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Abstract 

When the measurements from the ever improving measurement technologies are accumu-
lated over a period of time, the result is a collection of data in different representations.
However, most machine learning and data mining algorithms, in their standard form, are
designed to operate on data in a single representation only.

This thesis proposes machine learning and data mining algorithms to analyse data in dif-
ferent representations with respect to resolution within a single analysis. The novel algo-
rithms proposed to analyse multiresolution data are in the field of probabilistic modelling
and semantic data mining. First, different deterministic data transformation methods are
proposed to transform data across different resolutions. After the data transformation, the
resulting datasets in same resolution are integrated and modelled using mixture models.

Second, similar mixture components in a mixture model are merged one by one repetitively
to generate a chain of mixture models. A new fast approximation of the Kullback Leibler
divergence is derived to determine the similarity of the mixture components. The chain of
generated mixture models are useful for comparison purposes, for example, in model selec-
tion. Third, mixture components in different resolutions are iteratively merged to model mul-
tiresolution data generating models in each modelled resolution that incorporate information
from data in other resolutions.

Fourth, a single multiresolution mixture model with multiresolution mixture components
is proposed whose mixture components independently have the capabilities of a Bayesian
network. Finally, a three part methodology consisting of clustering using mixture models,
rule learning using semantic subgroup discovery, and pattern visualisation using banded
matrices is developed for comprehensive analysis of multiresolution data.

The multiresolution data analysis methods presented in this thesis improve the perfor-
mance of the methods in comparison with their single resolution counterparts. Furthermore,
the developed methods aim to make the results understandable to the domain experts. There-
fore, the developed methods are useful additions in the analysis of chromosomal aberration
patterns and the cancer research in general.
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CHAPTER 1

INTRODUCTION

“Data does not equal information; informa-

tion does not equal knowledge; and, most im-

portantly of all, knowledge does not equal

wisdom. We have oceans of data, rivers of in-

formation, small puddles of knowledge, and

the odd drop of wisdom. ”— HENRY NIX

Keynote address, AURISA, 1990

Synopsis

This chapter conceptualises the topic of this dissertation with respect to the

methodology and application. The chapter also covers the motivations for re-

search, contributions of the thesis to the scientific community, and organisation

of the chapters of the thesis.

1.1 Data Explosion

Dictionary definition of data is a piece of information that ranges from

the values or measurements of quantitative and qualitative variables to

the description of objects or phenomenon [37]. In computing terms, data

is any digitally stored information. Throughout history, data was univer-

sal, and found everywhere. However, only employees generated data in

computing terms by keying in the handwritten information. Nowadays,

users generate data on their own, for example, social network statuses or

photos, thereby increasing the amount of data produced. Furthermore,
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new machines such as automatic climatic conditions recorder and tech-

nologies such as Large Hadron Collider (LHC) produce colossal amount of

data [104]. This astronomical increase in the amount of data is referred to

as big data [104, 108]. Modern science revolves around the methods and

ways to analyse the data generated in their field to stimulate scientific

discoveries.

Production of data these days is such humongous that it surpasses the

estimates of Moore’s Law [123]. For example, 5 exabytes (EB) (1 EB=

1018 bytes = 1 billion gigabytes) of data was generated from the dawn of

civilisation until 2003. Today, we create 5EB of data every two days [140].

Three properties: Volume, Velocity, and Variety (often referred to by 3Vs)

define the big data. The volume of data and speed at which they arrive

and leave the real time systems provide challenges in big data analysis. In

addition, variety in the collected data also poses considerable challenges

to research in big data.

Over the years, measurement technology has progressed enormously,

and produces variety of data in addition to the large volumes of data be-

cause each cycle of improvement in measurement technology produces

data in a different representation. The variety is the aspect of big data

that is closest to the topic of this thesis. Nowadays, individual dataset in

the sets of datasets often have higher dimensionality, d, than the number

of samples, N , i.e., d � N . Therefore, challenge in big data analysis is

large temporal, and/or spatial data dimensions which results in the curse

of dimensionality [17]. Traditional algorithms succumb to the challenges

posed by small sample high dimensional datasets. Therefore, it is imper-

ative to develop novel methods to analyse multiple datasets, i.e., sets of

datasets in different representations within a single analysis.

Biology is one of the largest producer of big data which necessitates

novel computational methods to analyse such wealth of data and to con-

vert data to knowledge and wisdom [74, 111]. There are varieties of bi-

ological phenomena often interlinked with one another making variety

aspect of big data prevalent in biological data source. This tremendous

increase in biological data coupled with the variety is impossible to in-

terpret using visual analysis. Instead, it requires novel computational

methods for thorough understanding of the biological phenomenon. The

growth of biological data has produced both opportunities and challenges

for researchers to develop algorithms and analysis methods in computa-

tional domain to extract biological meaning from vast amounts of data.

14
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1.2 Machine Learning and Data Mining

Machine Learning is a core sub–area of artificial intelligence that inter-

sects the discipline of computer science, and statistics. The aim of ma-

chine learning is to develop algorithms that learn from the observed data,

and use the experience to improve the performance [9, 23, 68, 120]. Ma-

chine learning includes a myriad of statistical, probabilistic and optimisa-

tion, and induction algorithms that are applicable in different tasks such

as classification, regression, clustering, and pattern discovery. Data min-

ing, also known as knowledge discovery, is the process of extracting use-

ful information such as patterns, from unstructured and enormous sets of

data by analysing data from different perspectives [67].

Machine learning and data mining complement each other and it is dif-

ficult to make a clear distinction between the two. Nonetheless, machine

learning algorithms are often used in the data mining process. Machine

learning and data mining, although a new discipline, has a large active

research community. The community has already developed a cohort of

fascinating algorithms and methods to treat the concept classes, and ele-

gant and clever ways to search through databases. Hence, machine learn-

ing and data mining methods can address the challenges posed by data

intensive disciplines such as biology.

In application areas such as biology, the number of training samples are

often limited even in the age of big data. In contrast, the data dimension-

ality increases considerably. For example, in genetics, number of cancer

patients is constant while the new technology can measure the finer units

of the phenomenon generating data with large dimensionality. The impli-

cation of increasing dimensionality is that, with a limited size of training

samples, the performance of the algorithm deteriorates as the number of

features increases. This phenomenon is also called Hughes phenomena,

or Hughes effect [76] or more generally as a curse of dimensionality [17].

1.2.1 Mixture Model

A mixture model is a probabilistic modelling technique in machine learn-

ing and data mining community which models a data distribution under

the assumption that all the data points are generated from a mixture of

parametric probability distributions [23, 45, 115]. Apart from this as-

sumption of data origination, mixture models are flexible probabilistic

models with varying uses such as model based clustering, classification,
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image analysis, and collaborative filtering in analysis of high dimensional

data. Mixture models are suitable for the choice of any probability distri-

butions such as the Gaussian, Bernoulli, Poisson, and Dirichlet. In this

thesis, mixture models analyse multiresolution data probabilistic cluster-

ing setting. Chapter 3 discusses mixture models in detail.

1.3 Challenges of Multiresolution Data

Measurement of physical phenomenon such as distance, weight, and time

started since the time immemorial and has been the cornerstone of our

knowledge and learning [92]. Measurement has also become integral part

of our everyday life. The inventions and discoveries of the modern world

would cease to exist in absence of measurement technology. The measure-

ment technology has been continuously improving over the years. Result

of a measurement process is generation of the data. The older generation

technologies measure only the coarser unit of the phenomenon generating

data in coarse resolution. In contrast, the newer generation technologies

measure the finer units of the phenomenon producing the data in fine res-

olution [44, 54, 110]. Resolution here defines the amount of information

in each data sample, i.e., the level of detail.

Multiresolution data is generated when the same phenomenon is mea-

sured in different levels of detail [11, 54, 165]. Thus, the multiresolution

data describes the same phenomenon in different data representations.

Different data representation is a broader challenge in machine learning

and data mining community where datasets are represented in different

forms such as audio, video, image, table, and text. This thesis concen-

trates on different data representation only in the context of dimension-

ality, i.e., datasets are same except for the data dimensionality. Never-

theless, the proposed algorithms and methods can possibly be extended to

other different data representations. The measurement of time is one of

the simplest illustrations of multiresolution data. We can measure time

in fine units such as seconds and minutes producing data at a fine res-

olution. In contrast, we can also measure time in coarse units such as

months, and years producing data in coarse resolution.

Multiresolution data often forms a part of hierarchy as shown in Fig-

ure 1.1. For example, the world is a collection of different continents such

as Asia, Europe, and Africa. This generates coarser view of data. Sim-

ilarly, the world is also a collection of different countries such as Singa-
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Continents

Countries

Figure 1.1. Example of part of hierarchy in real world scenario. The figure shows the
geographical division as the part of hierarchy which when measured results
in multiresolution data. The world is divided into continents and continents
into countries.

pore, Finland, and Sweden. These countries can be grouped into different

continents. Furthermore, these countries can be divided into municipali-

ties, and the municipalities into streets, and the streets into blocks. This

hierarchy forms a multiresolution data which represents a part of hierar-

chy [139]. This division of the world is just an illustrative example, as the

sources of multiresolution data are varied, for example, telecommunica-

tions, hydrology, and biology [165]. Chapter 2 discusses multiresolution

biological data used in the experiments of the thesis.

1.4 Contributions of the Thesis

This thesis addresses an important challenge encountered in data anal-

ysis: what should be done when the data to be analysed are represented

differently. The thesis presents different frameworks and methods amal-

gamating probabilistic modelling and pattern mining domain. The pre-

sented methods handle irregular, and heterogeneous division of data in

different representations. The major scientific contributions in this thesis

are summarised in the following list.

• Different deterministic data transformation methods are proposed to

transform the multiresolution datasets from one resolution to another.

The transformed datasets in same resolution can be integrated and mod-

elled in same resolution.
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• A computationally efficient algorithm is proposed to train a series of

mixture models to aid model selection. The trained mixture models in

the series differ in number of components but are otherwise similar to

each other. This provides an effective means to compare different model

selection criteria such as likelihood, AIC, and BIC using different model

selection techniques such as cross–validation.

• A mixture modelling solution is proposed to model multiresolution data

by merging the mixture components of different mixture models in dif-

ferent resolutions. The proposed mixture modelling solution initially

trains a mixture model in each resolution and merges the similar mix-

ture components across different resolutions to incorporate information

in multiple resolutions.

• An algorithm that uses domain ontology, known apriori, to determine

multiresolution mixture components of the mixture model is proposed to

build a single mixture model for multiresolution data. Each individual

mixture component is a fully functional Bayesian network.

• A three part methodology is proposed to analyse the multiresolution

data blending clustering using mixture models, pattern mining using

semantic data mining, and visualisation using banded matrices.

1.5 Organisation of the Thesis

The thesis consists of two parts: an introductory part consisting of six dif-

ferent chapters and publications. In the introductory part, this chapter

introduces the research domain, and the Chapter 2 introduces multires-

olution data with a focus on cancer genomics, and reviews the previous

work in multiresolution analysis and the related areas. Chapter 3 de-

scribes mixture models and model selection in mixture models. It also

summarises our contribution for efficient training of a series of mixture

models (Publication II).

Chapter 4 forms the crux of this thesis and discusses our contributions

in multiresolution modelling. First, multiresolution data is modelled us-

ing deterministic data transformation methods for data integration (Pub-

lication I). Second, multiresolution data is modelled by merging the simi-
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lar mixture components of different mixture models in different resolu-

tions. The merging of mixture components models the interaction be-

tween the models in different data resolutions (Publication III). Third,

a multiresolution mixture model having multiresolution mixture compo-

nents is proposed to analyse the multiresolution data with a single mix-

ture model. Structure of multiresolution components is known from the

domain ontology (Publication IV). Finally, a comprehensive solution for

the analysis of multiresolution data is provided using three part method-

ology comprising of clustering, semantic pattern mining, and banded ma-

trices (Publication V). Chapter 6 summarises the findings, presents the

conclusions of the research, and also outlines the possible future work

related to the topic of the thesis.
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CHAPTER 2

MULTIRESOLUTION DATA

AND ANALYSIS METHODS

“Data matures like wine, and the applications

like fish. ”— JAMES GOVERNOR

James Governor’s Monkchips, 2007

Synopsis

This chapter describes the application area and the dataset used in the ex-

periments. The chapter also describes the usefulness of domain ontology in

data analysis; and the multiresolution data in the domain of biology. Finally,

the chapter also briefly reviews the literature and discusses the related areas

of multiresolution modelling.

Human beings are diploid organisms having two homologous copies of

each chromosome one each inherited from each parent. Copy Number

Variations (CNVs) are structural variations in genome such that a region

on the genome will have different copies of DNA [146]. In human beings,

normal copy number is two because each child inherits one copy from each

parent. Deletion or loss is the condition when the copy number is less than

two. Duplication or gain is the condition when the copy number is more

than two. Similarly, amplification is the condition when the copy number

increases to more than 5. Some of the cancer patients have shown more

than hundred copies [158]. There are other different kinds of variations

but this thesis concentrates on copy number aberrations.
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2.1 Chromosomal Aberrations in Cancer

Cancer is a heterogeneous collection of diseases characterised by abnor-

mal and uncontrolled growth of cells; their ability to migrate to other

parts of human body and destroy neighbouring cells and tissues [24]. Can-

cer rates have been increasing rapidly around the globe. Recent World

Health Organisation (WHO) report showed that number of cancer pa-

tients escalated to 14.1 million in 2012, and cancer was responsible for

8.2 million deaths in 2012 [147]. The menace of cancer is increasing and

WHO estimates that cancer will rise by 57% worldwide in the next 20

years signalling an imminent human disaster. The cost of cancer is also

increasing rapidly. In 2010, estimated global cost of cancer reached ap-

proximately 963 billion euros [147], which is nine times more than the

total budgeted expenditure of Finland.

A wide range of genetic mutations and molecular mechanisms known as

chromosomal aberrations are identified as the hallmarks of disorders such

as Cancer, Schizophrenia, and infertility [158]. In cancer research, iden-

tification and characterisation of chromosomal aberrations are crucial for

studying and understanding pathogenesis of cancer. Moreover, study of

chromosomal aberrations provides necessary information to select the op-

timal target for cancer therapy on individual level [91]. Study of chro-

mosomal aberrations also has other clinical applications such as studying

multiple congenital abnormalities and identifying the family history of

Down syndrome [130].

2.2 Measurement Technology in Biology

Years of evolution and adaptation have made organisms complex biolog-

ical beings [116]. Ever improving measurement technologies have also

provided the facilities to measure the complex phenomena in biology [41].

After the discovery of DNA in 1953 [162], different measurement meth-

ods have been proposed to measure the genome. First sequence of lac

operator of 24 bp was published twenty years after the discovery of DNA

in 1973 [58]. Figure 2.1 summarises the evolution of DNA sequencing

technology from the 1973. Initially, different banding methods such as G–

banding and Q–banding technologies were developed to produce a visible

karyotype by staining the chromosomes [19]. A karyotype here denotes

the set of all chromosomes in an organism. Alongside the banding tech-
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Figure 2.1. Evolution of measurement technology in biology described in terms of their
level of detail in measurements and time of usage.

nology, FISH (Fluorescence In Situ Hybridisation) was developed to detect

the presence or absence of DNA sequences on chromosomes. Similarly,

microarray technologies such as the Comparative Genomic Hybridisation

(CGH) [85] and array Comparative Genomic Hybridisation (aCGH) [134]

were developed to study the Copy Number Variations (CNV) without re-

quiring culturing of cells. Additionally, Bacterial Artificial Chromosome

(BAC) was developed to sequence the genomes of organisms.

Similarly, Oligonucleotide arrays that uses oligos of short lengths (less

than 25 bases) were developed to test large number of oligos in presence

of smaller number of targets [103]. In addition, promoter arrays were

developed to probe thousands of promoter sequences in one array ex-

periment [161]. Besides, Massive Parallel Signature Sequencing (MPSS)

was developed to analyse the level of gene expression by identifying and

quantifying Messenger Ribonucleic Acid (mRNA) transcripts in the sam-

ple [25]. Likewise, Polymerase Chain Reaction (PCR) were developed to

amplify one or small number of copies of DNA thereby generating large

number of copies of particular DNA sequences useful for biomedical ap-

plication such as DNA sequencing and diagnostic purposes [12].
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Around the beginning of this century new technology known as next

generation sequencing (NGS) had resounding impact in DNA sequenc-

ing. In [109] and [110], authors summarise the improvement in DNA se-

quencing which has positive impact on the biomedical research providing

high throughput and high resolution techniques to explore, and answer

genomewide biological questions. The Carlson curve accurately predicted

the doubling time of DNA sequencing technologies measured in terms of

cost and performance [27]. Furthermore, the curve illustrates the dra-

matic decrease in cost which is sometimes hyperexponential and similar

dramatic improvements in technology to measure biological phenomenon

such as DNA sequencing and synthesis, gene expressions, and protein

structures.

These improvement in measurement technology in biology over the pe-

riod of time produces data in different representation. Consequently, mul-

tiresolution data are also present in biology. For example, measurements

from an older generation technology (eg. G–banding) can be represented

in data with dimensionality in hundreds [19, 143]. In contrast, newer

generation technology such as microarray measures the same karyotype

generating the data of dimensionality of thousands [85, 134]. In addi-

tion, latest technology known as Next Generation Sequencing produces

the data with millions of dimensions [109, 138].

The Figure 2.1 shows major changes in sequencing technology. However,

within each generation of technology there are several minor improve-

ments. For example, aCGH improves the mapping resolution of 20Mbp

(Megabase Pairs) to 100 Kbp (Kilobase Pairs) over its predecessor CGH.

Similar methods within a generation of technology also produce data in

different resolutions because of improvements within the technology such

as microarrays and banding. For example, authors in [155] use microar-

ray data in two resolutions of 44000 and 244000 measurements per mi-

croarray measured by Agilent 44B and 244A aCGH platforms to classify

different types of leukemias. Similarly, in NGS, different vendors have

produced different sequencers for commercial use [102].

Studying the data generated by different technologies above produces

wide range of benefits, especially in understanding of the biological phe-

nomenon. Therefore, computational methods have been used to analyse

the generated data. The phenomenon of doubling of number of transis-

tors in a chip within 18 to 24 months, often known as Moore’s Law [123],

has improved the processing power of computers exponentially. Similarly,
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with the advent of Internet and other communication technologies and

protocols; communication systems have also improved dramatically. The

data storage capacity is also rapidly rising. These advancements have

resulted in improved computing power thus facilitating development of

novel algorithms to analyse the generated data.

Pan–cancer Analysis

In addition to the data in different resolutions, efforts have been made to

study different cancer types by collecting data from different sources in

pan–cancer initiative [127]. The aim of the study is to develop an inte-

grated picture of commonalities, differences, and emergent themes across

tumour lineages. The initiative involves multiple datasets and multiple

cancers showing possible utility of multiresolution methods in pan–cancer

initiative. In the previous research of our research group, we have consid-

ered all cancers within a single analysis [125].

2.3 Multiresolution Chromosomal Amplification Data

Similar to the array technology and next generation sequencing, the In-

ternational System for human Cytogenetic Nomenclature (ISCN) has de-

fined five different resolutions of the chromosome namely: 300, 400, 550,

700, and 850 in G–banding [143]. Each resolution defines the precision

in division of karyotype. For example, in coarse resolution, a karyotype

is divided into 312 (≈ 300) different regions, i.e., with lower precision. In

contrast, in fine resolution, a karyotype is divided into 862 (≈ 850) differ-

ent regions, i.e., with higher precision compared to resolution 300.

Figure 2.2 shows five different resolutions in chromosome 21 accord-

ing to the ISCN standard. The figure depicts the division of regions and

chromosome nomenclature with an example in chromosome 21. Chromo-

some 21 is chosen for visualisation because it is the smallest chromosome.

Chromosome 21 is divided into 8, 8, 10, 12, and 14 regions in resolution

300, 400, 550, 700, and 850. The nomenclature of the regions and their di-

vision in different resolutions are irregular and hierarchical [143]. Some

regions are undivided whereas other regions are divided into different

number of regions. For example, the regions 21p12 and 21p13 are undi-

vided in all the resolutions where as the region 21q22 is divided into 3 and

5 different regions in resolution 550 and 850. This division of karyotype
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Figure 2.2. A typical relationship between multiple resolutions of genome. Figure shows
chromosome 21 in five different resolutions of genome as defined by ISCN
standard. The division is irregular, and hierarchical but consistent because
of the ISCN standard. Chromosome 21 is chosen for the clarity of the pre-
sentation because it is the smallest chromosome. Y–axis denotes different
resolutions of genome while x–axis denotes spatial coordinates (different re-
gions) of the genome. Figure is adapted from Publication IV.

in different levels of detail allows measurement technologies to generate

data in multiple resolutions. Each chromosomal region in coarse resolu-

tion is related with a chromosomal region in fine resolution with a one to

many relationship. Given the measurements of same subject in two differ-

ent resolutions, the aberrations should be consistent with each other, i.e.,

the aberrations should be the same except for some measurement errors.

For the experiments, two different datasets were available in coarse res-

olution and fine resolution. Researchers at the University of Helsinki

compiled a dataset of chromosomal amplification in coarse resolution read-

ing through the literature published between 1992–2002 [94]. All 838

journal articles were read through manually. The data describes the chro-

mosomal amplification patterns of 4590 cancer patients in coarse reso-

lution, i.e., resolution 400 where a karyotype is divided into 393 different

regions. Similarly, data in fine resolution extracted from [13, 14] describes

chromosomal amplification in fine resolution, i.e., resolution 850 where a

karyotype is divided into 862 different regions. Since the cancer patients

were not the same, there is no direct correspondence between data sam-

ples in two different resolutions. Therefore, most of the analysis methods

discussed in this thesis consider unsupervised methods which learn the

hidden structure in the data without the help of the class labels [23, 120].

If the measurements were available from the same cancer patients in two
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Figure 2.3. Amount of aberrations in each chromosome in two datasets in different data
resolutions. The bar diagram shows that chromosomes in fine resolution are
comparatively more aberrated than the coarse resolution.

different resolutions, we can expect consistent matching in aberrations

except for measurement errors.

In the coarse resolution data, a total of 26527 (out of 1,803,870) matrix

elements are aberrated which accounts for approximately 1.5% of the to-

tal matrix elements in the dataset. In all our experiments, we process

the data chromosomewise to reduce the data dimensionality and with the

expectation of finding chromosome specific patterns to describe different

cancers. When the data is divided into each chromosome, there are some

samples which do not show aberration in any of the chromosomal regions.

Such data samples are deleted as we are interested in modelling chromo-

somal aberration patterns and their relation to cancer, not their absence.

Therefore, number of samples and data dimensionality in each chromo-

some is different. We therefore calculate percentage of aberrations in

each chromosome in each resolution for comparison purposes. Figure 2.3

depicts the amount of aberrations in both coarse resolution and fine reso-

lution data. Data in fine resolution shows more aberration than the data

in the coarse resolution. The percentage of aberrations are approximately

50% overall, while the minimum and maximum are approximately 15%

and 80% respectively.

27



Multiresolution Data and Analysis Methods

Figure 2.4. Visualisations of data describing chromosome 21 in two different resolutions:
300, and 850. Each sample, i.e., each row denotes one cancer patient and each
column determines a chromosomal region. The black colour denotes presence
of amplification and white col or denotes the absence of amplification. The
two different panels in the figure depict the same phenomenon measured at
different resolutions. Some chromosomal regions (variables or features in
machine learning terms) such as 21p21 in left panel have been divided into
different regions such as 21p21.1, 21p21.2, and 21p21.3 in the right panel.
Figure is adapted from Publication II.

Figure 2.4 depicts five samples of data from chromosome 21 in both the

coarse and the fine resolution. In the Figure 2.4, rows denote the can-

cer patients and the spatial coordinates on the X–axis denote the chro-

mosomal region. In addition, white colour denotes value of zero (0), i.e.,

the absence of amplification, and black colour denotes the value of one

(1), i.e., amplification in that specific region of genome for that specific

cancer patient. The left panel of the Figure 2.4 shows that one region

21p21 in coarse resolution is divided into 3 regions in the fine resolution:

21p21.1, 21p21.2, and 21p21.3 as shown in the right panel of the figure.

In contrast, some of the regions such as 21p13 and 21p12 are same in

both coarse and fine resolution. Some regions are undivided while other

regions are divided into varying number of regions. Nevertheless, the di-

vision is consistent because of the ISCN standard. Detailed description of

the amplification dataset in coarse resolution can be found in [125].

2.4 Ontology of Multiresolution Data

The concept of ontology transcends back to the dates of noble philosophers

Aristotle, Parmenides, and Jacob Lorhard, who used the term ontology in

the philosophical context to describe the state of being, and reality [34].

Recently, the term ontology has found its prominence in computer and

information science community. In computer science community, ontology
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is the mechanism for explicit description of the conceptualisation of the

knowledge represented in the knowledge base [63, 151].

Ontology is a popular methodology to describe the semantics of the data

in machine learning and data mining community [132]. Recent studies

have shown that relevant additional knowledge enhances the knowledge

discovery process of empirical data [132]. Expansion of semantic web and

increasing availability of domain knowledge as ontologies has resulted in

growth of semantic data. Semantic data mining algorithms address the

challenge of mining abundance of knowledge encoded in domain ontolo-

gies constrained by the heuristics computed from the empirical data [157].

Multiresolution data conceptualises one of the essential ontological di-

chotomies of universals and particulars in metaphysics [57, 139]. The

data in the coarse resolution can be conceptualised as universals whereas

data in fine resolution can be conceptualised as particulars. Therefore,

we can use ontological information in modelling multiresolution data as

in Publication IV and Publication V.

Biological systems are complex consisting of many interwoven subsys-

tems that effect the functionalities of each other [89]. As a result, chro-

mosomal amplifications can effect, and be effected by other biological phe-

nomenon. Furthermore, cancer is a multifactorial disease and the het-

erogeneity of cancer also suggests that biological phenomenon besides

chromosomal aberration can catalyse the development of cancer. For this

reason, additional background knowledge in biology was used to enhance

the comprehensive analysis of chromosomal amplification datasets and

to help understand the phenomenon of cancer. The additional knowledge

used in the analysis of multiresolution data are the taxonomy of hierarchy

of chromosomal regions, the cancer genes, virus integration sites, fragile

sites, and amplification hotspots in Publication V. Only taxonomy of hier-

archy of regions is used as background ontology in Publication IV.

The mutations in genes resulting to a larger extent by “acquired mu-

tation” and to a lesser extent by “germline mutation”, known as cancer

genes, are one of the most prominent causes of cancer [49]. Authors in [49]

have listed the cancer genes and compared them to the complete gene set

revealed by the human genome sequence. Similarly, fragile sites are non-

randomly distributed loci on human chromosome that show a constriction

or a gap and increased frequency of chromosome breakage under the con-

ditions of partial replication stress [42, 141]. The fragile sites are often

found rearranged in cancers [60]. Virus integration sites are the loca-
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tions in chromosome where the viral Deoxyribonucleic acid (DNA) inserts

into host cell DNA [88]. Viruses are responsible for approximately 12%

of cancers [88, 172]. Amplification hotspots are frequently amplified chro-

mosomal locations in cancer patients identified using computational mod-

elling in [125]. The semantic data mining methods use these additional

knowledge to enhance the knowledge discovery process in Publication V

in semantic subgroup discovery framework.

2.5 Pattern Mining

Pattern mining is a popular branch of data mining that aims to extract in-

teresting, relevant, and meaningful patterns from the data [66, 67]. Fre-

quent itemset mining is one of the first and most popular pattern mining

algorithm. Itemsets are a set of items or columns in a 0–1 dataset having

high concentration of 1s and are used as patterns in a 0–1 dataset [152].

Let I1, I2, . . . , In be the attributes (items) of a dataset, D, and σ be the

given support. A frequent itemset is a set F of items of D such that at

least a fraction of σ of the rows of D have 1 in all columns of F [4, 106].

Anti–monotone property of frequent itemset suggests that if an item-

set is frequent, then all its subsets are also frequent [51]. Hence fre-

quent itemsets generate a larger number of patterns making it difficult

to report and interpret the results. Maximal frequent itemset amelio-

rates challenges posed by larger number of patterns in frequent itemsets.

An itemset is maximal frequent if none of its immediate supersets is fre-

quent [26]. We use maximal frequent itemset in Publication I to compare

and report patterns across different resolutions.

Similarly, association rule is a popular data mining methodology to de-

termine the interesting relations between variables based on different

measures of interestingness [5, 72, 93, 133]. Most initial studies in asso-

ciation rule mining focused on finding interesting patterns from the large

databases in an unsupervised setting. Nevertheless, association rules

have been used in classification [82, 101]. Continuing with the research

on association rules and classification, domain of subgroup discovery has

emerged as a popular data mining methodology for labelled data. Sub-

group discovery aims at finding interesting rules from the data that best

describe the target variable [53, 71, 129]. Additionally, contrast set min-

ing aims to learn the variables that differentiates one group of target vari-

ables from the rest, i.e., the most discriminating sets of variables [16, 129].
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Semantic data mining method is a branch of data mining that uses tax-

onomies and ontologies of background data to improve the performance of

algorithms [98, 156, 157]. Semantic data mining has recently gained re-

search interest in pattern mining community because of the availability of

large amount of data in the form ontologies encoded in semantic web [98].

Especially, the additional knowledge are abundantly available in biology

as discussed in Section 2.4. In Publication V, we use semantic data min-

ing algorithm to explain the clustering results obtained by probabilistic

clustering using background knowledge discussed in Section 2.4.

2.6 Related Work in Multiresolution Data Analysis

Multiresolution analysis and modelling research community is growing

steadily because of the pragmatic approach in dealing with datasets in

different representation within a single analysis and also because of the

increasing availability of multiresolution data in different application ar-

eas [11, 69, 80]. For instance, authors in [136] have improved the effi-

ciency of boosting algorithms in regression and classification, using the

model–driven and data–driven multiresolution strategy. Similarly, multi-

resolution trees have been used for object recognition in homogeneous

data based on recursive neural networks [21]. In addition, multiresolu-

tion visualisations have been used to visualise large volumes of complex

data using semantic analysis to infer increasing levels of meaning from

the data [79]. Similarly, tree structured self–organising maps (TS–SOM)

have been proposed in the literature as a multiresolution representation

of several self–organising maps (SOMs) [95].

Multiresolution Probabilistic Models

Multiresolution modelling has also received research interest in proba-

bilistic modelling domain. Most of the focus in this thesis has been the

use of probabilistic models, namely mixture models, to analyse multireso-

lution data. Traditional machine learning and data mining methods, such

as mixture models, are unable to analyse multiresolution data in their

standard form because of the difference in representations of data in dif-

ferent resolutions. The only approach to model multiresolution data is to

model each resolution separately and at best compare the results. Never-

theless, multiresolution models have found their usage in the literature,
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especially, in the image processing domain. For example, multiresolution

kd–trees have been used to improve the performance of mixture models

and reduce the cost associated with the Expectation Maximisation (EM)

algorithm [122]. Similarly, multiresolution kd–trees have also been used

to build robust models against the outliers using the EM algorithm [128].

Similarly, multiresolution binary trees have been used to store probability

values efficiently both in terms of time and memory [18].

Authors in [124] have improved the performance of Gaussian Mixture

Model (GMM) using wavelet subbands with an additional feature of incor-

porating variable number of components in the GMM. The GMM in [124]

can use any multiresolution based decomposition for background suppres-

sion. Authors in [166] show that Multiresolution Gaussian Mixture Model

(MGMM) adapts to smooth motions. The authors then apply the MGMM

to estimate the visual motion. Similarly, authors in [117] propose efficient

algorithms to learn a mixture of trees model in a maximum likelihood and

Bayesian network framework for discrete multidimensional domains.

Related Areas

Multiresolution analysis and modelling shares commonality with various

research areas and applications. The following sections briefly review the

work on multiresolution modelling in the relevant research areas.

Multiscale Analysis and Scale space Theory

Multiresolution modelling is often synonymously used in literature with

the scale space theory [99] and also multiscale analysis [163]. In im-

age processing domain, pyramid structures generated after successive

smoothing, and subsampling produces a multiscale representation [99].

Similarly, in scale space theory a scale parameter, t, handles images at

different scales. Scale space representation, an improvement over multi-

scale representation, has an ability to compute representation at a desired

scale. Authors in [8] address an important challenge in cancer research by

identifying densely connected components of known and putatively novel

cancer genes in protein protein interaction networks using a multiscale

diffusion kernel. The results in [8] demonstrate the importance of mul-

tiscale analysis as the putative cancer genes and network are significant

at different diffusion scales. Similarly, authors in [38] detect statistically

significant co–mutations in multiple independent insertional mutagene-

sis screens. The significance is estimated on multiple scales and results
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are visualised in scale space thus providing valuable supplementary infor-

mation on the putative cooperation. Multiscale analysis and scale space

theory also provide functionalities to address the challenges of image rep-

resentation at different resolutions. Similarly, a family of methods known

as super–resolution has been used to increase the resolution of images and

videos [119]. Generally, both multiscale and scale space methods work in

model domain. However, multiresolution methods developed in this thesis

are the result of multiresolution challenges arising in the data domain.

Wavelets

Wavelets are appropriate methods to describe the mathematical phenom-

enon such as functions and signals at different levels of resolution [105].

Wavelet analysis have been popular tool in multiresolution analysis [81].

However, the classical wavelets based techniques are useful in regular,

consistent, and homogeneous setting. Hence, wavelets cannot directly

handle the irregularities in the chromosomal amplification data.

Learning from Multiple Sources

Similar to multiresolution modelling, learning from multiple sources aims

to ameliorate the problem of curse of dimensionality, or Hughes effect

by exploiting any related additional datasets such as earlier measure-

ment experiments [36]. Unlike multiresolution modelling, the additional

datasets may only be weakly related to the analysed dataset. The para-

digm of learning from multiple sources is extended to the paradigms of

multiview [150], multiway [78], and multitask learning [29].

Data Fusion

The domain of data fusion shares a common ground with the domain

of multiresolution modelling. Data fusion integrates multiple data and

knowledge depicting the same real world phenomenon in a single, logical,

precise, and useful knowledge base [61]. Data fusion techniques are often

used to combine data from multiple sensors in such a way that the infer-

ence from the combined data is better than that from individual sensors.

Data integration approaches have also been widely used in bioinformatics

domain. For example, authors in [62] have proposed integrated database

and software system that enables retrieval and visualisation of biolog-

ical relationships across heterogeneous data sources. Similarly, authors

in [87] combined data from complementary Deoxyribonucleic Acid (cDNA)

arrays and tissue microarrays (TMA) to study the molecular changes in

33



Multiresolution Data and Analysis Methods

malignant pleural mesothelioma (MM). The study shows that novel pro-

teins associated with cell adhesion are expressed either directly or as a

regulatory mechanism in MM. The process of data fusion takes place at

the different stages of analysis but it is a common practice to merge the

data at the earliest stage of analysis in a single resolution. Data fusion

techniques have also been used in multiresolution analysis, especially in

remote sensing [28].

Granular Computing

Granular computing (GrC) has roots in multiresolution modelling [10].

GrC is a multidisciplinary field of study comprising of theories, method-

ologies, and tools to analyse data using the granules in data [170]. Gran-

ular computing aims to divide data into different intrinsic resolutions to

solve a problem which resembles with multiresolution modelling frame-

work.
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CHAPTER 3

MIXTURE MODELS AND

MODEL SELECTION

“The purpose of models is not to fit the data

but to sharpen the questions. ”— SAMUEL KARLIN

11th R A Fisher Memorial Lecture (1983)

Synopsis

This chapter introduces mathematical foundation and formulation of mixture

models. The chapter also discusses the model selection in mixture models. This

chapter also discusses one of the associated publications where we propose a

computationally efficient algorithm to train a series of mixture models to aid

model selection procedure.

Classical probability distributions such as Gaussian, Bernoulli, and Poi-

son provide methods for probabilistic modelling of data [160]. However, in

the real world scenario, a single probability distribution cannot emulate

the complexity in the data. Nevertheless, a combination of sufficiently

large number of probability distributions can possibly emulate complex-

ity in the data. Such combination of multiple classical probability distri-

butions forms a mixture model. Formally, mixture models are semipara-

metric latent variable models that model a complex data distribution by

weighted sum of different probability distributions [23, 45, 115].

The probability distributions within a mixture model, known as com-

ponent distributions, describe the observations present in the data. The

formulation of mixture model involves determining the number of compo-
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nents in the mixture model, their associated distribution, and identifica-

tion of the component generating the specific data sample [115]. Mixture

models are often used in hard clustering analysis as in this thesis. In

hard clustering, only one component is responsible to generate a specific

data sample. Mixture models also provide the option of learning soft clus-

tering. In soft clustering, a data sample belongs to more than one clus-

ter with a certain degree of association [23]. A standard formulation of

the mixture model assumes that the samples are independent and iden-

tically distributed (IID). Under the assumption that data originates from

a known number of components, J , the probability density of a mixture

model can be expressed as the weighted sum of its component distribu-

tions as:

p(x) =
J∑

j=1

πjPj(x | θj), (3.1)

where j indexes the component distributions. In the Equation (3.1),

the mixing proportion (mixing or mixture coefficient) is denoted by πj for

the jth component in the mixture model. It determines the weight of the

component distribution in the overall mixture model. Mixing proportions

satisfy the property of convex combination such that
∫
p(x)dx = 1, πj > 0,

and
∑J

j=1 πj = 1 [45]. Similarly, the parameters θj in Equation (3.1) de-

notes the parameters of the jth component distribution of the mixture

model. Application area dictates the choice of distributions, which in lit-

erature is dominated by the distributions from exponential family such as

Gaussian, and Dirichlet [115]. In this thesis, Bernoulli distribution is the

preferred distribution because the datasets are 0–1 datasets describing

chromosomal amplifications.

3.1 Mixture Models of 0–1 Data

Finite mixture model of multivariate Bernoulli distributions for a data-

set, X, of dimensionality, d, are parametrized by Θ = {J , {πj ,Θj}Jj=1}.

The dataset, X, consists of samples x1, . . . ,xN in such a way that X =

{x1, . . . ,xN}. Replacing the general probability distribution function with

the distribution of choice, i.e., Bernoulli distribution, a mixture model

of multivariate Bernoulli distribution can be mathematically expressed

as [45, 167]:
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p(x | Θ) =
J∑

j=1

πj

d∏
i=1

θxi
ji (1− θji)

1−xi , (3.2)

where j indexes the components, and i indexes the data dimensionality.

xi denotes the data point such that xi ∈ {0, 1}. The parameter of a random

variable θji denotes the probability of the variable taking the value 1 in ith

dimension of the jth component. We can collect all the random variables in

a component in a vector, Θj such that Θj = [θj1, θj2, θj3, . . . , θjd]. Similarly,

we can collect all the parameters of the mixture model including mixture

components in a matrix, Θ such that Θ = {J , {πj ,Θj}Jj=1}. The parameter

values that maximise the log–likelihood function of the parameters can be

defined using maximum likelihood principal [23] as:

L(Θ | X) =
N∑

n=1

log

⎡
⎣ J∑
j=1

πj

d∏
i=1

θxni
ji (1− θji)

1−xni

⎤
⎦ . (3.3)

The EM algorithm can be used to learn the maximum likelihood parame-

ters of mixture model of Bernoulli distributions by maximising the likeli-

hood in the Equation (3.3) [167].

3.2 Expectation Maximisation Algorithm

Expectation Maximisation (EM) algorithm is an iterative algorithm to de-

termine the maximum likelihood (MLE) or maximum a posteriori (MAP)

estimates of the parameters of latent variable models [39, 114]. The EM

algorithm is a popular algorithm for learning model parameters in proba-

bilistic latent variable models by maximising the marginal likelihood. The

iterations of EM algorithm alternate between Expectation step (E–Step)

and Maximisation Step (M–Step).

E–step estimates the posterior probability of each component for every

data point. Whereas, M–step updates the model parameters for next it-

eration. Iterations between E and M step produce a succession of mono-

tonically increasing sequence of log–likelihood values for the parameters

τ = 0, 1, 2, 3, . . . regardless of the starting point {π(0),Θ(0)} [114].

3.3 Model Selection in Mixture Models

Model selection is the process of selecting a model of optimal complexity

for the given set of (finite,training) data [32, 68]. In the statistics liter-
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ature, model selection is the process of selecting a specific model from a

plethora of choices [84]. For example, in classification, model selection

may refer to choosing a classification algorithm from different classifica-

tion algorithms such as Naive Bayes, Decision Trees, and Support Vector

Machines. The focus in this thesis is modelling of a heterogeneous chro-

mosomal amplification dataset. Mixture models are the model of choice

because of their ability to model heterogeneity and their clustering capa-

bilities. The choice of mixture models is also motivated by their ability to

learn the structure of the data better than most other methods because

each component distributions capture dominant patterns in the data. Fur-

thermore, mixture models are scientifically proven as learning of mixture

models involve well studied statistical inference techniques.

In this thesis, model selection refers to the model structure selection

or complexity selection which determines the flexibility of the model to

fit or explain the data. In other words, model selection in this context

refers to choosing an appropriate level of model complexity in the selected

class of model, i.e., mixture model. The complexity parameter in mixture

model is the number of component distributions in the mixture model.

Model selection, therefore, is the selection of number of components in

the mixture model [47].

EM algorithm requires apriori knowledge of the number of components

in the mixture model to learn the maximum likelihood parameters from

the data [114]. However, the number of component distributions are often

unknown apriori. Furthermore, one of the major objectives of machine

learning and data mining challanges in the real world can often be re-

stricted to determining the number of components in the mixture model.

Hence, model selection is essential to learn a mixture model using the EM

algorithm.

A mixture model with large number of mixture components produces

larger value for the log–likelihood in Equation (3.3). However, a mixture

model with large number of mixture components also overfits the data,

and generalises poorly on the future unseen data. Additionally, mixture

models with large number of components increase complexity in training

of mixture models with respect to both time and memory. In contrast, a

mixture model with smaller number of mixture components underfits the

data, and is unable to adequately represent the underlying data struc-

ture. Therefore, model selection aims to optimise this tradeoff between

too simple and complex models.
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Related work in Model Selection in Mixture Models

A plethora of criteria and methods have been proposed in the literature

to determine the optimal number of mixture components in a mixture

model [115]. For example, authors in [30], [46], and [131] provide com-

prehensive review of deterministic, stochastic and resampling criteria for

model selection. Deterministic criteria consists of Akaike Information

Criterion (AIC) [6], Bayesian Information Criterion (BIC) [142], Minimum

Description Length (MDL) [137], and integrated classification likelihood

(ICL) [22]. Similarly, stochastic methods includes Markov Chain Monte

Carlo (MCMC) [20], and resampling methods includes bootstrapped like-

lihood ratio test [112]. Similarly, authors in [168] propose a robust ap-

proach against model misspecification leading to a better fitting mixture

density based on minimum Hellinger distances. In addition, the authors

in [31] and [75] use penalised likelihood method for model selection in

mixture model.

Data likelihood is often used as the measure of the quality of mixture

models [144]. A well trained mixture model with appropriate number

of mixture components estimates the underlying data distribution bet-

ter and produces high likelihood values for the unseen data. In addition,

cross–validation have been popular model validation technique in the lit-

erature [56, 121, 149]. Hence, in this thesis we use cross–validated log–

likelihood as a criteria for model selection.

3.4 Fast Progressive Training of Mixture Models

The EM algorithm is sensitive to initialisation and susceptible to local

optima [114, 169]. One solution to avoid local optima is to run the EM

algorithm from different random initialisations and select the model with

highest likelihood as the global optimum. Similarly, another solution

is to take the average of different runs as general performance of the

model [153]. Furthermore, the EM algorithm is computationally expen-

sive because of its slow monotonic convergence property [114]. There-

fore, multiple restart strategy is popular method in literature where the

EM algorithm is run only for a small number of steps, i.e., not until con-

vergence, generating large number of models. Among those models, the

model with maximum likelihood can be selected to continue training until

convergence [33].
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Similarly, different sophisticated algorithms have been proposed to al-

leviate the problem of local optima in EM algorithm, for example, using

splitting and merging of mixture components [86, 154]. In Publication II,

we use merging of mixture components as in [154] to train a series of mix-

ture models. The aim is to aid the model selection algorithm to select a

model of appropriate complexity, not to avoid local optima. We train multi-

ple models with highest number of component distributions and select the

best models among them to start the chain of mixture models by merging

the similar mixture components. The training strategy to generate the

chain of mixture models resembles backward elimination methodology in

feature selection literature [64]. We initially start with large number of

mixture components and progressively merge the similar components un-

til the number of components is 1. We use an approximation of Kullback

Leibler (KL) divergence as a measure of similarity between the two com-

ponents in the mixture model.

3.4.1 Kullback Leibler Divergence and Approximation

Kullback Leibler (KL) divergence is a nonsymmetric measure of differ-

ence between two probability distributions [96]. The KL divergence be-

tween two given probability distributions P and Q on a finite set X is

symmetrized by adding the KL divergence from P to Q and Q to P [83].

DKL(P ||Q) +DKL(Q||P ) =
∑
i

P (i)log
P (i)

Q(i)
+

∑
i

Q(i)log
Q(i)

P (i)

=
∑
i

[
{P (i)−Q(i)}logP (i)

Q(i)

]
, (3.4)

where i indexes all possible combinations of data elements. Extending

the KL divergence in Equation (3.4), the KL divergence between two com-

ponents of a mixture model for data of dimension, d, indexed by k for two

component distributions θ and β have been derived in [2] as:

KLθβ =
2d∑
i=1

[{
d∏

k=1

(
θxik
k (1− θk)

(1−xik)
)
−

d∏
k=1

(
βxik
k (1− βk)

(1−xik)
)}

·
d∑

k=1

log
θxik
k (1− θk)

(1−xik)

βxik
k (1− βk)(1−xik)

]
, (3.5)

where xik denotes an element in kth dimensionality of ith sample in the

data matrix. The Equation (3.5) is the sum of a large number of elements.

If the dimensionality of the data is 5 then we iterate 32 times and when
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the dimensionality is 20, we iterate more than a million times (1,048,576).

Moreover, the number of comparisons in a mixture model having J compo-

nents for data of dimensionality d is 2dJ2 which is computationally expen-

sive. Therefore, in Publication II, we derive a computationally efficient

approximation of the KL divergence as:

KLθβ =
∑
i∈x∗

{
d∏

k=1

(
θ
x∗
ik

k (1− θk)
(1−x∗

ik)
)
−

d∏
k=1

(
β
x∗
ik

k (1− βk)
(1−xik)

)}
, (3.6)

where X∗ = {x∗ : x∗ ∈ X} is a set of all the unique data samples present

in the dataset denoted by X. Here, the summation is approximated only

with the samples present in the data. Similarly, we remove the fraction

containing the log term from Equation (3.5). In Publication II, we are

primarily interested in determining the two closest component distribu-

tions in a mixture model. We are not necessarily interested in the exact

minimum values of KL divergence between two component distributions

in a mixture model. These approximations can inaccurately identify two

components as most similar to each other while they differ considerably

in the full and accurate KL divergence.

The inaccuracies are in the form of selection of two dissimilar compo-

nents in mixture models to merge. However, in Publication II, we show

that our approximation is good estimate of the full KL divergence in terms

of matching the two most similar components distributions. Our approx-

imations, as reported in Publication II, is considerably more accurate

(twenty five times) than random matching of the components. Moreover,

our approximation are 10,000 times faster than full KL divergence for

the data dimensionality twenty. Nevertheless, we compensate for any

mismatches by retraining the mixture models after merging the mixture

components. The aim of the methodology described in Publication II is

not to propose any new model selection criteria but to propose an efficient

methodology to train a series of mixture models. The models in the series

are similar to each other except for the number of mixture components.

3.4.2 Series of Mixture Models

In the algorithm proposed in Publication II, first, we train a large num-

ber of mixture models with large number of mixture components (20 in

our experiments). Second, we then calculate the approximated KL diver-

gence among all the pairs of mixture components. The two components

with minimum approximated KL divergence are then merged as in [154].
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The process of merging of mixture components is iterative and contin-

ues until the number of components is 1. Mathematically, the merging of

the mixing proportions of two candidate component distributions πklmin,1,

and πklmin,2 to generate a single component distribution πmerged can be

expressed as:

πmerged = πklmin,1 + πklmin,2. (3.7)

Merging the mixture components using Equation (3.7) preserves the prop-

erties of mixing proportions such that they have to sum to 1. Similarly, we

can merge the parameters of two candidate mixture components Θklmin,1

and Θklmin,2 weighted with their mixing components to generate parame-

ters for merged component Θmerged as:

Θmerged =
πklmin,1 × Θklmin,1 + πklmin,2 × Θklmin,2

πklmin,1 + πklmin,2
. (3.8)

The parameters of merged component distributions in Equation (3.8)

also satisfy the properties of probability of a random variable, θ such that

0 ≤ θ ≤ 1. The mixture model obtained after merging the mixture compo-

nents is retrained before next iteration of merge operation. This progres-

sive training and merging results in a series of mixture models as shown

in the Figure 3.1.

Figure 3.1. Series of mixture models resulting from the progressive merging of the mix-
ture components and retraining of the mixture model. Reprinted with per-
mission from Publication II.

The Figure 3.1 shows snapshot of our algorithm in Publication II where

two components in a mixture model with 7 components are merged to

generate a mixture model with 6 components. Similarly, mixture mod-

els with one less components than the previous model are generated by

merging two most similar component distributions until the number of

components is 1. The principal focus in Publication II is generating series

of mixture models for model selection and not on avoiding local optima or

proposing a new model selection criteria.
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This series of mixture models can be used with any model selection cri-

teria such as cross–validation, AIC, BIC, and MDL to choose a model of

suitable complexity. In our earlier research [2], we have used ten–fold

cross–validation to select model of appropriate complexity. We calculate

likelihood of each mixture model in the series on both training and val-

idation sets. We then select the model that generalises the best on the

validation set taking parsimony into account, i.e., if two models produces

comparable results, we select the simpler model [171]. In addition to the

gain in computational efficiency, the simple models are also easier to in-

terpret, and understandable to the domain experts [73].

One important property of EM algorithm is that EM algorithm is de-

terministic for a given initialisation and a given dataset [114]. In other

words, if we run EM algorithm on the same data with same initialisation

it always converges to the same final model. When the mixture compo-

nents are merged, the initialisation for the EM algorithm is same. This

avoids multiple restarts required in [33] and [153]. Furthermore, EM al-

gorithm converges faster when it is initialised from a merged model than

when initialised at random because the merged model resembles the final

trained model.

In Publication II, we have shown that EM algorithm converges approxi-

mately ten to fifty times faster when initialised from merged model. Simi-

larly, the models produced in the series of models are similar to each other

except for the number of components. This allows comparison among

similar models for model selection but with different number of compo-

nents. This avoids the situation when mixture model with some compo-

nents have been stuck in local minima while models with other compo-

nents reach global optima. Such situations create a bias in comparison

among models with different components in similar vein as ‘unfortunate

split’ in cross–validation.
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CHAPTER 4

METHODS FOR

MULTIRESOLUTION

MODELLING

“With too little data, you won’t be able to make

any conclusions that you trust. With loads of

data you will find relationships that aren’t

real. . . Big data isn’t about bits, it’s about

talent. ”— DOUGLAS MERRILL

Former CIO and VP of Engineering at Google

Synopsis

The abundance of multiresolution data and increasing benefits of analysing

multiple datasets within a single analysis have given major impetus to the re-

search in multiresolution data analysis. In application areas where division

of data across different resolutions is smooth, wavelets [81], multiscale meth-

ods [11, 163], and scale space theory [100] have been popularly used to analyse

multiresolution data. This chapter discusses the core of the thesis and includes

most of the scientific contributions of this thesis. This chapter also summarises

four of the five publications contained in this thesis.
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4.1 Data Transformation

Standard algorithms, such as mixture models, are unable to model mul-

tiresolution data in their standard form. Therefore, in Publication I, we

propose data transformation methods to analyse multiresolution data by

transforming the data to different resolutions and integrating the data in

the same resolution. We can then apply the algorithm on the combined

data in a single resolution. The methodology of data transformation inte-

grates data in different resolutions and therefore, resembles fusion tech-

niques [28].

Data transformation methods, also called sampling methods, proposed

in Publication I are non–stochastic. Sampling resolution in genomics ex-

plains the level of precision for measuring the results of a particular ex-

periment: either global (coarse resolution) or detailed (fine resolution). As

discussed in Section 2.3 and also shown in the Figure 2.2, the relationship

between different resolutions of chromosome, i.e., correspondence of each

of the regions in genome in different resolutions are known apriori [143].

We propose two different data transformation methods to transform data

across fine and coarse resolution using the knowledge of the correspon-

dence of chromosomal regions in different resolutions.

1. Upsampling transforms the data from coarse resolution to fine resolu-

tion increasing the dimensionality of the data. We make multiple copies

of a chromosomal region in coarser resolution to upsample the data in

coarse resolution to fine resolution.

2. Downsampling transforms the data resolution from fine resolution to

coarse resolution decreasing the dimensionality of the data. We down-

sample using three different methods: OR–function, Weighted, and Ma-

jority Decision. We consider the chromosomal amplification pattern of

neighbouring chromosomal regions if the number of aberrated chromo-

somal regions and the number of unaberrated chromosomal regions are

equal.

(a) In OR–function downsampling, a chromosomal region in the coarse

resolution is aberrated if any of the chromosomal regions in the fine

resolution is aberrated.

(b) Division of the regions of a chromosome are highly irregular and the
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length of a region often differs from the next [143]. In weighted down-

sampling, a chromosomal region in coarse resolution is aberrated if

the total length of the aberrated chromosomal regions is greater than

total length of unaberrated chromosomal regions in fine resolution.

(c) In majority decision downsampling, a chromosomal region in the

coarse resolution is aberrated if majority of the chromosomal regions

in the fine resolution are aberrated.

Experiments on Data Transformation

Figure 4.1. Schematic representation of experimental procedure of data transformation
methods for multiresolution modelling. First, the data in two different reso-
lutions are transformed to other resolutions. After transformation datasets
in the same resolution are integrated. Finally, the algorithm is applied on the
integrated dataset. For comparative purposes the algorithm is also applied
on the original data before data transformation.

Figure 4.1 depicts the overall experimental procedure where one of the

three different downsampling methods transforms the data in fine reso-

lution to coarse resolution. Similarly, a deterministic upsampling method

transforms the data in the coarse resolution to the fine resolution. Be-

fore data transformation, algorithms such as mixture models, and pattern

mining are applied on the data in original resolution. We then integrate

the data obtained in same resolution after data transformation. The algo-

rithm is again applied on the integrated data. Finally, we compare the re-

sults of the analysis before transformation and after integration in terms

of the patterns obtained and model fitting.
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Experiments with mixture modelling in different resolutions reported

in Publication I show that validation likelihood of the mixture models is

higher in the coarser resolution compared to the finer resolution. How-

ever, the model selection results are similar across different resolutions

as similar number of components are selected in both the coarse and the

fine resolution. Although similar number of components are selected, mix-

ture models in coarse resolution produces better likelihood values than

the data in fine resolution. In addition, time complexity is higher in the

models in the finer resolution. This degradation of performance in fine

resolution data can be attributed to the “curse of dimensionality” phe-

nomenon [17], or Hughes effect [76]. Models in coarse resolution are also

suitable for understanding and interpreting the results [73].

The results in Publication I also show that the mixture models produce

better results on the combined data with the similar number of compo-

nents than the standalone data in single resolution. This proves the prop-

erty of mixture model which states that number of components in the

mixture model scales with the complexity of the data not with the sample

size of the data [65]. The increased sample size arising from the integra-

tion of data from other resolution helps nullify the curse of dimensionality

and constrains the complexity of mixture models, and avoid overfitting.

MAFIA (MAximal Frequent Itemset Algorithm) [26] was used to mine

maximal frequent itemsets in data in the original resolution and the sam-

pled resolution to determine if the data transformation methods preserves

the patterns in the data. The results in Publication I show that data

transformation across resolutions preserves the maximal frequent item-

sets with negligible differences. The negligible differences are expected

because data in coarse resolution cannot subsume all the information of

the data in fine resolution.

In our earlier research [1], we have also tested the statistical signifi-

cance of the frequent itemsets (not the maximal frequent itemset) to show

that data transformation across different resolution preserves the statis-

tically significant patterns present in the data. In addition, results in [1]

also show that statistically significant patterns are also preserved by the

generative property of mixture models in all the resolutions. We also com-

pare three different downsampling methods using metrics such as the

Frobenius norm [148]. Experimental results in Publication I show that

the resulting data produced by three downsampling methods are similar

to each other; the variation, if any are negligible.
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4.2 Merging of Mixture Components

In Publication III, we use merging of the mixture components of differ-

ent mixture models in different resolutions to model the multiresolution

data. Mixture models can also be used in clustering where component

distributions are used as clusters in the data. Proposed multiresolution

modelling algorithm resembles clustering aggregation algorithm in [59].

The similarity with clustering aggregation is that we use multiple cluster-

ing results, i.e., mixture models to improve the mixture modelling. How-

ever, clustering aggregation clusters single dataset generating results as

a single clustering solution. In contrast, the proposed multiresolution

modelling algorithm analyses different datasets in different resolutions

generating clustering solutions in different resolutions.

In the proposed multiresolution modelling algorithm, we first apply mix-

ture models on the data in each resolution separately. Secondly, we itera-

tively merge the similar mixture components in different mixture models

in different resolutions. This is unlike Publication II where we merge the

components from the same mixture model. We extend the derivation of

fast approximation of Kullback Leibler divergence as a criterion in Publi-

cation II to determine the similarity between the mixture components to

two mixture models as:

KL =
∑
i∈X∗

πα

d∏
m=1

(
α
X∗

im
m (1− αm)(1−X∗

im)
)

(4.1)

−
∑
i′∈Y ∗

πβ

d′∏
n=1

(
β
Y ∗
i′n

n (1− βn)
(1−Y ∗

i′n)
)
.

The approximation of KL divergence in Equation (4.1) resembles Equa-

tion (3.6) but for the two component distributions α and β which are com-

ponents of two different mixture models in different resolutions. Simi-

larly, X∗ and Y ∗ are the unique samples of data in two different resolu-

tions.

We calculate the pairwise KL divergence between all the components in

two mixture models. We then select the similar components using mini-

mum weight bipartite matching algorithm [164] as shown in Figure 4.2.

The similar components are merged preserving the properties of compo-

nent distributions and probability of random values in the mixture model.

We iterate the matching shown in Figure 4.2 and merging of mixture com-

ponents until the KL divergence is small enough. Finally, we retrain the
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Figure 4.2. Simplified picture of multiresolution modelling using merging of mixture
components. We iteratively merge the similar components from different
models until the change in KL divergence is very small. The different ar-
row shapes show the pairwise similarity of mixture components.

mixture models in each resolution. Although mixture models are gener-

ated separately in each resolution, they incorporate information about the

data in other resolutions.

Figure 4.3. Likelihood of multiresolution mixture models trained by merging of mixture
components and individually trained mixture models in single resolution.
Since the units in Y–axis is the negative log–likelihood, the shorter the bar
the better the result. The improvement gained by multiresolution mixture
model in the fine resolution is greater than that gained in the coarse resolu-
tion. The figure is adapted from Publication III.

The algorithm generates plausible results when the algorithm is experi-

mented on multiresolution chromosomal amplification datasets discussed

in Section 2.3. The bar diagram in the Figure 4.3 depicts the improve-

ments gained by multiresolution models over single resolution models.

The figure shows training and validation likelihood of the multiresolu-
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tion and independent single resolution mixture models trained in a 10–

fold cross–validation setting. Since the units in Y–axis is negative log–

likelihood, the shorter the bar better the result. The Figure 4.3 shows the

two different conditions of the likelihood: first, the performance of single

resolution, and the multiresolution model on the coarse data, which is en-

closed in the dashed rectangle in the left side of the Figure 4.3. Second,

Figure 4.3 also shows performance of the single resolution and the mul-

tiresolution models on the fine data which is enclosed in solid rectangle in

the right side of the figure.

Scrutinising the results inside both the dashed and the solid rectan-

gles in the Figure 4.3, the performance of the multiresolution model is

markedly better in the coarse resolution and slightly better in the fine

resolution. The improvement in the performance of the multiresolution

model in the coarse resolution is greater than that in the fine resolution.

This is because the number of data samples is comparatively smaller in

the coarse resolution to add more information to the model in the fine

resolution. The results also show that the models trained in the multires-

olution setting generalises better on the future unseen data. As discussed

in Section 4.2, the performance of the models are better in coarse resolu-

tion because of the curse of dimensionality. We also performed the two–

tailed t–test to ascertain the statistical significance of the result on the

data likelihood [160]. The results also show that both the validation and

the training likelihoods are statistically significant when the significance

level, α, is 0.1.

4.3 Multiresolution Mixture Components from Domain Ontology

Multiresolution data often forms hierarchical structure as discussed in

Chapter 2. The domain ontology used in this thesis is known apriori

from the application area. Consequently, we can exploit this structural

information from the application area to determine the relationships be-

tween data resolutions. Therefore, we can determine the structure of the

Bayesian network as shown in the Figure 4.4 with some realistic assump-

tions for computational efficiency. For this reason, we do not learn the

structure of Bayesian networks in our contribution. The assumptions are

that the data features in the coarse resolution form the root and branches

near the root of the Bayesian network. Similarly, the data features in

the finer resolutions form the branches towards the leaves and the leaves
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Figure 4.4. A structure of the Bayesian network from the apriori domain knowledge
shown in Figure 1.1. The figure shows both Bayesian Network with nodes
and edges; and the associated conditional probability tables. The figure is
adapted from Publication IV.

of the Bayesian network. Additionally, we can assume that the directed

arrows originate from the features in the coarse resolution.

Figure 4.4 shows a Bayesian network generated from the hierarchical

structure of data depicted in the Figure 1.1. In the real world, although

the hierarchical structure as shown in the Figure 1.1 are known, data in

all the resolutions in the structure may not be available. Nevertheless,

Bayesian networks have been known for their prowess in missing value

imputation [40]. Therefore, in Publication IV, Bayesian networks in the

component distributions are used to impute missing data resolutions. Ex-

perimental results in Publication IV show that Bayesian networks satis-

factorily imputes missing data resolutions.

Figure 4.5. Structure of multiresolution mixture model whose components are Bayesian
networks. The figure is adapted from Publication IV.
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Figure 4.5 depicts the structure of the proposed mixture model in Pub-

lication IV for data in multiple resolutions. The three solid rectangles

on the top represent different mixture coefficients, π. Similarly, the three

network of nodes denote the three component distributions. Each node de-

fines a parameter of the component distributions, θ. The structure of the

component distribution is determined from the domain knowledge. Since,

the structure of Bayesian network is known, the parameters of these

Bayesian networks can be learned in the maximum likelihood frame-

work [9]. If some of the data are missing, we need some assumptions

to learn the parameters of the Bayesian networks. One of such similar

assumption is founded from the Potts model [15, 135] where we estimate

the CPD of the child (C) given parent (P) as: P (C | P ) = 0.9.

After learning the Bayesian networks, and imputing the missing val-

ues, the next step is to learn the mixture models. First of the challenges

confronting the learning of mixture model is the model selection, i.e., de-

termining the optimal number of component distributions [47]. Similarly,

learning the parameters of the component distributions involves learning

the parameters of those networks. In general framework for the EM al-

gorithm, we can assign only a single probability value to a node in the

mixture model [39]. However, each variable in Bayesian network con-

sists of minimum of two probability values denoting the CPD of the nodes.

Hence, we learn the mixture model in the two step procedure. First, we

learn the the parameters of individual Bayesian networks in the frame-

work of Bayesian networks [9, 70]. Second, we transform the networks to

vectors to learn the parameters of mixture model using the EM algorithm

as in [153].

In addition to the multiresolution chromosomal amplification datasets

discussed in Section 2.3, we have in Publication IV experimented with a

simulated dataset that allows observation of complete data without miss-

ing resolutions. The bar diagram in the Figure 4.6 displays the perfor-

mance of the multiresolution mixture model trained in a 10–fold cross–

validation setting and also three different single resolution mixture mod-

els trained individually in each resolution. Since units used in the Y–axis

is negative log–likelihood, the shorter the bar, better the result. The Fig-

ure 4.6 shows two different conditions of likelihood: training and valida-

tion. However, the results do not depict change in training and valida-

tion likelihood during model selection instead they show the difference in

training and validation likelihoods after the selection of components.
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Figure 4.6. Likelihood of single resolution and multiresolution mixture model on simu-
lated dataset. Since the units in Y–axis is the negative log–likelihood, shorter
the bar better the result. The performance of multiresolution mixture models
surpasses that of all the single resolution models. Reprinted with permission
from Publication IV.

The Figure 4.6 shows that the performance of the multiresolution mix-

ture model is markedly better than the three single resolution models.

Log–likelihood is comparatively poor in dimensionality of 15, and 25 be-

cause of the larger data dimensionality demonstrating curse of dimen-

sionality. The likelihood of the proposed multiresolution model is better

than the data with the smallest dimensionality of five in single resolution.

The results show that proposed multiresolution mixture model produces

plausible results in addition to providing single analysis solution for the

data in multiple resolutions.

4.4 Multiresolution Semantic Subgroup Discovery

As discussed in Section 2.4, semantic data mining methods have been

gaining popularity in the data mining domain. Similarly, banded matri-

ces have also found usage in data mining domain [43, 55]. In Publica-

tion V, we comprehensively analyse multiresolution data using a three

stage methodology depicted in Figure 4.7. In the contribution, we ex-
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plain the clustering generated by mixture models using semantic data

mining methods, and visualise the clusters and the semantic rules using

the banded matrices.

Figure 4.7. The workflow for comprehensive analysis of multiresolution data using a
combination of probabilistic model based clustering, semantic data mining,
and banded matrices. Reprinted with permission from Publication V.

Figure 4.7 depicts the working of the three part methodology. The fig-

ure shows that input to the methodology is the empirical data and ad-

ditional background knowledge. The additional background knowledge

is used by the semantic data mining algorithm to supplement the anal-

ysis of the empirical data. As cancer is a heterogeneous and multifacto-

rial disease [90], we use additional background knowledge with an aim

to better understand and interpret the results. The additional knowl-

edge provided to the semantic data mining algorithm comprises of fragile

sites [42, 141], cancer genes [49], amplification hotspots [125], and virus

integration sites [88, 172]. Finally, the taxonomies of hierarchical regions

of chromosomes discussed in Section 2.3 are also used as additional back-

ground knowledge so that semantic data mining methods are able to anal-

yse multiresolution data.

Mixture models provide an ability to cluster the data considering the

components in the mixture model as a cluster [113, 118]. We train the

mixture model in a ten–fold cross–validation setting taking parsimony

into account [153]. The results produced by mixture models are complex

to explain to the application area specialist. Efforts have, however, been

made in the past to make the results understandable to the domain ex-

perts [73]. In Publication V, we explain the clusters with the rules gener-

ated by semantic data mining algorithms and visualisation produced by

banded matrices. The cluster labels generated using clustering from mix-

ture model are used as class labels in semantic pattern mining algorithm

along with the additional background knowledge. We use general purpose
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Figure 4.8. The comprehensive analysis of multiresolution data using a combination of
probabilistic model based clustering, semantic pattern mining, and banded
matrices. Figure on the left panel depicts the clusters overlayed on the
banded structure of data. Similarly, figure on the right panel depicts the both
clusters and semantic rules overlayed on the banded structure of the data.
For the clarity of presentation, the figure on the right depicts only cluster 3
and the rules explaining only cluster 3. Figures are adapted from Publication
V.

semantic subgroup discovery system, Hedwig, to find a hypothesis (a pre-

dictive model or a set of descriptive patterns) in domain ontology terms,

given the training data and the domain knowledge in the form of ontolo-

gies [157]. Hedwig, for instance, is developed by the collaborators in Jožef

Stefan Institute in Slovenia who are the co–authors in Publication V.

We use the constrained banded matrices [55] to visualise the data. In

chromosomal amplification data, the matrices are constrained because the

columns denote the specific and unchangeable chromosome regions. We,

therefore, shuffle only the rows, i.e., only the samples and not the columns.

We then overlay the cluster information along the rows of the banded ma-

trix as shown in the left panel of the Figure 4.8 showing clear distinction

among different clusters. In addition, we overlay the rules generated us-

ing the semantic subgroup discovery method as shown in the right panel

of the Figure 4.8. The visualised rules are tabulated in Table 4.1. The

numbers above the rules on top right corner denote the position of rules

in the table. A darker hue means that specific region in chromosome ap-

pears in more than one rule denoted by more than one position of the rules

in the table. Overlaying all the clusters and the rules for each of the clus-

ters will clutter multitude of information on a single figure compromising

the understandability of the visualisation. Therefore, we first visualise

all the clusters in the data overlaying it on a banded matrix as shown in

the left panel of the Figure 4.8. Second, we visualise only a single cluster
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# Rules for cluster 3 TP FP Precision

1 Cluster3(X) ← 1q43-44(X) ∧ 1q12(X) 81 0 1.00

2 Cluster3(X) ← 1q11(X) 78 9 0.90

3 Cluster3(X) ← 1q43-44(X) 88 26 0.77

4 Cluster3(X) ← 1q41(X) 88 28 0.76

5 Cluster3(X) ← 1q12(X) 81 43 0.65

6 Cluster3(X) ← 1q32(X) 88 52 0.63

7 Cluster3(X) ← 1q31(X) 87 54 0.62

8 Cluster3(X) ← 1q25(X) 88 64 0.58

9 Cluster3(X) ← 1q24(X) 88 97 0.48

10 Cluster3(X) ← 1q21(X) 88 134 0.40

11 Cluster3(X) ← 1q22�24(X) 88 149 0.37

12 Cluster3(X) ← HotspotSite(X) 88 222 0.28

13 Cluster3(X) ← CancerSite(X) 88 245 0.26

14 Cluster3(X) ← FragileSite(X) 88 259 0.25

Table 4.1. Rules induced for 3 using semantic data mining algorithm Hedwig.

and the rules describing that cluster as shown in the right panel of the

Figure 4.8.

The left panel of the Figure 4.8 distinctly shows different clusters prov-

ing the credibility of the clustering results. Similarly, the rules visualised

in the right panel of the Figure 4.8 identify the amplifications in chromo-

somal regions that are responsible for certain cluster (cluster 3) and con-

sequently, specific groups of cancer as reported in [126]. In addition, the

rules generated by semantic data mining algorithm provide additional in-

sights into the clustering solutions. For example, from the left panel of the

Figure 4.8 cluster 3 is denoted by the pronounced amplification in regions

1q11-q44. The rule: Rule 1: Cluster3(X) ← 1q43�44(X) ∧ 1q12(X)
characterises 81 out of 88 data samples that are in cluster 3 showing that

amplifications in regions 1q43–44 and 1q12 characterises cluster 3 and re-

lated cancers with good coverage and precision. Results show that whole

region of 1q11–44 need not be aberrated to discriminate that specific clus-

ter of cancers. This provides insights into the data and improvements in

the understandability of the amplification to the domain experts.
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CHAPTER 5

DISCUSSION

“Learning is not attained by chance, it must

be sought for with ardor and attended to with

diligence. ”— ABIGAIL ADAMS

Letter to John Quincy Adams (1780)

Synopsis

The work in the thesis focused on the analysis of multiresolution 0–1 data.

The application area of choice was chromosomal aberrations patterns in can-

cer genomics defined in multiple resolutions. The proposed algorithms, mixture

models and semantic data mining, for analysis of multiresolution data are ex-

perimented on the chromosomal aberrations data with plausible results. Fur-

thermore, an efficient method to train a chain of mixture models was proposed

to aid model selection in mixture models. Multiresolution modelling methods,

and model selection in mixture models are discussed in this chapter along with

their applicability, limitations, and possible future directions of work. The fu-

ture directions of work discussed in this chapter concerns specific methods dis-

cussed and developed in the thesis. The future work section in Chapter 6, i.e.

Section 6.2, discusses the overall future work in the multiresolution modelling

domain.

5.1 Model Selection in Mixture Models

Model selection is an age–old problem in statistics and machine learn-

ing [7, 97]. In Publication II, we do not propose a new model selection
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criteria but a computationally efficient method to train a series mixture

models differing only in the number of components. The proposed method

provides additional facilities of computational efficiency, and similarity of

the mixture models in the chain except for the number of components.

Therefore, the method is suitable for comparison in model selection. The

experiments performed on the three datasets provide evidence of its ef-

ficiency and suitability in model selection. Furthermore, the proposed

mixture model for Bernoulli distributions can be seamlessly extended to

other distributions such as the Gaussian distribution.

The proposed method is sensitive to local optima while learning mixture

model via EM algorithm [114, 169]. We try to address the challenges of

local optima by training multiple mixture models once for largest num-

ber of mixture components before merging the similar components. The

best mixture model among the trained mixture models is selected to cal-

culate the KL divergence among mixture components. The most similar

components, i.e., the the pair of components with the minimum KL di-

vergence are progressively merged to generate a chain of mixture models.

However, this does not guarantee that the EM algorithm reaches global

optimum. Avoidance of local minima is still an open research problem

in optimisation and also the EM algorithm. Nevertheless, effectiveness,

efficiency, and seamless scalability of the proposed method makes the pro-

posed method, the method of choice for training mixture models for model

selection.

5.2 Multiresolution Analysis and Modelling of 0–1 Data

Algorithms and methods to study and analyze multiresolution data forms

the crux of the thesis. The proposed algorithms complement each other

and specific algorithm fulfills the requirements of a specific application.

Nevertheless, ample possibilities and challenges for future improvements

identified in the proposed algorithms and methods are discussed in the

subsequent paragraphs.

5.2.1 Data Transformation for Multiresolution Analysis

The data transformation methods deterministically transform the data

across different resolutions in such a way that data in different resolu-

tions can be integrated in a single resolution. The integrated data in
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single resolution can then be analyzed using a method of choice because

the data is of the same dimensionality. In Publication I, we experiment

with mixture models and pattern mining algorithms generating credible

results for multiresolution chromosomal aberrations data.

The data transformation methods are suitable for analysis requiring

high processing speed and robustness. One of such application area is

stream data mining [3, 50, 52, 159] where the requirements are efficient

processing and robustness in analysis against minor changes occurring

in the data. Data transformation methods are efficient because their

computation is simple and are robust against small changes and out-

liers; for the data transformation methods are deterministic given the

structure of the multiresolution phenomena. Furthermore, data transfor-

mation methods are suitable for applications requiring single resolution

models for multiresolution data. In hindsight, the data transformation

methods lack probabilistic interpretation. Adding stochasticity in those

methods is a possible future work, for example, with foundations on Potts

model [15, 135].

5.2.2 Merging of Mixture Components

In Publication III, we model multiresolution data by generating mixture

models in each resolution separately in such a way that the models in

each resolution incorporate the information from other data resolutions.

The experiments with chromosomal aberrations data show multiresolu-

tion mixture models incorporating the interactions between data resolu-

tions produce better results compared to the individually trained single

resolution models. The method is suitable for application areas that re-

quire models in each level of processing resolution such as image process-

ing, and computer vision [145]. Furthermore, experiments in Publication

III have shown that merging of mixture components also helps in avoiding

local optima when experimented on the two single resolution models.

Merging of mixture components from different mixture models aids in

modelling interaction among the mixture models in different resolutions.

An approximation of symmetric KL divergence is used to compare the

similarity of the components in the mixture model. The similar compo-

nents are then merged. However, the convergence analysis of KL diver-

gence is not studied in detail in Publication III. Furthermore, upsampling

and downsampling of the parameters of the mixture model adds another

complexity to the methodology. Additionally, improvements of the mul-
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tiresolution mixture model and avoidance of local optima in single res-

olution mixture model have been verified only by the empirical experi-

ments. However, solid mathematical foundations and the proofs for the

improvement are missing. One direction of future work could focus on

mathematical proofs for the empirical evidence in merging components

for multiresolution modelling.

5.2.3 Multiresolution Mixture Components

In Publication IV, a single multiresolution mixture model with multires-

olution mixture components are proposed and experimented using mul-

tiresolution chromosomal aberrations dataset. Only a single multiresolu-

tion model is generated in Publication IV, which is unlike Publication III

where a model is generated for each data resolution. The individual mix-

ture components provide the functionality of Bayesian networks. The pro-

posed model is suitable for the situations requiring generative modelling

prowess of probabilistic models. In Publication IV generative property of

the Bayesian network helps imputing the missing resolutions of the data.

Furthermore, the proposed multiresolution mixture model could be appli-

cable in any domain where the network structure in the multiresolution

data is consistent across the dimensionality, for example, in the image

processing domain.

The mixture components used as a Bayesian network model the depen-

dency among the nodes in the network. In addition each node requires at

least two probability values describing the probability of the node given

the probability of its parent node [9]. In contrast, the EM algorithm as-

sumes IID distributions for the samples [114]. Additionally, the EM algo-

rithm provides only a single probability value for a node, i.e., probability of

a random variable (θ) taking the value 1; two if you consider 1 - the given

probability (1− θ). Hence, we transform the nodes to a vector representa-

tion to learn the mixture models via the EM algorithm. For this reason,

future work in multiresolution mixture modelling could be to develop EM

algorithm to directly learn the parameters of mixture models when the

components are not vectors but a network. Furthermore, transformation

network representation in multiresolution mixture model to vectors and

then learning the mixture models using the EM algorithm requires struc-

tural similarity of networks used as the different mixture components.

Therefore, the future work could focus on relaxing this requirement.
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5.2.4 Multiresolution Analysis by Semantic Data Mining

In Publication V, we propose a three part methodology for comprehen-

sive analysis of the multiresolution data. We use clustering results from

the mixture models as the labels for the semantic data mining algorithm.

The additional background knowledge consists of taxonomy of hierarchy

of regions, fragile sites, virus integration sites, amplification hotspots, and

cancer genes. We use banded matrices to visualize the clusters from mix-

ture models and the rules from semantic data mining algorithm. The pro-

posed method is suitable for both labeled and unlabeled data as cluster

indices can be used as class labels in semantic data mining. Furthermore,

banded matrix provides the visualization aspect to the analysis for de-

tailed study of the data. Thus, the method is also suitable for rigorous

analysis of multiresolution data.

Every system in the world is connected with one another and each sys-

tem effects the other system. Consequently, understanding one system

can help understand another system better. In this scenario, knowledge

or understanding of one system can be used as a background information

to understand another system. These methods are applicable in bioinfor-

matics as interacting systems produce different datasets. Similarly, the

proposed methodology could be applicable in natural language process-

ing [107] because the additional background knowledge in natural lan-

guage processing are available in form of ontologies such as the semantic

web.

The three part methodology proposed in Publication V takes as an in-

put only data in a single resolution. Multiresolution analysis is achieved

by using the taxonomy of multiresolution hierarchy as an additional back-

ground knowledge to the methodology. In the future, the semantic pattern

mining algorithms can be developed to include data in multiple resolu-

tions simultaneously in addition to the taxonomy of hierarchy of regions.
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CHAPTER 6

SUMMARY AND

CONCLUSIONS

“A story has no beginning or end: arbitrarily

one chooses that moment of experience from

which to look back or from which to look ahead.

”— GRAHAM GREENE

The End of the Affair (1951)

Synopsis

This chapter summarizes the contributions of the thesis and draws conclu-

sion from the research. The chapter also discusses the overall future research

perspectives in multiresolution modelling domain.

6.1 Summary

In traditional machine learning and data mining scenario data analysed

is from a single source represented in a single resolution. In current age

of big data, the challenge is to analyse massive set of datasets, i.e., the

challenge is to analyse multiple datasets within a single analysis. The

multiple datasets can be available in different representations. Analysis

of data in multiple representations needs methods and algorithms suit-

able for different situations and application areas. Analysis of data in

multiple representations within a single analysis framework also caters

the needs of data hungry algorithms.
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The work in this thesis has concentrated in developing algorithms and

methods to address the challenges in modelling data in multiple represen-

tations. In this thesis, multiple representations aspect is provided by the

data represented in multiple resolutions. The algorithms especially cov-

ers mixture models and semantic data mining methods. Different meth-

ods and algorithms have been developed to analyse multiresolution data

suitable for different situations and application areas.

The data transformation methods proposed in the thesis transforms

data across different resolutions to integrate datasets in different reso-

lutions providing an opportunity to analyse data in a single resolution.

Additionally, a computationally efficient algorithm to train a series of

mixture models to aid model selection algorithms is developed in the the-

sis. Similarly, an algorithm based on merging of mixture components to

model multiresolution data produces models in each resolution incorpo-

rating information from other data resolutions. In addition, a multireso-

lution mixture model uses the domain knowledge to design multiresolu-

tion mixture components which are individually functional as Bayesian

networks. Furthermore, a semantic data mining algorithm developed in

this thesis uses knowledge of hierarchy of multiresolution data and other

background knowledge to extract rules from the data. The algorithms and

methods provide plausible improvements in multiresolution data analysis

compared to the individual analysis in the single resolution data.

6.2 Future Work

The multiresolution analysis methodology developed in this thesis are at

its initial stage. The thesis forms the foundations for multiresolution mod-

elling and the algorithms and methods proposed in the thesis need further

research on the scope and general applicability. The methods are tested

only on datasets such as the chromosomal aberrations datasets, publicly

available datasets, and simulated datasets. However, the methods have

not been developed as a tool with rigorous testing for general applicabil-

ity. The improvements necessary for each of the developed methods and

algorithms are discussed in Chapter 5. This section discusses the future

improvements in overall multiresolution analysis domain. It includes de-

veloping the EM algorithm to learn the multiresolution components of the

mixture models. The EM algorithm used in this thesis learns the maxi-

mum likelihood parameters when networks were arranged as vectors.
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Throughout the thesis, mixture models are used in hard clustering set-

ting, i.e., one sample is only associated with one component distribution

generating the maximum posterior probability. Mixture models can also

be used in a soft clustering setting where posterior probability can be

used to assign a sample to more than one component distribution. Soft

clustering setting is beneficial in the chromosomewise analysis of chro-

mosomal aberrations data because some cancer samples with the same

known cancer labels can be grouped in two different clusters. Soft cluster-

ing of chromosomal aberrations data can also be justified because of the

heterogeneous nature of cancer.

In chromosomewise analysis, two exactly similar cancer samples can

be labelled as two different cancers because other chromosomes that are

likely to discriminate cancers will be ignored in the current analysis. Fur-

thermore, we have 73 different types of cancer labels for data in coarse

resolution. Therefore, we can use multiclass classification to analyse the

data. In a broader context, multiresolution multiclass classification can

be a way forward in analysis of multiresolution data.

We need to consider multiresolution data because of the large number

of cancer types and smaller number of samples making multiclass classi-

fication a challenging task. Furthermore, labels are unavailable for data

in fine resolution. In such situations, learning from ambiguous labels [77]

or partial labels [35] using clustering labels or the cancer types can help

in the analysis of chromosomal aberrations data. Finally, analysis of mul-

tiresolution modelling also requires visualisation of the data as well as

the results. Therefore, visualisation is also another direction for future

work. In Publication V, we use banded matrix to visualise rules and clus-

ter only in single resolution. Initial ideas to visualise multiresolution can

borrow from a popular visualisation method in information visualisation

known as the Fish eye view [48]. Similar to multiresolution data, Fish

eye view also visualises data, providing users a detailed and also a global

view.
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