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Inference of differences between samples is 
a fundamental problem in computational 
biology. Molecular measurements of 
biological organisms produce high-
dimensional data but the number of test 
subjects in the experiments is limited. In 
this thesis, computational methods are 
presented for finding differences between 
high-dimensional observations and for 
extensions of this problem. 
 
Since the effects and side-effects of new 
drug treatments are unknown and 
potentially dangerous, model organisms are 
used to study human diseases and their 
treatments. The computational translation 
of the outcome of an experiment from the 
model organism to humans is a problem, 
which is addressed in this thesis. Presented 
data translation methods identify responses 
to experimental treatments that are 
conserved across organisms. 
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Abstract 
The inference of differences between samples is a fundamental problem in computational 

biology and many other sciences. Hypothesis about a complex system can be studied via a 
controlled experiment. The design of the controlled experiment sets the conditions, or 
covariates, for the system in such a way that their effect on the system can be studied through 
independent measurements. When the number of measured variables is high and the variables 
are correlated, the assumptions of standard statistical methods are no longer valid. In this 
thesis, computational methods are presented to this problem and its follow-up problems. 
 
A similar experiment done on different systems, such as multiple biological species, leads to 
multiple "views" of the experiment outcome, observed in different data spaces or domains. 
However, cross-domain experimentation brings uncertainty about the similarity of the systems 
and their outcomes. Thus, a new question emerges: which of the covariate effects generalize 
across the domains? In this thesis, novel computational methods are presented for the 
integration of data views, in order to detect weaker covariate effects and to generalize covariate 
effects to views with unobserved data. 
 
Five main contributions to the inference of covariate effects are presented: (1) When the data 
are high-dimensional and collinear, the problem of false discovery is curbed by assuming a 
cluster structure on the observed variables and by handling the uncertainty with Bayesian 
methods. (2) Prior information about the measurement process can be used to further improve 
the inference of covariate effects for metabolomic experiments by modeling the multiple layers 
of uncertainty in the mass spectral data. (3-4) When the data come from multiple measurement 
sources on the same subjects - that is, from data views with co-occurring samples - it is 
unknown, whether the covariate effects generalize across the views and whether the outcome 
of a new intervention can be generalized to a view with no observed data on that intervention. 
These problems are shown to be possible to solve by assuming a shared generative process for 
the multiple data views. (5) When the data come from different domains with no co-occurring 
samples, the inference of between-domain dependencies is not possible in the same way as 
with co-occurring samples. It is shown that even in this situation, it is possible to identify 
covariate effects that generalize across the domains, when the experimental design at least 
weakly binds the domains together. Then, effects that generalize are identified by assuming a 
shared generative process for the covariate effects. 
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Tiivistelmä 
Eroavaisuuksien löytäminen näytteiden välillä on perustavanlaatuinen ongelma niin 

laskennallisessa biologiassa kuin muissakin tieteissä. Hypoteesia monimutkaisen järjestelmän 
toiminnasta voidaan tutkia tekemällä koe. Kokeen olosuhteet kontrolloidaan siten, että 
koeasetelman määrittelemien kovariaattien vaikutus tutkittavaan systeemiin voidaan todeta 
riippumattomien mittausten avulla. Jos mitattuja muuttujia on paljon ja niillä on keskinäisiä 
riippuvuuksia, perinteisten tilastollisten mallien olettamukset eivät päde. Tässä väitöskirjassa 
esitetään laskennallisia menetelmiä tähän ongelmaan ja sen jatko-ongelmiin. 
 
Kun samanlainen koe tehdään useille samankaltaisille järjestelmille, kuten eri biologisille 
lajeille, saadaan "näkymiä" kokeen tuloksesta eri mittausavaruuksissa. Järjestelmien 
eroavaisuuksista seuraa kuitenkin epävarmuus tulosten yhteneväisyydestä ja kysymys siitä, 
mitkä kovariaattien vaikutukset yleistyvät tutkittaville järjestelmille? Tässä väitöskirjassa 
esitetään uusia laskennallisia menetelmiä havaintoaineistojen yhdistämiseen useista 
näkymistä, heikkojen kovariaattivaikutusten löytämiseen sekä vaikutusten yleistämiseen 
näkymiin, joista ei ole saatavilla vastaavia havaintoja. 
 
Väitöskirja sisältää viisi pääkontribuutiota kovariaattien vaikutusten löytämiseen: (1) Kun 
havainnot ovat korkeaulotteisia ja niissä on muuttujien välisiä riippuvuuksia, väärien 
löydösten riskiä voidaan lieventää mallintamalla ilmiötä bayesilaisittain ja olettamalla, että 
muuttujat muodostavat ryhmiä. (2) Mittausmenetelmää koskevan prioritiedon tuominen 
malliin tarkentaa kovariaattien vaikutusten oppimista monitasoista mittauskohinaa 
sisältävistä metabolomiikkamittauksista. (3-4) Kun havainnot muodostuvat useasta 
mittausnäkymästä samoille mittauskohteille, on selvitettävä yleistyvätkö kovariaattien 
vaikutukset usealle näkymälle ja voidaanko uuden kokeen tulos yleistää näkymään, josta ei ole 
havaintoja uuden kokeen osalta. Nämä kysymykset ratkaistaan olettamalla, että näkymien 
havainnot ovat muodostuneet yhteisen generatiivisen prosessin kautta. (5) Kun havainnot 
muodostuvat useasta mittausnäkymästä mutta mittauksen kohteet eivät ole näkymien välillä 
samat, näkymien välisten riippuvuuksien löytäminen ei ole mahdollista samalla tavalla kuin 
silloin kun kohteet ovat samat. Väitöskirjassa osoitetaan, että tässäkin tapauksessa on 
mahdollista löytää näkymien välisiä riippuvuuksia ja niitä voidaan löytää tutkimalla näkymien 
yhteisten kovariaattien vaikutuksia. 

Avainsanat ANOVA-mallitus, bayesilainen mallitus, laskennallinen biologia, lajienvälinen 
mallitus, metabolomiikka, usean näkymän mallitus, toksikogenomiikka 

ISBN (painettu) 978-952-60-5932-7 ISBN (pdf) 978-952-60-5933-4 

ISSN-L 1799-4934 ISSN (painettu) 1799-4934 ISSN (pdf) 1799-4942 

Julkaisupaikka Helsinki Painopaikka Helsinki Vuosi 2014 

Sivumäärä 170 urn http://urn.fi/URN:ISBN:978-952-60-5933-4 





Preface

The research work for this thesis was done at Helsinki Institute for

Information Technology HIIT, Department of Information and Computer

Science, Aalto University. The work was funded by Academy of

Finland (The Finnish Centre of Excellence in Computation Inference

Research, COIN; The Adaptive Informatics Research Centre, AIRC; and

the project for Computational Modeling of the Biological Effects of

Chemicals, ChemBio) and Tekes (MASI program and the Multibio

project). Additionally, associated travel and a research visit were funded

by the Finnish Doctoral Programme in Computational Sciences FICS

and the Finnish Foundation for Technology Promotion.

The work was supervised by Prof. Samuel Kaski, to whom I am deeply

grateful for all the advice, discussions and expertise that made this work

possible, and for the opportunity to work in the group. I was privileged

to learn so many things from a true researcher at the bleeding edge of

machine learning and computational biology!

I equally want to thank the co-authors of the publications presented in

the thesis for making this come true: Drs Ilkka Huopaniemi,
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1. Introduction

1.1 Motivation and Background

High-throughput measurement technologies, developed during the past

decades, enable the quantification of molecular level changes in

biological organisms. Biological processes at the molecular level are

crucial for understanding diseases, since the most of the diseases result

from perturbations in these processes. Also medical drugs perturb

biological processes, ideally in an inverse way to the cause of the disease,

thus restoring the organism to the normal state.

Since new drug compounds cannot be directly tested on humans due to

their unknown and potentially dangerous effects, the drugs first go

through rigorous testing on model organisms to assess both

their therapeutic potential as well as their unwanted side-effects. Still

after the testing phases on model organisms, it is unknown, which of

the observed effects appear, when the drug is administered to a human.

There is a need for computational methods that identify drug effects that

generalize between the model organisms and humans, and to translate

the expected outcome of a new experiment from model organisms to

humans.

The data translation methods presented in this thesis enable

the identification of similar responses between the organisms even

though the observed organisms are different by their biological systems.

The methods are based on the assumption that the experiments on

different organisms share a similar experiment design that acts as

a common ground for the identification of similar responses.

Modeling of differences between groups of samples from one organism

is the starting point for the thesis. Even this is a non-trivial problem,

13



Introduction

since the small number of samples compared to the number of observed

variables renders traditional statistical methods ineffective for

the reliable inference of the differences. This problem, known as

the “small n, large p” problem, is prevalent in experiments on

the molecular biology of an organism, where thousands of different

molecules are measured on a handful of test subjects.

1.2 Contributions of the Thesis

The contributions of this thesis are distributed to seven peer-reviewed

publications. The scientific contributions in each of the publications,

referred by the Roman numerals, are summarized in the list below:

I. A hierarchical Bayesian model was introduced for inferring multi-way

covariate effects from noisy and collinear data with a small number of

samples but a high number of observed variables.

II. A Bayesian model was introduced to improve the inference of

covariate effects from mass spectral measurements of the metabolome.

The proposed method is a generative model both for the measurement

process, integrating multiple spectral peaks from one chemical

compound, and for the experiment design, inferring the effects of

the experimental covariates.

III. The inference of weak covariate effects on metabolomic data was

further improved by introducing a hierarchical Bayesian model that at

two levels clusters the observed variables: peaks into latent compounds

and, further, latent compounds into groups of compounds that respond

coherently to the experimental covariates.

IV. A Bayesian multi-way, multi-view model was introduced to inferring

covariate effects that generalize to multiple data views with co-occurring

samples.

V. A multi-view biclustering model was introduced for identifying

conserved molecular responses, when the interventions are

experimented on multiple organisms. The generalization of

the response from molecular measurements on model organisms to

14



Introduction

humans at the population level was formulated as a task for retrieving

similar interventions with known effects.

VI. A dynamical Bayesian model was introduced for inferring covariate

effects, when the covariate is the time point of a time series and

the points and the lengths of the series vary. The time series were

aligned via dynamical modeling to enable the identification of

consistent covariate effects. Further, it was shown that by modeling

the matching experiment design, conserved covariate effects can be

identified even between data sets with non-co-occurring samples.

VII. A dynamical Bayesian multi-way model was introduced for inferring

multi-way covariate effects from non-co-occurring data sets by modeling

the experiment design shared between the data sets. The model was

shown to identify shared covariate effects between the data sets as well

as covariate effects specific to a data set.

1.3 Organization of the Thesis

The background for the problem addressed in this thesis and for

the Bayesian methodology used are presented in Chapters 2 and 3,

respectively. The overview of the problem and contributions of this thesis

are reviewed in the chapters that follow these introductory chapters.

The problem of the identification of covariate effects from

high-dimensional and small sample-size data is presented in Chapter 4

and the Bayesian multi-way model (Publication I) is presented as

a solution to the problem. Hierarchical multi-way models designed

specifically for the inference of covariate effects from noisy mass spectral

measurements of the metabolome (Publications II and III) are presented

in Chapter 5 along with a review of the state-of-the-art measurement

technology for metabolomics.

Bayesian multi-view methods for solving the problem of data

translation between co-occurring views (Publications IV and V) are

presented in Chapter 6. Solutions for the even more complex data

translation problem, when the data sets do not share co-occurring

samples (Publications VI and VII), are presented in Chapter 7.
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2. Molecular Biology & Measurement
Technologies

2.1 Introduction

The response of a biological organism to an environmental factor, such as

an intruding chemical compound, is a complex cascade of events, whose

details are still widely unknown. If these events can be understood

properly, new treatments to diseases can be developed. Molecular

measurement technologies have been invented to gain understanding of

these events, and now the molecular response to an experimental factor

can be quantified at multiple levels of the cascade.

Current technologies are still far from the entire quantification of

the molecular activity of a human or even a single cell. Further, finding

associations between environmental factors and changes in molecular

activity is the more challenging the more complex the organisms under

study is. However, the influence of environmental factors on

the molecular balance can already be studied under controlled settings

with model organisms (Joyce and Palsson, 2006): tissue extracts, cell

lines, or even entire organisms such as single-cell yeasts, multi-cell

worms or even small mammals such as rats.

The simultaneous quantification of thousands of molecular types sets

demands for the analysis methods, since the number of tested and

measured subjects is smaller than the number of quantified molecular

types. Further, the integration of measurements from multiple levels of

molecular biology, and even from multiple organisms, is an unsolved

computational challenge. These two problems are addressed in this

thesis.

Four main classes of biomolecules: deoxyribonucleic acid (DNA),

ribonucleic acid (RNA), proteins and metabolites, all are subject to
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regulation and changes resulting from environmental factors. The role of

each of these main building blocks of molecular biology is reviewed in

the following sections.

2.2 Genes

Genes are the biological cells’ instructions for the construction of proteins.

Since proteins are the main acting components in biological processes,

genes essentially describe and regulate the operation of the cell.

In the cells of eukaryotic organisms such as yeast, rat and human,

the genetic code is carried by deoxyribonucleic acid (DNA; Watson and

Crick, 1953). DNA is a double-helical structure that consists of

a sequence of base molecules. There are four different bases, which

constitute the alphabet of the genetic code, and two of

the bases—adenine and cytosine—are complementary to the other

two—thymine and guanine, respectively. The complementary bases in

two parallel base sequences bind together to form the double helix.

Three consecutive bases in the DNA sequence form a codon, which is

a word in the genetic code. The sequence of codons describes the order in

which a protein is constructed from amino acid molecules (Crick, 1968).

With few exceptions, each unique codon corresponds to a specific amino

acid.

DNA has a self-replication mechanism, which ensures that the daughter

cells receive the same genetic information in the cell division (Meselson

and Stahl, 1958). In the division, each of the two parts of the dividing cell

receives a copy of the genetic code with the help of the DNA polymerase

enzyme.

The entire genetic sequence written in the DNA, termed the genome,

has been sequenced for human (Venter et al., 2001), among many other

organisms. Origins of inheritable diseases and risk factors to diseases

can be identified via sequencing and statistical analysis of inter-subject

differences in the genetic code (Buetow et al., 2001; Burton et al., 2007).

Even though the genome has been sequenced, the identity and function

of genes is still widely unknown. Gene ontologies (Ashburner et al.,

2000)—that is, semantic databases on known or hypothesized gene

function—have been constructed to accumulate knowledge from

experiments, where genes’ association to biological functions and

conditions have been studied. The gene ontology provides a rough
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mapping between the genetic sequence and the functions of the resulting

proteins.

2.3 Transcripts

Genes are expressed through protein synthesis. Both diseases and

medical drugs, among many other factors, influence the expression of

genes. To understand the molecular mechanisms of diseases and drugs,

it is crucial to understand how they affect the expression.

DNA is transcribed into ribonucleic acid (RNA), which is the carrier of

the genetic code from the nucleus of the cell to the ribosomes, where

the translation into a protein takes place. Transcripts are the middle

post on the path from DNA to protein, and transcription is subject to

regulation, thus affecting the amount of protein produced in the cell.

The expression of a gene can be indirectly quantified by measuring

the amount of the corresponding transcript—the messenger-RNA

molecule—in the cell. Microarrays have been the predominant

technology for quantifying the RNA molecules, now increasingly replaced

by deep-sequencing technologies (Mortazavi et al., 2008), also known as

RNAseq or “next-generation sequencing.”

In the complementary DNA microarray technology (Schena et al., 1995;

Brown and Botstein, 1999; Duggan et al., 1999), RNA molecules present

in the sample become matched to template sequences from the genome,

which are positioned on a chip. The amount of each RNA molecule can

then be estimated via the amount of RNA attached to each type of

a template. Due to mismatching of the sequences, different affinities of

the bases and other reasons, the expression data from microarrays is

noisy. As a benefit, the microarrays are relatively inexpensive. RNAseq

technology can be used to sequence virtually all the RNA molecules

present in the sample. However, it is still challenging to infer

the quantity of the longer RNA molecules based on the short sequences

acquired from the device.

Large amounts of gene expression data from microarray measurements

are now available in public repositories, such as the ArrayExpress

(Brazma et al., 2003). The accessibility to a wide spectrum of

experimental samples makes it possible for data-driven approaches to

identify commonalities between diseases and treatments across studies.
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2.4 Proteins

By participating in the operation of the cell at the molecular level,

proteins are the main acting agents in the cell and, thus, their

abundance directly influences the operation of the cell and the organism.

Proteins are built from amino acids as a sequence of amino acid

molecules. There are 20 different amino acids, which results in

a multitude of possible protein structures.

Proteins are eventually constructed by translating the sequence of base

triplets in the RNA to a sequence of amino acids. A functioning protein

results, when individual amino acid molecules are linked together in

the order defined by the gene and the RNA sequence.

The protein synthesis is regulated by multiple factors, such as other

proteins (Jacob and Monod, 1961; Vogel and Marcotte, 2012).

The proteins can be quantified based on their amino acid content (Link

et al., 1999; Washburn et al., 2001). However, the gene’s activity is

typically quantified at the transcript-level, following from the relative

ease of string matching, instead of the mass spectrometry-based

quantification of the proteins (Section 5.1.1).

2.5 Metabolites

It is not possible to quantify the expression of genes in terms of

the amount of transcripts or proteins in organs or tissues within

the body in a non-invasive manner. This is problematic for the study of

diseases and their treatments, since the changes need to be studied on

those cells which are affected by the condition. For cell extracts and cell

lines, the conditions can be studied under a controlled experiment in

the laboratory. However, potential indicators of the disease—or,

biomarkers—need to be measurable in a straightforward and minimally

invasive way from the patient.

Because of their association with biological processes and their

minimally invasive measurement potential from the blood serum,

metabolites are interesting as descriptors of the biological

condition (Mamas et al., 2011). Metabolites are traces and end products

of biological processes in the organism (Fiehn, 2002)—processes which

are ultimately described and regulated by genes and mediated by

proteins encoded by the genes. As the end point of this cascade,
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metabolites are descriptive of what has actually recently happened in

the cells of the organism, and how the conditions such as the disease or

the treatment have affected the balance of the organism.

The set of metabolite molecules is large and still partially unknown.

Metabolites are heterogeneous by their molecular size and concentration

level. These factors set challenges to the quantification of metabolite

compounds, which is mainly done via chromatography-coupled methods

of mass spectrometry. There are many challenges in the analysis of mass

spectral data, such as the annotation of the compounds in the spectrum.

In this thesis, new methods specifically designed for the analysis of

metabolomic mass spectral data are presented in Chapter 5, where also

the measurement technology is reviewed in more detail.

Lipids are a subgroup of metabolites with an active role in

the cells (Shevchenko and Simons, 2010). Lipids are important for

the energy metabolism of the organism, and thus relevant for

the molecular balance of the cells. Lipids are the main building blocks of

the cell membranes, and lipid structures also act as transporter vehicles

in the blood. Due to these important roles, changes in the concentrations

of the lipids in the blood or biological tissue can be informative of

changes in the metabolism of the cell, potentially in connection to

diseases. Lipids can be quantified with the same mass spectral methods

as other metabolites.

2.6 Model Organisms

With the new measurement technologies, the response of the cell to

environmental factors can be quantified at multiple stages of the cascade

of the molecular response. The integration of these multiple views of

the phenomenon is a challenging problem that can be addressed with

computational models presented in this thesis.

Despite the new molecular measurement technologies, tissues deep

within the body cannot be screened at the present without invasive

sample-taking, if possible at all. Thus, model organisms grown in

a laboratory environment are used for understanding human diseases

and treatments for diseases.

A cell line grown in a culture on a Petri dish—that is, in vitro—is

the simplest model for a biological system, since it is a collection of

homogeneous cells without specialization to tissues or organs. Many
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biological phenomena, such as the development of cancer or the effects of

a drug, can be studied on cells grown in vitro. An experiment with a cell

line can be controlled to a high degree, since the experimenter can ensure

that the drug is administered evenly to the entire population of the cells,

and the experimental conditions such as the temperature can be kept

stable. However, all the effects of the drug that result from changes in

the interaction and operation of cells at the tissue or organ level cannot

be observed based on an experiment in vitro. These higher-level effects

can be studied with laboratory animals grown in vivo. Since the animal

has to be sacrificed for the inspection of internal organs, the study of

the temporal development of the disease or the temporal effects of

the drug is more limited for an experiment in vivo than in vitro.

Chemical compounds that are developed for therapeutic purposes may

have unexpected toxic effects, which need to be thoroughly assessed

before entering the test phase with human subjects. Effects of new drug

compounds are, thus, tested on model organisms in vivo as well as

in vitro before being approved for human tests (Waters and Fostel, 2004).

The measurement of changes in the growth of a cell culture after

administering the chemical compound is the most straightforward way of

assessing the toxic effects of the compound. By observing the cell culture,

the level of toxicity can be experimentally quantified in terms of

the growth inhibition (GI) and the median lethal dose (LD50) measures,

which describe the amount of the compound that, when administered to

the cells, results in the inhibition of the growth or the death of 50 % of

the cells, respectively (Kent, 1998). When the compound is administered

to model organisms grown in vivo, organ-level effects, especially

the damage on the liver, can be assessed after the death of the animal

through histopathological methods. To gain a deeper understanding of

the biological processes perturbed as a consequence of the treatment,

the test organisms can be studied with modern molecular measurement

technologies to assess the toxicogenomic effects of the compound.

The effects observed in model organisms do not necessarily generalize

to humans, and it is not known, which of the effects do generalize.

Experimentation on multiple model organisms in vivo and in vitro can

give a broader picture about the potential effects. Further, effects that

are conserved across organisms, potentially generalizing to humans as

well, can be identified among the effects. The question of finding effects

that generalize across multiple organisms is addressed in this thesis
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in Publication V, which is discussed in more detail in Section 6.3.

2.7 Conclusion

Genome, transcriptome, proteome and metabolome are interconnected by

protein synthesis, metabolic processes and by regulation in these

processes. None of these molecular groups alone is sufficient to describe

the biological diversity and the phenotype.

The biomolecules can be measured via modern technologies but

the integration of data between molecular levels and between

experiments is a challenge. In this thesis, new methods are presented to

address both of these problems.
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3. Bayesian Latent Variable Models

3.1 Introduction

Bayesian latent variable models provide a flexible but formal way of

describing assumptions about how the observed data has been produced,

and what is the level of uncertainty under these assumptions. In general

terms, the data X are explained by a statistical model through the model

parameters θ. The parametrization of the model defines the model

family, within which the values of the parameters can be inferred given

the data.

The Bayesian approach to statistics allows one to define a prior belief

on the values of the parameters. Through the prior distribution p (θ),

the model can be guided towards the values of the parameters, which are

realistic given prior information about the generative process of the data.

The Bayesian prior is a natural way of incorporating knowledge from

earlier experiments to the model. For instance, when clustering

metabolites based on noisy observations of their concentrations,

information about the participation of the metabolites in biological

pathways may be useful prior knowledge.

In the maximum likelihood-based approach for the estimation of

the model parameters, the likelihood, p (X|θ), of the data is maximized to

acquire the parameter values that most likely generated the data. Such

an approach has been observed to be susceptible to over-fitting when

the number of observations is low and the level of noise in

the observations is high (see, e.g., Bishop, 2006).

In the Bayesian approach, the relationship between data and

parameters is inverted by focusing on the probability of the parameter

values given the observed data, p (θ|X), which is termed the posterior
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probability. The inversion can be done through the Bayes’

theorem (Bayes and Price, 1763),

p (θ|X) =
p (X|θ) p (θ)

p (X)
, (3.1)

where the probability of the data, p (X), is constant for a given data set

and depends on the model family under consideration. When comparing

models within a model family, the probability of the data remains constant

and the posterior probability,

p (θ|X) ∝ p (X|θ) p (θ) , (3.2)

can be computed as proportional to the product of the prior and

the likelihood. The uncertainty in the values of the model parameters

can be expressed through the Bayes’ theorem and the parameters are no

longer assumed to have an exact value. To underline this change of

perspective, the model parameters that are assumed to be behind

the data generative process are called latent variables.

The understanding of complex systems is often based on a limited set of

observations about the behavior of the system. For instance,

the molecular-level quantification of the response of a biological

organism to an experimental condition is constrained by the resources

for the experiment, limiting the number of individual organisms, or

biological replicates, on which the experiment and the measurement can

be done. When the sample size is small and the observations are noisy,

structural assumptions about the generative process have to be made to

facilitate the learning of model parameters. The Bayesian approach to

probability provides a means for learning structured models, where

model parameters have a hierarchy.

3.2 Hierarchical Models

The model can be learned already from a small set of noisy observations,

when learning is guided with assumptions on the expected structure of

the model and with assumptions on the distributions of parameters in

the model. First, distributional assumptions can be naturally formulated

on the parameters (Section 3.1). Second, structural assumptions can be

incorporated via hierarchical modeling, or graphical modeling, which

enables the a priori specification of dependencies between latent

variables of the model. Through these dependencies, dependencies
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between observed variables of the data can be identified. Third,

distributional assumptions on the priors of the parameters are

a practical way of incorporating additional prior knowledge about

the generative process of the data.

When the latent variables are assembled into a hierarchical structure,

low-level latent variables channel information from the observations to

higher-level latent variables (Jordan, 2004). For instance, data

consisting of observations on the concentrations of biomolecules that

participate in biological processes, which then are a part of larger

processes, can be modeled as a two-level cluster model. The a priori

specified two-level hierarchical cluster structure facilitates the learning

of the molecule concentrations, since the concentrations of molecules

participating in the same process are likely to be mutually correlated.

Due to mutual dependencies between latent variables, the posterior

probability of the model and the data typically cannot be calculated

exactly. However, the posterior probability may still be inferred

approximately (Section 3.7). Uncertainty in the estimates is handled via

distributions of the prior and the posterior, which is important especially

when the data are noisy and the number of samples is small.

When the prior distribution is conjugate to the likelihood distribution,

the posterior distribution can be written in a closed form, making

efficient posterior inference possible (Gelman et al., 2003). When

the prior distributions of the latent variables are conjugate, the posterior

distribution of even a hierarchical structure can be inferred via

a sequential local update scheme (Section 3.7, where one variable is

updated given the nodes within its Markov blanket. The blanket only

consists of the node’s daughter nodes, parent and co-parent

nodes (see Bishop, 2006).

3.3 Gaussian Mixture Model

A clustering algorithm finds structure in the data without supervision. It

splits the data X ∈ R
P×N with N samples and P variables into

K clusters of samples, with cluster memberships of the samples

indicated by the vector v ∈ {1, . . . ,K}N . When applied to multi-patient

data on molecular-level changes caused by a disease, a clustering

algorithm can identify subtypes of the disease without expert

information about the diagnosis.
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The Bayesian mixture model (see, e.g., Bishop, 2006) is a density

estimation method that can be used for clustering. The model is one of

the fundamental building blocks for more complex hierarchical models.

At its core, the model consists of a prior over the mixing

distribution, p (v), and a prior over the cluster parameters, θ ∼ G0,

defined in terms of the base distribution G0. When the base distribution

is a normal distribution, the model is termed the Gaussian mixture

model, and the sample i in cluster k is generated from a normal

distribution,

x·,i|(vi = k) ∼ N (μk,Σk) , (3.3)

with cluster-specific parameters θk = (μk,Σk): the mean μk ∈ R
P and

the covariance Σk ∈ R
P×P
+ , which is typically further simplified to

a diagonal form.

3.4 Hidden Markov Model

The Gaussian mixture model (Section 3.3) is a useful tool for clustering

samples that are observed under a controlled experiment. However,

medical studies conducted on patients cannot be controlled to the same

extent as experiments on model organisms. One of the main challenges

of the analysis of patient data is the temporal heterogeneity of

the samples: patients visit the clinic at different, potentially irregular,

times and their medical condition develops at an individual rate. Thus,

the time series have to be aligned between patients to study

the development of the condition.

The hidden Markov model (HMM; see Rabiner and Juang, 1986) is

a dynamical state-space model that solves the sample alignment problem

by setting samples in the time series to temporal latent states that

generalize across the multiple time series. By inferring such states,

the model can identify, for instance, stages in the development of

the disease from heterogeneous time series data. Unlike the standard

mixture model, the HMM assumes a temporal dependency between

the K states through the transition matrix, A ∈ [0, 1]K×K . The entry ai,j

in the transition matrix determines the probability of assigning the next

sample in the series to the state j, given the previous sample was

assigned to the state i. Analogous to the standard mixture model, each of

the K states is defined by the state parameters θk.

To avoid over-fitting to the data with a small set of noisy samples,
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the flexibility of the HMM can be restricted by imposing prior

information about the possible state transformations. For instance, for

the development of the disease, a linear and forward-advancing

transition structure is a reasonable assumption to simplify the model,

leading to the inference of sequential states of the disease development.

In addition to providing a framework for incorporating prior knowledge

on the state transition probabilities, the Bayesian formulation (Gauvain

and Lee, 1992) of the HMM makes the model accessible for use as a part

of more complex latent variable models.

3.5 Dirichlet Process

Bayesian methods are powerful when the prior adequately captures

the assumptions about the generative process of the data. However,

when the assumptions about the model complexity are incorrect,

the outcome is unreliable. The non-parametric approach to Bayesian

modeling provides a way to overcome the problem of potentially wrong

model complexity through the assumption of an infinite parameter space.

By assuming that the observed data are generated from a subset of

an infinite set of parameters, a non-parametric model automatically

determines the complexity present in the observed the data, without

resorting to explicit model comparison (Hjort et al., 2010).

Non-parametric models have been proposed for all major statistical

problems, such as regression, clustering and factorization.

In the context of clustering, infinite parameter space implies that there

is an unlimited number of clusters from which the data may arise.

The automatic determination of model complexity is useful for models of

complex biological phenomena: when it is not known how many subtypes

or developmental stages of the disease there are, a non-parametric model

can automatically determine the level of specificity at which

the phenomenon can be described, given the limited number of noisy

observations.

A non-parametric cluster model can be constructed from the Dirichlet

process, which is a probability distribution on the space of probability

measures. The process induces finite-dimensional Dirichlet distributions

on the data. The process can be understood through the Chinese

restaurant process formulation: a new item may be assigned to one of

the existing clusters, or a new cluster may be created for the item.
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The probability of assigning the item i to an existing cluster k = 1, . . . ,K,

p (vi = k|v−i) = 1

N − 1 + αDP

∑
n �=i

δvn,k, (3.4)

is proportional to the size of the cluster,
∑

n �=i δvn,k, where the Kronecker

delta function δvn,k receives the value 1 when item n is in cluster k, and 0

otherwise. The probability of creating a new cluster,

p (vi = K + 1|v−i) = αDP

N − 1 + αDP
, (3.5)

is controlled by the concentration parameter αDP, which can be

interpreted as the number of pseudo-items outside the K clusters.

Despite the sequential assignment procedure of the Chinese restaurant

process, the process is exchangeable (Aldous, 1985): the posterior

distribution is independent of the order in which the items are

introduced.

Following from the Bayesian formulation (Ferguson, 1973),

the Dirichlet process can be plugged in as the mixing distribution, p (v),

of a standard mixture model, thus constructing the infinite mixture

model (Escobar, 1994; Rasmussen, 2000).

3.6 Sparse Models

A mixture model learned on “small n, large p" data has considerably

more parameters than the number of samples in the data. In such

a situation, even Bayesian models are prone to over-fitting, unless

the flexibility of the model is constrained. Structural assumptions can

then support the learning of a model that is simple enough to be learned

from the small number of samples but still descriptive of the generative

process of the data.

Non-parametric formulation of the model is one way of finding

the appropriate complexity to describe the observed data. For

high-dimensional observations, however, this may not be sufficient. By

introducing sparsity to the model, the effective number of parameters in

the model can be constrained by setting redundant parameters to zero.

The increased interpretability is a great benefit that results from sparse

modeling: for instance, for the mixture model of disease subtypes,

the introduction of sparsity to the mean parameter of the mixture model

leads to a biclustering model, where one mixture component explains

a subset of samples and variables, potentially identifying pathway-level
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changes that are specific to a subtype but modeling the variation in

the remaining variables as noise.

When sparsity is induced by a mechanism that treats all the observed

items equally, the model learns the sparsity structure purely based on

the data. Such a model can be constructed using a Bayesian

prior (Tipping, 2001) or a penalty on the likelihood (Tibshirani, 1996)

that treats all the items equally.

When applied to molecular-level biological data, a sparse model is not

guaranteed to reveal structure that is in alignment with biological

pathways which carry a biological interpretation. To improve

the detection of weak signals that are visible in all or most of

the molecules within a pathway, the a priori known relationships of

the molecules can be incorporated to the model through the group

sparsity assumption (Yuan and Lin, 2006). In this way, semantically

meaningful models can be constructed by inducing sparsity on groups of

variables instead of individual variables. A Bayesian model can be

encouraged to follow group sparse structure by moving the sparsity prior

higher up in the hierarchy of the latent variables.

The automatic relevance determination prior and the spike-and-slab

prior were used in the works presented in this thesis, and they are

introduced next. The Laplace prior and the Jeffrey’s prior are other

widely-used Bayesian priors, which produce a comparable outcome in

terms of sparsity of the model. The �1-regularizer (Tibshirani, 1996) and

its variants are the most widely-used approaches for models learned via

maximum likelihood estimation.

3.6.1 Automatic Relevance Determination Prior

The automatic relevance determination (ARD) prior is one of

the Bayesian approaches for achieving sparsity. The ARD prior assumes

that the coefficients or weights of the model,

w ∼ N
(
0, (αI)−1

)
, (3.6)

are independent and Gaussian-distributed with a zero mean and an item-

specific gamma-distributed variance,

αj ∼ Gamma (a0, b0) , (3.7)

with shape parameters a0 and b0, for each item j of the vector w. When

the same variance parameter is shared by a group of items, the ARD prior

induces group sparsity (Virtanen et al., 2012).
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The ease of inference is one of the benefits of the ARD prior. Since

the items are assumed to be Gaussian-distributed and the prior

distribution for their variance is conjugate to the Gaussian distribution,

standard and efficient tools can be used for the inference of the model.

3.6.2 Spike-and-Slab Prior

The spike-and-slab prior (Mitchell and Beauchamp, 1988) is another

widely-applied mechanism for inducing sparsity in Bayesian models.

The prior,

wj ∼ (1− p0)N
(
0, σ2

)
+ p0δ0, (3.8)

is a mixture of two components: first, the “slab,” which typically is

a Gaussian distribution, and second, the “spike,” which is a point mass of

probability density located at the origin, defined as the Dirac delta

function δ0. The width of the Gaussian distribution is defined by

the variance σ2. The parameter p0 defines the prior ratio of the items

following the “spike” versus the “slab.”

3.7 Model Inference via Gibbs sampling

Since a hierarchical model is typically not within the reach of exact

inference, approximation methods are used for the inference. Due

to dependencies between latent variables, also the hierarchical models

presented in this thesis are inferred approximately. For all the models

presented in this thesis, Gibbs sampling was chosen as the inference

method, thanks to its convenience of formulation. Two other widely-used

methods for approximate inference of the posterior distribution are

the variational Bayesian approximation (see, e.g., Wainwright and

Jordan, 2008) and the expectation propagation (Minka, 2001). A point

estimate of the posterior distribution can be acquired via

the expectation-maximization algorithm (Dempster et al., 1977), which is

also used as the foundations of the variational Bayesian approximation.

Gibbs sampling (see Casella and George, 1992) is a method for

approximate inference, where one node of the hierarchical model is

updated at a time, given all the other nodes of the model. The conditional

update is simplified by the conditional independence between

the updated node and all the other nodes beyond its Markov blanket,

meaning that the updated node’s marginal distribution is dependent only
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on its daughter, parent and co-parent nodes in the graphical model.

Further, if the prior distribution specified for the updated node is

conjugate to the prior distributions of its parent and daughter nodes in

the hierarchical model, the conditional distribution of the node can be

written in a closed form and, most importantly, is of the same

distributional family as the prior distribution, leading to an efficient

sampling from a convenient distribution. For instance, the Gaussian

prior distribution for a latent variable and a Gamma prior distribution

for its inverse variance in the ARD prior (Section 3.6.1) produce

a Gaussian posterior distribution for the latent variable.

If the sampler has converged after the initialization, it generates

samples from the true posterior distribution of the model. Due to its

sequential nature, consecutive samples from the algorithm are

correlated. The correlation is reduced by thinning the sequence, that is,

by down-sampling a subset of the samples from the sequence at constant

intervals (see Gelman et al., 2003). The acquired Gibbs samples then can

be considered as samples drawn from the posterior distribution of the

model. The marginal distribution of a latent variable in the model can be

studied through the histogram of its Gibbs samples.

3.8 Conclusion

The Bayesian approach to modeling provides a means for making

assumptions about the generative process of the data. Structured

assumptions and the probabilistic treatment of the data are especially

helpful, when the observations are noisy and the number of samples is

limited.

The dependency structure of a Bayesian latent variable model can be

made to reflect the prior assumptions about the generative process of

the data. Prior distributions for the latent variables guide the model,

when the data are noisy and the availability of observations is poor.

When the structure and distributional assumptions correctly reflect

the data generative process, the model can learn structure even from

noisy data.

In this thesis, Bayesian models are used to identify responses in high-

dimensional molecular-level observations of biological organisms, and to

integrate data from multiple measurement platforms and experiments.
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4. Inference of Differences Between
Groups of Samples

4.1 Introduction

Inference of differences between groups of samples is in the core of

the data translation approaches presented in this thesis. Through

a matching experiment design, the computational method can detect

similarities between the otherwise non-matching data domains.

However, the inference of covariate effects from even a single biological

high-throughput data set is a non-trivial problem due to the high

dimensionality of the observations and the small sample size. In this

chapter, a Bayesian multi-way model for the analysis of

high-dimensional experimental data (Publication I) is introduced.

At the simplest, there are two groups of samples, which are observed

under two different conditions, labeled as 1 and 2. When a biological

organism is in question, examples of the condition include a disease, or

an intervention such as a treatment with a drug.

4.1.1 Designed Experiment

The design of the experiment (see Montgomery, 2001) determines

the controlled conditions under which observations are made.

The condition present in the sample is expressed as a covariate, which is

a categorical variable attached to the actual observation. The covariate

is sometimes termed the independent variable, while the actual observed

variable is termed the dependent variable.

To make differences between sample groups more interpretable, one of

the conditions is a control condition, the normal or the base-level group,

to which the other conditions are compared. In a medical experiment,

the control group may be the healthy, or the non-treated group.
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A proper design of the experiment ensures that the effect of

confounding factors is minimal. Then the experimenter can study

the effect of the designed intervention without interference from other

factors. When only one aspect of the conditions is controlled, there is one

covariate attached to the observations and the experiment has a one-way

design. With multiple aspects of the conditions controlled

simultaneously, there is a corresponding number of co-occurring

covariates and the experiment has a multi-way design. A multi-way

medical experiment typically includes the disease status, a treatment

with a drug, and the passed time since the treatment, all three as

controlled conditions.

In a one-way experiment with two sample groups, the t-test (Student,

1908) is the standard statistical tool for analyzing the difference between

the groups. Hotelling’s T 2 test (Hotelling, 1931) generalizes the t-test to

multivariate observations.

4.1.2 Analysis of Variance

When there are more than two sample groups in the experiment,

the t-test can be used for analyzing pairwise differences between

the groups. However, pairwise testing does not reveal interaction effects

of the covariates, that is, how a sample group determined by

a combination of the levels of multiple covariates differs from another

sample group determined by another such combination. If the difference

between each possible pair of combinations of the covariate levels is

assessed with the t-test, the problem of multiple tests emerges and

correction procedures have to be applied to the acquired p-values of

the test.

Analysis of variance (ANOVA; Fisher, 1919) is a statistical model for

observations with multiple covariates. It models both the effects of

the covariates as well as the interaction effects of multiple covariates.

The ANOVA method decomposes the variance in the data into variance

within and between the groups. This decomposition enables the simple

calculation of a test on the null hypothesis of no difference in the group

means via the F-test.

When there are two covariates, a ∈ {1, . . . , A}N and b ∈ {1, . . . , B}N ,

the ANOVA model for the dependent variable, y ∈ R
N , observed in

sample i is

yi = αai + βbi + (αβ)ai,bi + ei, (4.1)
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where α ∈ R
A and β ∈ R

B are the effects of the covariates a and b,

respectively, and the (αβ) ∈ R
A×B are their interaction effects.

The observation yi, thus, is a linear combination of these effects with

a Gaussian residual ei.

Both ANOVA and the t-test are univariate statistical tests.

Multivariate analysis of variance (MANOVA; see Mardia et al., 1979),

generalizes the idea of ANOVA to multivariate observations, assuming

that the observed variables are independent and Gaussian-distributed.

For molecular-level biological observations, the independence criterion

typically does not hold, since the biological molecules are interdependent

through the pathway structure.

Principal component analysis (PCA)-based projection methods for

MANOVA have been presented (Langsrud, 2002) to address the problem

arising from a violated independence assumption by first projecting

the observed data into a low-dimensional space, where the variables are

orthogonal. On the other hand, PCA has been also used for projecting

the covariate effects of the ANOVA model (Equation 4.1) into

a lower-dimensional space determined by the principal components, for

the improved interpretation of differences between multiple sample

groups (Smilde et al., 2005). These methods, however, compromise

the variable-level interpretability of the differences.

4.1.3 Enrichment Analysis

When studying a complex system such as a biological organism,

the inferred statistical associations between the covariates and observed

data are only a starting point for understanding the phenomenon.

Enrichment analysis (Huang et al., 2009) provides the link between

the quantified response in the variables and semantic information about

the variables, giving clues about the mechanisms behind the response.

Enrichment analysis is based on the semantic categorization of

the molecular-level units, such as the gene ontologies (Ashburner et al.,

2000), accumulated over the decades of research on gene function. Gene

ontologies are aiming at describing the gene function, chromosomal

location, or regulation through simple semantic annotations.

The enrichment analysis methods identify semantic categories that

deviate from the expected, for instance, gene sets where the genes are

differentially expressed more often than the entire observed

transcriptome on average (Subramanian et al., 2005). In a typical
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approach (Subramanian et al., 2005) to study the enrichment of gene

sets, the transcripts are ranked based on their differential expression,

and the Kolmogorov-Smirnov test is computed on the enrichment of each

of the semantic categories among the items at the top of the ranked list.

The test is non-parametric and operates on the list of transcripts, thus,

making no distributional assumptions about the expression data.

4.1.4 Regression Models

The search of statistical dependencies between covariates and

observations can be considered as a regression problem, enabling

the variety of regression models to be applied to the problem.

A regression model (see, e.g., Seber and Lee, 2003) explains

the dependent variable y given the independent variables x. When

the observations are arranged into the vector y ∈ R
N of the dependent

variable, and the matrix X ∈ R
N×P of the independent variables,

the linear dependency,

y = Xβ + e, (4.2)

between the dependent variable and the independent variables is modeled

through the regression coefficients β ∈ R
P .

The standard regression model assumes both continuous dependent

and independent variables and independent Gaussian noise as

the residual e ∈ R
N . Extensions for categorical data can find associations

between the continuous dependent variables and the covariates of

a designed experiment.

Mixed-effects model

A mixed-effects regression model (Laird and Ware, 1982) is a regression

model,

y(i) = X(i)α+ Z(i)b·,i + e(i), (4.3)

where multiple observations of the dependent variable y(i) ∈ R
Ni for

the subject, i = 1, . . . , S, with Ni observations, are explained through

random and fixed effects: the vector α ∈ R
A and the ith column vector of

the matrix B ∈ R
K×S , respectively. The operator “·” in the variable b·,i

implies that the entire ith column, representing the covariate effects

specific to the subject i, is included from the matrix B. The known design

matrices X(i) ∈ R
Ni×A and Z(i) ∈ R

Ni×K determine the two types of

covariates with A and K levels, respectively, for the subject i. The fixed

effects, α, are analogous to the coefficients, β, in the standard linear
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regression model (Equation 4.2) and are shared by all subjects, or

regression tasks, i = 1, . . . , S. Typically, the fixed effects, or a part

thereof, are the sought-for statistical result of the study.

However, the mixed-effects model is different from the standard

regression model, since it also includes random effects, B, that are

task-specific and modeling responses that do not generalize across

subjects. The random effects are typically considered as structured noise

from the perspective of the designed experiment. As in the standard

regression model, the residual, e(i) ∈ R
Ni , is Gaussian noise which is

independent of the known covariates.

Restricted maximum likelihood (REML) estimation method has been

proposed for the inference of the mixed-effects model.

The point-estimation method may lead to problems when the data are

noisy or the experiment design is complex with multiple covariates.

Sparse factor regression model

The sparse factor regression model (Carvalho et al., 2008) captures low-

dimensional relationships between subgroups of samples. The model,

x·,i = Bh·,i +Wλ·,i + e·,i, (4.4)

decomposes the observed data into three parts: responses to the known

covariates, structured variation explained by latent factors, and

sample-specific variation, which is regarded as noise. High-dimensional

observations X ∈ R
P×N , for instance, the expression of P genes for

N subjects, are partially explained by the covariates H ∈ R
A×N .

The regression coefficients BT ∈ R
A×P work in the same way as the fixed

effects, α, in the mixed-effects model (Equation 4.3), modeling

the influence of the known covariates on the observed data.

When more detailed group structure among the samples, for instance

subtypes of the disease, is not described by the covariates, the remaining

heterogeneity among the samples can be modeled with the K latent

factors, Λ ∈ R
K×N . The factors exhibit a shared activation among

a subset of samples—modeling, for instance, changes in a specific

biological pathway, when the changes result from an unknown mutation

that has occurred in a subset of the samples. The substructure can be

inferred via the Dirichlet process prior (Section 3.5). With sparsity in

the factor loadings, W ∈ R
P×K , the model identifies bicluster structure

in the data that is not explained by the known covariates.

Regression models can be used for finding statistical dependencies
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between the observed variables and the covariates. However,

the standard linear regression model does not account for interaction

effects of two or more covariates, but the interactions can be included in

the model by adding redundant variables that describe combinations of

the covariates. In the ANOVA model, the decomposition into main effects

and interaction effects comes naturally (Equation 4.1) but

an independent model for each variable becomes unreliable when

the sample size is small and the number of variables is high. By making

structural assumptions about the generative process of the data,

the covariate effects can be learned also in the “small n, large p” regime.

A Bayesian multi-way model for such a setting is presented next.

4.2 Bayesian Multi-Way Model

Clustering is a simple starting point to modeling correlated groups of

variables without the need for additional information about their

similarity (Publication I). In a factor model for the observed variables,

x·,i = Vxlat
·,i + e·,i, (4.5)

the P observed variables are assigned into clusters by the clustering

matrix V ∈ {0, 1}P×K and the K variable clusters for the sample i are

represented by the latent variable xlat
·,i ∈ R

K .

By assuming that the members of a cluster respond coherently to

the experimental covariates, the effects of the covariates can be inferred

on the K-dimensional latent representation xlat
·,i instead of the full

dimensionality P of the observed data. The generative model,

xlat
·,i ∼ N

(
α·,ai + β·,bi + (αβ)·,ai,bi , I

)
, (4.6)

is analogous to the ANOVA model (Section 4.1.2) but the effects are

inferred for each of the K clusters and are independent and

Gaussian-distributed,

αk,ca ∼ N (0, 1) ,

βk,cb
∼ N (0, 1) ,

(αβ)k,ca,cb ∼ N (0, 1) ,

(4.7)

for all the clusters, k = 1, . . . ,K, and the levels of

the covariates, ca = 2, . . . , A and cb = 2, . . . , B, except for

the base-levels, ca = 1 and cb = 1, for which all the effects are set to zero.
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4.3 Conclusion

The influence of a covariate on a system can be studied through

a controlled experiment, where other factors that potentially influence

the system are kept unchanged. The ANOVA model, which is the basic

tool for the analysis of data from a controlled experiment, decomposes

the observed data into effects of the known covariates.

In the “small n, large p" regime, statistical models are prone to

over-fitting. These problems can be avoided, while still allowing

the model to learn weak patterns from the data, by introducing

structural assumptions about the generative process of the data, and in

this way guiding the model. For high-dimensional data from molecular

measurements of biological organisms, the clustering assumption of

collinear variables is a meaningful way of restricting model complexity

while still acquiring interpretable covariate effects in the same way as in

the standard ANOVA model.
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5. Multi-Peak Models for Metabolomics

5.1 Introduction

One of the main problems in understanding the metabolome of

a biological organism is the quantification of the levels of metabolites

and the inference of differences in these levels between sample groups.

For the expression of genes, such a measurement is possible by matching

messenger-RNA sequences to known templates from the genes via

microarray technologies (Schena et al., 1995; Brown and Botstein, 1999;

Duggan et al., 1999), or by identifying the abundance of messenger-RNA

sequences directly by sequencing using the RNAseq

technologies (Mortazavi et al., 2008), giving a link between the sequence

and its abundance.

For metabolites, identification needs to be done via the spectral

decomposition of the sample, typically by using a chromatography-

coupled mass spectrometer. Each chemical compound in the sample

produces a unique set of peaks to the mass spectrum. The identity and

the abundance of the compound can be inferred from the locations and

the heights of the peaks, respectively. Traditionally the inference has

been based on the strongest peak of the compound, termed the “main

peak.” However, the peaks are a noisy representation of the sample and

the inference of covariate effects is unreliable due to the “small n,

large p” problem.

Understanding the complex measurement process—that is, the true

generative process of the data—is essential to constructing powerful

models for noisy metabolomic data. In this chapter, a new approach is

presented for the inference of covariate effects. The new model integrates

data from multiple peaks that can be associated with a compound.
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5.1.1 Chromatography-coupled mass spectrometry

The quantification of metabolite concentrations from the blood serum

gives a minimally invasive proxy to identifying potential perturbations

in the molecular balance of a complex biological organism. Since many

metabolites are end or side products of the metabolism of the cells,

changes in the regulatory processes of the metabolism are reflected in

metabolite concentrations. Following from the great complexity of

the cell metabolism, the set of chemical compounds that are classified as

metabolites is large and still partially unknown. This diversity sets high

standards for the measurement technology, which in an unbiased way

needs to quantify a wide range of molecules with varying size, polarity

and other chemical properties.

Chromatography-coupled mass spectrometry is a measurement

technology that enables the simultaneous quantification of a large

number of chemical compounds in a sample (Dunn et al., 2011). Thus, it

is the most widely used tool for the quantification of metabolites and

other small molecules in a biological sample (Wilson et al., 2005).

However, since the method is based on a spectral decomposition of

the sample, multiple pre-processing steps are required before the data

can be analyzed for changes in the compound concentrations.

The mechanism behind the decomposition, thus, is important for

the analysis of the concentrations.

The sample in liquid or gas form first enters the chromatograph, where

the compounds are separated by the time it takes for them to pass

through the capillary of the chromatograph (Snyder et al., 2010).

The pass-through time, termed the retention time (RT), is dependent on

the chemical properties of the molecule, such as the polarity.

The retention time from the chromatograph is the first dimension of

separation between the compounds. However, the retention time

separation is not perfect and it is not accurate enough to generalize

across experiments and devices to enable the annotation of

the compounds.

To acquire another dimension of separation for the compounds in

the sample, the partially-separated compounds are measured with

the mass spectrometer. After exiting the chromatograph, the sample is

ionized using electro-spray, shot through a magnetic field and eventually

detected with sensors. The mass spectrometer separates the ions by their
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mass-to-charge ratio (m/z), since the ion is deviated from its original

trajectory by the magnetic field and the deviation is inversely

proportional to the mass-to-charge ratio of the compound. From

the signal detected by the sensors in different positions, a mass-to-charge

spectrum can be constructed for each retention time point. This way,

compounds with the same retention time are separated indirectly by

their mass.

However, there is a further complication that follows from

the ionization process (de Hoffmann, 2005): First, a compound can be

ionized in multiple ways, resulting in multiple observations of

the compound, termed adduct peaks, each with a unique mass-to-charge

ratio at the same retention time point. Second, atomic isotopes also

result in multiple observations of the compound, termed isotope peaks.

Also the isotope peaks of a compound appear at the same retention time

point.

As an output from the coupled chromatograph and mass spectrometer,

the biological sample is decomposed into a two-dimensional intensity

spectrum, where the first dimension is the retention time and the second

dimension is the mass-to-charge ratio. Each chemical compound in

the sample produces an unknown set of intensity peaks to the spectrum

and the peaks may overlap with peaks from other compounds. Prior

knowledge from experiments with pure compounds is required for

the identification of the chemical source of the peak, termed

the annotation of the peaks, and further pre-processing is required for

the identification of changes in the concentrations of the compounds

between experimental samples.

5.1.2 Pre-Processing of the Spectral Data

The output data from the chromatograph and the mass spectrometer

lack the identification of the peaks in the continuous spectrum,

the alignment of the identified peaks between the experimental samples,

the summarization of the continuous intensity peaks as scalar values

that describe the concentration of the compounds in the samples, and

the annotation of peaks to the compounds they are produced by. Further,

the intensity values need to be normalized to remove any systematic bias

related to the position of the peak or the time of the measurement of

the sample. All these tasks are challenging and the error made in any of

the tasks adds up to the uncertainty in the data. This results in noise
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at multiple levels of the generative process of the data.

With the current tools the identification, alignment, summarization,

annotation and normalization steps are done sequentially. Algorithms

typically used for completing these steps have been collected into tool

packages that provide the entire pipeline. Examples of widely-used

pipeline packages are the MZmine (Pluskal et al., 2010) and

the XCMS (Smith et al., 2006).

5.1.3 Analysis of Compound Concentrations

After the measurement and pre-processing, it is still unknown how

the concentrations of the chemical compounds vary between

the experimental samples, and most importantly, how the experimental

covariates affect the concentrations.

Standard statistical methods for the inference of differences between

groups of samples, such as the ANOVA model (Chapter 4), reveal

covariate effects in the data, and are widely used also for the analysis of

metabolomic data. In addition, multivariate regression or classification

methods, such as partial least squares (Wold et al., 2001), are used to

identify multivariate statistical associations between the observed

metabolome and the experimental covariates.

Since the data are noisy, resulting from biological variation among

the experiment subjects, noisy measurement technology and uncertainty

in the pre-processing steps, standard statistical methods may fail at

the task of identifying the covariate effects. By accounting for

the collinearity of the compound concentrations in the data,

a probabilistic approach to modeling groups of compounds infers

interpretable covariate effects even from “small n, large p”

data (Publication I). Moreover, by modeling the generative process of

the intensity data from the chromatography-coupled mass spectrometer,

the inference of covariate effects can be further improved.

5.2 Model for Multiple Peaks from One Compound

The single-peak analysis discards data from the adduct and isotopic

peaks. The ionization process produces between-sample noise in

the peak heights and all the peaks are affected by the noisy process.

However, the natural distribution of the atomic isotopes is known and
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constant across samples. Since there is no bias in the ionization on

the isotope peaks, the covariate effects are argued to be preserved well in

the isotope peaks. Integrated modeling of the multiple peaks from

the same chemical compound could then improve the inference of

compound-wise covariate effects from the data.

The PeakANOVA model (Publication II) is an approach for clustering

peaks into latent compounds and for inferring covariate effects in

the data using all available peaks. Since the mass spectral peaks from

one compound appear at an identical retention time, it turns out to be

possible to cluster them based on the similarity in their peak shapes in

the retention time dimension.

To account for the unknown number of compounds in the experimental

sample and for the unknown and varying number of spectral peaks

associated with a compound, a Dirichlet process prior (Section 3.5) is

assumed for the clustering model. The clusters in the inferred model

then correspond to latent compounds and the peaks from one compound

are assumed to respond to the covariates in an identical way. This way,

the covariate effects can be inferred based on multiple peaks instead of

a single peak per sample and compound.

5.3 Model for Correlated Compounds with Multiple Peaks

Even with multiple peaks integrated, the "small n, large p" problem

remains, since the sample size is limited compared to the number of

compounds present in a sample. To address this problem, the compound

clusters inferred by the PeakANOVA model (Publication II) can be

further clustered into latent groups of coherently-responding compounds.

Another level of model hierarchy is introduced in the two-level

PeakANOVA model (Publication III). Compounds that respond to

the experimental covariates in a coherent way are assumed to follow

the same generative process. The second level of model hierarchy is

shown to further improve the accuracy of inference of the covariate

effects.
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5.4 Conclusion

Metabolites are traces and end products of biological processes.

The metabolite concentrations can be quantified from a blood sample,

thus providing a window to changes in the biological processes of

the organism.

However, current technologies for quantifying the metabolome add

noise to the observations at multiple levels, making the inference of

covariate effects a non-trivial problem. It was shown that learning from

the data can be improved through probabilistic modeling that accounts

for the specific generative process of the observations. Most importantly,

multiple peaks from the mass spectrometer device can be integrated to

make the inference of covariate effects more accurate.
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6. Cross-Domain Data Translation with
Co-Occurring Samples

6.1 Introduction

The existence of dependencies between the data domains is

a fundamental requirement for the data translation between them.

In this thesis, it is shown that two main types of dependencies can be

discovered: First, methods for identifying dependencies that follow from

co-occurring samples are presented in this chapter. Second, methods for

identifying dependencies that follow only from a shared experiment

design, which is considered a more complex problem to solve, are

presented in Chapter 7.

Unsupervised multi-view learning methods identify statistical

dependencies between data sets with co-occurring samples but with

observations from different data spaces, or domains. These methods,

such as canonical correlation analysis (CCA; Hotelling, 1936), find

general dependencies between the data views. CCA has been

successfully applied to problems in computational biology, for instance,

to finding dependencies between the genome and

the transcriptome (Lahti et al., 2009). However, further processing of

the result is needed for gaining understanding of the relationship

between the dependencies and the experimental covariates.

The CCA model identifies linear multivariate dependencies between

two data sets, X ∈ R
P x×N and Y ∈ R

P y×N , with N co-occurring samples.

CCA finds a linear combination of the original variables in each of

the two views. The linear combinations are selected via the generalized

singular value decomposition in such a way that the correlation between

the two linear combinations is maximized. Due to its great flexibility,

the model breaks down in the “small n, large p” regime, unless the model
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is kernelized (Hardoon et al., 2004), or regularized with a penalty on

the likelihood or with Bayesian priors (Klami et al., 2013).

Generative formulation of CCA assumes that the observations for

sample i in the two data sets X and Y are generated by a shared

normally-distributed latent variable,

z·,i ∼ N (0, I) , (6.1)

through linear projections,

x·,i = Wxz·,i + ex
·,i,

y·,i = Wyz·,i + ey
·,i,

(6.2)

where the projection matrices, Wx ∈ R
P x×K and Wy ∈ R

P y×K , project

the latent variable, Z ∈ R
K×N , from the K-dimensional representation

onto the P x and P y dimensions of the observed data, respectively.

The residuals, Ex ∈ R
P x×N and Ey ∈ R

P y×N , describe view-specific

signals and noise.

6.2 Multi-Way Model for Multiple Data Sources

CCA is a model for linear dependencies between co-occurring data sets

but it does not explicitly model covariate effects, which typically are

the most descriptive statistics for summarizing a designed experiment.

On the other hand, standard ANOVA-type methods that model covariate

effects do not reveal what there is in common between multiple data

views. However, inference of covariate effects that generalize across

multiple views of the data is central to understanding changes in

the complex cascade of molecular responses from the genome to

the metabolome as well as to understanding relationships of

the responses between different tissues of the organism.

As demonstrated in Publications I–III, an ANOVA-type population

prior can be incorporated as a part of a more complex generative model,

allowing the high-dimensional data to be described in terms of

the covariates. Combining the idea of covariate effects as the generative

source of clusters of variables (Section 4.2) with the assumption of linear

dependencies between data views (Section 6.1) results in a multi-way

and multi-view model (Publication IV), which infers covariate effects that

generalize across the views. The model decomposes the data into three

parts: variation that is explained by the covariates of the experiment
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either (1) generalizing across the views or (2) specific to one view, or

finally, (3) variation that is not associated with the covariates.

The model is a step towards the integration of data from the multiple

levels of the molecular response of a biological organism. It can be used

to integrate the cascade of responses from the genome to the metabolome

as well as synchronous responses from multiple tissues or organs.

6.3 Group Factor Analysis for Cross-Organism Toxicogenomics

With modern molecular measurement technologies, the effects of a drug

can be studied at the molecular level with model organisms before

entering the test phase on humans (Section 2.6). Due to the potentially

dangerous effects of the drug and the invasive sample taking from

the internal organs, the same experiment is not possible with human

subjects. When the drug is experimented with multiple model organisms,

the measurements provide multiple views of the drug’s effects. Even

though experiments with model organisms reveal many therapeutic and

toxic effects of the drug, all effects do not appear on all organisms, and it

is not known which of the observed effects generalize to

humans (Boverhof and Zacharewski, 2006). Effects that generalize

across multiple model organisms have the potential of being conserved in

humans as well. However, the identification of conserved effects from

multi-view data is not a trivial problem.

Group factor analysis (GFA; Virtanen et al., 2012) generalizes

the Bayesian CCA model (Section 6.1) to more than two views, enabling

the discovery of statistical dependencies between multiple data views.

When applied to multi-organism drug response data, GFA can identify

responses that are conserved across organisms.

In the spirit of a standard factor model, the factor loadings of the GFA

model describe the associations between the factors and the observed

variables. However, with M co-occurring data views, X(m) ∈ R
Pm×N ,

m = 1, . . . ,M , there are also M distinct loadings

matrices, W(m) ∈ R
Pm×K , that define the linear relationship,

x
(m)
·,i = W(m)z·,i + e

(m)
·,i , (6.3)

from the global factors, Z ∈ R
K×N , to the Pm variables in each of the data

views. The activity of the factors in the data views is determined by

the group sparsity prior (Section 3.6.1), which allows a factor to be active
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either in all the views, in a subset of the views, or in only one of

the views. When applied to multi-organism data on molecular drug

responses, factors active in multiple organisms then describe responses

that are conserved across the organisms. However, all effects of a drug do

not generalize across all organisms, and are explained by the remaining

factors.

Both CCA and GFA assume co-occurring samples. The assumption

establishes a common ground between the data views and, thus, allows

the discovery of between-dataset dependencies. Co-occurrence is not

always directly available, for instance, when the data views are

measurements from different types of organisms. In Publication V, it

was shown that even then the co-occurrence can be constructed by

summarizing one sample group as a single sample that can be matched

to the other data views through the shared covariates. For instance,

biological replicates from one type of an organism can be summarized as

a single sample when they have received the same drug treatment. This

sample then is matchable to the summary sample of another organism

that has been experimented with the same drug. An approach to

constructing the common ground based on the covariates without sample

summarization is discussed in Chapter 7.

A chemical compound may disrupt the operation of a biological

regulatory process by binding to a protein that is participating in

the process (Iorio et al., 2010). Such a disruption leads to changes in

the biological pathway, which can be observed as a change in

the expression of genes in the pathway. Drugs disrupting the same

pathway may affect the expression of the same set of genes, leading to

a bicluster structure in the effects of the drugs on the expression of

genes.

Neither the standard factor model nor GFA account for the bicluster

structure. However, bicluster structure can be achieved for a factor

model by introducing element-wise sparsity priors on factors and factor

loadings (Hochreiter et al., 2010), allowing the factors and factor

loadings to operate on a subset of samples and variables, respectively.

The biclustering model is powerful for describing effect structure with

multiple drugs affecting pathways consisting of multiple genes. Still,

the standard biclustering models learn the structure within one data

view, leaving open whether the effects appear in other organisms. With

element-wise sparsity structure introduced to factors and factor loadings,

52



Cross-Domain Data Translation with Co-Occurring Samples

GFA turns out to generalize the additive biclustering model to multiple

data views (Publication V). This generalization then reveals drug effects

that are conserved across multiple organisms. Such effects have

potential of appearing in humans as well.

When a new drug compound is tested on a model organism, it is

unknown to which extent the effects generalize to humans. Matching

data on the effects of the drug on humans is available only from

experiments in vitro because of the potentially dangerous effects of

the drug on the individual. When the dependencies between the data

views are too weak for prediction, robust cross-view factors can still be

used for retrieving similar drug interventions from a database.

In Publication V, it was shown that factors that generalize across model

organisms on the molecular level are powerful for retrieving drug

compounds that have a similar toxic or therapeutic effect on humans at

the population level. This way, the retrieval of similar experiments is

useful for making a hypothesis about the effects of a new experiment.

6.4 Conclusion

Modern molecular measurement technologies enable the subjects of

a biological experiment be to observed at multiple views. Computational

methods are needed for identifying statistical dependencies between

the data views. When the data come from a controlled experiment,

the analysis typically focuses on identifying effects of the experimental

covariates. In this thesis, it was shown that covariate effects that

generalize across multiple data views can be learned by constructing

a generative model that assumes shared covariate effects.

Further, it was shown that a model assuming co-occurring samples is

applicable even to data from multiple organisms, when the organisms

share the same experiment design. When each sample corresponds to

the response to a unique treatment, a CCA-type model can be used to

identify response patterns that generalize across multiple organisms.

In order to apply CCA-type methods on multi-organism data, the co-

occurrence of the samples needs to be constructed, for instance through

the summarization of a sample group as a single sample. However, sample

summarization unavoidably leads to loss of information. Methods that

do not require summarization for multi-organism data, are presented in

the next chapter.

53



Cross-Domain Data Translation with Co-Occurring Samples

54



7. Cross-Domain Data Translation
without Co-Occurring Samples

7.1 Introduction

Experiments on different organisms are not made on the same subjects,

that is, the samples are not naturally co-occurring. The co-occurrence

between the data sets from different types of organisms can still be

constructed, if the experiments have been designed to match through

matching covariates. However, then the replicates in each sample group

have to be summarized as a single sample. Without the co-occurrence of

samples, CCA-based methods are inapplicable to the problem of finding

dependencies between the data sets. In this chapter, it is shown that

even when the samples are not co-occurring, it is possible to find

statistical dependencies between the data sets, if they share a similar

experiment design.

Methods that summarize an experiment via descriptive semantic

categories have been used for finding similar experiments both between

biological conditions (Schmid et al., 2012) and treatments (Lamb et al.,

2006), as well as between biological organisms (Lu et al., 2009). This

type of expression meta-analysis methods are useful for matching

similar experiments done on different organisms (Wise et al., 2012).

However, they do not provide a means for computationally translating

the outcome of a new experiment between the organisms.

If at least some of the variables are assumed matched between the data

sets, known variable pairs can be used to match larger clusters of

variables between the data sets (Mi et al., 2010) and latent factors

learned from the data of one organism can be used as a starting point for

the analysis of the data from another organism (Lucas et al., 2009).

Methods assuming a variable-level matching are vulnerable to errors in
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the matching, for instance, when the matching of genes is based solely on

sequence similarity. On the other hand, the matching of variables can be

inferred from expression data by using sequence similarity as a prior for

the matching (Le and Bar-Joseph, 2010).

Another approach to finding the common ground between

non-co-occurring data sets is to infer the matching of samples between

the data sets (Gholami and Fellenberg, 2010; Tripathi et al., 2011;

Klami, 2012). With the inferred matching, CCA-type methods become

applicable for finding dependencies between the data sets. However, for

experiments from multiple biological species, a one-to-one matching

between the samples may not be reasonable, unless the samples are first

summarized among each sample group (Publication V).

7.2 Model for Dynamical Responses Across Domains

In Publication VI, it is shown that even without co-occurring samples,

the common ground between the data sets can be established through

the shared experiment design. In addition to the problem of

non-co-occurring samples, in many cases there is no one-to-one matching

between the observed variables of the data sets and, further, it is not

known, which of the variables share the same covariate effect. For

instance, when the data sets are measurements of the metabolome in

two types of organisms, it is not known whether a metabolite has

the same biological function in both the organisms and whether

the effects of the experimental covariates on the metabolite are the same

across the organisms. In Publication VI, these two problems are solved

by building on the idea of inferring the covariate effects on groups of

variables (Section 4.2; Publication I): it is assumed that for a group of

variables there is a matching group in the other data set.

In spite of an experiment design with matching experimental

covariates, the different life span and metabolism of different organisms

set a challenge to the data translation: even if the effect of

an experimental intervention is similar between the organisms,

the temporal delay and temporal span of the effect may be variant.

In Publication VI, it is shown that by aligning the time points of the two

data sets dynamically to follow a trajectory with shared temporal

covariate effects but with different dynamics, the cross-species multi-way

model can identify temporal development shared between
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the non-co-occurring data sets.

The matching of the time covariate between the data sets is done by

assuming a hidden Markov model (HMM; Section 3.4) structure on

the time effect. The HMM is incorporated as a part of the generative

model of the observations, enabling the simultaneous alignment of

the time points to latent states and the inference of covariate effects

associated with these states.

7.3 Model for Shared and Domain-Specific Responses

All responses to the covariates are not necessarily shared between

the organisms. Since the dynamical model of shared multi-way

effects (Publication VI; Section 7.2) always assumes a matching pair

between the data domains, it may be prone to false findings when

the covariate effect is present only in one of the domains but no

better-matching pair is available.

In Publication VII, a split-merge step for matching the clusters between

the data sets was proposed for identifying covariate effect patterns that

generalize across the data sets and for separating them from patterns

specific to one data set. Through a Metropolis sampling step, the model

determines whether the covariate effect is more likely to be shared than

a random, "average," covariate effect from the model.

7.4 Conclusion

In Publications VI and VII, it was shown that even without co-occurring

samples or variables, graphical modeling techniques can be used to find

the common ground between data sets by modeling covariate effects that

are shared by them. Time series of different lengths can be aligned with

dynamical modeling, integrated to the graphical multi-way model.

The next challenge in cross-species modeling is the computational

translation of a new experimental intervention from a model organism to

humans, when no observations are available on the intervention on

humans a priori. The new and existing experiments can then be modeled

together to predict the expected outcome of the unobserved new

experiment on humans in terms of similar existing

experiments (Publication V; Socher et al., 2013).
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8. Discussion

Data translation of experimental outcomes between organisms is one of

the most important unsolved problems in computational biology, since it

enables the prediction of the outcome of a new treatment in humans

based on a controlled experiment on model organisms. Multi-way

models, presented in this thesis, identify effects of experimental

covariates that generalize across organisms.

In Publication I, a Bayesian multi-way model was presented for

inferring covariate effects from high-dimensional data when

the variables are collinear. The main focus of the work was at inferring

the magnitude of the covariate effect. As with other approaches,

assessing the statistical significance of the effect is not a trivial task.

Thus, avenues for further research include a sparse model for

the covariate effects to decrease the occurrence of false positive findings.

Additionally, the incorporation of prior information about the similarity

of the variables may improve the model when the observed variables are

correlated, for instance, as a result of pathway structure in the data from

a biological organism.

In Publications II and III, the Bayesian multi-way model was extended

to account for the special nature of mass spectral metabolomic data.

By first clustering peaks based on their shape similarity, it was shown

that the use of multiple isotope and adduct peaks from a single

molecular source improves the inference of covariate effects on

metabolite compounds. Models for mass spectral data can still be

developed further in many ways by structuring the model to describe

more details of the generative process of the mass spectrometer device.

For instance, some weak peaks may be too noisy for the reliable inference

of covariate effects. The strength and the type of the peak could be taken

into account when assessing the reliability of the peak. This could be
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built into the model through a prior on the peak-specific variance

parameter. On the other hand, the known positions of isotope peaks and

their relative heights could be incorporated to the model through a prior

to improve both the clustering of same-source peaks as well as

the inference of covariate effects.

In Publication IV, a model was presented for the inference of covariate

effects that generalize to multiple views. The model was shown to learn

whether the effect is shared by the data views or whether it is specific to

one view. However, the inference of multiple components representing

different subsets of observed variables, in the same way as in

Publications I–III, remains an open modeling problem. Further, for some

applications it may be necessary to formulate a more interpretable

connection between observed variables and covariate effects.

In Publication V, a multi-view model was applied to finding drug

responses that are conserved across organisms. Since a direct prediction

of the drug response based on model organisms was not feasible due to

the small amount of available data compared to the complexity of

the problem, a cross-organism retrieval approach was proposed for

generalizing the drug response from model organisms to humans. When

more data becomes available, the model may become useful for the direct

prediction of the response as well.

In Publications VI and VII, a model was introduced to the data

translation problem in the situation, where the data sets do not have

co-occurring samples. Unlike in Publication V with summarized samples,

standard multi-view models are not applicable to the problem with no

co-occurring samples. However, it was shown that it is possible to

identify statistical dependencies even in this situation, if the experiment

design is similar between the data sets. Groups of variables were

matched between the data sets based on the similarity in their covariate

effects.

It is assumed in the model of Publications VI and VII that all covariate

effects are similar between the matched groups of variables, which is

a limitation in some applications. In future work, groups of variables

could be matched based on the covariate of interest while allowing other

less relevant covariates to have different effects on different organisms.

The prediction of the effect of a new covariate in one organism based on

an experiment on another organism—that is, the actual cross-species

data translation—remains a challenge.
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The matching of individual constituents of the metabolic pathways

between organisms is a future challenge for computational modeling.

Such a matched network could enable the translation of the complex

cascade of responses and its mechanism from a model organism

to humans.

With increasingly large databases of intervention experiments on

numerous model organisms openly available, data-driven machine

learning methods will become increasingly useful for both understanding

diseases and for drug development. Another growing area of research in

computational biology—that is already happening (Costello et al.,

in press)—is personalized medicine with the aim of making

computer-based decisions on disease diagnosis, prognosis and

treatment (Chin et al., 2011). Data translation methods are necessary

tools for personalized medicine as well, since molecular measurement

devices may be different between different hospitals. Further,

the underlying databases may consist of both historical patient data and

experimental data from model organism studies.
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