: Mass customization or mass confusion? Journal of Retail
ing, 74(4), 491 513. doi:10.1016/S0022 4359(99)80105 5

Hvam, L., Riis, J., & Hansen, B. L. (2003). CRC cards for product modelling. Computers in Industry, 50(1), 57
70. doi:10.1016/S0166 3615(02)00143 4

Hvam, L., Mortensen, N. H., & Riis, J. (2008). Product customization (1st ed.). New York: Springer.
ISR. (2013). Editorial Statement of Information Systems Research (ISR) journal. Retrieved 2/25, 2014, from

http://pubsonline.informs.org/page/isre/editorial statement
John, U., & Geske, U. (1999). Reconfiguration of technical products using ConBaCon. Sixteenth National

Conference on Artificial Intelligence (AAAI 99), Workshop on Configuration, Orlando, Florida, USA. 48
53.

Junker, U., & Mailharro, D. (2003a). The logic of ILOG (J)configurator: Combining constraint programming
with a description logic. 18th International Joint Conference on Artificial Intelligence (IJCAI 03), Con
figuration Workshop, Acapulco, Mexico. 13 20.

Junker, U., & Mailharro, D. (2003b). Preference programming: Advanced problem solving for configuration.
Artificial Intelligence for Engineering Design, Analysis and Manufacturing (AI EDAM), 17(1), 13 29.
doi:10.1017/S089006040317103X

Kasanen, E., Lukka, K., & Siitonen, A. (1993). The Constructive Approach in Management Accounting Re
search. Journal of Management Accounting Research, 5(1), 243 264.

Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon, L. R., & Riedl, J. (1997). GroupLens: applying
collaborative filtering to Usenet news. Communications of the ACM, 40(3), 77 87.
doi:10.1145/245108.245126

Kotler, P. (1988). Managing Services. Marketing management: analysis, planning, implementation, and
control (6th ed., pp. 476 493). Englewood Cliffs, NJ, USA: Prentice Hall.

Levitt, T. (1981). Marketing intangible products and product intangibles. Harvard Business Review, 59, 94
102.

Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: Item to item collaborative filtering.
Internet Computing, IEEE, 7(1), 76 80. doi:10.1109/MIC.2003.1167344

Lovelock, C. H. (1983). Classifying services to gain strategic marketing insights. Journal of Marketing, 47(3),
9 20. doi:10.2307/1251193

Lovelock, C., & Gummesson, E. (2004). Whither services marketing? In search of a new paradigm and fresh
perspectives. Journal of Service Research, 7(1), 20 41. doi:10.1177/1094670504266131

Ma, Q., Tseng, M. M., & Yen, B. (2002). A generic model and design representation technique of service
products. Technovation, 22(1), 15 39. doi:10.1016/S0166 4972(00)00085 7

Mackworth, A. K. (1977). Consistency in networks of relations. Artificial Intelligence, 8(1), 99 118.
doi:10.1016/0004 3702(77)90007 8

Mackworth, A. K., & Freuder, E. C. (1985). The complexity of some polynomial network consistency algo
rithms for constraint satisfaction problems. Artificial Intelligence, 25(1), 65 74. doi:10.1016/0004
3702(85)90041 4

Mailharro, D. (1998). A classification and constraint based framework for configuration. Artificial Intelli
gence for Engineering Design, Analysis and Manufacturing (AI EDAM), 12(4), 383 397.

Männistö, T. (2000). A conceptual modelling approach to product families and their evolution. (Doctor of
Science (Eng.), Helsinki University of Technology). Acta Polytechnical Scandinavica, Mathematics and
Computing Series, Ma 106

McDermott, J. (1982). R1: A Rule based configurer of computer systems. Artificial Intelligence, 19(1), 39 88.
doi:10.1016/0004 3702(82)90021 2

McDermott, J. (1993). R1 ("XCON") at age 12: lessons from an elementary school achiever. Artificial Intelli
gence, 59(1 2), 241 247. doi:10.1016/0004 3702(93)90192 E

102

McGuinness, D. L., & Wright, J. R. (1998a). Conceptual modelling for configuration: A description logic
based approach. Artificial Intelligence for Engineering Design, Analysis and Manufacturing (AI EDAM),
12(4), 333 344.

McGuinness, D. L., & Wright, J. R. (1998b). An industrial strength description logic based configurator plat
form. IEEE Intelligent Systems, 13(4), 69 77. doi:10.1109/5254.708435

McLaughlin, C. P. (1996). Why variation reduction is not everything: a new paradigm for service operations.
International Journal of Service Industry Management, 7(3), 17 30. doi:10.1108/09564239610122938

McSherry, D. (2003). Similarity and compromise. 5th International Conference on Case Based Reasoning
(ICCBR 03), Trondheim, Norway. Vol. LNCS 2689 291 305. doi:10.1007/3 540 45006 8_24

Meier, H., & Massberg, W. (2004). Life cycle based service design for innovative business models. CIRP An
nals Manufacturing Technology, 53(1), 393 396. doi:10.1016/S0007 8506(07)60724 0

Meyer, M. H., & DeTore, A. (2001). PERSPECTIVE: Creating a platform based approach for developing new
services. The Journal of Product Innovation Management, 18(3), 188 204. doi:10.1111/1540
5885.1830188

Mittal, S., & Falkenhainer, B. (1990). Dynamic constraint satisfaction problems. Proceedings of the Eighth
National Conference on Artificial Intelligence (AAAI 90), Boston, MA, USA. 25 32.

Mittal, S., & Frayman, F. (1989). Towards a generic model of configuration tasks. 11th International Joint
Conference on Artificial Intelligence (IJCAI 89), Detroit, Michigan, USA. Vol. 2 1395 1401.

Najmann, O., & Stein, B. (1992). A Theoretical Framework for Configuration. Industrial and Engineering
Applications of Artificial Intelligence and Expert Systems: 5th International Conference (IEA/AIE 92),
Paderborn, Germany. Vol. LNCS 604 441 450. doi:10.1007/BFb0024996

Nielsen, J. (1993). Usability Engineering (1st ed.). Boston: Academic Press.
Niemi, J. (2007). A study on the modeling of configurable products and services. (Unpublished M.Sc. (Eng.)).

Tampere University of Technology, Mechanical Engineering Department, Tampere, Finland.
Nurmilaakso, J. (2004).WeCotin.calc documentation. Espoo, Finland: unpublished project documentation of

Helsinki University of Technology, Department of Computer Science and Engineering.
OMG. (2011). OMG Unified Modeling Language (OMG UML), Infrastructure, version 2.4.1 Object Manage

ment Group, Inc. Retrieved from http://www.omg.org/spec/UML/2.4.1/Infrastructure
Oracle. (2004). Oracle configurator 11i data sheet. Redwood City, CA, USA: Oracle Corporation;.
Oracle. (2005). Peoplesoft Enterprise Configurator Oracle Data Sheet. Redwood City, CA, USA: Oracle Cor

poration.
Oracle. (2006). Oracle Configurator R12 Oracle data sheet Oracle Corporation. Retrieved from

http://www.expobadge.com/dldev/dc/DKLLoader1.cfm?dcid=2032&type=pdf&aid=ace3f4dd 2baa
4ba9 ad6c 099ce814bfba&caller=as1&shownumber=8027;

Oracle. (2007). Siebel Product & Catalog Management Oracle data sheet. Redwood City, CA, USA: Oracle
Corporation. Retrieved from http://www.oracle.com/us/products/applications/siebel/036241.pdf

Oracle. (2009). Oracle Configurator Oracle data sheet. Redwood City, CA, USA: Oracle Corpora
tion. Retrieved from http://www.oracle.com/us/products/applications/046986.pdf

Oracle. (2012). JD Edwards EnterpriseOne configurator Oracle data sheet. Redwood City, CA, USA: Oracle
Corporation. Retrieved from http://www.oracle.com/us/media/057429.pdf

Papazoglou, M. P., & Georgakopoulos, D. (2003). Service Oriented Computing. Communications of the ACM,
46(10), 25 28. doi:10.1145/944217.944233

Pasanen, M. (2003). Warnings and pre selection packages in a weight constraint rule based configurator.
(Unpublished M.Sc (Eng.)). Helsinki University of Technology, Department of Computer Science and
Engineering, Espoo, Finland.

Pazzani, M. J. (1999). A framework for collaborative, content based and demographic filtering. The Artificial
Intelligence Review, 13(5 6), 393 408. doi:10.1023/A:1006544522159

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design science research method
ology for information systems research. Journal of Management Information Systems, 24(3), 45 77.
doi:10.2753/MIS0742 1222240302

References

103

Peltonen, H., Tiihonen, J., & Anderson, A. (2001). Configurator tool concepts and model definition language.
Espoo, Finland: Working document of Helsinki University of Technology, Software Business and Engi
neering Institute, Product Data Management Group.

Pine, B. J. (1993). Mass customization: the new frontier in business competition (1st ed.). Boston, MA, USA:
Harvard Business School Press.

PTC. (2012). Windchill: Managing the complete product lifecycle – from concept to service. Needham, MA,
USA: Parametric Technology Corporation (PTC).

Resnick, P., & Varian, H. R. (1997). Recommender systems. Communications of the ACM, 40(3), 56 58.
doi:10.1145/245108.245121

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., & Lorensen, W. (1991). Object oriented modeling and
design (1st ed.). Englewood Cliffs, NJ, USA: Prentice Hall.

Rumbaugh, J., Jacobson, I., & Booch, G. (1999). The unified modeling language reference manual (1st ed.).
Reading, MA, USA: Addison Wesley.

Sabin, D., & Weigel, R. (1998). Product configuration frameworks — a survey. IEEE Intelligent Systems,
13(4), 42 49. doi:10.1109/5254.708432

Salvador, F., de Holan, P. M., & Piller, F. T. (2009). Cracking the code of mass customization. MIT Sloan
Management Review, 50(3), 71 78.

Salvador, F., & Forza, C. (2007). Principles for efficient and effective sales configuration design. Internation
al Journal of Mass Customisation, 2(1 2), 114 127.

SAP. (2001). Solution brief customer relationship management with mySAP telecommunications [SAP Doc
ument ID: 50 048 401 (01/06/10)]. Walldorf, Germany: SAP AG.

SAP. (2005). SAP solution brief dealer management for the telecommunications industry [SAP Document ID
50 065 332 (05/05)]. Walldorf, Germany: SAP AG.

Sawtelle, M. (2010). Oracle Configurator: Fusion Configurator Engine Guide, Release 12.1. Redwood City,
CA, USA: Oracle Corporation.

Schenner, G., Falkner, A., Ryabokon, A., & Friedrich, G. E. (2013). Solving Object oriented Configuration
Scenarios with ASP. Paper presented at the 15th International Configuration Workshop, Vienna, Aus
tria. 55 62. Retrieved from http://ws config 2013.mines albi.fr/CWS 2013 Proceedings Color.pdf

Searls, D. B., & Norton, L. M. (1990). Logic based configuration with a semantic network. The Journal of
Logic Programming, 8(1 2), 53 73. doi:10.1016/0743 1066(90)90051 6

Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi experimental designs for gen
eralized causal inference (2nd ed.). Boston: Houghton Mifflin.

Sharma, N., & Colomb, R. (1998). Mechanising shared configuration and diagnosis theories through con
straint logic programming. The Journal of Logic Programming, 37(1 3), 255 283. doi:10.1016/S0743
1066(98)10010 9

Siemens. (2011). Teamcenter product variation and derivative management Siemens Product Lifecycle
Management Software Inc.

Silvestro, R., Fitzgerald, L., Johnston, R., & Voss, C. (1992). Towards a classification of service processes.
International Journal of Service Industry Management, 3(3), 62 75. doi:10.1108/09564239210015175

Simon, H. A. (1996). The sciences of the artificial (3rd ed.). Cambridge, MA, USA: MIT press.
Simons, P., Niemelä, I., & Soininen, T. (2002). Extending and implementing the stable model semantics.

Artificial Intelligence, 138(1 2), 181 234. doi:10.1016/S0004 3702(02)00187 X
Sinz, C., Kaiser, A., & Kuchlin, W. (2003). Formal methods for the validation of automotive product configu

ration data. Artificial Intelligence for Engineering Design, Analysis and Manufacturing (AI EDAM),
17(1), 75 97. doi:10.1017/S0890060403171065

Sinz, C., Haag, A., Narodytska, N., Walsh, T., Gelle, E., Sabin, M., Junker, U., O'Sullivan, B., Rabiser, R., Dhun
gana, D., Grunbacher, P., Lehner, K., Federspiel, C., & Naus, D. (2007). Configuration. IEEE Intelligent
Systems, 22(1), 78 90. doi:10.1109/MIS.2007.6

Slater, P. J. P. (1999). PCONFIG: a Web based configuration tool for Configure To Order products.
Knowledge Based Systems, 12(5 6), 223 230. doi:10.1016/S0950 7051(99)00016 7

Soininen, T., & Gelle, E. (1999). Dynamic Constraint Satisfaction in Configuration. AAAI Workshop on Con
figuration, AAAI Technical Report WS 99 05, Orlando, Florida. 95 100.

104

Soininen, T., Gelle, E., & Niemelä, I. (1999). A Fixpoint Definition of Dynamic Constraint Satisfaction. Princi
ples and Practice of Constraint Programming – CP’99, 5th International Conference, Alexandria, VA,
USA. Vol. LNCS 1713 419 433. doi:10.1007/978 3 540 48085 3_30

Soininen, T., & Tiihonen, J. (1995). Sales configurator in Datex procuct data management process [Finnish:
Myynnin konfiguraattorin sijoittuminen Datexin tuotetiedonhallintaprosessiin]. Espoo: Report on
seminar course Tik 86.161 Special topics in CIM II, Helsinki University of Technology, Laboratory of In
formation Processing Science.

Soininen, T. (2000). An Approach to Knowledge Representation and Reasoning for Product Configuration
Tasks. (Ph.D., Helsinki University of Technology, Department of Computer Science and Engineering).
Acta Polytechnica Scandinavica, Mathematics and Computing Series, 111

Soininen, T., Niemelä, I., Tiihonen, J., & Sulonen, R. (2001). Representing configuration knowledge with
weight constraint rules. AAAI Spring Symposium on Answer Set Programming: Towards Efficient and
Scalable Knowledge (AAAI Technical Report SS 01 01), Stanford University, CA, USA. 195 201.

Soininen, T., & Stumptner, M. (2003). Special issue: configuration. Artificial Intelligence for Engineering De
sign, Analysis and Manufacturing (AI EDAM), 17(1), 1 2. doi:10.1017/S0890060403171016

Stegmann, R., Leckner, T., Koch, M., & Schlichter, J. (2006). Customer support for the web based configura
tion of individualised products. International Journal of Mass Customisation, 1(2 3), 195 217.

Stegmann, R., Koch, M., Lacher, M., Leckner, T., & Renneberg, V. (2003). Generating personalized recom
mendations in a model based product configurator system. 18th International Joint Conference on
Artificial Intelligence (IJCAI 03), Configuration Workshop, Acapulco, Mexico. 51 55.

Steinmetz, S. (1996). Random House compact unabridged dictionary (2nd ed.). New York, NY, USA: Random
House.

Stolze, M., & Field, S. (2000). Combining configuration and evaluation mechanisms to support the selection
of modular insurance products. 8th European Conference on Information Systems, Trends in Infor
mation and Communication Systems for the 21st Century (ECIS 2000), Vienna, Austria. 858 865.

Štorga, M., Andreasen, M. M., & Marjanovi , D. (2010). The design ontology: foundation for the design
knowledge exchange and management. Journal of Engineering Design, 21(4), 427 454.
doi:10.1080/09544820802322557

Stumptner, M. (1997). An overview of knowledge based configuration. AI Communications, 10(2), 111 125.
Stumptner, M., Friedrich, G. E., & Haselböck, A. (1998). Generative constraint based configuration of large

technical systems. Artificial Intelligence for Engineering Design, Analysis and Manufacturing (AI
EDAM), 12(4), 307 320.

Stumptner, M., Haselböck, A., & Friedrich, G. E. (1994). COCOS a tool for constraint based, dynamic con
figuration. 10th IEEE Conference on Artificial Intelligence for Applications (CAIA 94), San Antonio, TX,
USA. 373 380. doi:10.1109/CAIA.1994.323651

Stvilia, B. (2007). A model for ontology quality evaluation. First Monday, 12(12), Feb 2, 2014.
doi:10.5210/fm.v12i12.2043

Subbarayan, S. (2005). CLib: configuration benchmarks library. Retrieved 5/7, 2010, from
http://www.itu.dk/research/cla/externals/clib

Sundbo, J. (1994). Modulization of service production and a thesis of convergence between service and
manufacturing organizations. Scandinavian Journal of Management, 10(3), 245 266.
doi:10.1016/0956 5221(94)90002 7

Sundbo, J. (2002). The service economy: standardisation or customisation? The Service Industries Journal,
22(4), 93 116. doi:10.1080/714005099

Sviokla, J. J. (1990). An examination of the impact of expert systems on the firm: the case of XCON. MIS
Quarterly, 14(2), 127 140. doi:10.2307/248770

Syrjänen, T. (2000). Including Diagnostic Information in Configuration Models. First International Confer
ence on Computational Logic (CL 2000), London, UK. Vol. LNCS 1861 837 851. doi:10.1007/3 540
44957 4_56

Syrjänen, T. (2002). Lparse 1.0 user’s manual. Espoo, Finland: Helsinki University of Technology, Laboratory
of Theoretical Computer Science. Retrieved from http://www.tcs.hut.fi/Software/smodels/

References

105

Talja, T. (2006). Usability test of WeCoTin configurator [Finnish: WeCoTin konfiguraattorin käytettävyyst
esti]. Espoo, Finland: Unpublished report: T 121 850 Individual Course on Usability (Käytettävyyden
yksilöllinen opintojakso), Helsinki University of Technology, Software Business and Engineering Insti
tute.

Tiihonen, J. (1994). Computer assisted elevator configuration. (M.Sc (Eng.), Helsinki University of Technolo
gy, Department of Computer Science).

Tiihonen, J. (1999). National product configuration survey — customer specific adaptation in the Finnish
industry. (Licentiate of technology (Eng.), Helsinki University of Technology, Department of Computer
Science, Laboratory of Information Processing Science).

Tiihonen, J. (2009). Characterization of 26 configuration models. 21st International Joint Conference on
Artificial Intelligence (IJCAI 09), Configuration Workshop, Pasadena, CA, USA. 69 76.

Tiihonen, J. (2010). Characterization of configuration knowledge bases. 19th European Conference on Artifi
cial Intelligence (ECAI 2010), Workshop on Intelligent Engineering Techniques for Knowledge Bases
(IKBET), Lissabon, Portugal. 13 20.

Tiihonen, J., & Anderson, A. (2005).WeCoTin architecture, setting up and installation (user manual). Espoo,
Finland: Helsinki University of Technology.

Tiihonen, J., & Felfernig, A. (2008). Towards Recommending Configurable Offerings. 18th European Confer
ence on Artificial Intelligence (ECAI 2008), Configuration Workshop, Patras, Greece. 29 34.

Tiihonen, J., Felfernig, A., & Mandl, M. (2014). Personalized configuration. In A. Felfernig, L. Hotz, C. Bagley
& J. Tiihonen (Eds.), Knowledge based Configuration From Research to Business Cases (1st ed., pp.
167 179). Waltham, MA, USA: Morgan Kaufmann Publishers. doi:10.1016/B978 0 12 415817
7.00013 X

Tiihonen, J., Felfernig, A., Zanker, M., & Männistö, T. (2010). Special issue: advances in configuration sys
tems: editorial. International Journal of Mass Customisation, 3(4), 311 315.

Tiihonen, J., Heiskala, M., Paloheimo, K., & Anderson, A. (2007). Applying the Configuration Paradigm to
Mass customize Contract Based Services. Extreme Customization: Proceedings of the MCPC 2007
World Conference on Mass Customization & Personalization, Massachusetts Institute of Technology,
MA, USA. (CDROM, paper ID MCPC 134 2007, section 7.5.3) 26 pp.

Tiihonen, J., Lehtonen, T., Soininen, T., Puikkinen, A., Sulonen, R., & Riitahuhta, A. (1999). Modeling configu
rable product families. 12th International Conference on Engineering Design (ICED'99), Munich, Ger
many,. 1139 1142.

Tiihonen, J., Soininen, T., Niemelä, I., & Sulonen, R. (2003). A Practical Tool for Mass Customising Configu
rable Products. Proceedings of the 14th International Conference on Engineering Design, Stockholm,
Sweden. CDROM, paper number 1290, 10 pp.

Tiihonen, J., Lehtonen, T., Soininen, T., Pulkkinen, A., Sulonen, R., & Riitahuhta, A. (1998). Modeling configu
rable product families. 4th WDK workshop on product structuring: design of product families, Delft
University of Technology, Netherlands. 29 50.

Tiihonen, J., & Soininen, T. (1996). State of the practice in product configuration a survey of 10 cases in
the Finnish industry. Knowledge Intensive CAD. Espoo, Finland. Vol. 1 of IFIP Advances in Information
and Communication Technology 95 114.

Tiihonen, J., & Soininen, T. (1997a). Product configurators information system support for configurable
products. (No. TKO B 137). Espoo: Helsinki University of Technology.

Tiihonen, J., & Soininen, T. (1997b). Product Configurators: Information System Support for Configurable
Products. Using Information Technology During the Sales Visit () Hewson Consulting Group.

Tiihonen, J., Soininen, T., Männistö, T., & Sulonen, R. (1998). Configurable products — lessons learned from
the Finnish industry. Proceedings of the 2nd International Conference on Engineering Design and Au
tomation (ED&A '98),Maui, Hawaii, USA. (CDROM, paper no. 368) 6 pp.

Tiihonen, J., Soininen, T., Niemelä, I., & Sulonen, R. (2002). Empirical testing of a weight constraint rule
based configurator. 15th European Conference on Artificial Intelligence (ECAI 2002), Configuration
Workshop, Lyon, France. 17 22.

106

Trentin, A., Perin, E., & Forza, C. (2013). Sales configurator capabilities to avoid the product variety paradox:
Construct development and validation. Computers in Industry, 64(4), 436 447.
doi:10.1016/j.compind.2013.02.006

Vargo, S. L., & Lusch, R. F. (2004a). Evolving to a new dominant logic for marketing. Journal of Marketing,
68(1), 1 17. doi:10.1509/jmkg.68.1.1.24036

Vargo, S. L., & Lusch, R. F. (2004b). The four service marketing myths: remnants of a goods based, manufac
turing model. Journal of Service Research, 6(4), 324 335. doi:10.1177/1094670503262946

Von Winterfeldt, D., & Edwards, W. (1986). Decision analysis and behavioral research (1st ed.). Cambridge,
UK: Cambridge University Press.

W3C. (2008). Extensible Markup Language (XML) 1.0. Retrieved 2/25, 2014, from
http://www.w3.org/TR/REC xml/

Wang, Y., & Tseng, M. M. (2011). Adaptive attribute selection for configurator design via Shapley value.
Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 25(2), 185 195.
doi:10.1017/S0890060410000624

Warmer, J., & Kleppe, A. (2003). The object constraint language: getting your models ready for MDA (2nd
ed.). Boston, MA, USA: Addison Wesley.

Werthner, H., & Ricci, F. (2004). E commerce and tourism. Communications of the ACM, 47(12), 101 105.
doi:10.1145/1035134.1035141

Wielinga, B., & Schreiber, G. (1997). Configuration design problem solving. IEEE Expert, 12(2), 49 56.
doi:10.1109/64.585104

Wikipedia. (2014). XML. Retrieved 2/26, 2014, from http://en.wikipedia.org/wiki/XML
Wilson, D. R., & Martinez, T. R. (1997). Improved heterogeneous distance functions. Journal of Artificial

Intelligence Research, 6, 1 34.
Wimmer, A., Mehlau, J. I., & Klein, T. (2003). Object Oriented Product Meta Model for the Financial Services

Industry. 2nd Interdisciplinary World Congress on Mass Customization and Personalization
(MCPC’03), Munich, Germany. (Retrieved from: http://scg.mit.edu/images/MCPC%202003/site/9
MCP%20Information%20systems/3 Wimmer.pdf) 9 pp.

Winter, R. (2001). Mass customization and beyond – evolution of customer centricity in financial services.
In C. Rautenstrauch, R. Seelmann Eggebert & K. Turowski (Eds.),Moving Into Mass Customization: In
formation Systems and Management Principles (pp. 197 213). Berlin Heidelberg: Springer.
doi:10.1007/978 3 642 56192 4_12

Wright, J. R., McGuinness, D. L., Foster, C. H., & Vesonder, G. T. (1995). Conceptual Modeling Using
Knowledge Representation: Configurator Applications. 14th International Joint Conference on Artifi
cial Intelligence (IJCAI 95), workshop on Artificial Intelligence in Distributed Information Networks,
Montreal, Quebec, Canada.

Wright, J. R., Weixelbaum, E. S., Vesonder, G. T., Brown, K. E., Palmer, S. R., Berman, J. I., & Moore, H. H.
(1993). A knowledge based configurator that supports sales, engineering, and manufacturing at
AT&T network systems. AI Magazine, 14(3), 69 80. doi:10.1609/aimag.v14i3.1055

Yin, R. K. (2009). Case Study Research: Design And Methods (4th ed.). Thousand Oaks, CA, USA: Sage Publi
cations, Inc.

Yu, B., & Skovgaard, H. J. (1998). A configuration tool to increase product competitiveness. IEEE Intelligent
Systems, 13(4), 34 41. doi:10.1109/5254.708431

Zanker, M., Aschinger, M., & Jessenitschnig, M. (2007). Development of a Collaborative and Constraint
Based Web Configuration System for Personalized Bundling of Products and Services. 8th Interna
tional Conference on Web Information Systems Engineering WISE 2007), Nancy, France. Vol. LNCS
4831 273 284. doi:10.1007/978 3 540 76993 4

Zanker, M., Aschinger, M., & Jessenitschnig, M. (2010). Constraint based personalised configuring of prod
uct and service bundles. International Journal of Mass Customisation, 3(4), 407 425.
doi:10.1504/IJMASSC.2010.037653

Zeithaml, V. A., Parasuraman, A., & Berry, L. L. (1985). Problems and strategies in services marketing. Jour
nal of Marketing, 49(2), 33 46.

9HSTFMG*afijei+

