
9HSTFMG*afjahf+

To Maria

Acknowledgements

i

Acknowledgements

Dear Reader, thank you for your interest on this doctoral dissertation. I hope
you will find the work interesting and useful for your needs. Before consider-
ing the ideas and results, however, I wish you could use a few moments for the
acknowledgments presented below.

This work was done in the Aalto University department of Computer Science
and Engineering. The daily work was conducted in the research projects of
Software Process Research Group funded by TEKES and industry partners.
Part of this work was also funded by SoSE (Doctoral Programme on Software
and Systems Engineering). These organizations deserve my acknowledge-
ments. They have enabled the doctoral dissertations of many others, too.

Dear professor Casper Lassenius, the head of Software Process Research
Group, you provided me the necessary funding and supported me with inter-
esting insights and critical comments, which greatly improved this disserta-
tion. You also set me tough goals and schedules that forced me keep on going.

Dear professor Mika V. Mäntylä and postdoctoral researcher Juha Itkonen, I
truly admire your in-depth knowledge about software engineering. Your crea-
tivity is beyond comparison. Mika, you helped me through the research arti-
cles. Juha, you provided valuable instructions and academic guidelines espe-
cially in the latter parts of the dissertation.

I also got help from the researches of Software Business and Engineering In-
stitute. Dear SoberIT people, you reviewed my articles and supported me by
being yourself. Thank you, Jari Vanhanen, Kristian Rautiainen, Jarno Vä-
häniitty, Ville Heikkilä, Maria Paasivaara, and many others. Either should be
forgotten the co-authors who greatly improved the articles. Thank you, Mi-
ka V. Mäntylä, Jari Vanhanen, Casper Lassenius, Juha Itkonen, Risto Virta-
nen, and Juha Viljanen. It has been a pleasure to work with you.

Furthermore, our industrial partners made this work possible and reasona-
ble. They opened the doors for real-world software engineering, which made
my observations and research ideas possible. I also want to thank the anony-
mous software engineering students who participated in my research as sub-
jects. Additionally, I want to thank the experienced software engineering stu-
dents who participated in the development of ARCA-tool. Thank you Risto Vir-
tanen, Juha Viljanen, Helin Anssi Matti, Hovi Roope, Jaanto Jari, Kekäle Mi-
ka, Kere Markus, Koistinen Joona, Laukkanen Eero, Patana Jussi, Rihtniemi
Pekka, Saarinen Jerome, Sevenius Toni, Valjus Mikko, and Viitanen Jonne.

Acknowledgements

ii

I also acknowledge all of my friends and family members supporting me, and
my closest ones, during this work. Especially, thank you Lasse Makkonen,
Jarkko & Anneli Lehtinen, and Pirkka T. Pekkarinen whose experience and
personal example guided me to finalize this project.

Finally, the greatest support came from my daughter and wife. Dear Iia
Lehtinen, your birth is the moment of my life and it encouraged me to finalize
this work. Every single breath you have taken has also changed my life. You
have truly told me what to do next. Dear Maria Lehtinen, this thesis would not
have been made without your love, support, and understanding. Your encour-
aging words and the newer ending trust on my work were the success factors
of this dissertation. This book is dedicated to you. I love you from the bottom
of my heart.

Espoo, October 2014

Timo Lehtinen
Timo Olli Antero Lehtinen

List of publications

iii

List of publications

This doctoral dissertation consists of two parts, a summary, and of the follow-
ing articles which are referred to in the text by their numerals (I-V).

I Development and evaluation of a lightweight root cause
analysis method (ARCA method) – Field studies at four soft-
ware companies
Timo O.A. Lehtinen, Mika V. Mäntylä and Jari Vanhanen
Journal of Information and Software Technology, Volume 53, Issue
10, October 2011, Pages 1045–1061.

II What are problem causes of software projects? Data of root
cause analysis at four software companies
Timo O.A. Lehtinen and Mika V. Mäntylä
Proceedings of International Symposium on Empirical Software En-
gineering and Measurement, 2011, Pages 388–391.

III A tool supporting root cause analysis for synchronous retro-
spectives in distributed software teams
Timo O.A. Lehtinen, Risto Virtanen, Juha O. Viljanen, Mika V. Mänty-
lä and Casper Lassenius
Journal of Information and Software Technology, Volume 56, Issue 4,
April 2014, Pages 408–437.

IV Perceived causes of software project failures – An analysis of
their relationships
Timo O.A. Lehtinen, Mika V. Mäntylä, Jari Vanhanen, Juha Itkonen
and Casper Lassenius
Journal of Information and Software Technology, Volume 56, Issue 6,
June 2014, Pages 623–643.

V An experimental comparison of using cause-effect diagrams
and simple memos in software project retrospectives
Timo O.A. Lehtinen, Mika V. Mäntylä, Juha Itkonen and Jari Vanha-
nen
Journal of Systems and Software (2014), 26 pages, in revision.

Author’s contribution

iv

Author’s contribution

In articles I–V, the author contributed significantly to the creation of the re-
search ideas. He also contributed significantly to the data collection and anal-
yses including revealing the main findings for conclusions. Additionally, he
wrote the original manuscripts. The co-authors provided comments, im-
provement ideas and criticisms for each article. Additionally, they helped to
refine the text by changing wording, providing clarifications, adding some ref-
erences, improving argumentation, and refining the discussion.

Article I: Development and evaluation of a lightweight root cause analysis
method (ARCA method) – Field studies at four software companies
The author developed the ARCA method and conducted the literature review.
He also collected and analyzed the data from the industrial cases. The co-
authors participated in the observations and they provided minor improve-
ment ideas for the ARCA method.

Article II: What are problem causes of software projects? Data of root cause
analysis at four software companies
The author collected and analysed the research data. The co-author participat-
ed in the interpretation of results.

Article III: A tool supporting root cause analysis for synchronous retrospec-
tives in distributed software teams
The author steered the development of the software tool and provided its re-
quirements. He also observed the industrial data collection and wrote down
notes for the data analysis. He conducted the data analyses.

Article IV: Perceived causes of software project failures – An analysis of
their relationships
The author conducted the data collection and analysis. The results were inter-
preted together with the co-authors. Additionally, one co-author helped the
author to conduct inter-rater agreement on the results.

Article V: An experimental comparison of using cause-effect diagrams and
simple memos in software project retrospectives
The author conducted the data collection and analysis. The co-authors partici-
pated in the interpretation of results.

Terminology and abbreviations

v

Terminology and abbreviations

ARCA The RCA method that was developed in this study.

Bridge cause A cause which is related to another process area than

the one of its effect. A bridge cause explains how two

process areas are related to one another.

Cause-effect dia-
gram

A diagram of causes and effects including two types of

causal structures. List-based structures: a fishbone

diagram, a fault tree diagram, a logic tree, and a causal

factor chart. Network-based structures: a directed

graph and a matrix diagram.

Causal relation-
ship

A cause-and-effect relationship between two mutually

exclusive events, i.e. a cause and its effect.

Causal structure An assembly of causes and effects which structures

their mutual relationships.

Causal model A complete specification of the causal relationships

that govern a given domain.

Cause entity An entity of causes and effects that are reasonable to

process together.

Cause type Expresses what the cause is. For example, a cause

“There is lack of instructions on what I should do” has

a type “People”.

Cause sub-type More detailed description of the cause type. For ex-

ample, “instructions & experiences” is a sub-type of

People.

Characteristic of
detected cause
(CDC)

A combination of the process area and cause type for

an individual cause.

Depth level The number of cause-effect pairs from a cause to the

target problem. For example, Depth level=1 indicates

causes which directly explain the target problem and

Depth level=2 indicates the causes which explain the

causes having Depth level=1.

Terminology and abbreviations

vi

Hub cause A sub-cause which explains more than one cause. See

also NoH.

Method effective-
ness (ME)

ME indicates the number of detected causes per time

unit.

Number of hub
causes (NoH)

The number of hub causes in a causal structure.

Perception of par-
ticipants (PP)

PP reflects the evaluations of participants.

Process area An area of work and responsibility which represents

one part of the whole software development process.

For example, software testing.

Proposed cause A cause of an event which is proposed for process im-

provement activities. See also Selected cause.

Size of depth lev-
els, SoDL(x)

SoDL(x) is a function that indicates the number of

causes in a depth level x. See also Depth level.

Software project
failure

A recognizable failure to succeed in the cost, schedule,

scope, or quality goals of the project. The “recogniza-

ble” means a failure perceived as severe enough to be

prevented in the upcoming projects.

Software project
retrospective

A post-project activity where a group of people “looks

back” on the software project in order to facilitate

learning and improvements based on the experiences

gained during the project. Post-project review is a

synonym for a retrospective.

Root cause analy-
sis (RCA)

A structured investigation of a problem which takes a

problem as an input and provides a set of its causes as

an output.

RCA facilitator A person who leads an RCA team.

Root cause An underlying cause of the target problem that the

management has the power to control.

Selected cause A cause of an event which is selected for software pro-

cess improvement activities. See also Proposed cause.

Sub-cause A cause which explains another cause.

Target problem A problem which is analysed by using RCA.

Table of contents

vii

Table of contents

Part I: Summary .. 1
1. Introduction .. 3

1.1 Motivation ... 3
1.2 Study objectives ... 4
1.3 Structure of the thesis ... 5

2. Related work ... 6

2.1 The law of causality in software engineering 6
2.2 Definitions of root cause analysis ... 7
2.3 RCA in software process improvement 8

2.3.1 RCA of retrospective methods ... 8
2.3.2 The environment of use ... 9

2.4 Gaps in the prior studies of RCA ... 10

2.4.1 Work practices of RCA ... 10
2.4.2 Perceptions of practitioners .. 10
2.4.3 Outcome of RCA ... 11

3. Research approach and methodology ... 12

3.1 Research questions ... 12

3.1.1 Development of the ARCA method and ARCA-tool 12
3.1.2 Ease of use and cost-efficiency evaluations 13
3.1.3 Outcome of RCA with software project failures 14

3.2 Research articles .. 14
3.3 The framework of design science ... 15

3.3.1 The environment .. 16
3.3.2 The knowledge base .. 16
3.3.3 The artefact design ... 16

3.4 Development of the ARCA method and ARCA-tool 17

3.4.1 Development of the ARCA method 17
3.4.2 Development of ARCA-tool .. 17

3.5 Field study evaluations ...18

3.5.1 Field studies at Cases 1-4 .. 19
3.5.2 Field studies at Cases 5-6 .. 20

3.6 Controlled experiment evaluations .. 21

3.6.1 Research context ... 21
3.6.2 Experiment design ... 22

Table of contents

viii

3.6.3 Response variables and research hypothesis 24
3.6.4 Controlling undesired variation ... 25
3.6.5 Data analysis .. 25

3.7 Case study evaluations ... 26

3.7.1 Data collection .. 26
3.7.2 Data analysis .. 27

4. The ARCA method .. 30

4.1 Synthesis of RCA methods from literature 30

4.1.1 Target problem detection ... 31
4.1.2 Root cause detection .. 31
4.1.3 Corrective action innovation .. 32

4.2 Overview of the ARCA method .. 33

4.2.1 Step 1: Target problem detection ... 33
4.2.2 Step 2: Root cause detection .. 34
4.2.3 Step 3: Corrective action innovation 35
4.2.4 Step 4: Documentation of the results 36

5. ARCA-tool ... 37

5.1 Comparison of RCA software tools .. 37

5.1.1 Ease of adoption ... 37
5.1.2 Real-time collaboration .. 37
5.1.3 Cause-effect diagramming .. 38
5.1.4 Corrective action development ... 38
5.1.5 Support for voting ... 38
5.1.6 Support for knowledge management 38
5.1.7 Costs .. 38

5.2 Overview of ARCA-tool .. 39

5.2.1 Initializing ARCA-tool .. 39
5.2.2 Target problem detection .. 40
5.2.3 Root cause detection ... 40
5.2.4 Corrective action innovation ... 40
5.2.5 The documentation of results .. 41

6. Evaluation results .. 42

6.1 Evaluation of the ARCA method .. 42

6.1.1 Evaluation of the ARCA method ease of use 43
6.1.2 Evaluation of the ARCA method cost-efficiency44
6.1.3 Evaluation of the ARCA method outcome 45

6.2 Evaluation of ARCA-tool .. 47

6.2.1 Evaluation of the ease of use of ARCA-tool.......................... 47
6.2.2 Evaluation of the usefulness of ARCA-tool 48

6.3 The cause types, process areas, and their relationships 48

6.3.1 Process areas ... 48
6.3.2 Cause types .. 48
6.3.3 Similarities of the causes of failures49

Table of contents

ix

6.3.4 Common causal relationships bridging the process areas .. 50

7. Discussion .. 51

7.1 Lightweight RCA method and software tool 51

7.1.1 Common steps of RCA methods and their work practices ... 51
7.1.2 Software tools for the RCA of retrospectives 52

7.2 Perceived ease of use and cost-efficiency 53

7.2.1 Ease of use and cost-efficiency of the ARCA method 53
7.2.2 Improving the ARCA method with ARCA-tool.................... 54

7.3 The outcome of RCA with software project failures................ 55

7.3.1 Frequently used process areas and cause types 55
7.3.2 The role of bridge causes ... 56
7.3.3 Feasible targets for process improvement activities57

7.4 Implications... 58
7.5 Evaluation of the research ... 58

7.5.1 Construct validity .. 58
7.5.2 Internal validity ... 60
7.5.3 External validity... 60
7.5.4 Reliability .. 61

8. Conclusions and future work .. 63

8.1 Conclusions ... 63
8.2 Future work ... 64

References ... 65
Part II: Articles ... 73

Part I: Summary

1

Part I: Summary

Introduction

3

1. Introduction

“Everything that exists, and everything that happens, exists or happens as a
necessary consequence of a previous state of things.”

—T. N. Thiele (1931)

The discipline of today’s software engineering (SE) originates from the soft-
ware project problems introduced in the late 1960s (Naur and Randel 1969).
Up to 34 percent of today’s software projects are either unsuccessful or can-
celled (El Emam and Koru 2008). Software project retrospectives have been
used to increase the success rate of upcoming software projects. Software pro-
ject retrospectives are post-project activities wherein a group of people “looks
back” to the software project in order to facilitate learning and make im-
provements based on the experiences gained during the project (Birk,
Dingsøyr, and Stålhane 2002).

1.1 Motivation

Root cause analysis (RCA) is a structured investigation of a problem to detect
the underlying causes that need to be prevented (Latino and Latino 2006). It is
a commonly recommended technique for problem prevention (Latino and La-
tino 2006; Andersen and Fagerhaug 2006; Ammerman 1998; Cooke 2003;
Rooney and Vanden Heuvel 2004). It takes the problem as an input and pro-
vides a set of its perceived causes including the perceived causal relationships
as an output. A causal relationship refers to the causal relationship between
the cause and its effect (Chillarege et al. 1992).

In the SE context, RCA has been introduced as a method for software project
retrospectives (Dingsøyr, Moe, and Nytrø 2001). It has been claimed to help in
developing effective corrective actions (Rooney and Vanden Heuvel 2004). For
example, a 50 % decrease in defect rates (Card 1998), a 53 % savings in costs,
and a 24 % increase in productivity (Leszak, Perry, and Stoll 2000) have been
reported. However, the work practices of the RCA methods have been intro-
duced on too general a level to be adopted as such. Additionally, the subject
matter experts’ perceptions of the RCA methods have not been studied sys-
tematically. Furthermore, its added value for software project retrospectives
has not been widely studied.

Introduction

4

1.2 Study objectives

The main objective of this thesis is to develop and evaluate a lightweight RCA
method and software tool for software project retrospectives in order to pro-
vide empirical evidence on its feasibility for software project failure prevention
in small- and medium-sized (SME) organizations. Most of the prior studies on
RCA have been conducted in large organizations (Card 1998; Leszak, Perry,
and Stoll 2000; Jalote and Agrawal 2005; Gupta et al. 2008; Grady 1996;
Mays 1990), but it could be useful in SME organizations too, as also noted by
Stålhane et al. (2003). However, the optimal RCA method for SME organiza-
tions is likely different than the one for large organizations. Therefore, study-
ing how to use RCA in the retrospectives of SME organizations is reasonable.

The thesis contributes to three research problems, which are introduced
thoroughly in Section 2.4. The first research problem is to explain how to con-
duct RCA in collocated and distributed software project retrospectives? The
second research problem is to study whether RCA is perceived as efficient and
easy to use in software project retrospectives? The third research problem is
to determine whether the outcome of RCA indicates how the causes of soft-
ware project failures are interconnected?

While considering the research problems listed above, the thesis makes three
scientific contributions. The first contribution is the lightweight RCA method
and supporting software tool. These two artefacts contribute to the first re-
search problem as they introduce how RCA can be conducted in collocated and
distributed software project retrospectives (see articles I and III).

The second contribution is an empirical evaluation of the lightweight RCA
method and software tool (see articles I, III, and V). The empirical evaluation
contributes to the second research problem as it introduces how the software
engineering practitioners perceived the ease of use, cost-efficiency, and out-
come of the RCA method and its software tool. The empirical evaluation is di-
vided into various levels of software project retrospectives. These include
team-level retrospectives, organization-level retrospectives, and company-
level retrospectives, ultimately aiming to reveal the causes of software project
failures. Additionally, the evaluation covers the use of collocated and distribut-
ed retrospectives.

The third contribution is a detailed, in-depth analysis of the outcome of RCA
(see articles II and IV). The analysis is limited to four cases of software project
failures. The outcome analysis contributes to the third research problem as it
provides empirical evidence on the feasibility of using RCA to explain why a
software project failed, additionally, where the causes of the failure occurred
and how the causes were related to one another.

The overall research approach in this thesis is design science (Hevner et al.
2004) including empirical evaluation with the mixed-methods approach
(Shull, Sjøberg, and Singer 2008) that combines three main research ap-
proaches: observation-based industrial field studies (Lethbridge, Elliott Sim,
and Singer 2005), case studies (Yin 1994), and controlled experiments (Juristo
and Moreno 2003).

Introduction

5

1.3 Structure of the thesis

This thesis consists of two parts: the dissertation summary and research arti-
cles. The dissertation summary starts with a brief introduction to the related
work in Section 2, which includes the theorization and the use of RCA in SE
context. The section ends with a discussion of the three research problems ad-
dressed in this thesis. Thereafter, Section 3 presents the research objectives
and methods including the use of the design science framework. Section 4 in-
troduces the lightweight RCA method, and Section 5 presents the developed
software tool. The results of the empirical evaluation and the in-depth analysis
of the RCA method outcome are summarized in Section 6. Section 7 discusses
the research questions, implications, and threats to validity. Finally, Section 8
states the conclusions and directions for future work. The second part includes
the research articles.

Related work

6

2. Related work

This section starts with the law of causality and discusses its relevance to ana-
lysing the causes of SE problems. Thereafter, the concept of RCA and an ex-
planation of how it is used in software project retrospectives are introduced.
The section ends with a discussion of gaps in the existing research.

2.1 The law of causality in software engineering

The underlying theory of problem prevention is based on the law of causality,
which has been considered by scientists and philosophers starting with Aristo-
tle (Álvarez 2009), Hume (1896), and recently Pearl (2000). The law of causal-
ity states that the occurrence of problems is the consequence of a previous
state of actions (Thiele 1931). Causality refers to the causal relationship be-
tween sequential and mutually exclusive events (Granger 1988), i.e. the rela-
tionship between a cause and its effect (Chillarege et al. 1992). A causal model
refers to “a complete specification of the causal relationships that govern a giv-
en domain” (Galles and Pearl 1997), i.e. it explains what happened, where it
happened, and why it happened.

I make three assumptions based on the law of causality. First, the problems
of software projects follow the law of causality. This assumption is logical be-
cause the software development work is based on sequential and mutually ex-
clusive events, a set of linked activities (Wang and King 2000) in which the
previous state of actions affect the latter state of actions. Thus, the law of cau-
sality exists also with software project problems. Prior studies support this as-
sumption. Cerpa and Verner (2009) presented that causal relationships be-
tween the causes of software project failures likely exist. McLeod and Mac-
Donell (2011) presented that the factors of the software project outcome are
interconnected through multidimensional relationships. Furthermore,
Xiangnan et al. (2010) presented that the causes of software project failures
are caused by actions being interconnected through “internal” and “external”
causes.

Second, the problems of software projects are interconnected over the pro-
cess areas. This assumption divides the sequential and mutually exclusive
events of software development into “software process areas”, logical areas of
different types of software development work. The prior studies indicate that
software development process areas are interconnected (Monteiro et al. 2010).
Therefore, it is reasonable to assume that a problem in one process area could
also cause problems in other process areas.

Related work

7

Third, the problems of software projects reoccur in future projects if the re-
lated causal relationships are not detected and controlled. Prior studies have
found many causes common in software project failures, which mean that the
causes of failures transfer from prior projects to upcoming projects if they are
not controlled or eliminated (Card 1998). Respectively, controlling the causes
of problems has been introduced as valuable (Dingsøyr, Moe, and Nytrø 2001;
Card 1998; Leszak, Perry, and Stoll 2000; Jalote and Agrawal 2005; Grady
1996; Kalinowski, Travassos, and Card 2008; Bjørnson, Wang, and Arisholm
2009; Al-Mamory and Zhang 2009; Siekkinen et al. 2008; Traeger, Deras, and
Zadok 2008; Stålhane 2004; Bhandari et al. 1993; Jin et al. 2007). Thus, de-
tecting and controlling the causal relationships of common software project
problems is also practically useful.

2.2 Definitions of root cause analysis

In the terminology of this thesis, root cause analysis is a systematic process of
detecting a target problem, detecting and organizing its causes, and recogniz-
ing its root causes. This definition considers the use of RCA as a technique for
detecting the causes of a problem. In the prior literature, RCA has been intro-
duced as a method for decreasing the likelihood of the reoccurrence of the
problems (Rooney and Vanden Heuvel 2004; Card 1998; Leszak, Perry, and
Stoll 2000; Card 1993). However, there seems to be a slight disagreement
whether RCA is considered only a structured investigation of a problem (Lati-
no and Latino 2006; Ammerman 1998; Leszak, Perry, and Stoll 2000; Bjørn-
son, Wang, and Arisholm 2009) or whether it also includes the development of
corrective actions (Andersen and Fagerhaug 2006; Rooney and Vanden Heu-
vel 2004; Card 1998; Card 1993).

Furthermore, the prior literature has introduced a term, “root cause”, which
has been used to indicate a target problem cause, which is perceived as im-
portant to control and feasible for process improvement activities. Conceptual-
ly, a target problem could be affected with numerous root causes. In the ter-
minology of this thesis, a root cause is an underlying cause of the target prob-
lem that the management has the power to control. This definition considers
the root cause as an internal cause of the company (Xiangnan, Hong, and Wei-
jie 2010). In the prior literature, many authors have defined a root cause as a
target problem cause that the management has the power to control (Andersen
and Fagerhaug 2006; Ammerman 1998; Rooney and Vanden Heuvel 2004;
Livingstone, Jackson, and Priestley 2001). A root cause has also been defined
as any underlying cause of the target problem (Rooney and Vanden Heuvel
2004). Additionally, a root cause has been defined as the deepest cause at the
end of the causal structure (Andersen and Fagerhaug 2006; Ammerman
1998). However, this latter definition is contradictory due to the law of causali-
ty (see Section 2.1) as the “deepest causes” do not exist if everything that exists
is caused by some earlier actions.

Related work

8

2.3 RCA in software process improvement

One goal of software process improvement (SPI) is to prevent software project
failures. In order to reach this goal, SPI requires in-depth knowledge about the
problems of past software projects (Boh, Slaughter, and Espinosa 2007; Ed-
mondson 1996; Von Zedtwitz 2002). Such in-depth knowledge has been ob-
tained from experienced individuals by using software project retrospectives
(Dingsøyr 2005) at various levels, including the levels of teams (Birk,
Dingsøyr, and Stålhane 2002; Bjørnson, Wang, and Arisholm 2009), organiza-
tions, and companies (Stålhane et al. 2003; Kalinowski, Travassos, and Card
2008). The team-level retrospectives are conducted by software teams and are
aimed to analyse the problems relevant to the project goals of the teams. The
organization-level retrospectives are conducted with participants representing
the stakeholders of the whole software organization and are aimed to analyse
the problems relevant to the project goals of the organization. The company-
level retrospectives are conducted with participants representing the stake-
holders of the whole software company, which aims to analyse the problems
relevant to the company goals.

Figure 1 summarizes the flow of improvements from problematic software
projects towards improved ones. The flow starts by recognizing the problems
of past projects. It continues by using the team-, organization-, and company-
level retrospectives analysing why the problems occurred, and it ends by con-
trolling those problems in future projects. It presents the use of RCA as part of
making improvements over the software projects, i.e. to explain why the prob-
lems of past projects occurred (Dingsøyr, Moe, and Nytrø 2001).

2.3.1 RCA of retrospective methods

In software project retrospectives, the use of RCA results in the creation of
perceived causal models for the target problems (Stålhane et al. 2003). Soft-
ware project retrospectives have utilized two RCA methods: 1) defect causal
analysis (Bhandari et al. 1993) and 2) post-mortem review (Collier, DeMarco,
and Fearey 1996). Both of these methods follow two work phases: 1) the detec-
tion of a target problem and 2) the detection of root causes. The RCA methods

Figure 1. The flow of improvements from problematic software projects.

Problematic
prior software

projects

Team level
retrospectives

(RCA)

Organization
level

retrospectives
(RCA)

Company
level

retrospectives
(RCA)

Improved
future

software
projects

Related work

9

vary in terms of their aim and the work practices used in the work phase of the
detection of a target problem. Instead, the methods follow similar work prac-
tices in the work phase of the detection of root causes. These two work phases
are discussed below.

The detection of a target problem is the first phase of RCA methods, and its
goal is to define the target problem for the second work phase. In defect causal
analysis, the target problems include specific types of software defects. In a
post-mortem review, the target problems may include any type of SE problems
faced by individuals. Furthermore, the work practices of defect causal analysis
utilize formal defect sampling combined with statistical methods including de-
fect classifications and Pareto analysis (Card 1998). In comparison, the work
practices of a post-mortem review are less formal and may include project sur-
veys (Collier, DeMarco, and Fearey 1996) and brainstorming with individuals
(Bjørnson, Wang, and Arisholm 2009). Furthermore, a post-mortem review
also includes the detection of project success factors (Collier, DeMarco, and
Fearey 1996), whereas defect causal analysis only detects problems that have
occurred.

The detection of root causes is the second phase of RCA methods, and its
goal is to explain why the target problems occurred. The RCA methods com-
monly use a retrospective meeting where a group of people analyse why the
target problem occurred (Card 1998; Stålhane et al. 2003). There the detection
of target problem causes is conducted by constantly asking “why?” for every
cause of the target problem (Jalote and Agrawal 2005). Additionally, cause-
effect diagrams are commonly used to organize and register the target problem
causes based on their perceived causal relationships (Card 1998; Bjørnson,
Wang, and Arisholm 2009; Stålhane 2004).

2.3.2 The environment of use

RCA has been used in the project retrospectives of small and large organiza-
tions. However, most prior studies on RCA have been conducted in large or-
ganizations (Card 1998; Leszak, Perry, and Stoll 2000; Jalote and Agrawal
2005; Gupta et al. 2008; Grady 1996; Mays 1990), as also noted by Stålhane et
al. (2003). In large organizations, the optimal work practices for detecting and
defining the target problems seem to be different than in small organizations.
In large organizations, the target problems are detected with problem sam-
pling (Card 1998; Leszak, Perry, and Stoll 2000; Jalote and Agrawal 2005;
Gupta et al. 2008; Grady 1996; Mays 1990; Collier, DeMarco, and Fearey
1996). Instead, in small organizations, the target problems are detected by
brainstorming (Dingsøyr, Moe, and Nytrø 2001; Stålhane et al. 2003).

A lightweight RCA method has been defined as an RCA method that can be
conducted in a retrospective meeting lasting “half a day” (Dingsøyr, Moe, and
Nytrø 2001). It seems that the use of brainstorming in the target problem de-
tection phase makes the RCA method lightweight, as the detection of target
problems can be conducted in the same retrospective meeting than the detec-
tion of root causes (Dingsøyr, Moe, and Nytrø 2001). Such an RCA method
does not require heavy start-up investments and is adaptable to various target

Related work

10

problems. Regarding the prior literature, lightweight RCA methods are feasi-
ble for small companies (Stålhane et al. 2003), whereas large organizations
require more effort in order to define the target problem for RCA (Card 1998).
In large organizations, the target problem has to be well defined as otherwise
the number of target problem causes is too high (Jalote and Agrawal 2005).
Regarding the prior literature, the target problems of large organizations are
often related to software defects. The target problems of small companies, on
the other hand, have been related to high-level causes of software project fail-
ures, e.g. to estimation problems (Stålhane et al. 2003).

2.4 Gaps in the prior studies of RCA

There are three major gaps in the prior studies, which are considered in this
thesis. These gaps are presented in the following sub-sections.

2.4.1 Work practices of RCA

Retrospectives should be lightweight, because otherwise they are neglected
(Glass 2002). The concrete work practices of RCA are fairly little-studied in
the context of software project retrospectives. There are only a few studies
(Stålhane et al. 2003; Bjørnson, Wang, and Arisholm 2009; Dingsøyr 2005)
on how to use RCA to detect, organize, and select the root causes of a software
project failure. Additionally, the RCA methods presented by many authors are
either heavyweight or too generally introduced to be adopted as such, e.g. Card
(1998) introduces the mandatory phases of RCA but does not concretize how
the phases are conducted. Additionally, most of the prior studies on RCA have
been conducted in large organizations. Instead, an RCA approach could be
useful for SME organizations too, but it has been rarely studied in such con-
texts (Stålhane et al. 2003).

Furthermore, the need to conduct RCA in distributed retrospectives has been
introduced (Stålhane et al. 2003). However, there are no prior studies on how
to use RCA in such circumstances. Software tools are used in distributed retro-
spectives to support real-time collaboration and information exchange over
the distributed sites, but the prior tools (Terzakis 2011) do not enable the co-
creation of a cause-effect diagram. Thus, conducting RCA in distributed retro-
spectives becomes difficult. The first research problem follows.

Research problem 1: How can RCA be conducted in collocated and dis-
tributed software project retrospectives?

2.4.2 Perceptions of practitioners

RCA has been presented as a feasible approach to software project retrospec-
tives. Thus, it could be useful for software process improvement. However, its
perceived ease of use, cost-efficiency, and added value have not been widely
studied.

Related work

11

There are only a few studies that have compared the use of RCA with the ret-
rospectives which do not use it (Dingsøyr, Moe, and Nytrø 2001; Card 1998;
Stålhane et al. 2003; Stålhane 2004). Similarly, the RCA methods are not
widely compared with one another (Stålhane et al. 2003; Bjørnson, Wang, and
Arisholm 2009). The effort required to conduct RCA (Card 1998; Grady 1996;
Mays 1990) has also been neglected in most of the studies. Furthermore, how
participants experience RCA (Birk, Dingsøyr, and Stålhane 2002) is not widely
studied, i.e. do the software developers experience RCA as a useful approach
for lightweight retrospectives?

Although the prior studies of RCA are promising (Card 1998; Leszak, Perry,
and Stoll 2000), they do not indicate whether RCA is useful in retrospectives
in which problems other than technical quality deviations are analysed, e.g.
Stålhane et al. (2003). The second research problem follows.

Research problem 2: Is RCA perceived as efficient and easy to use in soft-
ware project retrospectives?

2.4.3 Outcome of RCA

RCA takes a problem as an input and provides the perceived causal relation-
ships as an output. Thus, theoretically, RCA could be a feasible approach to
explaining why a software project failed. It could reveal not only what hap-
pened and where it happened, but also why it happened—a gap in prior studies
on software project failures, discussed further in Article IV. In practice, how-
ever, RCA has not been widely reported as being feasible for such purposes.
There are only a few real-world studies (Stålhane et al. 2003) indicating that
RCA reveals any interconnections between the causes of software project fail-
ures. Instead, most of the industrial cases of RCA (e.g. Card 1998; Leszak, Per-
ry, and Stoll 2000; Jalote and Agrawal 2005; Gupta et al. 2008; Grady 1996)
have studied the causal relationships between target problems and their indi-
vidual causes only while disregarding the analyses of their mutual causal rela-
tionships. Thus, the real-world case studies on the use of RCA to explain the
perceived causal relationships of software project failures are scarce. The third
research problem follows.

Research problem 3: Does the outcome of RCA indicate how the causes of
software project failures are interconnected?

Research approach and methodology

12

3. Research approach and methodology

The main objective of this thesis is to develop and evaluate a lightweight RCA
method (called ARCA) and software tool (called ARCA-tool) for the software
project retrospectives of SME organizations. The overall research approach is
design science (Hevner et al. 2004). The approach includes artefact develop-
ment and empirical evaluation with the mixed-methods approach (Shull,
Sjøberg, and Singer 2008), that combines three main research approaches:
observation-based industrial field studies (Lethbridge, Elliott Sim, and Singer
2005), case studies (Yin 1994), and controlled experiments (Juristo and More-
no 2003).

This section starts by introducing the research questions (RQ) that are aimed
at contributing to the research problems (see Section 2.4). Thereafter, Section
3.2 presents the research articles (I-V). Section 3.3 introduces the framework
of design science and Sections 3.4 to 3.7 present the use of the framework in
the development and evaluation of the ARCA method and ARCA-tool. Figure 2
summarizes the linkages between the research problems, the research ques-
tions, and the studies of the thesis.

3.1 Research questions

The development and evaluation of the ARCA method and ARCA-tool answers
a total of seven research questions. These are introduced below.

3.1.1 Development of the ARCA method and ARCA-tool

There are two research questions about the first research problem, namely,
“How can RCA be conducted in collocated and distributed software project
retrospectives?” The studies of this thesis focused on creating knowledge
about the environment of use and the literature of RCA methods (Article I)
and RCA software tools (Article III).

Research question 1: What are the common steps of RCA methods, and
how are they to be conducted?
The first research question reviews prior RCA methods and synthetizes their
commonalities and work practices. This knowledge is thereafter used to devel-
op the ARCA method and ARCA-tool.

Research approach and methodology

13

Figure 2. The summary of the research approach linking the research problems, research ques-

tions, and studies of the thesis.

Research question 2: What software tools for RCA are introduced, and
how do they support software project retrospectives?
The second research question considers alternative software tools for RCA.
The research question reviews prior RCA software tools and compares their
main features for conducting RCA in collocated and distributed software pro-
ject retrospectives.

3.1.2 Ease of use and cost-efficiency evaluations

There are two research questions about the second research problem, “Is RCA
perceived as efficient and easy to use in software project retrospectives?” The
studies of this thesis include two industrial field studies introduced in articles I
(Cases 1-4) and III (Cases 5-6). Additionally, a controlled student experiment
was conducted (Article V).

Evaluation

Literature Review Literature Review

RQ1 RQ2

Research Problem 1: How can RCA be conducted in collocated and distributed software project retrospectives?

Research Problem 3: Does the outcome of
RCA indicate how the causes of software
project failures are interconnected?

Multiple Case Study

Research Problem 2: Is RCA perceived as efficient and easy to use in
software project retrospectives?

Field Study 1 Field Study 2 Controlled Experi-
ment

RQ5 RQ6 RQ7 RQ3 RQ4

Cases 1-4 Student projects Cases 5-6

Article II Article IV

Article I Article III

Article I Article V Article III

C 5

RQ1 RQ2

R 3 RQ4RQ4RQ75 RQ6RQ6

Resea

1

ARCA method ARCA-tool

Development

Environment Environment

= Contributes
= Answers
= Supports

Research approach and methodology

14

Research question 3: Is the ARCA method perceived as efficient and easy
to use for analysing software engineering problems in software project ret-
rospectives?
The third research question evaluates the perceptions of practitioners on the
ARCA method. The evaluation is limited to usefulness, ease of use, and the
ARCA method outcome. The use of the method covers collocated and distrib-
uted software project retrospectives.

Research question 4: Is the developed ARCA-tool perceived as useful and
easy to use in software project retrospectives applying the developed RCA
method?
The fourth research question evaluates the perceptions of practitioners using
ARCA-tool. The evaluation is limited to usefulness and ease of use of the tool
in industrial retrospectives.

3.1.3 Outcome of RCA with software project failures

There are three research questions about the third research problem, “Does
the outcome of RCA indicate how the causes of software project failures are
interconnected?” The main assumption regarding the research problem is that
the outcome of RCA should express what and where the causes of failures oc-
cur and how they are interconnected over the process areas. The research data
is based on the same cases (Cases 1-4) that were used in Field Study 1 (Article
I), as can be seen from Figure 2.

Research question 5: Which process areas and cause types were frequent-
ly used in RCA to explain software project failures?
The fifth research question expresses what the perceived causes of failures
were and where in the development process they occurred. Taxonomy of the
perceived causes was developed, evaluated, and applied in order to answer this
research question.

Research question 6: What causal relationships bridge the process areas?
The sixth research question considers how the process areas were intercon-
nected in the cases of software project failures. A bridge cause refers to a de-
tected cause of failure for which the process area of the effect is different from
the one of the cause. The thesis includes qualitative analyses of bridge causes.

Research question 7: Do the causes perceived as feasible targets for pro-
cess improvement differ from the other detected causes, and if so, how?
The seventh research question considers the role of cause types, process areas,
and bridge causes for process improvement activities. The thesis analyses the
perceptions of practitioners and senior management on the detected causes
that are feasible targets for process improvement.

3.2 Research articles

There are a total of five research articles in this thesis (see Figure 2). Articles I
and III include the development of the ARCA method and ARCA-tool. Articles

Research approach and methodology

15

I, III, and V include the perceived ease of use and cost-efficiency evaluations.
Articles II and IV include the analyses of the ARCA method outcome.

Article I answers RQ1 and RQ3. It reviews and synthetizes prior RCA meth-
ods and their work practices. Article I also presents the development of the
ARCA method. The method is evaluated in four industrial cases (Cases 1-4)
aimed to reveal the causes of software project failures.

Article III answers RQ2-RQ4. It reviews and compares prior RCA software
tools. Article III also presents ARCA-tool. Article introduces how the tool sup-
ports the ARCA method. The software tool and the ARCA method are further
evaluated in two industrial cases (Cases 5-6).

Article V contributes to RQ3. It considers the actual and perceived effect of
using a cause-effect diagram in the RCA of software project retrospectives. The
article compares the use of the cause-effect diagram of the ARCA method and
ARCA-tool with an approach of writing down simple memos during RCA. Such
a comparison was important to conduct in order to separate the effect of the
cause-effect diagram from the structured investigation of ARCA.

Article II answers RQ5. It presents general cause types and process areas,
explaining where in the development processes the causes of software project
failures occur. The outcome of the ARCA method in Cases 1-4 was used in the
analysis.

Article IV answers RQ5-RQ7. It extends Article II by including in-depth
analyses of the cause types, process areas, bridge causes, and feasible targets
for process improvement in the case companies. Article IV presents that in a
case of software project failure, the ARCA method helps to express what hap-
pens, where it happens, and why it happens.

3.3 The framework of design science

The development and evaluation of the ARCA method and ARCA-tool were
conducted by using the framework of design science (Hevner et al. 2004;
March and Smith 1995). The framework (see Figure 3) consists of the envi-
ronment, knowledge base, and artefact design (Hevner et al. 2004). In this
thesis, the artefact design includes the development and evaluation of the AR-
CA method and ARCA-tool.

Figure 3. Framework of design science (Hevner et al. 2004).

Organizations
- Need for process

improvements due
to the problems in
software projects

People
- Need for collocated

and distributed
knowledge sharing

Technology
- Need for real-time

software tool

Development
- ARCA method
- ARCA-tool

Evaluation
- Field Study
- Experiment
- Case Study

Methods
- RCA methods
- RCA work practices
- RCA software tools

Theories
- Theory of causality

Gaps
- Lack of know-how
- Lack of the perceptions

of People
- Lack of studies on the

interconnectivity of SE
problems

Refine Assess

Additions to the Knowledge Base Application in the Software Engineering

Applicable
Knowledge

Business
Needs

Environment Design Knowledge Base

Research approach and methodology

16

3.3.1 The environment

Environment refers to the context in which the ARCA method and ARCA-tool
were planned to be used. The environment was small- and medium-sized in-
ternational software product companies that needed a lightweight problem-
prevention method for their distributed software organizations and individual
software teams. In order to understand the environment, business needs in the
problem-prevention method were considered in six software product compa-
nies (Cases 1-6).

The business needs resulted in the requirements of the ARCA method (see
Section 3.4.1) and ARCA-tool (see Section 3.4.2). The first business need was
related to the problems of software projects. The companies had faced major
problems in their software development projects due to the complex products
(Article IV). The problems included product quality issues and the schedule
and effort overruns of the projects. The existing problem-prevention methods
of the companies were feasible for detecting problems that had occurred but
infeasible for conducting in-depth analyses of the causes of problems (articles
I and III).

The second business need was related to the needs of distributed software
development. There were problems of facilitating lightweight software project
retrospectives due to the distributed software development teams (Article III).
Arranging face-to-face retrospectives with geographically distributed team
members required too much effort. Respectively, a lack of real-time software
tool support made it difficult to conduct distributed retrospectives.

3.3.2 The knowledge base

The knowledge base was the prior literature on problem prevention theories,
methods, work practices, and software tools. It revealed that the literature on
RCA was relevant to problem prevention and software project retrospectives.
Therefore, the applicable knowledge on RCA methods, work practices, theo-
ries, and software tools was gathered. The knowledge was used to develop the
ARCA method and ARCA-tool.

3.3.3 The artefact design

The business needs of the environment combined with the applicable
knowledge were used to design the ARCA method and ARCA-tool. The devel-
opment of these artefacts was important because the applicable knowledge did
not include feasible solutions in the environment. For example, defect causal
analysis would have required too much effort, and it would have been adapta-
ble to software defects only (Article I). Respectively, post-mortem review
would have been infeasible for geographically distributed organizations
(Stålhane et al. 2003), and it would have been adaptable to project experiences
only. Additionally, the applicable knowledge revealed gaps in the prior studies
(see Section 2.4), which made the development and evaluation of the ARCA
method and ARCA-tool also scientifically interesting. Therefore, the develop-
ment of the ARCA method and ARCA-tool became reasonable. The companies

Research approach and methodology

17

needed a method for distributed organizations useful for understanding the
causes of software project problems, and we wanted to know how to conduct
RCA with SME organizations over the collocated and distributed retrospective
settings.

3.4 Development of the ARCA method and ARCA-tool

The ARCA method and ARCA-tool are introduced in Sections 4 and 5. This
section introduces how the ARCA method and ARCA-tool were developed,
which provided knowledge relevant for the research questions RQ1 and RQ2.

3.4.1 Development of the ARCA method

The development of the ARCA method was initialized by setting down its re-
quirements. Based on our understanding of the environment (see Section
3.3.1), we started by brainstorming the characteristics of a “beneficial” RCA
method for software companies. We concluded that such a method would help
the companies to develop high-quality corrective actions with low effort. This
conclusion resulted in the following requirements:

1. The method helps to develop feasible and effective improvements

2. The method requires low effort

3. The method is easy to use

4. The method is adaptable to different kinds of target problems

Thereafter, a literature review was conducted. The review covered RCA
methods introduced in industrial engineering contexts. The search was limited
to the literature found in Google and Scopus. The following search words were
used to find the relevant literature: “RCA”, “root cause analysis”, “DCA”, “de-
fect causal analysis”, “defect analysis”, “defect prevention”, and “problem pre-
vention”. The review answered the following research questions introduced in
Article I:

1. Are there steps common to RCA methods?

2. What are the recommended work practices in the different steps of

RCA?

Then, the first version of the ARCA method was created. It was based on the
requirements and the findings from the literature review. Analytical argumen-
tation for alternative work practices was used to develop the method. The first
version of the ARCA method was piloted with a student software project (Arti-
cle I).

3.4.2 Development of ARCA-tool

The development and evaluation of the ARCA method revealed the need for
using a software tool during RCA. For example, collaborative cause-and-effect
diagramming and idea development was found to be important in distributed

Research approach and methodology

18

retrospectives. Unfortunately, the existing RCA software tools were infeasible
for the environment of use (Article III). Therefore, an RCA software tool,
named ARCA-tool, was developed.

ARCA-tool was developed in two subsequent projects on the Aalto University
software capstone project course1. During the projects, the author of this thesis
acted as the customer and provided the tool requirements. The software tool
was designed to be used in the synchronous retrospective meetings of small
software project teams including a maximum of ten team members. Addition-
ally, the tool was required to support collocated and distributed software pro-
ject retrospectives. The tool was also required to be simple and easy to use.
The main requirements included the following (Article III):

1. Supports real-time collaboration over distributed team members

2. Enables co-creation of a cause-effect diagram

3. Enables developing ideas for the causes of problems

4. Enables voting for the most severe causes and best ideas

5. Enables capturing and refining the outcome of retrospectives

6. Protects the anonymity of team members

7. Is simple and easy to use

3.5 Field study evaluations

Field studies are commonly used to improve and understand real-life work
practices and tools (Lethbridge, Elliott Sim, and Singer 2005). Therefore, they
were useful for evaluating the ARCA method and ARCA-tool. The observation-
based industrial field studies with software product companies were used to
evaluate the perceptions of practitioners using the ARCA method and ARCA-
tool. Six industrial cases (Cases 1-6) were conducted, and they were used to
answer the research questions RQ3 and RQ4 (see Figure 2). Table 1 summariz-
es these cases.

The field studies were positioned to cover incremental and agile software de-
velopment approaches. Additionally, they were positioned to cover distributed
software development settings. Furthermore, the field studies were positioned
to cover retrospectives at various levels of analysis, including the levels of
company, organization, and team (see Section 2.3).

Regarding data collection, the ARCA method was evaluated by the participat-
ing people, i.e. the employees were interviewed and asked to provide feedback
with questionnaires. The participants compared the ARCA method with the
existing practices of the companies. The cases were video recorded and ob-
served.

The cases varied. First, in Case 5, the participants had previously used the
ARCA method and ARCA-tool. Instead, in Cases 1, 2, 3, 4, and 6, the ARCA
method and ARCA-tool were not used previously. The existing practices

1 https://noppa.aalto.fi/noppa/kurssi/t-76.4115/etusivu

Research approach and methodology

19

Table 1. The summary of the field study cases.

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Organization SME SME SME SME SME SME

Evaluation

domain

Product com-

pany

Product com-

pany

Product com-

pany

Product com-

pany

Product or-

ganization

Software

team

SW Process Incremental Incremental Incremental - Scrum Scrum

Retrospective 1 x ARCA 1 x ARCA 1 x ARCA 1 x ARCA 3 x ARCA 1 x ARCA

Software tools Diagram +

monitor

Diagram +

monitor

Diagram +

monitor

Diagram +

monitor

ARCA-tool +

monitor

ARCA-tool

only

Participants Various

stakeholders

(N=9)

Mostly devel-

opers

(N=9)

Various

stakeholders

(N=7)

Various

stakeholders

(N=6)

Various stake-

holders

(N=11)

Mostly devel-

opers

(N=5)

Focus Defects Defects Installation Lead-time Requirements Team level

RCA experienc-

es

No RCA 5-whys No RCA No RCA Post-mortem

reviews

No RCA

included “discussions about problems”, followed by the development of correc-
tive actions. Neither RCA nor cause-effect diagrams were widely used previ-
ously. Case 2 had “tried” 5-whys approach (Article I).

Second, in Cases 1-4, the ARCA method was focused on problems at the
company level, i.e. high-level problems that caused software project failures.
Instead, in Cases 5-6, the ARCA method was applied to more focused prob-
lems. These included a problem of weak requirement specifications in a soft-
ware organization (Case 5) and work-practice problems of an individual soft-
ware team (Case 6).

Third, Cases 1-4 were conducted at software organizations with more tradi-
tional, incremental software development processes. Instead, Cases 5-6 were
conducted at software organizations with modern agile software development
processes.

Fourth, in Cases 1-5, the ARCA method was conducted collocated. Instead, in
Case 6, the ARCA method was conducted distributed, filling the gap of limiting
the evaluations to collocated settings only.

Fifth, only Cases 5 and 6 evaluated ARCA-tool. The tool was developed after
Cases 1-4. Therefore, they were not used to evaluate the tool. Instead, Cases 1-
4 helped to consider the requirements of the tool.

3.5.1 Field studies at Cases 1-4

Cases 1-4 (Article I) were conducted in four medium-sized software organiza-
tions. The rationale for the selection of the case sites was that together they
allowed us to evaluate the ARCA method in different software engineering
contexts where RCA has not been used previously. Thus, the evaluation pro-
vides rich information about the improvement over the existing practices.

In the data collection, the data sources and the data collection methods were
triangulated in order to increase the reliability of the results (Yin 1994; Rune-

Research approach and methodology

20

son and Höst 2008; Jick 1979). We used interviews (Yin 1994), questionnaires
(Foddy 1994), measurements, and observations (Yin 1994) to evaluate the per-
ceived usefulness and ease of use of the ARCA method. A total of five key rep-
resentatives of the companies were interviewed, and 30 participants answered
the questionnaires.

Interviews were conducted with key representatives. Key representatives
were company managers involved in steering their RCA case who had the
power to make process changes in their companies. The interviews were held
before and after a company case in order to analyse how the key representa-
tives experienced the ARCA method. The interview questions were tested with
researchers before the company cases.

The questionnaires were used after the two main steps of the ARCA method,
namely root cause detection and corrective action innovation, in order to ana-
lyse how the case participants experienced the ARCA method and its output.
Closed- and open-ended questions were included in the questionnaires, as rec-
ommended by Foddy (1994). The interval between the questionnaire items was
equal. The scale in each item was symmetric (1 = very low; 2, 3, 4 = neutral; 5,
6, 7 = very high). The questionnaires were tested by researchers and students
before using them.

The effort used and the output of the ARCA method was measured in each
case. An accurate record of the used man-hours in each step of the ARCA
method was kept. Additionally, we registered the number of detected and pro-
cessed causes of target problems in each case. We also registered the number
of developed corrective actions and the evaluations of participants regarding
the perceived feasibility and impact of each corrective action.

Observations were conducted by two researchers. One steered the ARCA
method together with the key representatives, whereas one observed the ac-
tions of the ARCA method. Both researchers wrote notes during the case. The
researchers held a feedback session after the ARCA method steps of root cause
detection and corrective action innovation. The observations were used to con-
solidate the results from the interviews and questionnaires.

The data analysis was conducted in two phases. First, after each company
case, we considered the collected research data to conclude the strengths and
weaknesses of the ARCA method. Second, after all company cases were con-
ducted, we evaluated the ARCA method as a whole by combining all empirical
evidence from the company cases.

3.5.2 Field studies at Cases 5-6

Cases 5-6 (Article III) were conducted in two organizations: a medium-sized
and a small-sized software development organization. The rationale for the
selection of these two case sites was that together they enabled us to evaluate
the ARCA method and ARCA-tool in collocated and distributed agile software
engineering contexts. Unlike in Cases 1-4, the company personnel steered the
use of the ARCA method.

The ARCA method was limited in Cases 5-6. The work phases of preliminary
cause collection and corrective action workshop (see Section 4.2) were ex-

Research approach and methodology

21

cluded from the cases. Therefore, the evaluation results regarding the ARCA
method are also limited, respectively. For the convenience of the reader, the
ARCA method is called the limited ARCA method when referring to the use of
the ARCA method without these work phases.

Similarly to the first field studies, the data sources and research methods
were triangulated. We used interviews (Yin 1994), questionnaires (Foddy
1994), and observations (Yin 1994) to evaluate the perceived usefulness and
ease of use of the limited ARCA method and ARCA-tool. A total of 16 case par-
ticipants filled in the questionnaires and a total of eight participants were in-
terviewed. The scale of questionnaire items was symmetric: 1=very minor, 2, 3,
4, 5=very major (Case 5) and 1=very low, 2, 3, 4, 5=very high (Case 6).

During the data analysis, the interviews and questionnaires were summa-
rized in order to conclude whether the perceptions of participants were similar
between the cases. Both cases were first analysed separately, because the ques-
tionnaires and interviews varied slightly between the cases. This was due to
differences in the company contexts. Case 5 had used the limited ARCA meth-
od and ARCA-tool previously, while Case 6 had not. After the interviews were
conducted, we transcribed and coded them accordingly. After the analysis of
both cases, we summarized the results from both cases in order to compare
their similarities and differences.

3.6 Controlled experiment evaluations

Controlled experiments are commonly used to compare alternative work prac-
tices and tools, e.g. Bjørnson et al. (2009). In this thesis, a controlled experi-
ment was used to extend the field studies by focusing on the cause-effect dia-
gram of the ARCA method and ARCA-tool. The experiment with 11 student
software project teams (61 participants) was conducted to evaluate the impact
of using the cause-effect diagram with the limited ARCA method. The data col-
lection considered the perceptions of participants and the outcome of the lim-
ited ARCA method (see Section 3.5.2). The experiment results provide addi-
tional evidence for the research question RQ3 (see Figure 2).

3.6.1 Research context

The experiment was conducted with software project teams of a capstone pro-
ject course in Aalto University. In the course, students develop real-world
software for real-world customers in teams. Each software project lasts five
months. The challenges encountered by the project teams are close to the chal-
lenges encountered in industrial software development.

Each team includes seven to nine student members divided into roles: three
managers and four to six software developers. Additionally, each team follows
an iterative process framework, which is defined by the course. The framework
divides the projects into three time-boxed iterations, each lasting six to seven
weeks.

The experiment was conducted in the retrospectives of eleven project teams
out of fourteen during the academic year 2010-2011. The participation in the

Research approach and methodology

22

experiment was voluntary for the project teams. Table 2 summarizes the retro-
spectives of the teams divided into the techniques used to organize the causes
of problems during RCA. The table presents the main focus of the retrospec-
tives. We can see that most of the teams focused on similar target problems in
both retrospectives. The number of participants and the language used re-
mained similar over the retrospectives.

The use of students as study subjects has been discussed in the SE literature
(Svahnberg, Aurum, and Wohlin 2008; Berander 2004; Carver et al. 2003;
Runeson 2003; Höst, Regnell, and Wohlin 2000). The student subjects of the
controlled experiment were graduate-level students, who were experienced in
software engineering and motivated to reach up to their project goals. Thus,
they were feasible targets for revealing the trend of improvements (Berander
2004; Runeson 2003). Additionally, the student projects were close to “real
software projects”. Thus, also the challenges faced by the students were indus-
trially relevant, as we concluded in Vanhanen et al. (2012).

3.6.2 Experiment design

The author of this thesis controlled the methods and settings of each retro-
spective. As required by the course framework, each team conducted retro-
spectives at the end of the second and third iteration. Thus, the experiment
design was limited to two experimental units for each team, 22 experimental
units as a total. The retrospective method and the used effort were fixed for
each unit.

The experiment was conducted by using a single factor paired design includ-
ing one blocking variable (Juristo and Moreno 2003). The examined factor

Table 2. The summary of the retrospectives.

Team Ltd. ARCA method (Cause-effect diagram) Control Group (List-of-causes)

L Target problem p c c/p # L Target problem p c c/p

1 1 F Co-operation, management 5 76 15 2 F Co-operation, management 4 70 18

2 1 F Scope, quality 7 87 15 2 F Quality, scope 6 59 10

3 2 E Scope, development 5 93 19 1 E Co-operation, management 6 78 13

4 1 F Scope, quality 6 127 21 2 F Quality, scope 5 85 17

5 1 F Co-operation, customer 6 137 23 2 F Quality, customer 6 92 15

6 1 F Tasks, motivation 5 121 24 2 F Motivation, skills 5 137 27

7 2 F Scope, task monitoring 5 111 22 1 F Task monitoring, scope 6 98 16

8 2 E Process, skills 6 109 18 1 E Process, skills 6 97 16

9 2 F Management, co-operation 5 129 26 1 F Co-operation, management 5 125 25

10 1 E Requirements, risk management 6 69 12 2 E Requirements, skills 6 90 15

11 2 F Co-operation, management 5 113 23 1 F Co-operation, management 6 10 17

 Mean 6 107 20 Mean 6 94 17

#=indicates whether the technique was used in the first (1) or second (2) retrospective, L=used language

(F=Finnish, E=English), p=the number of participants, c=the number of detected causes, c/p=the aver-

age number of detected causes per participant

Research approach and methodology

23

was the technique used to visualize the causes of problems. The factor had two
alternatives, including the cause-effect diagram of the ARCA method (see Fig-
ure 4) and a list-of-causes (see Figure 5). Considering the main differences be-
tween the alternatives, arrows are drawn between the causes of the problem
when using the cause-effect diagram. Instead, in the list-of-causes, there are
no arrows between the causes of the problem; the causal structure is visualized
by using bulleted lists. Furthermore, in the case of many effects being caused
by one cause, we can see that multiple arrows can be drawn from a cause un-
der the related effects with the cause-effect diagram. Instead, with the list-of-
causes, such cause needs to be duplicated under each effect.

Both alternatives of the examined factor were used in each team, but in dif-
ferent retrospectives. The project phase created a blocking variable that could
not be fully eliminated. The experiment design was balanced by 1) randomiz-
ing the starting order of the alternatives for each team and 2) forcing half of
the teams to start with the cause-effect diagram and the rest with the list-of-
causes technique. Additionally, paired analysis between the alternatives inside
each team was used to compare the differences, which mitigated differences
between teams. Table 3 summarizes the balanced design, including the distri-
bution of teams in the alternatives and the related project phase when used.

Table 3. Distribution of alternatives (A=Cause-effect diagram, B=List-of-causes) into 22 units

(Article V).

Team

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

Phase
I2 A A B A A A B B B A B

I3 B B A B B B A A A B A

Figure 4. The cause-effect diagram used in the A alternative (Article V).

Research approach and methodology

24

The Problem
- Cause 1

o Cause 2
 Cause 4
 Cause 5
 Cause 6

 Cause 7
 Cause 8

 Cause 9
o Cause 3

 Cause 10
 Cause 16

- Cause 11
o Cause 12
o Cause 13

 Cause 8
 Cause 15

 Cause 16
 Cause 17
 Cause 18

o Cause 14
 Cause 19

Figure 5. The list-of-causes used in the B alternative (Article V).

3.6.3 Response variables and research hypothesis

There were five response variables that were compared over the alternatives of
the examined factor. These included Method Effectiveness (ME), Size of Depth
Levels (SoDL), Number of Hub Causes (NoH), Characteristics of Detected
Causes (CDC), and Perceptions of Participants (PP).

The efficiency of the retrospective method has been measured with the num-
ber of detected causes (Bjørnson, Wang, and Arisholm 2009). The response
variable ME indicates the number of unique problem causes detected. Accord-
ing to our hypothesis, using the cause-effect diagram results in a higher ME
than using the list-of-causes.

Causal Structure is related to the causal structure of the causes of the prob-
lem. Regarding Causal Structure, we recognized the response variables SoDL
(Bjørnson, Wang, and Arisholm 2009) and NoH (Bjørnson, Wang, and
Arisholm 2009). The response variable SoDL indicates the number of causes
over different Depth levels, defined as the number of cause-effect pairs from a
cause to the target problem. A function SoDL(x) was created to measure SoDL.
The function returns the number of causes being registered to Depth level x.
We hypothesized that with both alternatives, the return value of SoDL(x) in-
creases among the Depth levels, but the return values of SoDL(x) are larger
with the cause-effect diagram. The response variable NoH indicates the num-
ber of “hub causes”, defined as a cause which explains more than one cause.
NoH was measured by calculating the number of effects stemming from each
cause. We hypothesized that NoH is a higher number with the cause-effect di-
agram. The cause-effect diagram of the ARCA method is a directed graph,
whereas the list-of-causes is a tree. A tree-structured cause-effect diagram has
been compared with the directed graph-structured cause-effect diagram
(Bjørnson, Wang, and Arisholm 2009). The prior study indicates that the di-
rected graph-structured cause-effect diagram results in increasing NoH values
(Bjørnson, Wang, and Arisholm 2009).

Research approach and methodology

25

Third, we also assumed that the technique used to visualize the causes of
problems did not artificially steer the discussions of retrospectives into differ-
ent types of problems or causes. Instead, it was possible that the project do-
main including changing situations could affect the causes of problems detect-
ed in the retrospectives. CDC was used to measure the differences in the dis-
cussion contents of retrospectives. We hypothesized that there is no difference
in CDC over the alternatives. CDC was measured for each retrospective by us-
ing a classification system, which characterizes the types and process areas of
failure causes (Article IV). During the data analysis, the distributions of causes
in cause classes over the alternatives were compared by using linear correla-
tions.

Fourth, we measured PP, which indicates how the participants perceived the
alternatives. The prior literature has commonly recommended using the
cause-effect diagram in RCA. Thus, we assumed that the participants prefer
using it in retrospectives. In order to measure PP, a questionnaire (see Article
V) was used after each retrospective. The answers of participants who were not
involved in both retrospectives (10 of 61 participants) were excluded. Addi-
tionally, after both retrospectives were conducted, another questionnaire com-
bined with a group interview was used to compare the alternatives.

3.6.4 Controlling undesired variation

Learning effect and team specific contextual factors likely affected the outcome
of the retrospectives. We were not able to eliminate the blocking variable relat-
ed to the project phase. Therefore, it was important to ensure that the contex-
tual factors were similar in each experimental unit. A total of six context varia-
bles were controlled. These included the high-level goal of retrospectives, the
number and roles of participants, the used language, the physical context, and
the retrospective facilitator. Additionally, we identified and measured three
confounding variables, since we had no control organizing the course’s project
teams and their customer’s topics. The confounding variables included the
specific target problem of the retrospectives (see Table 2), team members’ mo-
tivation, and team spirit.

3.6.5 Data analysis

We used the outcome of the retrospectives in statistical analyses on ME, SoDL,
NoH, and CDC. In order to analyse PP, we combined statistical methods with
qualitative methods.

ME was analysed with the paired-samples two-tailed t-test with alpha level
0.05. The tests were conducted for the total number of detected causes and for
the average number of detected causes per participants.

SoDL and NoH were also compared by using the paired-samples two-tailed
t-test with alpha level 0.05. Over the retrospectives of each team, we analysed
whether the cause-effect diagram results systematically in larger SoDL(x) and
NoH values than the corresponding list-of-causes technique.

Research approach and methodology

26

CDC was analysed in order to show that the alternatives did not significantly
affect the discussion contents of the retrospectives. We started the analysis by
classifying the detected causes into type and process area categories (see Arti-
cle IV). For each cause, the process area and cause type classifications were
combined, which resulted in a characteristic of the cause (there were a total of
84 possible characteristics). After the characteristics were determined for each
cause, the Pearson’s correlation between the numbers of causes with the same
characteristic was calculated over the retrospectives of the limited ARCA
method and the control group. The correlation was calculated between the ret-
rospectives of each team and between the retrospectives of all teams combined
together. The closer the correlation is to 1, the less different were the discus-
sion contents of retrospectives using the different alternatives.

The analyses of PP were based on questionnaires and group interviews.
Questionnaire 1 was used after each retrospective to evaluate the work practic-
es of the used retrospective method (Wilcoxon Signed Rank Test, alpha=0.05).
Questionnaire 2 was used after both retrospectives were conducted. It was
used to compare the retrospectives. The group interview was conducted after
Questionnaire 2. It was used to understand the perceptions of participants.

3.7 Case study evaluations

The case studies are commonly used to understand real-life phenomena and
events (Yin 1994). In this thesis, a multiple case study approach was used to
evaluate the outcome of the ARCA method in industrial settings, aiming to ex-
plain the relationships between the causes of software project failures (articles
II and IV). The results are used to answer the research questions RQ5-RQ7
(see Figure 2). The data analysis covered the perceived causes of software pro-
ject failures and their perceived causal relationships in Cases 1-4. The selection
of these case sites was reasonable, as together they allowed us to analyse the
commonalities of the perceived causes of four different software project fail-
ures.

3.7.1 Data collection

The ARCA method was used as the data collection method at each case. Its de-
tailed description can be found in Section 4.2. Therefore, this section only in-
troduces the main phases and contextual settings of the ARCA method rele-
vant to Cases 1-4.

Each case started with a focus group with senior managers who had the pow-
er to make process changes in their companies. The aim was to determine a
high-level target problem that had caused project failures systemically. Meas-
urable evidence was used in the focus group to testify to the occurrence of the
target problem. Additionally, the senior managers selected company experts,
nine people as an average, who should participate in the detection of the caus-
es of the target problem. The company experts included people from various
process areas covering sales & requirements, management work, software de-
velopment, software testing, and release & deployment.

Research approach and methodology

27

Following the focus group, the researchers arranged two work phases. These
included a preliminary cause collection and causal analysis workshop. In the
preliminary cause collection, the company experts were asked to provide at
least five causes explaining why the target problem occurred. The preliminary
cause collection was confidential for the experts, and it was conducted by an
email exchange between the author of this thesis and each individual expert.
Based on the preliminary cause collection, the researchers and senior manag-
ers created a cause-effect diagram. The managers analysed the diagram care-
fully and selected cause entities that should be analysed in the causal analysis
workshop (see Section 4.2 for further details about the cause entities).

The causal analysis workshop was a time-boxed meeting of 120 minutes,
which was conducted with the named company experts. During the meeting,
new causes were detected under each selected cause entity. The meeting re-
sulted in a finalized cause-effect diagram. It was used to explain why the soft-
ware project failure occurred. Thereafter, the experts were asked to propose
causes that they perceived as important to be further processed in the process
improvement activities. Then the senior managers considered the diagram and
made the final selection about the causes that were processed in the process
improvement activities.

Considering the validity of the collected research data, we should note that it
is based on the perceptions of people. The correctness and accuracy of the de-
tected causes were evaluated in each case by the author of this thesis. Triangu-
lation of the data sources and the data collection methods (Yin 1994; Runeson
and Höst 2008; Jick 1979) increases the reliability of the detected causes. Be-
fore the preliminary cause collection was conducted, interviews were kept with
the senior managers to detect the causes of failures which they perceived to be
important. I assume that the causes they underlined in the interviews would
also be recognized by the experts in the causal analysis workshop. The detect-
ed causes from both of these two groups were compared and it was found that
in each case, the experts detected and extended most of the causes underlined
by the senior managers. This comparison is documented in detail in Article IV
as a part of the case study results. Additionally, interviews and questionnaires
were used to evaluate the outcome of the ARCA method, which included the
evaluation of the correctness and accuracy of the detected causes. Regarding
these results, the experts and senior managers perceived that the detected
causes were correct and accurate. This validation is presented later as a part of
the field study results (see Section 6.1).

3.7.2 Data analysis

The data analysis included three phases. It started by analysing the types of
causes and the related process areas expressing where the causes occurred (ar-
ticles II and IV). Thereafter, it continued by analysing how the causes were in-
terconnected (Article IV). Finally, the feasibility of causes for process im-
provement was studied (Article IV).

The data analysis was initialized by developing a detailed classification sys-
tem. Thereafter, the system was applied to the ARCA method outcome. The

Research approach and methodology

28

development of the classification system was iterative. First, a literature review
was conducted. The literature review covered problem cause classification di-
mensions used in the software engineering context. The dimensions of process
areas and cause types were concluded to be important. The dimension of pro-
cess area expresses where in the development processes the cause occurs
(Grady 1996; Dye and van der Schaaf 2002; Jacobs et al. 2005; Nakashima et
al. 1999), and the dimension of cause type describes what the cause is, e.g. an
issue in the product (Grady 1996; Dye and van der Schaaf 2002; Nakashima et
al. 1999) or in the people (Leszak, Perry, and Stoll 2000; Stålhane 2004; Dye
and van der Schaaf 2002; Jacobs et al. 2005). Followed by the literature re-
view, preliminary categories for the dimensions of process areas and cause
types were created. Thereafter, the preliminary categories were combined with
an approach similar to the grounded theory, as suggested in Salinger et al.
(2007). The author of this thesis classified a sample of causes from each case
and simultaneously refined the preliminary categories to correspond better to
the causes of our cases. After the classification dimensions were finalized, they
were applied to all detected causes and their distributions were used to intro-
duce what the problem causes of software projects were and where they oc-
curred, introduced in Article II.

The analysis was continued by extending the work of Article II to individual
cases combined with cross-case analysis, introduced in Article IV. During the
analysis, the classification system was also slightly improved. For example,
based on the results of inter-rater agreement (see Section 7.5.4), two process
areas were combined together. The process areas of Development Work and
Change Management were combined under the process area of Implementa-
tion. Respectively, some sub-categories were re-named, e.g. the sub-category
Customers was re-named into Customers & Users. Additionally, some cause
statements were excluded from the analysis, as the more detailed analysis
showed that they were not the “real” causes of failures, but some coarse-
grained statements about speculations given in the discussions of the causal
analysis workshop, e.g. there was a cause statement: “There is a study from the
States which concluded that software quality should be the most important
goal for companies.” The total number of excluded statements was 18 from a
total of 648 statements.

The continued analyses also covered an analysis of the interconnectedness
between the causes of project failures (Article IV). A new term, “bridge cause”,
was founded, which refers to a cause that links process areas together. The
bridge causes were analysed qualitatively. The analysis was initialized by se-
lecting the perceived causal relationships for which the cause and effect were
classified in different process areas. Thereafter, the selected pairs of causes
and effects were grouped according to their process areas. For each group, the
perceived causal relationships were explored by considering the original cause-
effect diagrams. The explored parts of the cause-effect diagrams were summa-
rized and concretized in order to conclude how the causes and effects were in-
terconnected over the related process areas.

Research approach and methodology

29

 Finally, the causes that were perceived as feasible targets for process im-
provement were analysed (Article IV). During the classification of the causes
into the process areas and types dimensions, the author of this thesis marked
whether the cause was proposed and/or selected as a target for process im-
provement activities. The causal analysis workshop revealed detected causes,
whereas the causes the company experts proposed after the workshop are
called proposed causes. The causes that were selected for process improve-
ment activities by the senior managers are called selected causes. The per-
ceived feasibility for process improvement was divided into three importance
categories. The selected causes represent the highest-importance category, be-
cause such causes reflect the decision makers’ perspective. The second-highest
importance category is related to the proposed causes because they reflect the
company expert’s perspective. The third importance category consists of the
detected causes, which were neither proposed nor selected for process im-
provement activities. It was compared quantitatively how the causes in these
three importance categories varied. First, the distributions for process areas
and cause types were compared. Second, the share of bridge causes was com-
pared with the share of other detected causes.

The ARCA method

30

4. The ARCA method

This section starts by presenting the results from the literature review, includ-
ing the high-level synthesis of RCA methods and their common steps with
work practices. Thereafter, the ARCA method is introduced. These results are
presented in Article I, and they are used to answer the first research question
(see Figure 2).

4.1 Synthesis of RCA methods from literature

Table 4 summarizes the prior RCA methods and compares them with the AR-
CA method. There are three steps that are common for RCA methods intro-
duced in the literature. These include target problem detection, root cause de-
tection, and corrective action innovation. These steps and their alternative
work practices are discussed below.

Table 4. Summary of RCA methods and their work practices.
Method Target problem detection Root cause detection Corrective action innovation

Work practices Work practices Work practices

Rooney and Vanden

Heuvel (2004)

Interviewing and inspections Sequence diagram and Decision

diagram

-

Ammerman (1998) Paper-and-pencil, walk-through,

and flowcharting

Sequence diagrams, Interviewing,

event and causal factor charts, lists,

and worksheets

Interviewing

Latino and Latino

(2006)

Problem sampling, flowcharting

sequence diagrams, interview-

ing, and Pareto analysis

Flow chart, logic tree, and meetings

with brainstorming

Writing individually and meetings

Card (1998) Problem sampling, classification

schemes, Pareto analysis, and

meetings

A fishbone diagram, cause catego-

ries, and meetings

Meetings

Dingsøyr et al. (2001) Brainstorming, Brainwriting,

Post-it notes, and grouping of

experiences

Selection of the main issues, brain-

storming, discussions, a fishbone

diagram and drawing causes on a

whiteboard

-

ARCA method (Arti-

cle I)

A focus group meeting and

brainstorming

Anonymous email inquiry, a directed

graph, brainwriting and brainstorm-

ing in a meeting

Email inquiry, brainwriting combined

with sceptical and optimistic perspec-

tives, and brainstorming in a meeting

The ARCA method

31

4.1.1 Target problem detection

RCA methods start with the detection of a target problem. This initial step is
usually conducted through problem sampling (Latino and Latino 2006; An-
dersen and Fagerhaug 2006; Card 1998; Leszak, Perry, and Stoll 2000; Jalote
and Agrawal 2005; Grady 1996; Kalinowski, Travassos, and Card 2008; Burn-
stein 2003), flowcharting (Latino and Latino 2006; Andersen and Fagerhaug
2006; Ammerman 1998), interviewing (Latino and Latino 2006; Rooney and
Vanden Heuvel 2004; Rooney and Vanden Hauvel 2003), or brainstorming
(Latino and Latino 2006; Andersen and Fagerhaug 2006; Bjørnson, Wang,
and Arisholm 2009). Usually, there is a meeting where the target problem is
finally decided upon (Card 1998; Burnstein 2003).

Brainstorming in a focus group meeting was included in the work practices
of the ARCA method (see Table 4). In the context of software project retro-
spectives, brainstorming is probably the most cost-efficient approach to de-
tecting the target problems. It has been presented as an excellent approach to
identify rapidly what is important to people (Lethbridge, Elliott Sim, and Sing-
er 2005). It has also been presented as a part of lightweight RCA methods
(Dingsøyr, Moe, and Nytrø 2001). Additionally, it can be easily conducted in
collocated and distributed settings.

Problem sampling, flowcharting, and interviewing were excluded from the
ARCA method. Problem sampling sounds like a great idea (see Article I), but it
can be used only with problems being reported (Card 1998; Kalinowski, Trav-
assos, and Card 2008; Burnstein 2003; Gursimran and Jeffrey 2009). There
are many problems in software projects important to control, but they are not
reported, e.g. requirements faults (Gursimran and Jeffrey 2009). Further-
more, flowcharting (Ammerman 1998) might be a useful work practice for the
target problem detection, but in the context of software engineering, problems
are often intangible. Therefore, drawing a flowchart for the “entire event”, in
order to explain how the target problem evolves, might be difficult. Interview-
ing (Latino and Latino 2006; Rooney and Vanden Heuvel 2004) solves the
problems of problem sampling and flowcharting. On the other hand, it is a la-
bour-intensive task to meet numerous people, and thereafter register, tran-
scribe, and interpret their answers.

4.1.2 Root cause detection

Root cause detection is the second step of the RCA methods. The outcome of
this step is a documented in-depth analysis of the underlying causes of the tar-
get problem. Usually, there is a team of people who “investigate” the target
problem causes together (e.g. Latino and Latino 2006; Card 1998; Bjørnson,
Wang, and Arisholm 2009). The work practices include interviewing (Am-
merman 1998), questionnaires (Andersen and Fagerhaug 2006; Burr and Ow-
en 1996), brainstorming, and brainwriting (Latino and Latino 2006; Andersen
and Fagerhaug 2006; Burr and Owen 1996). These techniques help to address
the target problem causes that many people value highly, which is important.
However, as a weakness, none of these approaches fully protects the anonymi-

The ARCA method

32

ty of people. Therefore, it could happen that root cause detection is perceived
as “witch hunting” (Latino and Latino 2006).

Furthermore, the detection of the target problem causes usually includes the
creation of a cause-effect diagram (see Section 2.3.1). Various diagramming
techniques have been introduced, and they can be divided into two sub-
categories including the list- and network-based structures. List-based struc-
tures include a fishbone diagram (Andersen and Fagerhaug 2006; Bjørnson,
Wang, and Arisholm 2009; Stålhane 2004; Burnstein 2003; Stevenson 2005),
a fault-tree diagram (Andersen and Fagerhaug 2006), a logic tree (Latino and
Latino 2006), and a causal-factor chart (Rooney and Vanden Heuvel 2004).
Network-based structures include a directed graph (Bjørnson, Wang, and
Arisholm 2009) and a matrix diagram (Andersen and Fagerhaug 2006). Fur-
thermore, simple cause lists and worksheets can also be used to organize the
target problem causes (Ammerman 1998).

Brainwriting followed by brainstorming in a meeting was included in the
work practices of the ARCA method (see Table 4). Brainwriting provides an
efficient way to make good use of all participants simultaneously. Instead,
brainstorming helps to refine the findings of individuals into more concrete
conclusions about the root causes. The prior literature (Kavadias and Sommer
2009) indicates that brainstorming attains better solutions when it is used
with cross-functional problems, and brainwriting is better when it is used with
complex problems. The problems of software projects are both complex and
cross-functional (see Article I). Therefore, using these techniques together is
reasonable. Furthermore, the use of the directed graph was also included in
the work practices of the ARCA method. The directed graph solves the prob-
lem of duplicating cause statements (see Article I). Additionally, the use of the
directed graph has been claimed as an effective technique for software project
retrospectives (Bjørnson, Wang, and Arisholm 2009).

Interviewing (Ammerman 1998) and questionnaires (Andersen and Fager-
haug 2006; Burr and Owen 1996) were excluded from the ARCA method. In-
terviewing would have required more effort than keeping a meeting, and the
use of questionnaires would have steered the thinking of retrospective partici-
pants into some premade topics, potentially biasing the results. Furthermore,
these techniques have not been recommended in the prior RCA methods of
lightweight software project retrospectives.

4.1.3 Corrective action innovation

Corrective action innovation is the final step of the RCA methods. The out-
come includes corrective actions that are developed for the selected target
problem causes. The selection of causes should emphasize the level of control-
lability. The prior literature included very little practical guidance while con-
sidering “how to develop corrective actions”. Corrective actions are usually de-
veloped in a meeting with a group of people (Andersen and Fagerhaug 2006;
Card 1998; Leszak, Perry, and Stoll 2000; Jalote and Agrawal 2005; Grady
1996). Additionally, the use of brainstorming and brainwriting (Andersen and
Fagerhaug 2006) are recommended. Interviewing has also been introduced as

The ARCA method

33

an approach to develop corrective actions (Ammerman 1998). However, con-
sidering the differences between keeping a meeting and conducting separate
interviews, the meeting probably increases the commitment of participants
more than the separate interviews.

Furthermore, problem-prevention frameworks (Andersen and Fagerhaug
2006) have been developed to view the solution space of problems from vari-
ous perspectives. The frameworks include Systematic Inventive Thinking, the
Theory of Inventive Problem Prevention, and the Six Thinking Hats (Andersen
and Fagerhaug 2006). However, the frameworks are rather difficult to use,
and more creative techniques should be used instead (Andersen and Fager-
haug 2006).

Similarly to the step of root cause detection (see Section 4.1.2), the use of
brainwriting combined with brainstorming was concluded as the most optimal
work practice for the ARCA method. We also found it to be important to take
into account the potential “positive” and “negative” effects of the developed
corrective actions (Andersen and Fagerhaug 2006).

4.2 Overview of the ARCA method

Figure 6 summarizes the ARCA method (see Article I). The method follows the
common steps of prior RCA methods, and its work practices are based on ana-
lytical argumentation about the prior methods, discussed in Section 4.1. These
steps and their work practices are summarized in the following sub-sections.

4.2.1 Step 1: Target problem detection

The outcome of the first step of the ARCA method is a target problem and a list
of named experts who are invited to an in-depth analysis of the target prob-
lem. This step includes a focus group meeting lasting approximately 60
minutes. In the meeting, the following issues should be brainstormed, justi-
fied, and documented: what is the target problem and why exactly is this prob-
lem important to prevent?

Figure 6. The overview of the ARCA method.

•Collect evidence
•Focus group meeting

•Define the target
problem

•Invite experts

Target problem
detection

•Preliminary cause
collection
•Anonymous email

inquiry
•Causal analysis workshop

•brainwrite, brainstorm,
and draw a cause-effect
diargam

Root cause
detection •Root cause selection

•Email inquiry
•Corrective action

workshop
•brainwrite, brainstorm,

and consider positive
and negative effects

•Document the results

Corrective action
innovation

The ARCA method

34

The experts who should analyse the target problem are also considered and
selected in the meeting (four to ten experts). When selecting the experts, it is
important to consider all relevant stakeholders of the target problem. For ex-
ample, in the case of software project failures, these may include sales person-
nel, product managers, project managers, software developers, software test-
ers, and software quality assurance staff.

4.2.2 Step 2: Root cause detection

This is the second step of the ARCA method. After this step, the most im-
portant target problem causes are detected and evaluated. Anonymous and
public approaches are both important in the detection of target problem caus-
es. This step consists of two work phases: preliminary cause collection and
causal analysis workshop.

In preliminary cause collection, the facilitator of the ARCA method sends out
an email inquiry to the selected experts in order to collect the target problem
causes. The email inquiry should be confidential in order to create a trustwor-
thy knowledge-sharing between the experts and facilitator. The email inquiry
forces the experts to consider the target problem in advance. The inquiry asks
the experts to list at least five causes of the target problem. Thereafter, the tar-
get problem causes are organized into a cause-effect diagram by the facilitator,
as presented in Figure 7. Using a software tool is recommended here.

Causal analysis workshop is a meeting wherein the target problem causes are
analysed in-depth. The meeting is prepared by the facilitator. A cause entity is
defined as “a cause and its sub-causes, which together form an entity that is
reasonable to process together” (Article I). By using the cause-effect diagram
created in preliminary cause collection, the facilitator selects the cause entities
being processed in the meeting. It should be noted that the cause entities could
overlap. Processing a cause entity containing approximately ten causes takes
about 40 minutes.

In causal analysis workshop, the selected cause entities are extended by de-
tecting new causes. The facilitator starts the meeting by presenting the target
problem and its preliminary causes, including the selected cause entities for
the experts. The meeting continues by collecting new causes for each selected
cause entity one at a time. Each cause either deepens or widens a cause entity.
The causes are collected in the following three phases:

1. The experts write down (brainwriting) causes on paper for five

minutes (the cause-effect diagram is projected onto the wall)

2. Each expert introduces the causes and explains where they should be

registered in the cause-effect diagram

3. The experts briefly discuss the target problem causes and try to

brainstorm more causes and causal relationships

After all cause entities have been processed, the experts analyse the cause-
effect diagram as a whole. The facilitator leads the experts to identify essential
target problem causes and to discuss their level of controllability and impact
for the target problem.

The ARCA method

35

Figure 7. The cause-effect diagram of the ARCA method (Article I).

4.2.3 Step 3: Corrective action innovation

This is the third step of the ARCA method. The outcome of this step is correc-
tive actions addressing the most important target problem causes. The step
includes two work phases: root cause selection and corrective action work-
shop.

Root cause selection is the first work phase of corrective action innovation,
and it aims to focus on the development of corrective actions into most feasible
targets. The facilitator selects the target problem causes which are processed
later in the corrective action workshop. First, the cause-effect diagram is sent
to the experts. They are asked to propose target problem causes for which cor-
rective actions should be developed. Additionally, they are asked to evaluate
the level of impact on the target problem and the level of difficulty of develop-
ing corrective actions for each proposed cause. Thereafter, the facilitator uses
his judgment combined with an analysis of the experts’ proposals in order to
select four to six target problem causes for which the corrective actions will be
developed. Each selected cause, including its sub-causes, is documented on an
individual paper.

Corrective action workshop is a meeting wherein corrective actions are de-
veloped, evaluated, and analysed. The meeting is initialized by the facilitator,
who selects the participants to join the meeting. Ideally, the number of partici-
pants equals with the number of selected causes (four to six). Furthermore, the
participants should be an aggregate of experts being as competent as possible
at solving the selected causes. In a corrective action workshop lasting approx-
imately 120 minutes, the selected causes are rotated through the participants.
Each participant contributes, in turns lasting ten to fifteen minutes, to one se-

The ARCA method

36

lected cause. The participants develop corrective actions by writing them down
on paper. Additionally, they supplement and comment on the corrective ac-
tions introduced by other participants. Furthermore, after the corrective ac-
tions are developed, they are evaluated. Two attributes are used in the evalua-
tion (scale 1-5): 1) impact on the target problem and 2) feasibility to imple-
ment. For each selected cause, the last participant evaluating the corrective
actions calculates the sum of evaluations for each corrective action. Thereafter,
the participants brainstorm improvements to the corrective action(s) that
has/have the highest values in the levels of impact and feasibility.

4.2.4 Step 4: Documentation of the results

The documentation of the results is the final step of the ARCA method. Such a
step is not included in every prior RCA method, but in the ones introduced by
Card (1998), Dingsøyr et al. (2001), Latino and Latino (2006), and Ammer-
man (1998).

The final report should cover the target problem definition, including the re-
lated background information. This is important in order to communicate the
aim of the analysis, including its limitations. The report should also contain
the main parts of the cause-effect diagram finalized in the causal analysis
workshop. Additionally, the report presents the corrective actions and their
evaluations.

The final report is an important source of information, as it can be used to
justify why some specific process changes are needed and what corrective ac-
tions are relevant to consider. Additionally, the report could improve future
analyses, where it could exacerbate preliminary cause collection and help to
consider the cause entities for causal analysis workshop. The report could also
help to consider the impact and feasibility of corrective actions. Finally, if
shared among the company employees, the report could improve organiza-
tional learning.

ARCA-tool

37

5. ARCA-tool

Software tools are commonly used in RCA to improve the in-depth analysis of
problems. However, there are no prior studies on how they support conducting
RCA in collocated and distributed software project retrospectives. This section
starts with the results of systematic literature review comparison of prior RCA
software tools. Thereafter, ARCA-tool, fulfilling the main weaknesses of the
prior tools, is presented. These results are introduced in Article III and they
are used to answer the second research question (see Figure 2).

5.1 Comparison of RCA software tools

A systematic literature review of 35 prior RCA software tools was conducted in
order to evaluate their feasibility for software project retrospectives. The eval-
uation considered the seven aspects important for conducting a computer fa-
cilitated RCA in synchronous software project retrospective meetings (Article
III). These aspects are introduced in the following sub-sections. To conclude,
the main weaknesses of the prior tools include: 1) lack of real-time collabora-
tion, 2) lack of network structured cause-effect diagrams, and 3) lack of fea-
tures for voting the RCA method outcome.

5.1.1 Ease of adoption

The first aspect for comparison is the ease of adoption. Software teams rarely
have time for retrospectives (Glass 2002), and therefore this is an important
aspect. Web browser-based software tools outperform native client software in
the ease of adoption. Web browser-based software tools do not require client
installation and they can be used from various physical locations with different
computers having different operating systems and hardware. Only four exist-
ing tools are web browser-based software.

5.1.2 Real-time collaboration

The second aspect is the support for real-time collaboration. Global software
engineering is an increasing trend in today’s software business (Herbsleb and
Moitra 2001), but through the distributed team members, it creates a major
challenge for retrospectives. The team members cannot meet face-to-face.
Thus, the RCA software tool has to support real-time collaboration over dis-
tributed sites in order to make it possible for the participants to contribute to
the analysis as it takes place. Obviously this requires that the outcome of the

ARCA-tool

38

tool stays in sync between the distributed sites. There are only six tools that
fully support real-time collaboration.

5.1.3 Cause-effect diagramming

The third aspect is the support for cause-effect diagramming. The core compo-
nent of RCA is the analysis of the underlying causal structures of the target
problem. In retrospectives, such an analysis is usually conducted by using a
cause-effect diagram (Bjørnson, Wang, and Arisholm 2009; Dingsøyr 2005).
The majority of the existing tools enable the creation of a cause-effect diagram.
However, most of them support only tree-structured diagrams, whereas only
three existing tools support the creation of network-structured diagrams.

5.1.4 Corrective action development

The fourth aspect is the support for developing corrective actions for the caus-
es of problems. The software tool should enable developing and linking the
corrective actions to the related target problem causes. It seems that the ma-
jority of the existing tools fulfil this aspect.

5.1.5 Support for voting

The fifth aspect is about the team commitment through voting. In order to fo-
cus the steps of root cause detection and corrective action innovation to the
findings that the experts value the most, the software tool should support vot-
ing. This way the experts can focus their attention on the causes perceived as
the most important. Respectively, they can collaboratively decide the correc-
tive actions that should be implemented. This aspect is supported only in one
of the existing tools.

5.1.6 Support for knowledge management

The sixth aspect is the support for knowledge management. It has been
claimed that retrospectives can be used to leverage knowledge from individu-
als to organizations (Dingsøyr 2005). Additionally, it has been claimed that an
organizational learning system includes a “global knowledge base” that com-
bines the knowledge (Lee, Courtney, and O'Keefe 1992). Thus, the RCA soft-
ware tool should include a knowledge base and enable combining the findings
of many retrospectives. Such an aspect is supported by the majority of the ex-
isting tools.

5.1.7 Costs

The seventh aspect considers the costs of the tools. Only three of the existing
tools are free to use, whereas most of the tools are subject to a fee. Thus, there
are only a few open-source alternatives available.

ARCA-tool

39

5.2 Overview of ARCA-tool

ARCA-tool is a browser-based software that uses a client-server architecture
with push-and-pull technology. It solves the main weaknesses of prior RCA
tools for software project retrospectives. The software supports distributed re-
al-time collaboration including features for 1) collaborative cause-effect dia-
gramming and 2) the development of embedded corrective actions to the caus-
es of the target problem. The tool also supports knowledge management and
organizational learning by enabling capturing, analysing, summarizing, and
managing the outcome of one-to-many retrospectives.

ARCA-tool was designed to be used in the retrospectives of software projects
with the ARCA method. Additionally, the tool was required to fulfil the seven
aspects important for conducting RCA in software project retrospectives, in-
troduced in Section 5.1. This section presents how to use ARCA-tool with the
ARCA method.

5.2.1 Initializing ARCA-tool

In order to conduct the ARCA method, the facilitator initializes ARCA-tool by
creating an RCA case, which is thereafter shared with the participants of the
steps of target problem detection, root cause detection, and corrective action
innovation. The participants join the case from their own computers through a
TCP network connection. The process support for the different steps of the
ARCA method is introduced in the following sub-sections.

Figure 8 summarizes the key features of ARCA-tool embedded in a radial
menu, which is activated when a user selects a cause in the diagram. The key
features include: Thumb-up (=vote for this cause), Pencil (=edit this cause),
Trashcan (=delete this cause), Light bulb (=create a corrective action), Arrow
left (=link this cause to another existing cause), + sign (=create a cause that is
linked to this cause), Ticket (=classify this cause). More details of the tool can
be found in Article III.

Figure 8. Screen view of ARCA-tool (Article III).

ARCA-tool

40

5.2.2 Target problem detection

ARCA-tool supports the step of target problem detection (see Section 4.2.1),
which includes a focus group meeting. ARCA-tool can be used in the focus
group to register the target problem and the motivation to prevent it. This
documentation can be included in the cause-effect diagram of the case.

The diagram can be shared with all relevant stakeholders representing the
experts invited to the case. The tool sends the invitations automatically for the
defined experts. Alternatively, the invitations can be shared manually by send-
ing the case URL address.

5.2.3 Root cause detection

ARCA-tool supports the step of root cause detection which includes the work
phases of preliminary cause collection and causal analysis workshop (see Sec-
tion 4.2.2). In the phase of preliminary cause collection, the tool allows the de-
fined experts to contribute to the cause-effect diagram of the case “before” the
causal analysis workshop meeting. Thus, the facilitator does not need to send a
“confidential email” to experts and thereafter organize the causes replied in
the email, as the causes are already organized to the diagram by the experts.
Additionally, the tool protects the anonymity of the experts.

Furthermore, ARCA-tool supports conducting causal analysis workshop with
its features for distributed and collocated knowledge sharing. First, the detect-
ed causes can be written down to a cause-effect diagram by the facilitator, act-
ing as a scribe. The diagram can be simultaneously projected on the wall in
order to visualize the analysis outcome to the participants. Second, each par-
ticipant can also contribute directly to the cause-effect diagram from their own
computers. There the detected causes are immediately visible for other partic-
ipants. Thus, they can also contribute to the findings of others in real-time.
The workload of the facilitator also decreases since there is no need for a scribe
during the meeting. Third, if combined with an online audio bridge, ARCA-
tool enables conducting the ARCA method as distributed. The geographically
distributed experts can register, introduce, and discuss the target problem
causes similarly than with collocated settings.

5.2.4 Corrective action innovation

ARCA-tool enables the conducting of corrective action innovation (see Section
4.2.3), which includes the work phases of root cause selection and corrective
action workshop. In ARCA-tool, the participants can vote the causes they per-
ceive as important by “liking” the causes (see “Points” in Figure 8). The
amount of “likes” for each cause is limited to +/-1 for the experts while remain-
ing unlimited for the facilitator. This feature makes it possible for the facilita-
tor to ask the experts to propose the causes they perceive as important to pro-
ceed further in the process improvement activities. Respectively, the facilitator
can emphasize the causes that are selected to process improvement activities
by using the voting feature.

ARCA-tool

41

According to the ARCA method description, the corrective actions are devel-
oped by “writing them down on paper and rotating them through the partici-
pants” (Article I). In ARCA-tool, the corrective actions are developed by em-
bedding them to the related causes. The tool does not include features in allo-
cating the selected causes for one expert only. Instead, the tool makes it possi-
ble to contribute to any of the causes registered to the cause-effect diagram.
The other participants cannot modify or comment on the corrective actions
developed by others, but they can register a new corrective action refining the
existing ones. Finally, the participants can vote corrective actions by using the
liking feature of the tool. Instead, there are no specific forms for “feasibility”
and “impact” evaluations.

5.2.5 The documentation of results

The ARCA method ends with the documentation of results (see Section 4.2.4),
which is also supported by ARCA-tool. While the facilitator combines the
gained knowledge from the case, the tool makes it possible to save the outcome
of the RCA case as a *.CSV file, which includes the causes, corrective actions,
and their related votes.

Additionally, ARCA-tool enables conducting further analyses of the retro-
spective outcome including the analysis of the cause types, process areas, and
causal relationships of problems. These features promote consideration for
what the problem causes are, where they occur, and why they occur (Article
IV). Each cause can be classified into the type and process area dimensions.
The user can use the default dimensions, introduced in Article IV, or develop
their very own dimensions that are more feasible for their context of use.
Thereafter, the tool provides statistics about the distributions of causes, re-
garding their status in the RCA case (detected causes, proposed causes, causes
with elimination ideas), in both of these dimensions simultaneously as a table
view, or separately as a pie chart view. Furthermore, the tool can draw a graph
summarizing the relationships over the process areas. The tool can also be
used to view the internal and external causes for a process area. These analyses
can be included in the final report of the ARCA method.

ARCA-tool supports organizational learning and knowledge management by
providing features for monitoring the outcome of many RCA cases. As a limita-
tion, the users can analyse only the outcome of the cases they have participat-
ed in. The tool can be used to manage, monitor, and analyse the outcome of an
individual RCA case as well as the combination of many cases. The status of
the detected causes (detected, elimination, won’t fix, fixed) and corrective ac-
tions (idea, will be implemented, implemented, rejected) can be managed.
Furthermore, the users can filter the outcome they are interested in to monitor
(causes, corrective actions, and specific RCA cases).

Evaluation results

42

6. Evaluation results

This section presents the evaluation results from the field studies and student
experiment. These are summarized in Table 5 and introduced in detail in Sec-
tions 6.1 and 6.2. They answer the research questions RQ3 and RQ4. Further-
more, Section 6.3 presents the results of the multiple case study, which an-
swers the research questions RQ5-RQ7.

6.1 Evaluation of the ARCA method

In comparison to the existing practices of the industrial cases, the ARCA
method was perceived as efficient. Respectively, the method was perceived as
easy to use. The detected causes were also perceived as accurate and they
helped to develop high-quality corrective actions.

The ARCA method was evaluated from different perspectives. Cases 1-4
(N=30) evaluated all steps and work practices of the method. Cases 5 (N=11) -
6 (N=5) and student experiment (N=51) evaluated only the step of root cause
detection (ARCA ltd.). Cases 5-6 also evaluated the support of ARCA-tool for
the ARCA method. Furthermore, the student experiment included the compar-
ison of the number of detected causes between the ARCA method and control
group.

Table 5. Summary of evaluation results regarding the ARCA method and ARCA-tool.
Evaluation Field Studies (N=46) Experiment (N=51)

Case Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 ARCA Control

Method ARCA ARCA ARCA ARCA ARCA * ARCA * ARCA * ARCA *

Root cause detection step

 Ease of use Mod Mod High Mod High High High High

 Efficiency High High High Mod High High Increase# Decrease#

 Accuracy High High High High High High - -

Corrective action innovation step

 Ease of use High High High High - - - -

 Efficiency High High High High - - - -

ARCA- tool

 Usefulness - - - - High High - -

 Ease of use - - - - High High - -

Interpretation scale (based on questionnaires): Low (avg. < 4), Mod (avg. >4&<5), High

(avg. > 5), * The limited ARCA method (ARCA ltd.), # Based on the number of detected causes

Evaluation results

43

6.1.1 Evaluation of the ARCA method ease of use

Table 6 summarizes the results from the questionnaires regarding the ease of
use of the ARCA method. The interviews consolidate these results. We can see
from the table that the ARCA method was perceived as generally easy to use.
On the other hand, comparison between the cases reveals that the perceived
ease of use increased in Cases 5-6 and the student experiment in contrast to
Cases 1-4.

In Cases 1-4, the participants evaluated in the questionnaires that the ease of
use of the corrective action innovation step is “high” (avg. > 5) and the root
cause detection step is “moderate” (4< avg. <5). Respectively, in the case in-
terviews (see Article I), the ARCA method was generally experienced as easy to
use. This was a common opinion over the key representatives of each case. On
the other hand, organizing the detected causes was noted to be a challenging
task. It was also said that the assistance of the researchers made the ARCA
method unnaturally easy to use.

In Cases 5-6, the participants evaluated in the questionnaires that the ease of
use of the root cause detection step is “high”. They evaluated the “easiness to
collect causes” with high values and the “easiness to detect root causes” with
moderate to high values (see Table 6). Respectively, the interviews indicated
that the participants perceived the method as simple and intuitive (see Article
III). It was also noted that the perceived difficulty of the analysis is dependent
on the number of the detected causes. Furthermore, in Case 6, the participants
evaluated that the ease of use of the ARCA method makes an improvement
over their existing practices (see Article III).

In the student experiment, similar results regarding the ease of use were
found. Regarding the results from questionnaires, the students perceived that
the ease of use of collecting the target problem causes is “high” (see Table 6),
but they also perceived that the difficulty of detecting the problem causes is

Table 6. Evaluation results regarding the ease of use of the ARCA method.
Ease of use Field Studies (N=46) Experiment (N=51)

Case Case 1 Case 2 Case 3 Case 4 Case 5* Case 6* ARCA Control

Root cause detection step

 Cause collection

 avg.

 std.

- - - - High^

5.9

0.8

High

5.6

1.0

High

5.6

1.1

High

5.6

1.0

 Cause detection

 avg.

 std.

Mod

4.3

0.8

Mod

4.9

1.2

High

5.1

1.2

Mod

4.8

0.4

High^

5.6

0.9

Mod

4.2

1.0

-

-

Corrective action innovation step

 Dev. method

 avg.

 std.

High

5.7

1.0

High

6.0

0.8

High

6.0

0.6

High

6.0

0.6

- - - -

Scale: 1=very low, 4=moderate, 7=very high, * normalized scale 1-7 (the original scale was 1-5),

^combined results from three teams

Evaluation results

44

“high” (see Article V). Furthermore, the students compared the cause-effect
diagram of the ARCA method (see Section 3.6.2) with the list-of-causes tech-
nique (control group). Considering the results from the comparison, most of
the students evaluated that the cause-effect diagram of the ARCA method is a
“good” technique to organize the causes (Median=6). Instead, they evaluated
that the list-of-causes technique is only “somewhat good” (Median=5). The
difference between these two techniques is statistically significant (p=0.001).

6.1.2 Evaluation of the ARCA method cost-efficiency

Table 7 summarizes the results from the questionnaires regarding the per-
ceived cost-efficiency of the ARCA method. We can see from the table that the
ARCA method was perceived as cost-efficient at each case (avg. of usefulness &
efficiency are both >4). The interviews consolidate these results.

In Cases 1-4, the results from questionnaires indicate that the steps of root
cause detection and corrective action innovation are both useful and efficient.
Respectively, the results from interviews indicate that the ARCA method was
perceived as cost-efficient (see Article I). The interviews revealed that the key
representatives experienced that their companies should adopt the ARCA
method. They also perceived that the case results were beneficial in contrast to
the effort used. Additionally, they were not able to name any other method
that could reach equally advantageous results with lower costs.

In Cases 5-6, the limited ARCA method was perceived as cost-efficient. In
Case 5, the limited ARCA method was used previously, which indicates that
the method was already found to be feasible and applicable to software project
retrospectives. Respectively, in Case 6, wherein the limited ARCA method was
compared with the existing practices, the participants evaluated in the ques-
tionnaires that the cost-efficiency of the method is high. Furthermore, regard-
ing the results from interviews, the participants from both cases experienced
that the structured approach of the limited ARCA method is one of its ad-
vantages. They also experienced that the method helps to detect the causes of
problems.

In the student experiment, the participants evaluated that the limited ARCA
method is useful. They also evaluated that the cost-efficiency of the method is
high. Additionally, the statistical analyses on the method outcome indicate
that the limited ARCA method slightly increased the method effectiveness
(p=0.065, Cohen’s d=0.57). It also increased the number of hub causes
(p=0.010, Cohen’s d=1.42). Furthermore, the group interviews with students
revealed concepts supporting the use of the cause-effect diagram in the ARCA
method. The students perceived that in contrast to the control group, the
cause-effect diagram of the limited ARCA method helped to outline how the
causes are related to one another. Respectively, the visual structure of the
cause-effect diagram was perceived as feasible for RCA. The cause-effect dia-
gram was also perceived as a visually easier technique to navigate the detected
causes. The students claimed that the cause-effect diagram helped to focus and
process the detected causes systematically. The only argument that supported
the control group is the high readability of the list-of-causes technique.

Evaluation results

45

Table 7. Evaluation results regarding the cost-efficiency of the ARCA method.
Cost-efficiency Field Studies (N=46) Experiment (N=51)

Case Case 1 Case 2 Case 3 Case 4 Case 5 Case 6* ARCA Control

Root cause detection step

Usefulness

 avg.

 std.

High

5.4

0.4

High

5.8

0.6

High

5.8

0.5

High

5.3

0.6

- - High

6.2

0.8

High

6.2

0.8

Efficiency

 avg.

 std.

High

5.4

1.2

High

5.1

1.0

High

5.3

1.2

Mod

4.8

1.3

-

High

5.9

0.6

High

6.0

1.0

High

5.8

1.0

Effectiveness#

 avg.

 std.

- - - - - - Increase

107

22

Decrease

94

22

Corrective action innovation step

Usefulness

 avg.

 std.

Mod

4.8

1.0

High

5.0

1.1

High

5.1

1.1

High

5.0

0.6

- - - -

Efficiency

 avg.

 std.

High

6.2

1.0

High

6.0

0.9

High

6.1

0.7

High

6.3

0.5

- - - -

Scale: 1=very low, 4=moderate, 7=very high, * normalized scale 1-7 (the original scale was

1-5), # Effectiveness indicates the number of detected causes

6.1.3 Evaluation of the ARCA method outcome

The outcome of the ARCA method includes the causes of the target problem
and the related corrective actions. Table 8 summarizes the results from the
questionnaires regarding the perceived correctness of the detected causes and
the perceived impact and feasibility of the developed corrective actions. The
results from the interviews consolidate these results.

Regarding the correctness of detect causes, the participants of Cases 1-4 per-
ceived that the detected target problem causes were correct (see Table 8). Ad-
ditionally, the participants evaluated that feasible corrective actions that have
a high impact on the target problem were developed. Respectively, the inter-
views with the key representatives indicate that “significant root causes” were
detected with respect to the target problems (see Article I). Most of the key
representatives also believed that, if implemented, the corrective actions
would have a high impact on the prevention of the target problem. As an ex-
ception, it was claimed in Case 2 that the corrective actions don’t prevent the
target problem, but they assist the company to make improvements in their
processes. Furthermore, in Cases 5-6, the participants evaluated the correct-
ness and impact of the detected causes with high values. Respectively, regard-
ing the results from interviews, they perceived that correct target problem
causes were detected (see Article III).

Figure 9 presents a scatter chart of the developed corrective actions in Cases
1-4. A high quality corrective action is “highly feasible and equally effective”
(Article I). In Cases 1-4, each corrective action of each case was evaluated by

Evaluation results

46

the case participants. The evaluations were conducted by using a symmetric
ordinal scale from one to five (1=low, 2, 3, 4, 5=high). We can see from Figure
9 that the share of high-impact (avg. >= 3) corrective actions was larger than
the share of low-impact (avg. < 3) corrective actions in each case. Instead, the
share of high-feasibility (avg. >= 3) corrective actions was larger than the
share of low-feasibility (avg. < 3) corrective actions in Cases 1 and 4 only. It is
probably easier to develop high-impact corrective actions than to make them
feasible. Despite the difficulties to develop high-quality corrective actions (avg.
impact & feasibility are both >= 3), such corrective actions were developed in
each case, as can be seen from the figure.

Table 8. Evaluation results regarding the outcome of the ARCA method.
Outcome evaluation Field Studies (N=46)

Case Case 1 Case 2 Case 3 Case 4 Case 5* Case 6*

Root cause detection

Correctness of causes

 avg.

 std.

High

6.0

0.5

High

5.8

0.7

High

6.2

0.8

High

5.5

0.8

High^

5.7

0.8

High

5.3

0.6

Impact of causes

 avg.

 std.

- - - - High^

5.5

1.3

High

5.3

1.2

Corrective action innovation

Impact of ideas

 avg.

 std.

High

5.6

0.5

High

5.4

0.7

High

5.9

0.7

High

5.3

0.8

- -

Feasibility of ideas

 avg.

 std.

High

5.3

0.5

Mod

4.4

1.1

High

5.3

0.8

High

5.7

0.8

- -

Scale: 1=very low, 4=moderate, 7=very high, * normalized scale 1-7 (the original scale was 1-5),

^combined results from three teams

Figure 9. Scatter chart of the perceived impact and feasibility of individual corrective actions
(small marks) and their averages in the cases (large marks).

Evaluation results

47

6.2 Evaluation of ARCA-tool

This section presents the empirical results regarding the evaluations of ARCA-
tool. The tool was evaluated in Cases 5-6 only (article III). Table 9 summarizes
the results from the questionnaires regarding the perceived ease of use and
usefulness of ARCA-tool. Our results indicate that ARCA-tool increases the
cost-efficiency of the limited ARCA method. Additionally, the tool is perceived
as essential when the ARCA method is conducted with geographically distrib-
uted settings.

6.2.1 Evaluation of the ease of use of ARCA-tool

ARCA-tool was perceived as easy to use and learn in Cases 5-6. In Case 5, the
participants evaluated the ease of use and learnability of the tool with very
high values (see Table 9). In Case 6, the participants evaluated the ease of use
and learnability of the tool with high values. The values given in Case 6, how-
ever, were lower than in Case 5. Case 5 had used the tool previously, whereas
the tool was new to the participants of Case 6; a difference between the cases
could explain the differences in the evaluations.

The results from the interviews consolidate the results from questionnaires
(see Article III). In Case 5, the participants experienced that the tool makes it
easier to visualize the outcome of the root cause detection step, i.e. the causes
of the target problem (the term “retrospective” was used in Article III to refer
to this step). In Case 6, the tool was characterized as “intuitive” and “relatively
easy to use”. Additionally, the interviews at Case 6 indicate that it is positive
that only the necessary features are included in the tool. It was also claimed in
the interviews of Case 6 that the perceived difficulty of using ARCA-tool in the
step of root cause detection correlates with the number of detected causes. The

Table 9. Evaluation results regarding ARCA-tool.
ARCA-tool Field studies (N=16)

Case Case 5* Case 6*

 Team 1 (N=3) Team 2 (N=5) Team 3 (N=3) Team 4 (N=5)

Ease of use Very high High Very High High

 avg. 7.0 6.4 7.0 5.6

 std. 0.0 0.7 0.0 1.0

Learnability High High Very High High

 avg. 6.6 6.4 7.0 5.6

 std. 0.8 0.7 0.0 1.4

Cost-efficiency - - - High

 avg. 5.6

 std. 1.4

Usefulness High High High High

 avg. 6.0 5.9 6.6 5.6

 std. 0.8 1.1 0.7 1.0

Scale: 1=very low, 4=moderate, 7=very high, * normalized scale 1-7 (the original scale was 1-5)

Evaluation results

48

interview results from Case 6 also indicate that the tool could be improved.
One participant claimed that when the causes of the target problem are orga-
nized, the visualization of cause groups would be important and it is currently
difficult with the tool.

6.2.2 Evaluation of the usefulness of ARCA-tool

In both cases, the results from the questionnaires indicated that the tool
helped to detect the causes of problems. In Case 5, the participants evaluated
that the efficiency of the step of root cause detection step would be lower with-
out the tool (see Article III). Respectively, the participants of Case 6 evaluated
that, in comparison to their previous practices, the cost efficiency of the tool is
high (see Table 9). Additionally, the participants of both cases evaluated that
the “assistance of the tool for cause detection” is significant (see Article III).

Regarding the results from the interviews, it seems to be a common opinion
that the tool improves the limited ARCA method (see Article III). Additionally,
the results indicate that the tool is essential in geographically distributed set-
tings. Furthermore, the interviews of Case 5 indicate that in face-to-face set-
tings, the tool can be substituted with a whiteboard and Post-it notes, an ap-
proach introduced by Stålhane et al. (2003). However, the efficiency of analy-
sis would then decrease (see Article III).

6.3 The cause types, process areas, and their relationships

This section summarizes the case study results regarding the outcome of the
ARCA method in Cases 1-4 (articles II and IV). The results indicate that in a
case of software project failure, the outcome of the ARCA method helps to ex-
plain what happened, where, and why.

6.3.1 Process areas

The ARCA method outcome included causes from five process areas. These
included “Management”, “Sales & Requirements”, “Implementation”, “Soft-
ware Testing”, and “Release & Deployment”. A total of 97.8 % to 100% of the
detected causes were related to the process areas at each case.

The process areas of the detected causes are somewhat similar to the ones
found in software engineering process literature, e.g. RUP (Jacobson, Booch,
and Rumbaugh 1998) and the waterfall model (Royce 1970). This means that
most of the detected causes indicated commonly accepted development pro-
cess areas wherein they occurred.

6.3.2 Cause types

Table 10 summarizes the cause types and their sub-types. We can see from the
table that the ARCA method outcome included causes with four types. These
included “People”, “Tasks”, “Methods”, and “Environment”. The cause types
are similar to the ones introduced in the literature of the causes of software

Evaluation results

49

Table 10. Summary of cause types and their sub-types.
Type Sub-type Examples

People Instructions & Experience Lack of instructions when and how to verify.

 Values & Responsibilities People do not care if the number of bugs increases.

 Cooperation Miscommunication between the developers and testers.

 Company Policies New issues are not registered.

Tasks Task Output Requirements are insufficient.

 Task Difficulty It is difficult to create a comprehensive specification.

 Task Priority The priority of defect fixing is too low.

Methods Work Practices Implementation is done directly in the test environment.

 Process The process for software testing is missing.

 Monitoring An opaque view of the quality during the development work.

Environment Existing Product The structure of the product has decayed during the past.

 Resources & Schedules Lack of time to report defects specific enough.

 Tools The version control system does not support customization.

 Customers & Users Importance for the customers is not well defined.

engineering problems (see Article IV). Furthermore, the detected causes were
also expressed with more details than these coarse-grained cause types. The
sub-categorization of the detected causes revealed a total of fourteen different
sub-types divided into three to four sub-types for each cause type. The sub-
types are also in line with the findings of prior studies (McLeod and Mac-
Donell 2011).

6.3.3 Similarities of the causes of failures

The causes of project failures were different in terms of process areas, but sim-
ilar in terms of cause types. The distributions of causes in process areas were
case dependent, which means that regarding the process areas of the detected
causes, the failures were different. Instead, regarding the cause types, the cases
were similar.

In each case, the cause types were equally distributed into People (avg. 29%,
std. 6%), Tasks (avg. 26%, std. 4%), Methods (avg. 22%, std. 3%), and Envi-
ronment (avg. 22%, std. 5%). All of these cause types were also frequent in all
process areas. The cases were also similar in terms of seven sub-types, cover-
ing 81% of all detected causes on average (std. 2%). These sub-types included
Instructions & Experience (avg. 16%, std. 4%), Values & Responsibilities (avg.
8%, std. 6%), Work Practices (avg. 16%, std. 4%), Task Output (avg. 16%, std.
2%), Task Difficulty (avg. 7%, std. 3%), Existing Product (avg. 7%, std. 5%),
and Resources & Schedules (avg. 9%, std. 4%).

Considering the bridge causes (see Section 3.7.2), the commonality between
the cases was that 1) the bridge causes were frequent in the detected causes
(avg. 50%) and 2) the company experts (avg. 56%) and key representatives
(avg. 68%) perceived them as feasible targets for process improvement activi-
ties. This means that the company people perceived it important to control the

Evaluation results

50

causes of software project failures, which are related to possible causal rela-
tionships over the process areas.

6.3.4 Common causal relationships bridging the process areas

Similar causes were related to similar causal relationships. Figure 10 summa-
rizes the common causes of project failures and their related causal relation-
ships bridging the process areas together. The term “common” refers to a
cause that occurred in at least three of our four cases. Such a definition is in
line with prior studies (e.g. Cerpa and Verner 2009; Verner, Sampson, and
Cerpa 2008).

The common causal relationships bridging the process areas included Weak
Task Backlog, Lack of Cooperation, and Lack of Software Testing Resources.
Weak Task Backlog bridged the Sales & Requirements, Management, Imple-
mentation, and Software Testing process areas (this process area was only rel-
evant in two cases). Lack of Cooperation bridged the Sales & Requirements,
Implementation, and Software Testing process areas. Lack of Software Testing
Resources bridged the Management and Software Testing process areas. Fur-
thermore, these three common causal relationships were also interconnected
to one another.

The common causal relationships alone did not cover any of the cases. When
the case specific results were compared, it was found that each failure was also
caused by different, case-specific causes that were interconnected to one an-
other differently. Additionally, the common causes were neither proposed nor
selected at every case, and other than common causes were proposed at every
case. This means that the software project failures could not have been ex-
plained by using the common causal relationships alone. The common causal
relationships could only improve the knowledge related to the “possible” caus-
es of software project failures.

Figure 10. Common causes and bridging causal relationships found in at least three out of four
cases (Article IV) (Bolded text/line indicates the selected causes; Normal text/line indicates the sub-
causes of the selected causes; Dashed line/grey text indicates that the cause was neither a selected cause
nor a sub-cause; Lines with arrows and text between the process areas indicate the direction of causal rela-
tionships interconnecting the process areas).

Discussion

51

7. Discussion

This section answers the research questions and discusses their main implica-
tions. Additionally, the section presents the main threats to validity.

7.1 Lightweight RCA method and software tool

Literature review about the prior RCA methods and the systematic investiga-
tion of the environment of use was utilized to create the ARCA method and
ARCA-tool. These results contribute to the first research problem: How can
RCA be conducted in collocated and distributed software project retrospec-
tives? Two research questions were stated for this research problem and they
are answered next.

7.1.1 Common steps of RCA methods and their work practices

Section 4.1 summarizes the synthesis of the common steps and work practices
of prior RCA methods. Section 4.2 presents the ARCA method. These results
answer the first research question discussed below.

RQ1: What are the common steps of RCA methods, and how are they to be
conducted?
The concrete work practices of RCA are fairly little studied in the context of
software project retrospectives. Therefore, synthetizing the steps of prior RCA
methods and their work practices (see Section 4.1) was an important contribu-
tion to the prior studies (see Section 2.3.1). Respectively, the ARCA method
(see Section 4.2) is an important contribution to the prior literature as it con-
cretizes how to conduct lightweight RCA over the common steps of prior
methods including the steps of target problem detection, root cause detection,
and corrective action innovation. Additionally, the ARCA method makes a
good starting point for the industrial evaluation, as it provides measurable
RCA construction to increase the comparability of the evaluation results over
the different cases.

The main difference between the prior RCA methods is their different work
practices in the step of target problem detection. Problem sampling has been
commonly used in large organizations, whereas it requires too much effort in
order to be feasible for SME organizations. Instead, brainstorming in a meet-
ing has been introduced as a feasible approach to SME organizations, whereas
it has not been recommended for large organizations. Regardless of the organ-
ization size, the used work practices should reveal “actual problems” instead of

Discussion

52

“subjective opinions” (Bjarnason and Regnell 2012). In SME organizations, it
could be more cost-efficient to detect an “actual” target problem by using
brainstorming in a meeting than by using problem sampling. Therefore, such
an approach was included to the ARCA method. Instead, the situation might
be opposite in large organizations. The need for problem sampling, including
defect sampling and project surveys, could increase among the increasing
number of employees and organizational complexity.

Furthermore, the prior RCA methods are mostly similar in the step of root
cause detection, where the causes of the target problem are analysed in-depth.
The ARCA method follows the prior methods by using brainstorming and
brainwriting in a causal analysis meeting in order to create a cause-effect dia-
gram of the target problem causes (Card 1998; Bjørnson, Wang, and Arisholm
2009). Instead, the ARCA method differs from the prior methods by protect-
ing the anonymity of participants.

Most of the prior RCA methods also include the step of corrective action in-
novation, which develops action proposals for the most controllable and im-
portant root causes. The action proposals are usually developed in a meeting
with a group of people (Andersen and Fagerhaug 2006; Card 1998; Leszak,
Perry, and Stoll 2000; Jalote and Agrawal 2005; Grady 1996). Brainstorming
and brainwriting (Andersen and Fagerhaug 2006) have been presented as use-
ful work practices, which were also included in the ARCA method.

Considering the RCA work practices, it becomes reasonable to claim that the
outcome of RCA is only a reflection of expert knowledge instead of true reality.
The RCA methods are highly dependent on data investigation techniques in-
cluding brainstorming, brainwriting, and interviewing. These techniques are
often used at every step of RCA methods. Therefore, it is possible that the use
of RCA results in wrong conclusions and inaccurate corrective actions.

7.1.2 Software tools for the RCA of retrospectives

Section 5.1 summarizes the comparison results of the prior RCA software tools
and Section 5.2 introduces ARCA-tool. Together, these results contribute to
the second research question discussed below.

RQ2: What software tools for RCA are introduced, and how do they support
software project retrospectives?
Software tools could help to improve the RCA of software project retrospec-
tives. We found that the use of Post-it notes and a whiteboard during RCA
(Stålhane et al. 2003; Bjørnson, Wang, and Arisholm 2009) should be substi-
tuted with a monitor and software tool (see articles I and III). We also found
the challenge of conducting RCA in distributed software project retrospectives
due to the lack of real-time collaboration tool support (see Article III). There-
fore, developing ARCA-tool was reasonable.

There are at least seven important aspects that should be considered while
evaluating the software tool for RCA (see Section 5.1). These aspects can be
divided into 1) technical features and 2) features for RCA. Considering the
technical features, the RCA tool should support real-time collaboration. Addi-

Discussion

53

tionally, the tool should be easy to adopt. Considering the RCA features, the
software tool should support cause-effect diagramming, corrective action de-
velopment, voting, and knowledge management.

A total of 35 software tools for RCA were found by using a systematic litera-
ture review. Regarding the comparison results, it seems that the prior RCA
tools support software project retrospectives inadequately. The software tools
for RCA include mostly proprietary native client software, which are developed
for an individual analyst who investigates target problems by using interview-
ing techniques.

7.2 Perceived ease of use and cost-efficiency

Field studies combined with the student experiment were used to evaluate the
ease of use and cost-efficiency of the ARCA method and ARCA-tool. These re-
sults contribute to the second research problem: Is RCA perceived as efficient
and easy to use in software project retrospectives? Two research questions
were stated for this research problem and they are answered next.

7.2.1 Ease of use and cost-efficiency of the ARCA method

The ARCA method was evaluated with target problems at different company
levels starting from the company-level problems of software project failures
and ending with the team-level problems of individual software development
teams. Additionally, the method was evaluated in collocated and distributed
retrospectives. The evaluation results regarding the ARCA method are summa-
rized in Section 6.1, and they contribute to the third research question dis-
cussed below.

RQ3: Is the ARCA method perceived as efficient and easy to use for analysing
software engineering problems in software project retrospectives?
Regarding the evaluation results, the ARCA method was perceived as cost-
efficient and easy to use. This was the case in collocated and distributed soft-
ware project retrospectives, which covered analyses between the top-level tar-
get problems (Article I) and team-level target problems (articles III and V). In
each case, the effort used was perceived as suitable in terms of the output of
the method. The detected causes were also experienced as correct in contrast
to the target problems. Additionally, high quality corrective actions were de-
veloped in each case where the step of corrective action innovation was con-
ducted (Cases 1-4). Furthermore, in each case, the method was perceived as
useful.

These evaluation results indicate that RCA is an important part of software
project retrospectives, as also indicated in the prior studies on post-mortem
reviews (Stålhane et al. 2003; Bjørnson, Wang, and Arisholm 2009; Dingsøyr
2005; Collier, DeMarco, and Fearey 1996) and defect causal analysis (Card
1998; Leszak, Perry, and Stoll 2000; Jalote and Agrawal 2005; Gupta et al.
2008; Grady 1996; Kalinowski, Travassos, and Card 2008; Jacobs et al. 2005;
Nakashima et al. 1999). In Cases 1-4 and 6, the existing retrospective practices

Discussion

54

did not include RCA, but they did include the detection of problems and devel-
opment of corrective actions. In the existing practices, the structured investi-
gation of the underlying causes of problems, i.e. RCA, was substituted with
“informal discussions about problems” (articles I and III). Respectively, cause-
effect diagrams were not used to register the findings of software project retro-
spectives. When the ARCA method was used in the cases, the participants per-
ceived it as cost-efficient and feasible for their needs.

There are at least three hypotheses as to why the ARCA method improved
the existing practices. First, the structured investigation approach of the ARCA
method decreased the level of informality by providing “process structure”
(Dennis et al. 1997). Second, the use of brainwriting in order to detect the
causes of problems (Andersen and Fagerhaug 2006) decreased the problem of
dominating team members who speak over the others (Article III). Third, the
visual power of the cause-effect diagram decreased memory bias (Von
Zedtwitz 2002) by helping the participants to remember all relevant findings
and outline them as a whole (Eden 2004).

Considering the three hypotheses listed above, the results indicate that the
structured investigation approach is the key for successful software project ret-
rospective, which can be additionally improved by using brainwriting and the
cause-effect diagram. In the student experiment, the perceived usefulness of
the ARCA method was not significantly dependent on the use of the cause-
effect diagram. However, the detailed comparison of the method outcome and
the analysis of the perceptions of participants revealed that the cause-effect
diagram was a more optimal technique for visualizing the outcome of RCA
than using the list-of-causes (see Article V). Respectively, Cases 5-6 indicated
that ARCA-tool, which uses the cause-effect diagram of the ARCA method, im-
proves retrospectives (see Article III). However, the cases also revealed that
the structured approach of RCA, including the systematic focus on target prob-
lem causes, is the most important component of the analysis. Furthermore, the
results from Case 2 indicated that brainwriting combined with brainstorming
is a better approach for developing action proposals than using brainstorming
only.

7.2.2 Improving the ARCA method with ARCA-tool

ARCA-tool was evaluated with collocated (Case 5) and distributed (Case 6)
software project retrospectives in order to study its designed support for the
ARCA method (see Section 5.2.). The evaluation results regarding ARCA-tool
are introduced in Section 6.2 and they contribute to the fourth research ques-
tion discussed below.

RQ4: Is the developed ARCA-tool perceived as useful and easy to use in soft-
ware project retrospectives applying the developed RCA method?
ARCA-tool was perceived as useful and it improves the limited ARCA method
(see Section 3.5.2) in collocated and distributed software project retrospec-
tives. The participants of Cases 5-6 perceived that ARCA-tool increases the ef-

Discussion

55

ficiency of RCA. They also experienced that the tool is essential in distributed
retrospectives. Furthermore, ARCA-tool was perceived as easy to use.

There are at least five hypotheses why ARCA-tool was perceived as useful.
First, the tool enables conducting the ARCA method (see Section 5.2.), which
was concluded as the key for successful software project retrospectives (see
Article III). Second, the tool improves the in-depth analysis by enabling real-
time visualization and simultaneous editing access to the retrospective out-
come. Third, the RCA facilitator does not need to act as a scribe (see Section
4.2.2). Fourth, the tool enables conducting the ARCA method as distributed.
Fifth, the tool protects the anonymity of retrospective participants.

Considering the above hypotheses, I believe that the most important success
factors of the tool are that it enables conducting the ARCA method and it pro-
vides real-time visualization and simultaneous editing access to the retrospec-
tive outcome. These success factors enable conducting RCA in distributed
software project retrospectives, a research problem introduced by Stålhane et
al. (2003). Additionally, possible post-retrospective analyses (see articles II
and IV) become easier since the retrospective findings are already electronical-
ly registered (see Section 4.2.4). Furthermore, the efficiency of analysis in-
creases since the participants register their findings directly to the electronic
cause-effect diagram (see Figure 8) instead of writing down, often illegible,
Post-it notes and pasting them on a whiteboard to represent the cause-effect
diagram of the target problem (Stålhane et al. 2003; Bjørnson, Wang, and
Arisholm 2009).

7.3 The outcome of RCA with software project failures

A multiple case study about the ARCA method outcome was conducted in four
cases of software project failures in order to evaluate whether the outcome of
the ARCA method helps to express what happens, where the failures occur,
and why the failures occur. The case study results contribute to the third re-
search problem: Does the outcome of RCA indicate how the causes of software
project failures are interconnected? Three research questions were stated for
this research problem and they are answered next.

7.3.1 Frequently used process areas and cause types

The outcome of the ARCA method was analysed in Cases 1-4 in order to ex-
plain what caused software project failures at each case and where in the soft-
ware development processes the causes occurred (articles II and IV). Section
6.3.1 introduces the process areas detected from the ARCA method outcome,
expressing where the causes of failures occurred. Respectively, Section 6.3.2
introduces the types of causes expressing what the individual causes of failures
were. Furthermore, Section 6.3.3 considers the similarities between the cases.
Together these results contribute to the fifth research question discussed be-
low.

Discussion

56

RQ5: Which process areas and cause types were frequently used in RCA to
explain software project failures?
Regarding the outcome of the ARCA method, the software project failures
were commonly influenced by the problems of the management, sales & re-
quirements, implementation, and software testing work. These process areas
are similar to the ones found in software engineering process literature. Addi-
tionally, the prior studies of software project failures have emphasized these
process areas (see Article IV). Furthermore, the causes of failures were com-
monly related to the cause types of People, Tasks, Methods, and Environment.
The causes were also commonly related to the sub-types of Instructions & Ex-
perience, Values & Responsibility, Work Practices, Task Output, Task Difficul-
ty, Existing Product, Cooperation, and Resources & Schedules. Comparison of
these cause types to the results of prior studies (see Article IV) indicates that
these findings are also in line with others (McLeod and MacDonell 2011).

Due to the high similarity between the case study results and prior studies, I
conclude that using the ARCA method with software project failures in SME
organizations helps to express where the causes of software project failures
occur and what they are. In the ARCA method, the perceived causes of failures
that are registered to the cause-effect diagram are expressed with rich infor-
mation about their types and related process areas. Thus, analysing the out-
come of the ARCA method could help to conclude what happened and where.

7.3.2 The role of bridge causes

The interconnections between the causes of software project failures were
studied in order to evaluate whether the outcome of the ARCA method helps to
express how the causes of software project failures affect one another. Section
6.3.4 presents the common causal relationships bridging the process areas.
Furthermore, Article IV includes the in-depth analysis of the perceived causal
relationships between the process areas and individual causes of software pro-
ject failures at each case. Together these results contribute to the sixth re-
search question discussed below.

RQ6: What causal relationships bridge the process areas?
The term bridge cause refers to a cause-effect relationship for which the pro-
cess area of the effect is different than the one of its cause. Regarding the AR-
CA method outcome, a high number of perceived causes of software project
failures in implementation, software testing, and release & deployment was
bridged to the output of management work and sales & requirements. This
finding consolidates the prior studies by indicating that software project fail-
ures are caused by insufficient management work and sales & requirements
(see Article IV). Furthermore, the ARCA method outcome indicated that solv-
ing the problems in the management work and sales & requirements requires
improvements in the implementation work and software testing too. This find-
ing was logically compiled (see Article IV). The causal relationships between
the process areas were multidirectional including three common mechanisms,
bridging the process areas together. These mechanisms included Lack of Co-

Discussion

57

operation, Weak Task Backlog, and Lack of Software Testing Resources (see
Figure 10). Furthermore, the ARCA method outcome expressed the perceived
causal relationships of individual problems local to process areas (see Article
IV), and these causal relationships were also interconnected to the bridge
causes. Thus, the outcome of the ARCA method helped to explain, not only the
bridge causes, but the whole network of causes and effects, starting from the
separated problems of software development process areas and ending with a
perceived causal model of software project failures at each case.

Due to the logical relationships between the detected causes and their pro-
cess areas (see Article IV), I conclude that the ARCA method helps to express
how the perceived causes of software project failures are related to one anoth-
er. Considering a software project failure as a problem to follow the law of cau-
sality (see Section 2.1), as indicated by Cerpa and Verner (2009), controlling
the individual problems of software projects becomes important during the
project. This requires knowledge about the relationships between the individ-
ual problems, i.e., the interconnections between the causes of failures. There-
fore, RCA is an important part of software project retrospectives (see Figure 1).
It could help to explain why the individual problems of software projects oc-
cur. Additionally, it could help to explain how these individual problems form
the software project failure together.

7.3.3 Feasible targets for process improvement activities

The perceptions of practitioners and senior management on the causes for
process improvement activities were studied in order to consider the im-
portance of detecting perceived causal relationships between the causes of
software project failures in software project retrospectives. The prior studies
on software project failures have claimed to be important to analyse how the
causes of failures are related, however, these claims are not evaluated in prac-
tice (see Article IV). Section 6.3.3 presents results on the perceived feasibility
of the bridge causes for process improvement activities, and Article IV extends
the results to cover an analysis of the related process areas and cause types.
These results contribute to the seventh research question discussed below.

RQ7: Do the causes perceived as feasible targets for process improvement
differ from the other detected causes, and if so, how?
The case study results indicate that the causes of software project failures, per-
ceived as feasible targets for process improvement activities, are often related
to the perceived causal relationships interconnecting the process areas. This
means that in software project retrospectives, revealing the interconnections
between the individual problems of software projects is not only theoretically
reasonable (see Section 2.1), but also practically important. It leads to an un-
derstanding about the problems between software development process areas,
which are important to consider in the process improvement activities (see Ar-
ticle IV). These results consolidate the evaluation results on the high-perceived
usefulness of the ARCA method for software project retrospectives.

Discussion

58

7.4 Implications

This thesis introduced how to use RCA in software project retrospectives and
how the participants perceived its ease of use and cost-efficiency in SME or-
ganizations. It seems that software project retrospectives should use RCA. All
of the evaluation results indicate that RCA is a useful part of retrospectives.
These findings consolidate the prior studies that present RCA as a part of col-
located retrospectives (Stålhane et al. 2003; Bjørnson, Wang, and Arisholm
2009). Additionally, our results extend the prior studies by showing that RCA
is also a good approach for distributed retrospectives following the agile meth-
ods (Schwaber and Sutherland 2011).

Furthermore, the results of this thesis indicate that the focus of process im-
provement effort should be in the perceived causal relationships of problems.
The theory of causality (see Section 2.1) consolidates this assumption. Addi-
tionally, the claim is consolidated by Card (1998) who introduced the effect of
using RCA in two software organizations, and caused a total of 50% decrease
in defect rates. Card’s study includes significant evidence in the effect of cor-
rective actions developed by using RCA. Together, these studies consolidate
the high applicability of RCA for software process improvement activities.

Finally, there are many software engineering problems that could be consid-
ered with RCA, but they are not reported, e.g. requirement faults (Gursimran
and Jeffrey 2009). Therefore, alternative work practices for the step of target
problem detection should be considered. Most of the prior methods have used
problem sampling, which is infeasible for unreported problems. Our results
indicate that in SME organizations, problem sampling could be substituted
with a focus group meeting, which makes the RCA method as lightweight and
adaptable for different target problems. Such an approach could be feasible in
large organizations too. However, future work is needed to consolidate this
assumption.

7.5 Evaluation of the research

This section discusses the main threats to the study results. The discussion is
divided into four perspectives of validity (Runeson and Höst 2008) including
the construct validity, the internal validity, the external validity, and the relia-
bility. Detailed discussion about the threats to validity can be found in the pub-
lications.

7.5.1 Construct validity

Construct validity reflects the validity of research methods used to collect the
research data and draw out the conclusions regarding the research questions
(Runeson and Höst 2008). The research methods used in this thesis follow the
methods recommended in the framework of design science (Hevner et al.
2004) including literature reviews, field studies, multiple case studies, and
controlled experiments.

Discussion

59

The literature review about the prior RCA methods (RQ1) was structural;
however, it was conducted semi-systematically (see Article I). We used prede-
fined search words and two alternative search engines (Scopus and Google).
Unfortunately, we did not keep an accurate record on the literature that we
excluded. Therefore, evaluating the coverage of the review is difficult. Addi-
tionally, the list of search words was created based on our initial understand-
ing about the relevant key words of RCA. These included “RCA”, “root cause
analysis”, “DCA”, “defect causal analysis”, “defect analysis”, “defect preven-
tion”, and “problem prevention”. This list could have been extended with
search terms including “retrospective”, “postmortem”, and “post-project re-
view”. These search terms were used during the latter parts of this research
work to search for additional background literature (articles III and V). The
found papers did not extend the set of prior RCA methods any further, which
indicates that the coverage of the literature review was sufficient to make the
synthesis of prior RCA methods and to develop the ARCA method.

The literature review about the prior RCA software tools (RQ2) was structur-
al and systematic. However, the review was limited to the extensive number of
hits. Respectively, the review was limited with the available information. Fur-
thermore, the review was limited with the search term: “root cause analysis
software”.

The field study methods used to evaluate the ARCA method (RQ3) and AR-
CA-tool (RQ4) in the industrial cases and controlled student experiment cre-
ates a threat for construct validity regarding the reliability of human input.
The weakness is that the evaluation results are mostly dependent on the per-
ceptions of participants. Instead, the strength of the study is that the ARCA
method and ARCA-tool were evaluated from various perspectives including
the individual work practices and the retrospective outcome. Additionally, the
evaluation was replicated in many different retrospective contexts and in dif-
ferent companies. Furthermore, the evaluation was replicated in a student ex-
periment.

The threats to the construct validity regarding the multiple case study (RQ5-
RQ7) are related to the ARCA method outcome. The outcome of RCA has been
questioned, because of its high dependency on human factors (Ayad 2010).
Regarding the case evaluations including interviews (see articles I and III),
questionnaires (see articles I and III), and the method outcome (see Article
IV), this risk is not highly significant. Furthermore, the case study results are
also affected by the risks of using the grounded theory approach for analysing
the ARCA method outcome regarding the process areas, cause types, intercon-
nectedness, and feasibility for process improvement. It is possible that the in-
terpretations about the case domains do not reflect the reality. Thus, it is pos-
sible that the classification system does not reflect the reality either. This risk
decreases by the fact that we had cooperated months with the case companies.
Additionally, we conducted interviews about the case domains before using the
ARCA method (see articles I and IV). Therefore, our knowledge about the case
domains was likely sufficient for using the grounded theory approach.

Discussion

60

7.5.2 Internal validity

Internal validity considers the validity of the causal relationships between the
studied factors and their measured effects (Runeson and Höst 2008). The
study factors of this thesis include the ARCA method and ARCA-tool. The
measured effects include the improvement over the existing practices in terms
of the perceived efficiency and ease of use.

There is a threat to internal validity regarding the improvement of the ARCA
method and ARCA-tool over the existing practices. It is possible that the re-
searcher involvement and varying social context biased the evaluation results.
It is also possible that the target problems caused bias in the study results. Sec-
tion 7.5.4 considers the potential bias caused by the researcher involvement
and thus it is not discussed any further in this section.

It is possible that the evaluation results regarding the existing practices were
slightly biased by internal variations in the social contexts. RCA has been
characterized as a “witch-hunting tool” (Latino and Latino 2006). Thus, the
social context might affect the detected problems and thus decrease, or in-
crease, the coverage of the retrospectives.

Furthermore, there is a threat to internal validity regarding the potential dif-
ferences in the target problems analysed with the ARCA method and existing
practices. It is possible that the target problems analysed with the ARCA
method were perceived as more important than the target problems analysed
with the existing practices. Regarding this risk, Cases 1-4 had tried to solve
their target problems previously (Article I). Thus, they were able to provide
methodological comparison without significant biases by different target prob-
lems. Respectively, the participants of Cases 5-6 (Article III) were experienced
on conducting retrospectives continuously and with different types of target
problems. Thus, they were able to provide methodological comparison without
significant biases by monotonic target problems.

7.5.3 External validity

External validity is concerned about the generalizability of the results (Rune-
son and Höst 2008). The results regarding RCA and the RCA software tools
are limited to the work practices of the ARCA method. Additionally, the total
number of cases was only six. Furthermore, only two cases evaluated the use of
ARCA-tool.

The ARCA method is based on prior RCA methods, which increases the ex-
ternal validity. Instead, many different work practices of the prior methods
were not included in the evaluation. Respectively, we did not compare the AR-
CA method with the prior RCA methods. Instead, the ARCA method was com-
pared with the existing practices of the case companies. Therefore, the external
validity regarding the prior RCA methods remains somewhat low. On the other
hand, the external validity regarding the existing practices is high. The evalua-
tion covered different case contexts. Respectively, the ARCA method was eval-
uated with target problems at different company levels. The evaluation also
covered both collocated and distributed retrospective contexts. These varia-

Discussion

61

tions over the evaluation domains increased the external validity of the conclu-
sions about the ARCA method. The results over the cases were remarkably
similar.

Regarding the conclusions about the ARCA method outcome with software
project failures including the general cause types, process areas, and the feasi-
bility of the bridge causes for process improvement activities, the external va-
lidity is high. Cases 1-4 were used to analyse the outcome of the ARCA method
in the cases of software project failures. The cases varied in terms of software
project failures, case participants, and case companies. Instead, the complexity
of software project failures, the use of the ARCA method, and the roles of case
participants remained similar. Thus, the cases considered the causes of soft-
ware project failures and their relationships from various perspectives, which
collectively increase the external validity. Respectively, the similarities be-
tween the cases made the cases more comparable.

The future works should include studies with varying case contexts including
projects with different size, cultural context, geographical distribution, soft-
ware development methods, and software project failures. Currently our re-
sults are generalizable to SME organizations of software product companies
operating in western cultures.

7.5.4 Reliability

The threats to reliability are related to potential researcher bias in the study
results (Runeson and Höst 2008). There was a social tie between the research-
ers and the evaluation contexts. Additionally, the analyses regarding the inter-
views and the qualitative analysis of bridge causes are researcher dependent.

The researchers steered the use of the ARCA method in Cases 1-4 and the
student experiment. This creates a threat for the reliability. It is possible that
the researchers and subjects influenced one another (Sandelowski 1986).
Thus, the contribution of the researchers could bias the evaluation results.
This threat was controlled in Cases 5-6 (Article III). The limited ARCA method
was steered solely by the company personnel. The evaluation results from Cas-
es 1-4 are very similar to those in Cases 5-6. Thus, the potential risk of re-
searcher bias is most likely related to the work practices of preliminary cause
collection only (see Section 4.2.2), a work practice which was not included in
the limited ARCA method.

Furthermore, the qualitative analyses of the interviews (articles I, III, and V)
and bridge causes (Article IV) create threats for the reliability. It has been
claimed to be difficult to replicate qualitative data analyses (Mays and Pope
1995). Replicating the qualitative analyses of this thesis might not be difficult,
because the methods used in the data collection and analyses are clearly re-
ported in the related articles. Instead, the potential researcher bias is related to
the interpretations about the qualitative data. Regarding the interview results,
triangulation (Jick 1979) of the data sources, data collection methods, and data
analysis methods increase the reliability of the results. Our conclusions were
based on the analyses of individual parts of research data and the analysis of
all research data combined together. Such an approach has been called “her-

Discussion

62

meneutic circle” (Klein and Myers 1999), the key principle of interpretive field
study research.

Finally, regarding the qualitative analyses of the bridge causes, the classifica-
tion system, including the analysis of inter-rater agreement, increases the reli-
ability of the study results. The kappa value 0.65 indicated a good agreement
between the researchers over the process area dimensions (Article IV). Thus, it
is likely that the perceived causes of software project failures selected for quali-
tative analysis covered the bridge causes at each case. Furthermore, the bridge
causes interconnecting two process areas included a relatively low number of
causes. Therefore, summarizing how the process areas were interconnected
was not a difficult task.

Conclusions and future work

63

8. Conclusions and future work

This thesis made four contributions. First, a lightweight RCA method and RCA
software tool was developed. Additionally, a high number of RCA methods and
their work practices were introduced and discussed. Second, the use of RCA as
a part of software project retrospectives was evaluated thoroughly in six indus-
trial cases and one student experiment. Third, the use of computer facilitation
during RCA was evaluated. Fourth, the outcome of RCA in the cases of soft-
ware project failures was analysed.

The evaluations of RCA are limited to the work practices of the developed
ARCA method, a synthesis of prior RCA methods (Article I). The use of com-
puter facilitation is limited to the developed ARCA-tool (Article III). Further-
more, the analysis of the outcome of RCA is limited to the outcome of the AR-
CA method in SME organizations trying to explain why software projects have
failed.

8.1 Conclusions

This is one of the first studies in the software engineering context that has sys-
tematically evaluated the perceptions of subject matter experts using RCA in
their software project retrospectives. Such a systematic evaluation has not
been reported before. The results indicate that RCA is an important part of
software project retrospectives. It increases the efficiency of retrospectives. It
is also somewhat easy to use. Additionally, it reveals feasible targets for pro-
cess improvement. The evaluation covers the use of RCA in collocated and dis-
tributed software project retrospectives. Additionally, it covers the use of RCA
with different target problems and various levels of retrospectives including
the levels of company, organization, and team.

This is also the first study in the software engineering context that has evalu-
ated the use of RCA software tools in distributed retrospectives. The results
indicate that computer facilitation is essential for the RCA of distributed retro-
spectives. Respectively, RCA software increases the efficiency of collocated ret-
rospectives. The main features of the software tool for RCA include collabora-
tive cause-effect diagramming, corrective action development, and voting of
the most important RCA outcome.

Furthermore, detailed knowledge about the actual outcome of RCA was cre-
ated in this study. In the case of software project failures, the outcome of RCA
helps to express hypotheses on what happened, where it happened, and why it
happened. This methodological capability increases the feasibility of using

Conclusions and future work

64

RCA as a data collection method in software project retrospectives and in the
studies of software project failures.

8.2 Future work

In the future, comparative studies over the existing RCA methods and software
tools should be conducted, e.g. Bjørnson et al. (2009). Conducting an in-depth
analysis of software engineering problems during retrospectives is important,
but also a challenging task. Retrospectives should be lightweight or they are
not used (Glass 2002). Therefore, simplifying the visualization of the underly-
ing target problem causes should be a part of future works. The high complexi-
ty and cross-functionality of software engineering problems makes it difficult
to detect and analyse their causes.

It should also be studied how to simplify the causal analysis without losing
the important knowledge about the solution space of target problems. A soft-
ware tool could improve the causal analysis. However, the current tools re-
quire improvements.

Finally, replicative studies on the use of RCA with software project failures
should be conducted in the future. Questionnaires and interviews about the
causes of failures are an important part of the future studies. However, the
central role of the bridge causes should be taken in account better. Bridge
causes could be detected with RCA, but that requires further validation with
different target problems and cases. The software engineering research has not
yet filled this gap.

References

65

References

Al-Mamory, Safaa O., and Hongli Zhang. 2009. Intrusion detection alarms re-
duction using root cause analysis and clustering. Computer Communica-
tions 32 (2) (February): 419 - 430.

Álvarez, M. P. 2009. The four causes of behavior: Aristotle and skinner. Inter-
national Journal of Psychology and Psychological Therapy 9 (1): 45-57.

Ammerman, Max. 1998. The root cause analysis handbook: A simplified ap-
proach to identifying, correcting, and reporting workplace errors. First
Edition ed. 444 Park Avenue South, Suite 604, New York, NY 1016,
USA: Productivity Press.

Andersen, Björn, and Tom Fagerhaug, eds. 2006. Root cause analysis: Simpli-
fied tools and techniques. Second Edition ed. United States, Milwaukee
53203: Tony A. William American Society for Quality, Quality Press.

Ayad, Amine. 2010. Critical thinking and business process improvement.
Journal of Management Development 29 (6): 556-564.

Berander, Patrik. 2004. Using students as subjects in requirements prioritiza-
tion. Paper presented at Empirical Software Engineering, 2004. ISESE'04.

Bhandari, Inderpal, Michael Halliday, Eric Tarver, David Brown, Jarir Chaar,
and Ram Chillarege. 1993. A case study of software process improvement
during development. IEEE Transactions on Software Engineering 19 (12)
(December): 1157-1170.

Birk, Andreas, Torgeir Dingsøyr, and Tor Stålhane. 2002. Postmortem: Never
leave a project without it. IEEE Software 19 (3): 43-5.

Bjarnason, Elizabeth, and Björn Regnell. 2012. Evidence-based timelines for
agile project Retrospectives–A method proposal. Agile processes in soft-
ware engineering and extreme programming: 177-184, Springer.

Bjørnson, Finn O., Alf I. Wang, and Erik Arisholm. 2009. Improving the effec-
tiveness of root cause analysis in post mortem analysis: A controlled ex-
periment. Information and Software Technology 51 (1) (January): 150 -
161.

Boh, Wai F., Sandra A. Slaughter, and Alberto J. Espinosa. 2007. Learning
from experience in software development: A multilevel analysis. Man-
agement Science 53 (8): 1315-1331.

Burnstein, Ilene. 2003. Practical software testing. New York: Springer Sci-
ence+Business Media.

References

66

Burr, Adrian, and Mal Owen, eds. 1996. Statistical methods for software quali-
ty: Using metrics for process improvement. First Edition ed. ITP A divi-
sion of International Thomson Publishing Inc.

Card, David N. 1998. Learning from our mistakes with defect causal analysis.
IEEE Software 15 (1): 56-63.

———. 1993. Defect-causal analysis drives down error rates. Quality Time 10
(4) (July): 98 - 99.

Carver, Jeffrey, Letizia Jaccheri, Sandro Morasca, and Forrest Shull. 2003. Is-
sues in using students in empirical studies in software engineering educa-
tion. Paper presented at Ninth International Software Metrics Symposium,
2003.

Cerpa, Narciso, and June M. Verner. 2009. Why did your project fail? Com-
munications of the ACM 52 (12): 130-134.

Chillarege, Ram, Inderpal S. Bhandari, Jarir K. Chaar, Michael J. Halliday, Di-
ane S. Moebus, Bonnie K. Ray, and Man-Yuen Wong. 1992. Orthogonal
defect classification - A concept for in-process measurements. IEEE
Transactions on Software Engineering 18 (11) (November): 943 - 956.

Collier, Bonnie, Tom DeMarco, and Peter Fearey. 1996. A defined process for
project post mortem review. IEEE Software 13 (4): 65-72.

Cooke, David L. 2003. Learning from incidents. Paper presented at Proceed-
ings of the 21st International Conference of the System Dynamics Society,
New York, NY, USA.

Dennis, Alan R., Craig K. Tyran, Douglas R. Vogel, and Jay F. Nunamaker Jr.
1997. Group support systems for strategic planning. Journal of Manage-
ment Information Systems 14 (1): 155-84.

Dingsøyr, Torgeir. 2005. Postmortem reviews: Purpose and approaches in
software engineering. Information and Software Technology 47 (5): 293-
303.

Dingsøyr, Torgeir, Nils B. Moe, and Øystein Nytrø. 2001. Augmenting experi-
ence reports with lightweight postmortem reviews. Paper presented at
PROFES '01 Proceedings of the Third International Conference on Prod-
uct Focused Software Process Improvement.

Dye, J., and T. van der Schaaf. 2002. PRISMA as a quality tool for promoting
customer satisfaction in the telecommunications industry. Reliability En-
gineering & System Safety 75 (3): 303-311.

Eden, Colin. 2004. Analyzing cognitive maps to help structure issues or prob-
lems. European Journal of Operational Research (3): 673-686.

References

67

Edmondson, Amy C. 1996. Learning from mistakes is easier said than done:
Group and organizational influences on the detection and correction of
human error. The Journal of Applied Behavioral Science 32 (1): 5-28.

El Emam, Khaled, and A. Gunes Koru. 2008. A replicated survey of IT soft-
ware project failures. IEEE Software 25 (5): 84-90.

Foddy, William, ed. 1994. Constructing questions for interviews and question-
naires. Hong Kong by Colorcraft: Cambridge University Press.

Galles, David, and Judea Pearl. 1997. Axioms of causal relevance. Artificial
Intelligence 97 (1-2): 9-43.

Glass, R. L. 2002. Project retrospectives, and why they never happen. IEEE
Software 19 (5) (October): 111-112.

Grady, Robert B. 1996. Software failure analysis for high-return process im-
provement decisions. Hewlett-Packard Journal 47 (4) (August): 15 - 25.

Granger, Clive WJ. 1988. Some recent development in a concept of causality.
Journal of Econometrics 39 (1): 199-211.

Gupta, Anita, Jingyue Li, Reidar Conradi, Harald Rönneberg, and Einar
Landre. 2008. A case study comparing defect profiles of a reused frame-
work and of applications reusing it. Empirical Software Engineering 14
(2) (20 August): 227 - 255.

Gursimran, S. W., and C. C. Jeffrey. 2009. A systematic literature review to
identify and classify software requirement errors. Information and Soft-
ware Technology 51 (7) (July): 1087-1109.

Herbsleb, James D., and Deependra Moitra. 2001. Global software develop-
ment. IEEE Software 18 (2): 16-20.

Hevner, Alan R., Salvatore T. March, Jinsoo Park, and Sudha Ram. 2004. De-
sign science in information systems research. MIS Quarterly 28 (1): 75-
105.

Höst, Martin, Björn Regnell, and Claes Wohlin. 2000. Using students as sub-
jects—a comparative study of students and professionals in lead-time im-
pact assessment. Empirical Software Engineering 5 (3): 201-14.

Hume, David. 1896. A treatise of human nature [1739]. reprinted from the
Original Edition in three volumes and edited, with an analytical index, by
L.A. Selby-Bigge ed. Oxford: Clarendon Press.

Jacobs, Jef, Jan Van Moll, Paul Krause, Rob Kusters, Jos Trienekens, and
Aarnout Brombacher. 2005. Exploring defect causes in products devel-
oped by virtual teams. Information and Software Technology (47): 399-
410.

References

68

Jacobson, I., G. Booch, and J. Rumbaugh. 1998. The unified software develop-
ment process. Addison-Wesley.

Jalote, Pankaj, and Naresh Agrawal. 2005. Using defect analysis feedback for
improving quality and productivity in iterative software development. Pa-
per presented at Proceedings of the Information Science and Communica-
tions Technology (ICICT 2005).

Jick, Todd D. 1979. Mixing qualitative and quantitative methods: Triangulation
in action. Administrative Science Quarterly 24 (4): 602-11.

Jin, Zhao X., John Hajdukiewicz, Geoffrey Ho, Donny Chan, and Yong-Ming
Kow. 2007. Using root cause data analysis for requirements and
knowledge elicitation. Paper presented at International Conference on En-
gineering Psychology and Cognitive Ergonomics (HCII 2007), Berlin,
Germany.

Juristo, Natalia, and Ana M. Moreno. 2003. Basics of software engineering ex-
perimentation. London: IBT Global.

Kalinowski, Marcos, Guilherme H. Travassos, and David N. Card. 2008.
Towards a defect prevention based process improvement approach. Paper
presented at Proceedings of the 34th EUROMICRO Conference on Soft-
ware Engineering and Advanced Applications, Parma, Italy.

Kavadias, Stylianos, and Svenja C. Sommer. 2009. The effects of problem
structure and team diversity on brainstorming effectiveness. Management
Science 55 (12) (December): 1899-1913.

Klein, Heinz K., and Michael D. Myers. 1999. A set of principles for conduct-
ing and evaluating interpretive field studies in information systems. MIS
Quarterly: 67-93.

Latino, Robert J., and Kenneth C. Latino, eds. 2006. Root cause analysis: Im-
proving performance for bottom-line results. Third Edition ed. 6000 Bro-
ken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742: CRC
Press.

Lee, S., J. F. Courtney, and R. M. O'Keefe. 1992. A system for organizational
learning using cognitive maps. Omega, the International Journal of Man-
agement Science 20 (1): 23-36.

Leszak, Marek, Dewayne E. Perry, and Dieter Stoll. 2000. A case study in root
cause defect analysis. Paper presented at Proceedings of the 2000 Interna-
tional Conference on Software Engineering.

Lethbridge, Timothy C., Susan Elliott Sim, and Janice Singer. 2005. Studying
software engineers: Data collection techniques for software field studies.
Empirical Software Engineering 10 (3): 311-341.

References

69

Livingstone, A. D., G. Jackson, and K. Priestley. 2001. Root causes analysis:
Literature review. Health & Safety Executive, Contract Research Report
325: 1-53.

March, Salvatore T., and Gerald F. Smith. 1995. Design and natural science
research on information technology. Decision Support Systems (15): 251-
266.

Mays, Nicholas, and Catherine Pope. 1995. Rigour and qualitative research.
BMJ 311 (8): 109-112.

Mays, Robert G. 1990. Applications of defect prevention in software develop-
ment. IEEE Journal on Selected Areas in Communications 8 (2) (Febru-
ary): 164-168.

McLeod, Laurie, and Stephen G. MacDonell. 2011. Factors that affect software
systems development project outcomes: A survey of research. ACM Com-
puting Surveys 43 (24): 24-55.

Monteiro, Paula, Ricardo J. Machado, Rick Kazman, and Cristina Henriques.
2010. Dependency analysis between CMMI process areas. Paper presented
at PROFES, LNCS 6156.

Nakashima, T., M. Oyama, H. Hisada, and N. Ishii. 1999. Analysis of software
bug causes and its prevention. Information and Software Technology (41):
1059-1068.

Naur, P., and B. Randel. 1969. Software engineering: A report on a conference
sponsored by the NATO science committee. Nato.

Pearl, Judea, ed. 2000. Causality: Models reasoning, and inference. United
States of America: Cambridge University Press.

Rooney, James J., and Lee N. Vanden Hauvel. 2003. Collecting data for root
cause analysis. Quality Progress 36 (11) (November): 104.

Rooney, James J., and Lee N. Vanden Heuvel. 2004. Root cause analysis for
beginners. Quality Progress 37 (7) (August): 45 - 53.

Royce, Winston. 1970. Managing the development of large software systems.
Paper presented at Proceedings of IEEE WESCON 26 (August).

Runeson, Per. 2003. Using students as experiment subjects–an analysis on
graduate and freshmen student data. Paper presented at Proceedings of the
7th International Conference on Empirical Assessment in Software Engi-
neering.–Keele University, UK.

Runeson, Per, and Martin Höst. 2008. Guidelines for conducting and reporting
case study research in software engineering. Empirical Software Engineer-
ing (14) (19 december): 131-164.

References

70

Salinger, Stephan, Laura Plonka, and Lutz Prechelt. 2007. A coding scheme
development methodology using grounded theory for qualitative analysis
of pair programming. Paper presented at 19th Annual Psychology of Pro-
gramming Workshop, Joensuu.

Sandelowski, M. 1986. The problem of rigor in qualitative research. ANS 8 (3):
27-37.

Schwaber, Ken, and Jeff Sutherland. 2011. Scrum guide. Scrum Alliance.

Shull, Forrest, Dag I. K. Sjøberg, and Janice Singer. 2008. Guide to advanced
empirical software engineering. Springer-Verlag London Limited.

Siekkinen, Matti, Guillaume Urvoy-Keller, Ernst W. Biersack, and Denis Col-
lange. 2008. A root cause analysis toolkit for TCP. Computer Networks
(52): 1846-1858.

Stålhane, Tor. 2004. Root cause analysis and gap analysis - A tale of two
methods. Paper presented at EuroSPI 2004, Trondheim, Norway.

Stålhane, Tor, Torgeir Dingsøyr, Geir Hanssen, and Nils Moe. 2003. Post mor-
tem–an assessment of two approaches. Empirical Methods and Studies in
Software Engineering: 129-41.

Stevenson, William J., ed. 2005. Operations management. 8th ed. New York:
McGraw-Hill/Irwin.

Svahnberg, Mikael, Aybüke Aurum, and Claes Wohlin. 2008. Using students
as subjects-an empirical evaluation. Paper presented at Proceedings of the
Second ACM-IEEE international symposium on Empirical software engi-
neering and measurement.

Terzakis, John. 2011. Virtual retrospectives for geographically dispersed soft-
ware teams. IEEE Software 28 (3): 12-15.

Thiele, T. N. 1931. The law of causality. The Annals of Mathematical Statistics
2 (2): 165-169.

Traeger, Avishay, Ivan Deras, and Erez Zadok. 2008. DARC: Dynamic analy-
sis of root causes of latency distributions. Paper presented at SIGMET-
RICS '08, Annapolis, Maryland, USA.

Vanhanen, Jari, Timo O. A. Lehtinen, and Casper Lassenius. 2012. Teaching
real-world software engineering through a capstone project course with
industrial customers. Paper presented at 1st International Workshop on
Software Engineering Education Based on Real-World Experiences,
EduRex 2012, Zurich.

Verner, June, Jennifer Sampson, and Narciso Cerpa. 2008. What factors lead to
software project failure. Paper presented at Proceedings of Research Chal-
lenges in Information Science (RCIS 2008).

References

71

Von Zedtwitz, Maximilian. 2002. Organizational learning through post–project
reviews in R&D. R&D Management 32 (3): 255-68.

Wang, Yingxu, and Graham King. 2000. Software engineering processes:
Principles and applications. CRC Press LLC.

Xiangnan, L., L. Hong, and Y. Weijie. 2010. Analysis failure factors for small
& medium software projects based on PLS method. Paper presented at
The 2nd IEEE International Conference on Information Management and
Engineering (ICIME 2010).

Yin, Robert K., ed. 1994. Case study research: Design and methods. 2nd Edi-
tion ed. United States of America: SAGE Publications.

9HSTFMG*afjahf+

	Aalto_DD_2014_159_Timo_O.A._Lehtinen_verkkoversio

