
9HSTFMG*afjeea+

ISBN 978-952-60-5944-0 (printed)
ISBN 978-952-60-5945-7 (pdf)
ISSN-L 1799-4934
ISSN 1799-4934 (printed)
ISSN 1799-4942 (pdf)

Aalto University
School of Science
Department of Information and Computer Science
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-D

D
 177

/2
014

T
ero L

aitinen
E

xtending SA
T

 Solver w
ith Parity R

easoning
A

alto
 U

n
ive

rsity

Department of Information and Computer Science

Extending SAT Solver with
Parity Reasoning

Tero Laitinen

DOCTORAL
DISSERTATIONS

Aalto University publication series
DOCTORAL DISSERTATIONS 177/2014

Extending SAT Solver with Parity
Reasoning

Tero Laitinen

A doctoral dissertation completed for the degree of Doctor of
Science (Technology) to be defended, with the permission of the
Aalto University School of Science, at a public examination held in
the lecture hall AS2 of the school on 21 November 2014 at 12 noon.

Aalto University
School of Science
Department of Information and Computer Science

Supervising professor
Prof. Ilkka Niemelä

Thesis advisor
Docent Tommi Junttila

Preliminary examiners
Prof. Chu Min Li, Université de Picardie Jules Verne, France
Prof. Roberto Sebastiani, University of Trento, Italy

Opponent
Prof. Armin Biere, Johannes Kepler University, Austria

Aalto University publication series
DOCTORAL DISSERTATIONS 177/2014

© Tero Laitinen

ISBN 978-952-60-5944-0 (printed)
ISBN 978-952-60-5945-7 (pdf)
ISSN-L 1799-4934
ISSN 1799-4934 (printed)
ISSN 1799-4942 (pdf)
http://urn.fi/URN:ISBN:978-952-60-5945-7

Unigrafia Oy
Helsinki 2014

Finland

Abstract
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Tero Laitinen
Name of the doctoral dissertation
Extending SAT Solver with Parity Reasoning
Publisher School of Science
Unit Department of Information and Computer Science

Series Aalto University publication series DOCTORAL DISSERTATIONS 177/2014

Field of research Theoretical Computer Science

Manuscript submitted 10 September 2014 Date of the defence 21 November 2014

Permission to publish granted (date) 29 October 2014 Language English

Monograph Article dissertation (summary + original articles)

Abstract
Propositional conflict-driven clause-learning (CDCL) satisfiability (SAT) solvers have been

successfully applied in a number of industrial domains. In some application areas such as cir-
cuit verification, bounded model checking, logical cryptanalysis, and approximate model count-
ing, some requirements can be succinctly captured with parity (xor) constraints. However, sat-
isfiability solvers that typically operate in conjunctive normal form (CNF) may perform poorly
with straightforward translation of parity constraints to CNF.

This work studies how CDCL SAT solvers can be enhanced to handle problems with parity
constraints using the recently introduced DPLL(XOR) framework where the SAT solver is
coupled with a parity constraint solver module. Different xor-deduction systems ranging from
plain unit propagation through equivalence reasoning to complete incremental Gauss-Jordan
elimination are presented. Techniques to analyze xor-deduction system derivations are devel-
oped, allowing one to obtain smaller clausal explanations for implied literals and also to learn
new parity constraints in the conflict analysis process. It is proven that these techniques can
be used to simulate a complete xor-deduction system on a restricted class of instances and
allow very short unsatisfiability proofs for some formulas whose CNF translations are hard for
resolution. Fast approximating tests to detect whether unit propagation or equivalence rea-
soning is enough to deduce all implied literals are presented. Methods to decompose sets of
parity constraints into subproblems that can be handled separately are developed. The decom-
position methods can greatly reduce the size of parity constraint matrices when using Gauss-
Jordan elimination on dense matrices and allow one to choose appropriate xor-deduction
system for each subproblem. Efficient translations to simulate equivalence reasoning and
stronger parity reasoning are developed. It is shown that equivalence reasoning can be simu-
lated by adding a polynomial amount of redundant parity constraints to the problem, but with-
out using additional variables, an exponential number of parity constraints are needed in the
worst case. It is proven that resolution simulates equivalence reasoning efficiently. The pre-
sented techniques are experimentally evaluated on a variety of challenging problems orig-
inating from a number of encryption ciphers and from SAT Competition benchmark instances.

Keywords propositional satisfiability, parity reasoning

ISBN (printed) 978-952-60-5944-0 ISBN (pdf) 978-952-60-5945-7

ISSN-L 1799-4934 ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942

Location of publisher Helsinki Location of printing Helsinki Year 2014

Pages 225 urn http://urn.fi/URN:ISBN:978-952-60-5945-7

Tiivistelmä
Aalto-yliopisto, PL 11000, 00076 Aalto www.aalto.fi

Tekijä
Tero Laitinen
Väitöskirjan nimi
Lauselogiikan toteutuvuustarkistimen laajentaminen pariteettipäättelyllä
Julkaisija Perustieteiden korkeakoulu
Yksikkö Tietojenkäsittelytieteen laitos

Sarja Aalto University publication series DOCTORAL DISSERTATIONS 177/2014

Tutkimusala Tietojenkäsittelyteoria

Käsikirjoituksen pvm 10.09.2014 Väitöspäivä 21.11.2014

Julkaisuluvan myöntämispäivä 29.10.2014 Kieli Englanti

Monografia Yhdistelmäväitöskirja (yhteenveto-osa + erillisartikkelit)

Tiivistelmä
Hakukonflikteista oppivia lauselogiikan toteutuvuustarkastimia on menestyksekkäästi so-

vellettu ongelmanratkaisuun useissa käytännön sovellutuksissa. Tietyillä sovellusalueilla, ku-
ten piiriverifiointi, rajoitettu mallintarkastus, looginen kryptoanalyysi ja approksimoiva ratkai-
sumallien lukumäärän laskenta, ongelmakuvauksien vaatimuksia voidaan ilmaisuvoimaisesti
mallintaa pariteettirajoitteilla. Ongelmat, jotka sisältävät pariteetti- eli xor-rajoitteita, voivat
tosin olla erityisen vaativia toteutuvuustarkistimille, jotka käsittelevät ongelmaa konjunktiivi-
sessa normaalimuodossa. Tässä väitöskirjassa tutkitaan, miten hakukonflikteista oppivia to-
teutuvuustarkistimia voidaan kehittää käsittelemään pariteettirajoitteita sisältäviä ongelmia
käyttäen aikaisemmin julkaistua DPLL(XOR)-hakumenetelmäkehystä, jossa toteutuvuustar-
kistimeen yhdistetään pariteettirajoitteita käsittelevä ratkaisinmoduuli. Työssä esitellään eri-
laisia pariteettipäättelyjärjestelmiä kuten yksikköpropagaatio, ekvivalenssipäättely ja täydel-
lisen pariteettipäättelyn tuottava inkrementaalinen Gauss-Jordan-eliminaatio. Pariteettirajoi-
tejohtoihin perustuvien pariteettipäättelyjärjestelmien analysoimiseksi esitellään tekniikoita,
joilla voidaan johtaa lyhyempiä klausuulipohjaisia selityksiä implikoiduille literaaleille ja joita
voidaan käyttää uusien pariteettirajoitteiden oppimiseksi hakukonfliktien käsittelyn yhteyde-
ssä. Työssä osoitetaan, että näillä tekniikoilla voidaan simuloida täydellistä pariteettipäättely-
järjestelmää rajatussa ongelmajoukossa ja niiden avulla voidaan tuottaa lyhyitä ongelman to-
teutumattomuuden osoittavia todistuksia eräille ongelmille, joiden kuvaukset konjunktiivises-
sa normaalimuodossa ovat vaikeita resoluutiolle. Väitöskirjassa käsitellään approksimoivia
luokittelumenetelmiä, joilla voidaan päätellä, että annetulle ongelmalle riittää käyttää yksik-
köpropagaatiota tai ekvivalenssipäättelyä kaikkien implikoitujen literaalien päättelyyn. Työssä
näytetään, miten erilaisia menetelmiä osittaa ongelma erillisiksi aliongelmiksi voidaan sovel-
taa pariteettirajoitejoukkoihin. Ositusmenetelmiä voidaan käyttää pienentämään Gauss-Jor-
dan eliminaatiossa käytettävien matriisien kokoa, kun käytetään tiivistä matriisiesitystä, ja
jokaiselle ositetulle aliongelmalle voidaan valita sopiva pariteettipäättelyjärjestelmä. Pariteet-
tipäättelyn simulointia tutkitaan käyttäen ekvivalenssipäättelyä ja vahvempaa pariteettipäät-
telyä simuloivia käännöksiä, jotka mahdollistavat olemassaolevien toteutuvuustarkistimi-
en hyödyntämisen. Työssä osoitetaan, että ekvivalenssipäättelyä voidaan simuloida lisäämällä
polynominen määrä ylimääräisiä pariteettirajoitteita, mutta ilman lisämuuttujia tarvitaan eks-
ponentiaalinen määrä pariteettirajoitteita pahimmassa tapauksessa. Työssä näytetään, että re-
soluutio simuloi ekvivalenssipäättelyä tehokkaasti. Esiteltyjä tekniikoita arvioidaan kokeelli-
sesti monilla haastavilla ongelmilla, jotka on tuotettu salausmenetelmistä ja SAT Competition-
kilpailuongelmista.
Avainsanat lauselogiikan toteutuvuusongelma, pariteettipäättely

ISBN (painettu) 978-952-60-5944-0 ISBN (pdf) 978-952-60-5945-7

ISSN-L 1799-4934 ISSN (painettu) 1799-4934 ISSN (pdf) 1799-4942

Julkaisupaikka Helsinki Painopaikka Helsinki Vuosi 2014

Sivumäärä 225 urn http://urn.fi/URN:ISBN:978-952-60-5945-7

Contents

Contents 1

Preface 3

List of Publications 5

Author’s Contribution 7

Contributions of the Publications 9

1. Introduction 11

1.1 SAT Problem and CDCL SAT Solvers 12

1.2 Satisfiability Modulo Theories and DPLL(T) Framework . . 13

1.3 Satisfiability and Parity Constraints 14

1.4 Structure of the thesis . 15

2. Preliminaries 17

2.1 Parity constraint formulas . 17

2.2 Fundamental Properties of Linear Combinations 18

2.3 Unit propagation . 18

2.4 DPLL(XOR) . 19

2.5 Other related work . 20

2.6 Benchmarks . 25

3. XOR-Deduction Systems 31

3.1 Unit Propagation (UP) . 31

3.2 Equivalence Reasoning by Substitution (SUBST) 35

3.3 Equivalence Reasoning using Equivalence Classes (EC) . . . 38

3.3.1 Implementing with Equivalence Classes 40

3.4 Incremental Gauss-Jordan Elimination 44

3.5 Experimental Evaluation . 48

1

Contents

4. Parity Explanations 55

4.1 From Implicative Explanations to Parity Explanations . . . 55

4.2 Learning Parity Explanations 58

4.3 Generalizing Parity Explanations 60

4.4 Experimental Evaluation . 63

5. Classifying Parity Constraints 69

5.1 When Unit Propagation Deduces All Xor-Implied Literals . . 70

5.1.1 Experimental Evaluation 71

5.1.2 Clausification of Tree-like Parts 74

5.2 When Equivalence Reasoning Deduces All Xor-Implied Lit-

erals . 75

6. Decomposing Parity Constraints 79

6.1 Biconnected Component Decomposition 80

6.1.1 Experimental Evaluation 82

6.2 Eliminating XOR-Internal Variables 86

6.3 N-cut decomposition . 89

6.3.1 Experimental Evaluation 91

7. Simulating Parity Reasoning 95

7.1 Resolution does not Simulate Parity Explanations 97

7.2 Resolution Simulates Equivalence Reasoning Polynomially . 98

7.3 Parity Explanations (Almost) Simulate Gauss-Jordan Elim-

ination . 100

7.4 Simulating Equivalence Reasoning with Unit Propagation . 101

7.4.1 Simulation without extra variables 102

7.4.2 Simulation with extra variables: basic version 104

7.4.3 Simulation with extra variables: optimized version . 104

7.5 Simulating Stronger Parity Reasoning with Unit Propagation106

7.5.1 Propagation-preserving xor-simplification 109

7.5.2 Experimental Evaluation 109

7.5.3 Polynomial-size translation for instances of bounded

treewidth . 111

8. Conclusions 135

Bibliography 139

Publications 145

2

Preface

This thesis reports the results of the fruitful collaboration between me, do-

cent Tommi Junttila, and professor Ilkka Niemelä in the Computational

Logic research group.

My research has been funded jointly by Aalto University, Helsinki Doc-

toral Programme in Computer Science, and Finnish Centre of Excellence

in Computational Inference Research (COIN).

I wish to thank Prof. Ilkka Niemelä and Docent Tommi Junttila for their

insightful and patient guidance. Their long-term commitment to research

on theoretical computer science is hopefully reflected in this thesis.

I want to express my gratitude towards my colleagues at the Depart-

ment of Information and Computer Science for laughters that have re-

leased the tension of sweating on research problems.

I am grateful to my friends for supporting me and sharing rich experi-

ences outside work as well.

I feel a deep sense of gratitude to my parents and brother who have

provided a world of opportunities and have always been there for me.

In the preface of my master’s thesis, I thanked Oana for all the sunshine

making the future look brighter. I no longer need to wait for the bright

future to happen. I thank my wife, Oana, and our two sons Christian and

Alex for every moment spent together.

Helsinki, October 31, 2014,

Tero Laitinen

3

Preface

4

List of Publications

This thesis consists of an overview and of the following publications which

are referred to in the text by their Roman numerals.

I Tero Laitinen and Tommi Junttila and Ilkka Niemelä. Equivalence

Class Based Parity Reasoning in DPLL(XOR). In IEEE 23rd Interna-

tional Conference on Tools with Artificial Intelligence, ICTAI 2011, Boca

Raton, FL, USA, November 7-9, 2011, 649-658, November 2011.

II Tero Laitinen and Tommi Junttila and Ilkka Niemelä. Conflict-Driven

XOR-Clause Learning. In Theory and Applications of Satisfiability Test-

ing - SAT 2012 - 15th International Conference, Trento, Italy, June 17-

20, 2012, 383-396, June 2012.

III Tero Laitinen and Tommi Junttila and Ilkka Niemelä. Classifying

and Propagating Parity Constraints. In Principles and Practice of Con-

straint Programming - 18th International Conference, CP 2012, Québec

City, QC, Canada, October 8-12, 2012, 357-372, October 2012.

IV Tero Laitinen and Tommi Junttila and Ilkka Niemelä. Extending

Clause Learning SAT Solvers with Complete Parity Reasoning. In IEEE

24th International Conference on Tools with Artificial Intelligence, IC-

TAI 2012, Athens, Greece, November 7-9, 2012, 65-72, November 2012.

V Tero Laitinen and Tommi Junttila and Ilkka Niemelä. Simulating Par-

ity Reasoning. In 19th International Conference on Logic for Program-

ming Artificial Intelligence and Reasoning, Stellenbosch, South Africa,

December 15-19, 2013, 568-583, December 2013.

5

List of Publications

6

Author’s Contribution

Publication I: “Equivalence Class Based Parity Reasoning in
DPLL(XOR)”

The author is responsible for development and description of the EC de-

duction system and associated additional techniques, and conducting and

reporting the experiments. The proof for showing the partial equivalence

of SUBST and EC deduction systems and formal description of the EC

implementation is due to Docent Junttila. The ideas in the DPLL(XOR)

framework are by Prof. Niemelä and Docent Junttila.

Publication II: “Conflict-Driven XOR-Clause Learning”

The author is responsible for development and description of the method

of conflict-driven XOR-clause learning, showing that resolution cannot

polynomially simulate parity explanations, and conducting and document-

ing the experiments. The idea and the description of parity explanations

is due to Docent Junttila.

Publication III: “Classifying and Propagating Parity Constraints”

The author is responsible for description of the connection between xor-

cycles and equivalence reasoning, the method for the approximating test

to detect whether equivalence reasoning is enough to detect all implied lit-

erals, the descriptions of all translations to simulate equivalence reason-

ing with unit propagation, and conducting and reporting the experiments

related to equivalence reasoning and instance classification. Development

and description of the method of clausification of tree-like parts, conduct-

7

Author’s Contribution

ing and reporting the related experiments is due to Docent Junttila.

Publication IV: “Extending Clause Learning SAT Solvers with
Complete Parity Reasoning”

The author is responsible for the description of the method for exploiting

biconnected components when using dense matrix representation with

Gauss-Jordan elimination, documenting the implementation details of the

incremental Gauss-Jordan solver module, the description of the method

for eliminating xor-internal variables, and conducting and reporting the

experiments. The formal description of incremental Gauss-Jordan module

and all proofs are due to Docent Junttila.

Publication V: “Simulating Parity Reasoning”

The author is responsible for the idea that parity explanations simulate

Gauss-Jordan elimination on nondeterministic unit propagation deriva-

tions on a restricted class of instances, describing the method of sim-

ulating stronger parity reasoning with unit propagation and associated

proof, describing the method of propagation-preserving xor-simplification

and associated proof, and conducting and reporting the experiments. The

proofs showing resolution polynomially simulates equivalence reasoning,

and parity explanations simulate Gauss-Jordan elimination on nondeter-

ministic unit propagation derivations on a restricted class of instances are

due to Docent Junttila.

8

Contributions of the Publications

I This work develops a new xor-deduction system in the DPLL(XOR)

framework. The new xor-deduction system EC uses an alternative ap-

proach to implement equivalence reasoning by tracking equivalence classes

of variables whereas the earlier xor-deduction system SUBST uses substi-

tution to implement equally powerful equivalence reasoning.

II This work develops parity explanations, a method to possibly obtain

shorter conflict clauses compared to earlier implicative explanations when

solving instances with parity constraints. A new simple xor-deduction sys-

tem UP that performs plain unit propagation on xor-constraints is intro-

duced. The work shows that by choosing assumed literals appropriately,

parity explanations can be used to refute unsatisfiable formulas that do

not have polynomial-size resolution refutations. The work proposes a

method to selectively add parity explanations as learned xor-constraints

during the search.

III This work develops two fast approximating tests for deciding whether

unit propagation or equivalence reasoning is enough to achieve full prop-

agation in a given parity constraint test. The work also develops three

translations for simulating equivalence reasoning with unit propagation,

and shows that without additional variables, such simulation is exponen-

tial in the worst case.

IV This work develops a new xor-deduction system based on incremental

Gauss-Jordan elimination. The new xor-deduction systems allows SAT

solver to be extended with complete parity reasoning. The work develops

a method to decompose parity constraint conjunctions by exploiting bicon-

nected components. The decomposition method allows smaller memory

usage and faster propagation for incremental Gauss-Jordan elimination

when using dense matrix representation. The work shows how some vari-

9

Contributions of the Publications

ables occurring only in the xor-part can be eliminated while preserving

the biconnected component decomposition.

V This work studies how stronger parity reasoning techniques in the

DPLL(XOR) framework can be simulated by simpler systems: resolution,

unit propagation, and parity explanations. It is shown that resolution

polynomially simulates equivalence reasoning. It is proven that parity ex-

planations simulate Gauss-Jordan elimination on nondeterministic unit

propagations on a restricted class of instances. The work develops a new

translation that allows unit propagation to effectively simulate stronger

parity reasoning ranging from equivalence reasoning to complete parity

reasoning.

10

1. Introduction

This thesis develops methods to solve the propositional satisfiability (SAT)

problem which is to assign a truth value, true or false, to each variable

in a Boolean formula in such a way the formula evaluates to true. This

work focuses on SAT problems that involve parity (xor) constraints. As a

method to solve such problems, this work builds upon modern SAT solvers

capable of conflict-driven clause-learning (CDCL).

Conflict-driven clause-learning SAT solvers have been successfully ap-

plied in a number of industrial application domains including AI plan-

ning, model checking of software and hardware systems, package man-

agement in software distributions (see e.g. Silva et al. [2009]). In these

solvers, an instance of the SAT problem is typically represented in con-

junctive normal form (CNF) which allows very efficient algorithms to ex-

plore large search spaces. However, these algorithms do not typically scale

well for problems involving parity constraints that are commonly used in

application domains such as circuit verification, bounded model checking,

logical cryptanalysis, and approximate model counting.

This thesis has a number of practical and theoretical results that have

three interesting implications. First, the application domains where par-

ity constraints are used as a part of the modeling language benefit directly

from the pragmatic results enabling SAT solvers to solve even larger prob-

lems. Second, the theoretical results provide a foundation for building

next generation SAT solvers capable of handling parity constraints effec-

tively. Third, the use of parity constraints has been avoided in SAT prob-

lem modeling because of its reputation for hindering the performance of

SAT solvers. The results in this thesis encourage to use parity constraints

as a part of the modeling language, because parity constraints provide

structure in the problem description and that structure can be exploited

when solving the problem. The importance of the results in this thesis

11

Introduction

can then extend to yet unknown important application domains.

1.1 SAT Problem and CDCL SAT Solvers

The propositional satisfiability (SAT) problem is one of the NP-complete

problems meaning that, according to the current understanding of com-

putational complexity theory, solving the SAT problem is intractable in

the sense that solving an instance of the SAT problem may require an

exponential amount of time with respect to the size of the problem in-

stance. Despite this dreadful worst-case behavior, many important real-

world problems can be translated to and solved efficiently as SAT prob-

lems thanks to significant progress in SAT solving technology since 1990s

and especially to the considerable software engineering effort put into

modern conflict-driven clause-learning CDCL SAT solvers. The SAT prob-

lem is an important restricted class of CSPs (Constraint Satisfaction Prob-

lems) that typically involve non-Boolean variables and may mix different

constraint types. In constraint programming, customized search strate-

gies may be defined when solving CSPs whereas SAT solvers typically

rely on heuristic built-in search strategies. Dechter [2003] gives a com-

prehensive overview of the theory of CSPs.

The basis for modern CDCL SAT solvers lies in the DPLL algorithm

by Davis et al. [1962]. The DPLL algorithm performs a complete back-

tracking search on an instance of the SAT problem represented in con-

junctive normal form (CNF). The search alternates between branching

and propagation. In a branching step, a variable and a truth value for it

are selected, and the formula is simplified accordingly. As a result, in the

propagation step, it may be possible to deduce truth values of some other

variables. If it is deduced that a part of the formula cannot evaluate to

true under the current truth assignment, then the DPLL algorithm back-

tracks, that is, restores the state of the search to a previously unexplored

branch of the search tree.

Since the inception of the DPLL algorithm, a number of improvements

have been proposed to it ultimately leading to the current CDCL SAT

solvers capable of handling formulas with millions of variables. When

the basic DPLL algorithm backtracks, it does not store information about

the conflicting truth assignment that causes a part of the formula evalu-

ate to false and the search to backtrack. A method to store information

about such conflicts by adding learned clauses to the formula being solved

12

Introduction

was proposed by Silva and Sakallah [1996]. To avoid the SAT solver from

getting stuck in a single region of the search space, a method to random-

ize the search and restart the search periodically from the beginning was

presented by Gomes et al. [1998]. To implement the propagation step ef-

ficiently for larger formulas, efficient lazy data structures and compatible

light-weight variable selection heuristics were developed by Moskewicz et

al. [2001] and further elaborated by Ryan [2004] and Lewis et al. [2005].

To prevent learned clauses from consuming too much memory and slow-

ing down propagation excessively, deletion policies for selectively discard-

ing some learned clauses were proposed by Goldberg and Novikov [2007].

A more detailed overview of CDCL SAT solving techniques can be found

in Silva et al. [2009].

The (CDCL) SAT solving technology continues to develop at a fast pace,

so it can be challenging to understand which are the most important

techniques governing the performance of a SAT solver. The solver minisat

by Eén and Sörensson [2003] provides a clean and extensible implementa-

tion of a conservative number of well-considered SAT solving techniques.

Besides being the basis for many award-winning SAT solvers in the inter-

national SAT competition (www.satcompetition.org), it is commonly used

as a reference point for benchmarking new SAT solving techniques, and

so it is used in this thesis.

1.2 Satisfiability Modulo Theories and DPLL(T) Framework

Encoding an application-level problem as a Boolean formula can be pro-

hibitively cumbersome for two reasons: (i) it can be tedious to capture

the problem in the propositional domain, and (ii) solving the problem en-

coded as a Boolean formula can be inefficient. Satisfiability Modulo The-

ories (SMT) is an attempt tackle these challenges. Satisfiability Modulo

Theories can be seen as a generalization of the propositional satisfiabil-

ity problem in a sense that it relaxes the interpretation of propositional

statements in the Boolean formula. In the SMT problem, instead of be-

ing plain Boolean variables, the propositional statements are formulas of

some background theory T , a decidable quantifier-free fragment of first-

order logic. Such background theories may, for example, consider equality

with uninterpreted functions (Nelson and Oppen [1980]), linear integer

arithmetic (Dutertre and de Moura [2006]), or fixed-size bit vectors (Cyr-

luk et al. [1997]). We shortly summarize the two successful approaches,

13

Introduction

“eager” and “lazy”, to solving SMT and introduce the DPLL(T) frame-

work that has inspired the development of the DPLL(XOR) framework

introduced in the next chapter. More complete overviews on Satisfiabil-

ity Modulo Theories can be found in Sebastiani [2007] and Barrett et al.

[2009].

In the eager approach, an SMT instance is translated to an equisatisfi-

able Boolean formula by expanding the domains of the background theory

variables and incorporating enough consequences of the background the-

ory. The resulting Boolean formula may be substantially larger than the

original SMT instance. A benefit of using the eager approach is that an

unmodified SAT solver can be used to solve the translated SMT instance.

In the lazy approach, a SAT solver is extended with a solver module that

takes care of background theory-specific inference. The solver module can

then use specialized data structures and algorithms, which can be much

more efficient than translating the SMT instance to a Boolean formula.

The DPLL(T) approach to Satisfiability Modulo Theories by Nieuwen-

huis et al. [2006] defines a formal model of CDCL SAT solver and a min-

imal interface to integrate a solver module for a background theory T .

Such a solver module needs only to deal with conjunctions of theory liter-

als, tell the SAT solver which theory literals become implied, and provide

explanations for implied theory literals when required by the SAT solver’s

conflict analysis.

1.3 Satisfiability and Parity Constraints

The use of DPLL-based algorithms requires that the problem be repre-

sented in conjunctive normal form (CNF). Few problems have natural

representations in conjunctive normal form, so SAT problems are usu-

ally converted to CNF from an intermediate representation, e.g. using

the translation by Tseitin [1968]. Straightforward Tseitin-translation of

a problem instance to CNF may result in poor performance, especially

in the case of parity (xor) constraints. Parity constraints (linear equa-

tions modulo two) can be efficiently solved by Gaussian elimination in

polynomial time. However, parity constraints, when translated to CNF,

have been shown by Urquhart [1987] to be very difficult for resolution,

a refutation-based theorem proving technique for propositional formulas,

which is equivalent to the underlying proof system in CDCL SAT solvers

(Pipatsrisawat and Darwiche [2011]). Due to this inherent hardness of

14

Introduction

parity constraints, several approaches to combining CNF-level and par-

ity reasoning have been proposed. Baumgartner and Massacci [2000] de-

velop a formal decision procedure to solve formulas consisting of CNF and

parity constraints. The solvers EqSatz by Li [2000b], 2cls+eq by Bacchus

[2002], lsat by Ostrowski et al. [2002], march_eq by Heule et al. [2004], MoR-

Sat by Chen [2009], cryptominisat by Soos [2010], and the solver by Han and

Jiang [2012] implement a variety of important techniques to integrate

parity reasoning in a SAT solver. Katsirelos and Simon [2012] consider

unifying the reasoning on CNF and parity constraints using Polynomial

Calculus with Resolution (Alekhnovich et al. [2002]). Weaver [2012] uses

state machines to represent constraints, including parity constraints, in a

SAT solver. Gwynne and Kullmann [2014] consider the problem of finding

good CNF-representations for parity constraints. A more detailed compar-

ison against this considerable amount of related work will be made in the

following chapters where relevant.

1.4 Structure of the thesis

The results in this thesis are organized as follows.

Chapter 2 introduces formal notation, the DPLL(XOR) framework pre-

sented in Laitinen et al. [2010] and lists the benchmark families used

for experimental evaluation.

Chapter 3 presents and experimentally evaluates four different xor-deduction

systems.

Chapter 4 develops and experimentally evaluates techniques to give bet-

ter explanations for literals deduced with xor-deduction systems.

Chapter 5 explores the structure of our benchmark instances and devel-

ops efficient approximating tests to decide whether unit propagation or

equivalence reasoning is enough to achieve full propagation in a given

set of parity constraints.

Chapter 6 develops and experimentally evaluates techniques to improve

solving performance by decomposing the parity constraints into parity

constraint clusters that can be handled separately.

Chapter 7 studies to what extent simpler parity reasoning systems can

15

Introduction

simulate stronger parity reasoning systems in the DPLL(XOR) frame-

work, develops and experimentally evaluates translations to simulate

parity reasoning on existing SAT solvers, and considers how some prop-

agation engines and proof systems relate to each other on a more funda-

mental level.

Chapter 8 concludes the work and discusses some open questions for fu-

ture work.

16

2. Preliminaries

We are interested in solving propositional formulas consisting of a CNF-

part φor and an xor-part φxor. Starting with some formal notation, we now

introduce the DPLL(XOR) framework presented in Laitinen et al. [2010]

to extend a CDCL SAT solver with an xor-reasoning module. The arti-

cle Laitinen et al. [2010] documents the main results of the first author’s

Master’s thesis, so it is not included in this thesis.

2.1 Parity constraint formulas

Let B = {⊥,�} be the set of truth values “false” and “true”. A literal

is a Boolean variable x or its negation ¬x (as usual, ¬¬x will mean x),

and a clause is a disjunction of literals. If φ is any kind of formula or

equation, (i) vars(φ) is the set of variables occurring in it, (ii) lits(φ) =

{x,¬x | x ∈ vars(φ)} is the set of literals over vars(φ), and (iii) a truth as-

signment for φ is a, possibly partial, function τ : vars(φ) → B. A truth as-

signment satisfies (i) a variable x if τ(x) = �, (ii) a literal ¬x if τ(x) = ⊥,

and (iii) a clause (l1∨ ..∨lk) if it satisfies at least one literal li in the clause.

An xor-constraint is an equation of the form x1 ⊕ ... ⊕ xk ≡ p, where the

xis are Boolean variables and p ∈ B is the parity. We implicitly assume

that each xor-constraint is in a normal form such that duplicate variables

are always removed from the equations, e.g. x1 ⊕ x2 ⊕ x1 ⊕ x3 ≡ � is

always simplified into x2 ⊕ x3 ≡ �. If the left hand side does not have

variables, then it equals to ⊥; the equation ⊥ ≡ � is a contradiction and

⊥ ≡ ⊥ a tautology. We identify the xor-constraint x ≡ � with the literal

x, x ≡ ⊥ with ¬x, ⊥ ≡ ⊥ with �, and � ≡ ⊥ with ⊥. A truth assign-

ment τ satisfies an xor-constraint (x1 ⊕ ... ⊕ xk ≡ p) if τ(xi) is defined for

all xi ∈ {x1, . . . , xk} and the sequence 〈τ(x1), . . . , τ(xk)〉 contains an odd

(even) number of occurrences of the truth value � if p is � (⊥). We use

17

Preliminaries

D [x/Y] to denote the xor-constraint obtained from D by substituting the

variable x in it with Y . For instance, (x1 ⊕ x2 ⊕ x3 ≡ �) [x1/x2 ⊕�] =

x2 ⊕�⊕ x2 ⊕ x3 ≡ � = x3 ≡ ⊥. The straightforward CNF translation of

an xor-constraint D is denoted by cnf(D); for instance, cnf(x1 ⊕ x2 ⊕ x3 ≡
⊥) = (¬x1∨¬x2∨¬x3)∧ (¬x1∨x2∨x3)∧ (x1∨¬x2∨x3)∧ (x1∨x2∨¬x3). We

define the linear combination of two xor-constraints, D = (x1⊕ ...⊕xk ≡ p)

and E = (y1⊕ ...⊕yl ≡ q), by D+E = (x1⊕ ...⊕xk⊕y1⊕ ...⊕yl ≡ p⊕ q). An

xor-constraint E = (x1 ⊕ ... ⊕ xk ≡ p) with k ≥ 1 is a prime implicate of a

satisfiable xor-constraint conjunction φxor if (i) φxor |= E but (ii) φxor
|= E′

for all xor-constraints E′ for which vars(E′) is a proper subset of vars(E).

A CNF-xor formula is a conjunction φor ∧φxor, where φor is a conjunction

of clauses and φxor is a conjunction of xor-constraints. A truth assignment

satisfies φor ∧ φxor if it satisfies every clause and xor-constraint in it.

2.2 Fundamental Properties of Linear Combinations

Some fundamental, easy to verify properties are D+D+E = E, D ∧ E |=
D + E, D ∧ E |= D ∧ (D + E), and D ∧ (D + E) |= D ∧ E.

The logical consequence xor-constraints of an xor-constraint conjunction

ψ are exactly those that are linear combinations of the xor-constraints in

ψ:

Lemma 1 (Lem. 5 of Laitinen et al. [2012]). Let ψ be a conjunction of

xor-constraints. Now ψ is unsatisfiable if and only if there is a subset S

of xor-constraints in ψ such that
∑

D∈S D = (⊥ ≡ �). If ψ is satisfiable

and E is an xor-constraint, then ψ |= E if and only if there is a subset S of

xor-constraints in ψ such that
∑

D∈S D = E.

2.3 Unit propagation

Given a clause C = l1 ∨ · · · ∨ ln, and τ be a partial truth assignment such

that i) τ is defined for | vars(C)| − 1 variables in vars(C), and ii) τ does not

satisfy the clause C, unit propagation is the deduction step of inferring an

augmented truth assignment τ ′ otherwise identical to τ but i) it is defined

for all variables in vars(C), and ii) it satisfies the clause C. For instance,

given the clause C = (a ∨ b ∨ c) and the partial truth assignment τ such

that τ(a) = ⊥ and τ(b) = ⊥, the partial truth assignment τ ′ fulfilling the

conditions is obtained by setting τ ′(a) = τ(a) = ⊥, τ ′(b) = τ(b) = ⊥, and

18

Preliminaries

τ ′(c) = �.

2.4 DPLL(XOR)

As in the DPLL(T) approach to solving Satisfiability Modulo Theories,

the DPLL(XOR) framework consists of a CDCL SAT solver and an xor-

reasoning module. The search on a CNF-xor formula φor ∧ φxor is driven

by the CDCL SAT solver on the CNF-part φor employing appropriate vari-

able selection, branching, conflict analysis, backtracking, and restarting

facilities. While the CDCL SAT solver tries to extend an initially empty

truth assignment over the variables of φor ∧ φxor to a satisfying truth as-

signment, it uses the xor-reasoning module (i) to perform (possibly incom-

plete) checks to deduce whether the current partial truth assignment can

still be extended to satisfy the xor-part φxor, and (ii) to extend the current

partial truth assignment by deduction on the xor-part φxor.

Figure 2.1 shows the essential skeleton of the DPLL(XOR) search pro-

cedure. When the search procedure starts in lines 1-2, the xor-reasoning

module is initialized with the xor-part φxor and the truth assignment is

initially empty. The loop in lines 3-19 is run until a solution is found or it

has been proven that no solution exists. In line 4, the CDCL SAT applies

basic unit propagation and can infer values on some variables extending

the truth assignment. The unit propagation in line 4 can also cause a con-

flict meaning that the current truth assignment cannot be extended to a

solution for the instance. If unit propagation succeeds without causing a

conflict (line 5), then the newly deduced literals by CNF-part unit propa-

gation are communicated to the xor-reasoning module as xor-assumptions

in line 6. The xor-reasoning module is then requested to run its propaga-

tion algorithms1 and it may return one or more xor-implied literals in line

7 If l1, . . . , lk are the xor-assumptions communicated to the xor-reasoning

module by ASSIGN method and l̂ is an xor-implied literal returned by DE-

DUCE method, then l̂ is a logical consequence of the xor-part and the xor-

assumptions, i.e. φxor ∧ l1 ∧ · · · ∧ lk |= l̂ holds. The CDCL SAT solver

requires that a literal in the current truth assignment have an implying

clause, that is, a clause that forces the value of the literal by unit propa-

gation on the values of literals appearing earlier in the truth assignment,

1It is important that the xor-reasoning module carry out the deduction on the
xor-part incrementally to avoid computing the same intermediate results many
times.

19

Preliminaries

which in a typical implementation is a sequence of literals instead of a set.

The xor-reasoning module is requested with the EXPLAIN method to sup-

ply an implying clause for each of the new xor-implied literals in line 92.

If the xor-reasoning module deduces that the xor-part simplified with the

xor-assumptions does not have a solution (xor-conflict) or an xor-implied

literal causes a conflict in the CNF-part, the implying clause for the xor-

implied literal in line 10 is then used as a conflict clause for the conflict

analysis. Otherwise, each new xor-implied literal is added to the current

truth assignment in line 11. The condition in line 12 makes sure propa-

gation is saturated in both CNF-part and xor-part before branching the

search with a heuristically selected unassigned literal (line 18) or return-

ing SAT result (line 19). The propagation steps between branching steps

are said to belong to the same decision level. If a conflict occurs either

in the CNF-part or in the xor-part, a normal conflict analysis procedure

and associated backtracking (or returning UNSAT result) is performed in

lines 14-16. The internal state of the xor-reasoning module is restored to

a previous state consistent with the CNF-part solver’s state after back-

tracking.

It is observed by Katsirelos and Simon [2012] that restricting the com-

munication between the CNF-part and the xor-part in DPLL(XOR) to xor-

assumptions and xor-implied literals hinders the strength of the overall

proof system. In their theoretical study, the CNF-xor formula is repre-

sented as a conjunction of polynomials to unify the reasoning on the CNF-

part and the xor-part. However, it is not clear to us whether such a system

can be implemented efficiently.

The Gaussian elimination subroutine in the solver cryptominisat by Soos

[2010] and the Gauss-Jordan elimination subroutine in the solver by Han

and Jiang [2012] can be seen as xor-reasoning modules.

2.5 Other related work

CDCL SAT solvers and the pseudo-Boolean problem. CDCL SAT solvers

have been used as a top-level search engine to solve the pseudo-Boolean

problem which can be seen as a similar combined satisfiability problem

where CNF is extended with another constraint type over Boolean vari-

2 An actual implementation may postpone computing implying clauses and pro-
duce them on demand only for those xor-implied literals that are used to deduce
a conflict in the CNF-part.

20

Preliminaries

1. initialize xor-module M with φxor

2. τ = 〈〉 /*sequence of literals (the truth assignment)*/

3. while true:

4. (τ ′, confl) = UNITPROP(φor, τ) /*standard unit propagation*/

5. if not confl : /*apply xor-reasoning*/

6. for each literal l in τ ′ but not in τ : M .ASSIGN(l)

7. (l̂1, ..., l̂k) = M.DEDUCE()

8. for i = 1 to k:

9. let C = M.EXPLAIN(l̂i)

10. if l̂i = ⊥ or ¬l̂i in τ ′: confl = C, break

11. else if l̂i /∈ τ : add l̂Ci to τ ′

12. if k > 0 and not confl : continue /*unit propagate further*/

13. let τ = τ ′

14. if confl : /*standard Boolean conflict analysis*/

15. analyze conflict, learn a conflict clause

16. backjump or return UNSAT if not possible

17. else:

18. assign a heuristically selected unassigned literal in φor to τ

19. or return SAT if no such variable exists

Figure 2.1. The essential skeleton of DPLL(XOR)

ables. Formally, a linear pseudo-Boolean constraint a1l1 + · · · + anln ≥ b

is an inequality on the weighted sum of Boolean literals where ai, b ∈ Z≥0

and literals are interpreted as integers, e.g. given a truth assignment

τ , if τ(li) = �, then l1 evaluates to 1 in the pseudo-Boolean constraint.

When all the coefficients ai are equal to 1, then the linear pseudo-Boolean

constraint is referred to as a cardinality constraint. If also the constant

b is equal to 1, then the linear pseudo-Boolean constraint is equivalent

to a regular clause. Problems consisting of pseudo-Boolean constraints

may also involve optimization with respect to a linear objective function,

and then correspond to 0-1 integer linear programming (ILP) problems.

Manquinho and Roussel [2006] document the first evaluation of pseudo-

Boolean solvers which was organized as a subtrack of the SAT Competi-

tion in 2005. An important implementation detail, which does not arise

with parity constraints, is the issue with big integer coefficients that may

cause overflows before or during the search if not handled properly. Eén

and Sörensson [2006] describe how linear pseudo-Boolean constraints can

be translated to regular clauses that can be handled by a standard SAT

solver. Their solver MiniSat+ implements these techniques and performs

21

Preliminaries

comparably to solvers that natively support pseudo-Boolean constraints.

A more recent solver library Sat4j by Berre and Parrain [2010] supports

pseudo-Boolean constraints and, while it is not competitive with the latest

SAT solvers, its modular design allows easy adoption in software systems.

Parity reasoning in look-ahead solvers. First parity reasoning techniques

have been developed in look-ahead solvers that do not perform conflict-

driven clause learning. A look-ahead solver typically employs a search

tree where the formula is simplified with more assumptions at each level

of the search tree. The look-ahead part in the solver implies the use of a

heuristic function to i) prune the search tree by testing possible assump-

tions before choosing one, and ii) guide the search to a more promising “di-

rection”. The solver EqSatz by Li [2000b], march_eq by Heule et al. [2004],

and 2cls+eq by Bacchus [2002] successfully combine look-ahead and par-

ity reasoning techniques. The inference rules (or related parity reasoning

techniques) used in the solvers EqSatz, march_eq and 2cls+eq are compared

to those of the xor-deduction system Subst in Section 3.2. The prepro-

cessing step involving Gaussian Elimination used in the solver march_eq

is described in more detail in Section 3.4 relating it to the xor-deduction

system IGJ. The solver MoRsat by Chen [2009] combines look-ahead tech-

niques, parity reasoning, and conflict-driven clause learning. The use of

watched literals in the solver MoRsat is related to the xor-deduction system

UP in Section 3.1.

State-based approach to parity reasoning. Weaver [2012] uses state ma-

chines called SMURFs to represent constraints to allow efficient propaga-

tion and conflict detection during search. A SMURF is an acyclic Mealy

machine (Mealy [1955]) defined by a 6-tuple (S, S0,Σ,Λ, T,G) where S is

a finite set of states, S0 ∈ S is the initial state, Σ is a finite input alphabet

set, Λ is a finite output alphabet set, T : S×Σ → S is a transition function,

and G : S × Σ → Λ is an output function. A state in a SMURF represents

a function and transitions represents partial assignments to variables of

the function. A SMURF state representing a Boolean function f with n

variables has 2n transitions, each labeled by a literal representing one of

the possible assignments to f , and at most 3n states. The output function

G can be used to encode useful information such as inference and heuris-

tic computations, e.g. xor-implied literals. A SMURF can be constructed

directly from a Binary Decision Diagram (BDD, Akers [1978]) and then

it can be compressed by i) exploiting symmetries in typical functions, e.g.

∨, ∧, and ⊕, and ii) introducing “counter states”. An attractive property

22

Preliminaries

of SMURFs is that arbitrary Boolean functions can be represented and

complete inference information can be encoded in transitions. However,

constructing SMURFs may be computationally prohibitive. Weaver [2012]

shows how to factor xor-constraints from Boolean functions to create spe-

cial SMURF transitions that infer xor-constraints during search. These

inferred xor-constraints are then passed to a Gaussian elimination solver

used in the solver SBSAT. Constructing a SMURF to improve propagation

performance and proof system strength prior to search bears a resem-

blance to our EC- and GE-simulation formulas presented in Chapter 7

where the idea is to add redundant xor-constraints to the formula to en-

able unit propagation to deduce more xor-implied literals.

Parity reasoning as a preprocessing step. The solver lsat by Ostrowski et

al. [2002] extracts equations of the form y = x1� . . .�xn, where y is the

output variable, x1, . . . , xn are input variables, and � ∈ {∧,∨,⇔}, from

the CNF formula using a graph of clauses where i) each node corresponds

to a clause, ii) each edge corresponds to a pair of clauses exhibiting a

resolvent clause, and iii) each edge is labeled either by T when the re-

solvent is tautological or R when the resolvent is not tautological. For

instance, an equation a = b ⇔ c (equivalent to a = b ⊕ c ⊕ �) corre-

sponds to a clique graph of four clauses where all edges are labeled with

T. Such a graph is not explicitly represented but equations are extracted

by checking for each clause which clauses exhibit tautological resolvents

with it. Any variable in an equation of the form y = x1 ⇔ · · · ⇔ xn

can take the role of the output variable, so for such equations, the out-

put variable is selected among the set of output variables already de-

fined for other equations. After the equations have been extracted, the

CNF formula can be simplified with them. Parity reasoning is performed

when the ⇔ equations (xor-constraints) are used to eliminate variables

using two properties: i) (a ⇔ a ⇔ b1 ⇔ · · · ⇔ bn) is equivalent to

(b1 ⇔ · · · ⇔ bn), and ii) (l ⇔ A1), (l ⇔ A2), . . . , (l ⇔ Am) is satisfiable

iff (A1 ⇔ A2), . . . , (Am−1 ⇔ Am) is satisfiable. In our work, we use an

incidence graph, a graph where each xor-constraint and variable has a

corresponding node and there is an edge between an xor-constraint node

and a variable node if the variable occurs in the xor-constraint, i) in Chap-

ter 5, to perform approximating tests to detect whether unit propagation

or equivalence reasoning is enough to deduce all xor-implied literals, ii)

in Chapter 6, to split xor-constraint conjunctions into components that

can be handled individually, and iii) in Chapter 7, to compute EC- and

23

Preliminaries

GE-simulation formulas to simulate stronger parity reasoning with unit

propagation.

24

Preliminaries

2.6 Benchmarks

Here we introduce the benchmarks we use to evaluate the methods pre-

sented in this thesis. The benchmark instances consist of CNF-xor encod-

ings of known-plaintext attacks on different encryption ciphers and SAT

Competition instances that contain (CNF-translations of) xor-constraints.

The task in the instances based on cryptographic ciphers is to recover a

suitable key that generates the given prefix of the keystream. The ini-

tial value (IV) vector is randomly generated and given in the problem in-

stances. As there are far fewer generated keystream bits than key bits, a

number of keys probably produce the same prefix of the keystream. Thus,

all cipher-based instances are satisfiable.

A5/1. The stream cipher A5/1, analyzed in Biham and Dunkelman [2000],

was used to encrypt communication in the GSM cellular telephone stan-

dard. It has 64 bits of internal state in three linear feedback shift regis-

ters. The task is to recover a suitable 64-bit key that generates the given

1 to 20 first keystream bits. These instances have 27000–33000 clauses

and 1200–1500 xor-constraints in up to 321 xor-clusters. The xor-clusters

have very few (1 to 9) xor-constraints except for one bigger xor-cluster

(over 600 xor-constraints).

DES. The block cipher DES [1977] has a block size of 64 bits and uses

a key whose effective length is 56 bits. We modeled the known-plaintext

attack on a reduced configuration of DES with 4 rounds on 2 blocks. The

instances have 27000–28400 clauses and 31–320 xor-constraints in up to

24 xor-clusters. On these instances only around 1% of the constraints are

xor-constraints and the xor-constraints are furthermore partitioned into

small xor-clusters separated by large number of clauses.

FEAL. The block cipher FEAL-N described in Miyaguchi [1991] has a

block size of 64 bits and uses a 64-bit key. We modeled the known-plaintext

attack and the chosen-plaintext attack on a few reduced configurations of

FEAL ranging from 2 to 4 rounds on 2-10 blocks. The CNF-part has 2800-

13700 variables in 2200-11400 clauses. The xor-part consists of two xor-

clusters where each has 1400-7200 variables in 600-3400 xor-constraints.

Grain. The stream cipher Grain presented in Hell et al. [2007] has 160

bits of internal state consisting of one 80-bit linear feedback shift register

and one 80-bit non-linear feedback shift register. It uses an 80-bit key

and a 64-bit IV with 160 initialization rounds. The task in is to recover

25

Preliminaries

a suitable key that generates the given prefix of 1 to 20 first keystream

bits. These instances have 9800–10400 clauses and a single xor-cluster

consisting of 6400–6800 xor-constraints

Hitag2. The stream cipher Hitag2, analyzed in Courtois et al. [2009], is

widely used in RFID car locks in the automobile industry. It has 48 bits

of internal state in a 48-bit linear feedback shift register and a non-linear

function with 20 inputs. The task is to recover a suitable 48-bit key that

generates the given prefix of 33 to 38 first keystream bits. These instances

have 6700–7300 clauses and 3700–4100 xor-constraints in a single xor-

cluster.

SAT Competition 2005 - 2011 Instances. We applied the xor-constraint ex-

traction algorithm described in Soos [2010] to the benchmark instances in

“crafted” and “industrial/application” categories of the SAT Competitions

2005, 2007, 2009, and 2011 (available at http://www.satcompetition.

org/) and found a large number of instances with xor-constraints. The

“trivial” unary and binary xor-constraints were eliminated by unit prop-

agation and substitution, respectively, leaving 474 instances with xor-

constraints, with some duplicates due to overlap in the competitions. The

instances have 0–3130000 clauses and 1–330000 xor-constraints in up to

6900 xor-clusters. Figure 2.2 shows the number of xor-constraints with

respect to the number of clauses, and Figure 2.3 the number of vari-

ables in xor-constraints with respect to the number of variables in CNF-

part. There are 103 instances consisting solely of xor-constraints with

10–326000 xor-constraints in one xor-cluster. Figure 2.4 shows the num-

ber of xor-clusters.

Trivium. The stream cipher Trivium presented in Cannière [2006] has

288 bits of internal state consisting of three shift registers of different

lengths. The known-plaintext attack is modeled by generating a small

number (ranging from one to twenty in our experiments) of keystream bits

after 1152 initialization rounds. The instances have 8000–8600 clauses

and 7100–8800 xor-constraints in 2–3 xor-clusters.

To illustrate how an application-level problem can be translated to a

CNF-xor formula, we describe in more detail the structure of Trivium and

the encoding of the known-plaintext attack. Figure 2.6 shows the struc-

ture of Trivium. In each round, each of the three shift registers s1,...,93,

s94,...,177, and s178,...,288 is shifted with one bit and updated with a non-

linear combination of select bits. One output bit zi is produced per round.

26

Preliminaries

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10
 100

 1000
 10000

 100000

 1e+06

 1e+07

cl
au

se
s

xor-constraints

Figure 2.2. Number of xor-constraints vs clauses in SAT Competition instances

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10
 100

 1000
 10000

 100000

 1e+06

 1e+07

va
ria

bl
es

 (
C

N
F

)

variables (xor)

Figure 2.3. Number of variables in xor-constraints vs variables in CNF in SAT Competi-
tion instances

27

Preliminaries

 1

 10

 100

 1000

 10000

 50 100 150 200 250 300 350 400 450

xo
r-

cl
us

te
rs

instance

Figure 2.4. Number of xor-clusters in SAT Competition instances

1. for i = 1 to N :

2. t1 ← s66 + s93

3. t2 ← s162 + s177

4. t3 ← s243 + s288

5. zi ← t1 + t2 + t3

6. t1 ← t1 + s91 · s92 + s171

7. t2 ← t2 + s175 · s176 + s264

8. t3 ← t3 + s286 · s287 + s69

9. (s1, s2, . . . , s93) ← (t3, s1, . . . , s92)

10. (s94, s95, . . . , s177) ← (t1, s94, . . . , s176)

11. (s178, s279, . . . , s288) ← (t2, s178, . . . , s287)

Figure 2.5. Pseudo-code for Trivium where “+” and “·” operations stand for addition and
multiplication over GF(2), i.e., XOR and AND

A complete description of the cipher is given by the pseudo-code in Fig-

ure 2.5. The 288-bit initial state is initialized with an 80-bit key K1,...,80

and an 80-bit IV IV 1,...,80 as follows:

(s1, s2, . . . , s93) ← (K1, . . . ,K80, 0, . . . , 0)

(s94, s95, . . . , s177) ← (IV 1, . . . , IV 80, 0, . . . , 0)

(s178, s179, . . . , s288) ← (0, . . . , 0, 1, 1, 1)

The internal state is then updated 1152 rounds as described in Figure 2.5

but without producing any output bits. The Trivium benchmark instances,

that is, CNF-xor formulas modeling the known-plaintext attack are cre-

ated by first generating a textual description of a Boolean circuit mod-

eling the cipher. The pseudo-code in Figure 2.5 can be used with few

modifications to output such a Boolean circuit. Figure 2.7 shows a part

of the Boolean circuit which contains the gate for the first output bit z1.

28

Preliminaries

Figure 2.6. Structure of Trivium (from Cannière [2006])

29

Preliminaries

...

z1 := ODD(_t1_1153,_t2_1153,_t3_1153);

_s1_1153 := ODD(_t3_1153,AND(_s178_1044,_s178_1043),_s1_1084);

_s94_1153 := ODD(_t1_1153,AND(_s1_1062,_s1_1061),_s94_1075);

_s178_1153 := ODD(_t2_1153,AND(_s94_1071,_s94_1070),_s178_1066);

_t1_1154 := ODD(_s1_1088,_s1_1061);

_t2_1154 := ODD(_s94_1085,_s94_1070);

_t3_1154 := ODD(_s178_1088,_s178_1043);

...

Figure 2.7. Partial Boolean circuit for Trivium in format accepted by BCpackage

The Boolean circuit is then translated to a CNF-xor formula using a tool

called BCpackage3 by Tommi Junttila. The tool performs some simplifi-

cations such as detecting common subexpressions and propagating con-

straint values.

3https://users.ics.aalto.fi/tjunttil/circuits/index.html

30

3. XOR-Deduction Systems

An xor-reasoning module employs an xor-deduction system (i) to check

whether the original xor-conjunction φxor is still satisfiable with respect

to the xor-assumptions l1 ∧ · · · ∧ lk, and (ii) to deduce xor-implied literals

implied by φxor∧l1∧· · ·∧lk. As explained in Section 2.4, checks to detect an

xor-conflict, the unsatisfiability of φxor ∧ l1∧ · · · ∧ lk, can be incomplete pro-

vided that a definite answer can be given when all the variables have been

assigned with xor-assumptions. Xor-implied literal detection can also be

incomplete, and often is to avoid computational overhead. In this chap-

ter, we present and experimentally evaluate four different xor-deduction

systems that can be used in an xor-reasoning module:

• UP: a simple xor-deduction system capable of plain unit propagation

over xor-constraints presented in [II]

• Subst: an xor-deduction system capable of equivalence reasoning with

substitution-based inference rules presented in Laitinen et al. [2010]

• EC: an xor-deduction system capable of equivalence reasoning with equiv-

alence class-based reasoning presented in [I]

• IGJ: an xor-deduction system that provides complete parity reasoning

using incremental Gauss-Jordan elimination presented in [IV]

3.1 Unit Propagation (UP)

The first xor-deduction system UP only performs plain unit propagation

on xor-constraints. An advantage of using it over CNF-based unit prop-

agation is that unit propagation can be performed on an xor-constraint

D involving many variables without a CNF-translation which i) is expo-

31

XOR-Deduction Systems

⊕-Unit+:
x ≡ � C

C [x/�]
⊕-Unit−:

x ≡ ⊥ C

C [x/⊥]

Figure 3.1. Inference rules of UP; the symbol x is variable and C is an xor-constraint
involving x

Figure 3.2. A UP-derivation

nential (the straightforward CNF-translation cnf(D)), or ii) involves new

auxiliary variables and additional clauses. It also serves as a basis for our

parity-based xor-implied literal explanation techniques developed later in

Chapter 4.

To deduce xor-implied literals and xor-conflicts on the conjunction ψ =

φxor ∧ l1 ∧ · · · ∧ lk, the UP xor-deduction systems applies the inference rules

in Figure 3.1. Formally, the state of the xor-deduction system UP is repre-

sented by a UP-derivation which is a finite, vertex-labeled directed acyclic

graph G = 〈V,E, L〉, where each vertex v ∈ V is labeled with an xor-

constraint L(v) and the following holds for each vertex v:

1. v has no incoming edges (i.e. v is an input vertex) and L(v) is an xor-

constraint in ψ, or

2. v has two incoming edges originating from vertices v1 and v2, and L(v)

is derived from L(v1) and L(v2) using one of the inference rules.

As an example, Figure 3.2 shows a UP-derivation for φxor∧ (a ≡ ⊥)∧ (d ≡
�) ∧ (b ≡ ⊥), where φxor = (a ⊕ b ⊕ c ≡ �) ∧ (c ⊕ d ⊕ e ≡ �) ∧ (c ⊕
e ⊕ f ≡ �) (please ignore the “cut” lines for now). An xor-constraint C

is UP-derivable on ψ, denoted by ψ �UP C, if there exists a UP-derivation

32

XOR-Deduction Systems

on ψ that contains a vertex labeled with C. In Figure 3.2, the literal

f is UP-derivable and the xor-deduction system UP deduces f as an xor-

implied literal after ¬a, d, and ¬b are given as xor-assumptions. A direct

consequence of the definition of UP-derivations and the soundness of the

inference rules is that if an UP-derivation on ψ contains a vertex labeled

with the xor-constraint C, then C is a logical consequence of ψ, i.e. ψ �UP C

implies ψ |= C. A UP-derivation on ψ is a UP-refutation of ψ if it contains

a vertex labeled with the false literal ⊥; in this case, ψ is unsatisfiable.

A UP-derivation G on ψ is saturated if for each unary xor-constraint C

such that ψ �UP C there is a vertex v in G with the label L(v) = C. Note

that UP is not refutationally complete, e.g. there is no UP-refutation of

the unsatisfiable conjunction (a ⊕ b ≡ �) ∧ (a ⊕ b ≡ ⊥). However, it is

“eventually refutationally complete” in the DPLL(XOR) setting: if each

variable in ψ occurs in a unary xor-constraint in ψ, then the empty xor-

constraint is UP-derivable iff ψ is unsatisfiable; thus when the CDCL SAT

solver has assigned a value to all variables in φxor, the UP-module can

check whether all the xor-constraints are satisfied.

To satisfy the requirements for the EXPLAIN method in the DPLL(XOR)

framework, the xor-reasoning module and the underlying xor-deduction

system must be able to provide an implying clause for each xor-implied

literal.

The implying clause for an xor-implied literal can be computed by inter-

preting the rules ⊕-Unit+ and ⊕-Unit− as implications:

(x ≡ �) ∧ C ⇒ C [x/�] (3.1)

(x ≡ ⊥) ∧ C ⇒ C [x/⊥] (3.2)

respectively, and recursively rewriting the xor-implied literal with the

left-hand side conjunction until a certain cut of the UP-derivation is reached.

Formally, a cut of a UP-derivation G = 〈V,E, L〉 is a partitioning (Va, Vb) of

V . A cut for a non-input vertex v ∈ V is a cut (Va, Vb) such that (i) v ∈ Vb,

and (ii) if v′ ∈ V is an input vertex and there is a path from v′ to v, then

v′ ∈ Va. Now assume a UP-derivation G = 〈V,E, L〉 for φxor∧l1 ∧ ... ∧ lk. For

each non-input node v in G, and each cut W = 〈Va, Vb〉 of G for v, the im-

plicative explanation of v under W is the conjunction Expl(v,W) = fW (v),

there fW is recursively defined as follows:

E1 If u is an input node with L(u) ∈ φxor, then fW (u) = ⊥ ≡ ⊥.

E2 If u is an input node with L(u) ∈ {l1, ..., lk}, then fW (u) = L(u).

33

XOR-Deduction Systems

E3 If u is a non-input node in Va, then fW (u) = L(u).

E4 If u is a non-input node in Vb, then fW (u) = fW (u1) ∧ fW (u2), where u1

and u2 are the source nodes of the two edges incoming to u.

Based on Equations (3.1) and (3.2) we can easily conclude that φxor |=
Expl(v,W) ⇒ L(v).

The implicative explanation Expl(v,W) was originally defined in Laiti-

nen et al. [2010] for the cut W as follows: Expl(v,W) =
∧

u∈reasons(W) L(u),

where reasons(W) = {u ∈ Va | L(u) /∈ φxor ∧ ∃u′ ∈ Vb : 〈u, u′〉 ∈ E} is the

reason set for W . A cut W is CNF-compatible if L(u) is a unary xor-

constraint for each u ∈ reasons(W). Thus if the cut W is CNF-compatible,

then Expl(v,W) ⇒ L(v) is the required clause implying the xor-implied

literal L(v) provided that L(v) is a literal and not a longer xor-constraint.

Example 1. Consider again the UP-derivation on φxor∧(a ≡ ⊥)∧(d ≡ �)∧
(b ≡ ⊥) in Figure 3.2. It has four cuts, 1–4, for the vertex v12, corresponding

to the implicative explanations ¬a ∧ d ∧ ¬b, c ∧ d, c ∧ (c ⊕ e ≡ ⊥), and

e ∧ c, respectively. The non-CNF-compatible cut 3 cannot be used to give

an implying clause for the xor-implied literal f but the others can; the one

corresponding to the cut 2 is (¬c ∨ ¬d ∨ f). ♣

The UP-derivation bears an important similarity with “traditional” im-

plication graph of a SAT solver where each vertex represents a variable

assignment: graph partitions are used to derive clausal explanations for

implied literals. Different partitioning schemes for such implication graphs

have been studied in Zhang et al. [2001], and we can directly adopt some

of them for our analysis. A cut W = (Va, Vb) for a non-input vertex v is:

1. closest cut if W is the CNF-compatible cut with the smallest possible

Vb part. Observe that each implying clause derived from these cuts is

implied by a single original xor-constraint; e.g., (¬c ∨ ¬e ∨ f) obtained

from the cut 4 in Figure 3.2 is implied by (c⊕ e⊕ f ≡ �) as (¬c∨¬e∨ f)

is a clause in cnf(c ⊕ e ⊕ f ≡ �) and (c ⊕ e ⊕ f ≡ �) is an original

xor-constraint.

2. furthest cut if Vb is maximal. Note that furthest cuts are also CNF-

compatible as their reason sets consist only of xor-assumptions.

In the implementation of the xor-deduction system UP, we use a modi-

fied version of the 2-watched literals scheme first presented in Moskewicz

34

XOR-Deduction Systems

⊕-Unit+:
x ≡ � C

C [x/�]
⊕-Eqv+:

x1 ⊕ x2 ≡ ⊥ C

C [x1/x2]

⊕-Unit−:
x ≡ ⊥ C

C [x/⊥]
⊕-Eqv−:

x1 ⊕ x2 ≡ � C

C [x1/(x2 ⊕�)]

Figure 3.3. Inference rules of Subst; the symbols x, x1, and x2 are variables while C is a
xor-constraint

et al. [2001] for clauses; all but one of the variables in an xor-constraint

need to be assigned before the xor-constraint implies the last one. Thus

it suffices to have two watched variables. MoRsat by Chen [2009] uses

a similar data structure for all clauses and has 2 × 2 watched literals

for an xor-constraint. Cryptominisat by Soos et al. [2009] uses a scheme

similar to ours except that it manipulates the polarities of literals in an

xor-constraint while we take the polarities into account in the explana-

tion phase. Because of this implementation technique, the implemen-

tation does not explicitly represent the non-unary non-input vertices in

UP-derivations.

3.2 Equivalence Reasoning by Substitution (SUBST)

The xor-deduction system Subst presented in Laitinen et al. [2010] is con-

ceptually very similar to the xor-deduction system UP presented in Sec-

tion 3.1. It naturally supports plain unit propagation over xor-constraints,

but it is also capable of equivalence reasoning by allowing substitutions

of variables occurring in binary xor-constraints.

The xor-deduction system Subst consists of the inference rules in Fig-

ure 3.3. Except for the two additionally allowed inference rules ⊕-Eqv+

and ⊕-Eqv−, Subst-derivation is defined similarly to UP-derivation.

Example 2. Assume a conjunction of xor-constraints

φxor = (a⊕ b⊕ c ≡ �) ∧ (c⊕ d⊕ e ≡ �) ∧ (b⊕ e⊕ f ≡ �) ∧
(e⊕ h⊕ i ≡ �) ∧ (f ⊕ g ⊕ h ≡ �) ∧ (b⊕ g ⊕ i ≡ ⊥).

Figure 3.4 shows a Subst-refutation of φxor ∧ (a ≡ �) ∧ (d ≡ �) ∧ (i ≡ �).

The literal f is Subst-derivable from φxor ∧ (a ≡ �) ∧ (d ≡ �); the xor-

deduction system Subst deduces f as an xor-implied literal on φxor after a

and d are given as xor-assumptions. Observe that f is not UP-derivable

from φxor ∧ (a ≡ �)∧ (d ≡ �), i.e. Subst is a stronger deduction system than

35

XOR-Deduction Systems

UP in this sense. ♣.

Figure 3.4. A Subst-derivation

Related work. The xor-deduction system Subst has similarities to other

systems. The solver 2cls+eq Bacchus [2002] performs all possible resolu-

tions of pairs of binary clauses in addition to basic unit propagation. This

system in 2cls+eq is denoted by BinRes. For example, given a conjunction of

clauses φor = (a ∨ b) ∧ (¬a ∧ c) ∧ (¬b ∨ c), it can deduce that the variable c

must be true. The xor-deduction system Subst cannot deduce this because

the formula φor cannot be translated to a logically equivalent conjunc-

tion of xor-constraints. However, Subst can deduce xor-constraints whose

CNF-translations cannot be derived by BinRes. For example, consider an

xor-constraint conjunction φxor = (a ⊕ b ≡ �) ∧ (a ⊕ b ⊕ c ≡ ⊥). The

xor-constraint (c ≡ �) is Subst-derivable on φxor, i.e., φxor �Subst (c ≡ �),

but BinRes cannot deduce the unary clause (c) from cnf(φxor). The solver

2cls+eq in fact uses a stronger system, HypBinRes, which performs a hyper-

resolution step (a resolution step on more than two clauses) on one n-ary

clause (l1∨l2∨. . . ln), where n ≥ 2, and n−1 binary clauses each of the form

(¬li ∨ l), where i ∈ {1, . . . , n− 1}. Again, as HypBinRes subsumes BinRes,

Subst cannot reproduce deductions on clauses that do not have representa-

tions as xor-constraints, but Subst can still deduce xor-constraints whose

CNF-translations HypBinRes cannot derive, e.g. HypBinRes either cannot

deduce the unary clause (c) from cnf(φxor). The third system, EqReduce,

in 2cls+eq performs an “equality reduction” meaning that if a formula φor

contains two clauses (¬a ∨ b) and (a ∨ ¬b), that is cnf(a⊕ b ≡ �), for some

36

XOR-Deduction Systems

variables a, b ∈ vars(φor), then i) all instances of the variable b are replaced

in φor by a (or vice versa), ii) all clauses that now contain both a and ¬a
are removed, iii) and duplicate instances of a and ¬a are removed from all

clauses. The system EqReduce subsumes the inference rules ⊕-Eqv+ and

⊕-Eqv− in the sense that if φxor �Subst D for some formulas φxor and D,

then combined with HypBinRes and basic unit propagation it can deduce

the clauses in cnf(D) from the formula cnf(φxor).

The solver march_eq in Heule and van Maaren [2004] uses binary xor-

constraints in a preprocessing step to eliminate variable occurrences in

other xor-constraints in a way similar to EqReduce and the inference rules

⊕-Eqv+ and ⊕-Eqv−.

The solver EqSatz by Li [2000b,a] has six inference rules to deal with

“equivalency clauses”, that is, xor-constraints. The inference rules of EqSatz

are shown in Figure 3.5. The solver EqSatz uses deduced binary xor-

constraints to eliminate variable occurrences in xor-constraints in addi-

tion to the inference rules in Figure 3.5.

l1 l1 ↔ l2 ↔ l3 � l2 ↔ l3

¬l1 l1 ↔ l2 ↔ l3 � ¬(l2 ↔ l3)

l1 ↔ l1 ↔ l2 � l2

l1 ↔ l2 ↔ l3 l1 ↔ l2 ↔ l4 � l3 ↔ l4

l1 → (l3 ↔ l4) ¬l1 → (l3 ↔ l4) � l3 ↔ l4

l1 → (l3 ↔ l4) ¬l1 → (¬l3 ↔ l4) � l1 ↔ l3 ↔ l4

Figure 3.5. Inference rules of EqSatz. When the clause(s) on the left side are deduced,
the right side can deduced.

The last two inference rules in Figure 3.5 are also used in a look-ahead

branching step to deduce and learn new binary and ternary xor-constraints.

When solving the formula φor, each non-assigned variable x ∈ vars(φor) is

examined by performing experimental unit propagations to see the impact

of branching on x with both truth values giving two simplified formulas

φ′
or and φ′′

or. All new binary and ternary xor-constraints that belong both

to φ′
or and to φ′′

or are added in the formula φor.

Provided that each xor-constraint in φxor has at most three variables,

if Subst can deduce an xor-constraint D from φxor, then it is possible to

deduce the clauses in cnf(D) from cnf(φxor) using the inference rules of

EqSatz. The converse is not true; for instance, Subst cannot combine two

ternary xor-constraints to deduce a new binary xor-constraint. However,

such reasoning could be performed to some extent in a preprocessing step.

37

XOR-Deduction Systems

x ≡ � x ≡ ⊥
⊥

x ≡ p1 x⊕ y⊕ z ≡ p2

y ⊕ z ≡ p1 ⊕ p2

x ≡ p1 x⊕ y ≡ p2

y ≡ p1 ⊕ p2

(a) Conflict (b) ⊕-Unit3 (c) ⊕-Unit2

x1 ⊕x2 ≡ p1 . . . xn−1 ⊕xn ≡ pn−1 x1 ⊕xn ⊕ y ≡ p

y ≡ p1 ⊕ p2 ⊕ . . .⊕ pn−1 ⊕ p

(d) ⊕-Imply

x1 ⊕x2 ≡ p1 ... xn−1 ⊕xn ≡ pn−1 xn ⊕x1 ≡ pn

provided that p1 ⊕ . . . ⊕ pn=�
⊥
(e) ⊕-Conflict

Figure 3.6. Inference rules of EC; the symbols x, xi, y, z are all variables while the pi

symbols are constants ⊥ or �.

Also, since EqSatz considers only xor-constraints with at most three vari-

ables, Subst can perform deductions on longer xor-constraints that EqSatz

cannot deduce. For instance, (a⊕b ≡ ⊥)∧ (a⊕b⊕c⊕d ≡ �) �Subst (c⊕d ≡
�), but EqSatz cannot deduce the clauses in cnf(c⊕d ≡ �) from the clauses

in cnf(a⊕ b ≡ ⊥) ∧ cnf(a⊕ b⊕ c⊕ d ≡ �).

3.3 Equivalence Reasoning using Equivalence Classes (EC)

The EC xor-deduction system presented in [I] supports equivalence rea-

soning by manipulating equivalence classes of literals rather than rewrit-

ing xor-constraints through substitutions. The deduction power of EC

is shown to be equivalent to Subst when considering deducible xor-implied

literals and xor-conflicts, but can give shorter implicative explanations for

xor-implied literals. The inference rules of the Subst xor-deduction system

are relatively efficiently implementable but it is hard to detect when the

substitution rules (⊕-Eqv+ and ⊕-Eqv−) should be applied. A straightfor-

ward way to make sure all deducible xor-implied literals and xor-conflicts

are detected is to eliminate all variables occurrences of the other variable

in a binary xor-constraint by using the substitution rules. However, it

is not guaranteed that all of the derived xor-constraints are used when

deducing other xor-implied literals or xor-conflicts, and even if they are,

some of the substitutions may still be unnecessary. The aim in EC xor-

deduction system is to avoid deriving unnecessary xor-constraints.

For implementation efficiency reasons, we split xor-constraints with four

38

XOR-Deduction Systems

or more variables to an equisatisfiable conjunction of xor-constraints with

at most three variables by using auxiliary variables. This is done by re-

peatedly applying the rewrite rule

(x1 ⊕ x2 ⊕ . . .⊕ xn ≡ p) � (x1 ⊕ x2 ⊕ y ≡ ⊥) ∧ (y ⊕ x3 ⊕ x4 ⊕ ...⊕ xn ≡ p)

where y is a new variable not occurring in other clauses and p ∈ B. How-

ever, the xor-deduction system Subst may not be able to deduce all xor-

implied literals after the translation; e.g. (a ⊕ c ≡ ⊥) ∧ (a ⊕ b ⊕ c ⊕ d ≡
⊥)∧(b⊕d⊕e ≡ �) �Subst e ≡ �, but (a⊕c ≡ ⊥)∧(a⊕b⊕y ≡ ⊥)∧(y⊕c⊕d ≡
⊥) ∧ (b ⊕ d ⊕ e ≡ �)
�Subst e ≡ �. The inferences rules of the EC xor-

deduction system are listed in Figure 3.6. We define EC-derivation, EC-

derivable (denoted by ψ �EC C), EC-refutation, and (CNF-compatible) cut

for a non-input vertex in EC-derivation as in Section 3.1 except that in an

EC-derivation a vertex may have more than two incoming edges.

The ⊕-Unit3 and ⊕-Unit2 rules perform unit propagation, producing an

equivalence (⊕-Unit3) or a unary clause (⊕-Unit2).

The ⊕-Imply and ⊕-Conflict rules propagate known equivalences, produc-

ing either (i) an unary clause if the equivalences force literals in an origi-

nal xor-constraint to have the same/opposite value, or (ii) a conflict if the

equivalences force a variable to have a value opposite to its value, i.e. if

x ≡ ¬x should hold.

Example 3. Consider again the formula φxor in Example 2. Figure 3.7

shows an EC-refutation of φxor ∧ (a ≡ �) ∧ (d ≡ �) ∧ (i ≡ �). Compar-

ing to the Subst-derivation in Figure 3.4, observe (i) the fewer number of

vertices, (ii) n-ary in-degree of vertices caused by the lack of substitution

steps and use of ⊕-Imply and ⊕-Conflict rules, and (iii) that no new ternary

xor-constraints are derived. Again, the CNF-compatible cut 2 shows that

φxor ∧ (a ≡ �)∧ (d ≡ �)∧ (i ≡ �) �EC ⊥; thus φxor ∧ (a ≡ �)∧ (d ≡ �)∧ (i ≡
�) |= ⊥ and φxor |= (¬a ∨ ¬d ∨ ¬i). ♣

Despite their differences, the Subst and EC deduction systems are equally

powerful with respect to their ability to deduce xor-implied literals and

xor-conflicts:

Theorem 2 (Thm. 1 of [I]). Let ψ be a conjunction of xor-constraints, each

of which has at most three variables. For each literal l̂ ∈ lits(ψ) ∪ {⊥} the

following fact holds: ψ �Subst l̂ iff ψ �EC l̂.

39

XOR-Deduction Systems

Figure 3.7. An EC-derivation

3.3.1 Implementing with Equivalence Classes

The EC xor-deduction system makes heavy use of binary xor-constraints

which can be seen also as equivalences between literals. In the implemen-

tation of the EC xor-deduction system, we track and manipulate these

equivalence classes of literals in order to efficiently detect when the infer-

ence rules are applicable. However, when building an EC-derivation, it is

not enough to know which literals are in the same equivalence class; it is

also required to tell why. To implement this, we augment the equivalence

class data structure with an equivalence reason graph which is an undi-

rected, edge-labeled graph where (i) the vertex set is vars(φxor) ∪ {�} and

(ii) the edge set records the reasons for the equivalence class merge opera-

tions. With this data structure there is no need to build an EC-derivation

at all since implicative explanations can be directly computed from it.

We illustrate how an equivalence reason graph is used with an example.

A more comprehensive description of how equivalence classes are manip-

ulated and how implicative explanations for xor-implied literals are com-

puted in practice can be found in [I].

Example 4. Consider again the formula φxor in Example 2 and com-

pare the process below to the derivation discussed in Example 3. The

full equivalence reason graph constructed is in Figure 3.8 where � labels

xor-assumptions and crossed-over edges denote disequality edges while the

normal ones are equality edges.

When we make the xor-assumption a ≡ �, we first add the edge � �— a

40

XOR-Deduction Systems

in the equivalence reason graph. The equivalence classes of � and a are

merged giving 8 equivalence classes {�, a} , {d} , {f} , {b} , {c} , {e} , {g} , and

{h}. We then find the xor-constraint (a⊕ b⊕ c ≡ �) including a in φxor and

thus derive the xor-constraint b⊕ c ≡ ⊥, merge the equivalence classes {b}
and {c} and add the edge ba ≡ �— c.

Making xor-assumption d ≡ �, we merge the equivalence classes {�, a}
and {d}, find the xor-constraint (c⊕d⊕e ≡ �) including d in φxor and thus

derive the xor-constraint c⊕e ≡ ⊥, merge the equivalence classes {b, c} and

{e}, and add the edge c d ≡ �— e. After this step, we consider the variables

occurring in the smaller of the equivalence classes just merged, i.e. the

class {e}. We then consider all xor-constraints in φxor which include e and

check whether they also include a variable from the equivalence class {b, c}.

Indeed, there is such an xor-constraint b ⊕ e ⊕ f ≡ � and thus the ⊕-Imply

rule is applicable, allowing us to derive the xor-implied literal f ≡ �, so we

add the edge � b⊕ e ≡ ⊥——— f . The classes {f} and {�, a, d} are then merged.

After this, there are four equivalence classes {�, a, d, f}, {b, c, e}, {g}, and

{h}. Then we derive the xor-constraint g ⊕ h ≡ ⊥, merge the equivalence

classes {g} and {h}, and add the edge g
f ≡ �— h. Finally, after deriving the

xor-constraints e ⊕ h ≡ ⊥ and b ⊕ g ≡ � and adding the edges e i ≡ �— h

and b
i ≡ �

 — g , the equivalence relation becomes inconsistent; thus ⊥ is

derived.

Xor-conflicts manifest themselves in equivalence reason graphs via cyclic

paths with an odd number of disequality edges. For instance, in Figure 3.8

there is such a path b
i ≡ �

 — g

f ≡ �— h i ≡ �— e d ≡ �— c a ≡ �— b. Im-

plicative explanations in such cases can be obtained by taking the union

Figure 3.8. An equivalence reason graph

41

XOR-Deduction Systems

of reasons from the edges in the cycle; in the example, the reason set is

{a ≡ �, d ≡ �, f ≡ �, i ≡ �}, corresponding to the “cut 3” in Figure 3.7,

and thus the implicative explanation for the xor-conflict is (¬a ∨ ¬d ∨ ¬f ∨
¬i). Any cyclic path with an odd number of disequality edges can be used

but in our implementation we find the shortest such cycle by using breadth-

first search. However, since f ≡ � is an xor-implied literal, the SAT solver

may need an implying clause for it. The reason from the edge � b⊕ e ≡ ⊥——— f

cannot be translated to an implying clause. A suitable explanation can be

obtained by taking the union of reasons from any path from b to e using the

version of the equivalence reason graph corresponding to the moment when

f ≡ � was derived. As the path b
i ≡ �

 — g

f ≡ �— h i ≡ �— e was added later,

the implicative explanation for the xor-implied literal f is (¬a ∨ ¬d ∨ f),

corresponding to the “cut 1” in Figure 3.7. Our implementation again uses

breadth-first search to find the shortest path. Furthest cuts can be com-

puted by recursively explaining all xor-implied literals until the reason set

contains only xor-assumptions. ♣

Related work. Li [2003] proposes a data structure in the solver EqSatz to

represent all equivalent literals in CNF formula. The algorithm to track

classes of equivalent literals uses an adaptation of the classical union-find

algorithm, as is done in the implementation of EC to track equivalence

classes. As no clause learning is used, EqSatz does not track reasons for

equivalent literals.

The theorem prover for program checking, Simplify, by Detlefs et al. [2005],

includes an “E-Graph module” for the theory of equality with uninter-

preted function symbols, that is, for literals of the forms X = Y and

X
= Y , where X and Y are terms built from variables and applications of

uninterpreted function symbols. e.g. f(f(a, b), b) = c. An E-graph is a pair

〈G,R〉 where i) G is a vertex-labeled directed acyclic multigraph whose

nodes represent terms without quantified variables and whose edges are

ordered, and ii) R is an equivalence relation on the nodes of G. Figure 3.9

shows an E-graph for the following set of (E-Graph) literals:

f(a, b) = a

f(f(a, b), b) = c

g(a)
= g(c)

The E-graph used in Simplify is similar to the equivalence reason graph

and the associated equivalence relation used in the xor-deduction system

EC. The theorem prover Simplify maintains an E-graph to check the sat-

42

XOR-Deduction Systems

Figure 3.9. An E-graph in used Simplify theorem prover for program checking by Detlefs
et al. [2005]. The solid arrows represent the structure of terms and the
dashed lines represent equivalences between terms. The inequivalence
g(a) �= g(c) is handled separately.

isfiability of a set of (E-graph) literals using incremental algorithms and

data structures including a variant of union-find algorithm to maintain

the data structure for the equivalence relation. To detect conflicts, the E-

graph module also maintains a data structure representing a set of forbid-

den merge operations. The set is checked before two equivalence classes

are merged and in case of a forbidden merge operation, the E-graph mod-

ule marks the current set of (E-graph) literals as refuted. A notable dif-

ference between the E-graph module and the xor-deduction system EC is

that the E-graph module does not produce explanations for refuted sets

of (E-graph) literals while EC can compute an explanation for an xor-

conflict.

Nieuwenhuis and Oliveras [2007] describe an efficient incremental con-

gruence closure algorithm and extend it with a proof-producing union-find

data structure. A congruence relation is an equivalence relation (reflex-

ive, symmetric, and transitive) which also satisfies the monotonicity ax-

ioms ∀f : (f(a1, . . . , an) = f(b1, . . . , bn)) ⇐= (∀i ∈ {1, . . . , n} : ai = bi). The

union-find data structure does not process “redundant” unions (equiva-

lence class merge operations) as the EC xor-deduction system does in the

equivalence reason graph, so it produces unique explanations for why two

given elements are equivalent in almost optimal time (quasi-linear in the

size of the explanation). For comparison, the breadth-first search used in

our implementation of EC to find explanations may produce longer ex-

planations if the redundant equivalence class merge operations are not

recorded in the equivalence reason graph.

43

XOR-Deduction Systems

3.4 Incremental Gauss-Jordan Elimination

The xor-deduction system presented in [IV], which we will refer to as IGJ

xor-deduction system, is based on incremental Gauss-Jordan elimination

and is a complete parity reasoning method in the sense that it can be

used to (i) decide whether a conjunction of xor-constraints is satisfiable,

and (ii) find all xor-implied literals and implied equivalences. For com-

parison, equivalence reasoning systems (such as Subst and EC described

in Sections 3.2 and 3.3) cannot always decide the satisfiability or find all

xor-implied literals. Similarly, Gaussian elimination, used e.g. in Crypto-

minisat (version 2.9.2) by Soos et al. [2009]; Soos [2010] can decide satis-

fiability, but does not necessary find all xor-implied literals. The reason

for this is that Gaussian elimination translates a system of equations into

row echelon form matrix, where all variables except one may have multi-

ple occurrences. For example, consider the row echelon form matrix-like

representation:
a⊕b ⊕d ≡ �

b⊕c ⊕e ≡ ⊥
c⊕d⊕e ≡ �

for a conjunction φxor of xor-constraints. It is easy to deduce from this that

φxor is satisfiable but not that a must always be false, i.e. that φxor |= a ≡
⊥. On the other hand, by applying Gauss-Jordan elimination to the same

conjunction φxor, we can obtain the reduced row echelon form matrix-like

representation:
a ≡ ⊥
b ⊕d ≡ �
c⊕d⊕e ≡ �

where we can read directly that φxor |= a ≡ ⊥.

The xor-deduction system IGJ represents a reduced row echelon form

matrix as a set of equations with some requirements:

Definition 1. A tableau for a satisfiable conjunction φxor of xor-constraints

is a set E of equations of form xi := xi,1 ⊕ ...⊕ xi,ki ⊕ pi, where xi is the basic

variable with exactly one occurrence in E and xi,1,..., xi,ki are distinct non-

basic variables in φxor and pi ∈ B.

It is required that
∧

xi:=xi,1⊕...⊕xi,ki
⊕pi∈E(xi⊕xi,1⊕...⊕xi,ki ≡ pi) be logically

equivalent to φxor.

A conjunction φxor of xor-constraints can be translated to a tableau (or

deduced that it is unsatisfiable) by representing the xor-constraints in

44

XOR-Deduction Systems

matrix-like representation as above and translating it to reduced row ech-

elon form by applying Gauss-Jordan elimination. Now we present the

most important properties of tableaus with examples. Tableau operations

are presented in more detail in [IV]. All the implied equivalences can be

read from a tableau. Consider the xor-constraint conjunction

φxor = (a⊕ b⊕ c ≡ �) ∧ (b⊕ c⊕ d ≡ ⊥) ∧ (c⊕ d⊕ e ≡ �)

from which we can obtain the tableau

a := d ⊕�
b := e ⊕�
c := d⊕ e ⊕�

where the first two equations with exactly one non-basic variable are the

implied equivalences of φxor.

Xor-assumptions are handled separately by IGJ, meaning that assigned

variables are not eliminated from the tableau. Instead, an assigned tableau

〈E , τ〉 has an associated (typically partial) truth assignment τ which must

be consistent with E . To effectively detect xor-implied literals, the tableau

is modified on demand in such a way that xor-assumptions involve only

only non-basic variables and xor-implied literals involve only basic vari-

ables. Consider the tableau

a := d ⊕�
b := e ⊕�
c := d⊕ e ⊕�

and suppose that the variable d is assigned to �. By the first equation,

we can deduce the xor-implied literal a ≡ ⊥. To handle an xor-assumption

involving a basic variable, e.g. in the tableau above, b ≡ ⊥, the tableau

must modified by swapping the basic variable with an unassigned non-

basic variable, so the variable b is swapped with e, giving the equation

e := b ⊕ �. The process of swapping a basic variable with an unassigned

non-basic variable is called pivoting. To maintain reduced row echelon

form, after the swap, all occurrences of the new basic variable must be

eliminated from other equations by substituting them with the right hand

side of the basic variable’s equation, e.g. e is substituted with b⊕� in the

third equation, giving the tableau:

a := d ⊕�
e := b ⊕�
c := d⊕ b ⊕�

45

XOR-Deduction Systems

Now both d and b are assigned, so using the second and the third equa-

tions we can deduce the xor-implied literals e ≡ � and c ≡ ⊥.

Implying clauses for xor-implied literals can be obtained directly using

the relevant equation. Consider the assigned tableau:

〈⎧⎪⎪⎨
⎪⎪⎩

a := d ⊕�
e := b ⊕�
c := d⊕ b ⊕�

⎫⎪⎪⎬
⎪⎪⎭ , {a �→ ⊥, b �→ ⊥, c �→ ⊥, d �→ �, e �→ �}

〉

If an equation xi := xi,1 ⊕ ...⊕ xi,ki ⊕ pi is used to deduce the xor-implied

literal xi ≡ τ(xi), then the implying clause can be obtained by taking

the disjunction (xi ≡ τ(xi)) ∨ (xi,1
≡ τ(xi,1)) · · · ∨ (xi,ki
≡ τ(xi,1)) where

unary xor-constraints are interpreted as literals. For instance, the imply-

ing clause for the xor-implied literal c ≡ ⊥ is ¬c∨¬d∨ b. Each equation in

a tableau is a prime implicate of φxor, so implying clauses obtained from

tableaus are minimal in the sense that they do not contain redundant lit-

erals. Implying clauses derived with the xor-deduction systems UP, Subst,

and EC may contain redundant literals. Chapter 4 develops techniques

for eliminating some of such redundant literals.

Implementation. Our implementation of the incremental Gauss-Jordan

xor-reasoning module uses a dense matrix representation where one el-

ement in the matrix uses one bit of memory. The xor-reasoning module

maintains two such matrices. In the first matrix the rows are consecu-

tively in the memory, and in the second the columns are consecutively in

the memory. The first matrix allows efficient implementation for row oper-

ations and the second matrix for efficient pivoting. To detect xor-implied

literals, each row is associated with a counter tracking the number of

unassigned variables. When this counter is one (or zero), an xor-implied

literal (or a potential conflict) is available. Upon backtracking it suffices

to restore the counters tracking unassigned variables.

Related work. The design of the xor-deduction system IGJ is inspired by

the linear arithmetic solver by Dutertre and de Moura [2006]. The xor-

deduction system IGJ is very similar to the one independently discovered

by Han and Jiang [2012]. The main difference to our work is that i) we do

not consider Craig interpolants (Craig [1957]), but ii) we can find all the

implied equivalences. The implementation is also slightly different. The

solver by Han and Jiang [2012] uses a form of 2-watched-literals tech-

nique adopted for bit arrays.

46

XOR-Deduction Systems

The solver march_eq by Heule and van Maaren [2004] applies Gaussian

Elimination procedure as a preprocessing step to derive a minimal set

of xor-constraints such that each xor-constraint in the set has a variable

which does not occur in other xor-constraints. After this, some implied bi-

nary xor-constraints are extracted by taking linear combinations of pairs

of xor-constraints until no new binary xor-constraints are found.

Katsirelos and Simon [2012] use Polynomial Calculus with Resolution

(Alekhnovich et al. [2002]), PCR, to treat the CNF-xor formula as a whole.

The proof system PCR generalizes both resolution and Gaussian elimi-

nation, so in theory it is more powerful than DPLL(XOR) with the xor-

reasoning module IGJ. However, it is not obvious that such a system can

be implemented efficiently enough to benefit from the stronger proof sys-

tem when solving real-world instances.

The solver cryptominisat by Soos et al. [2009]; Soos [2010] uses Gaussian

elimination i) to find xor-implied literals, and ii) to detect xor-conflicts.

As it was already observed, Gaussian elimination, as used in cryptominisat,

does not necessarily find all xor-implied literals. The implementation uses

two matrices with Gaussian elimination. In the first one, xor-constraints

are simplified with xor-assumptions and xor-implied literals. In the sec-

ond one, only row and pivot operations are performed. The first matrix

allows to detect xor-implied literals and xor-conflicts while the second ma-

trix is used to compute implying clauses. Both matrices are stored in a

dense, bit-packed format except for one column which stores the truth

constants for each row. The memory layout of the matrices is optimized

for efficient memory cache usage. Variable-disjoint xor-constraint sets are

placed in separate matrix pairs. Gaussian elimination is performed only

when the number of decisions is smaller than the configurable cut-off

depth, and it is restricted to the part of the matrix where assignments

have taken place. Gaussian elimination can also be automatically turned

off by heuristic cut-off function which tracks how often Gaussian elim-

ination deduces xor-implied literals and xor-conflicts. The matrices are

updated starting from the leftmost column that has been changed (the cor-

responding variable has been assigned). Upon restarts, the columns are

ordered according to heuristic values representing how actively variables

participate in conflicts to increase the likelihood that the variables corre-

sponding to the leftmost columns are assigned first. In addition, Gaussian

elimination is further restricted to rows on the lower-right corner of the

matrices as this is enough to maintain row-echelon form.

47

XOR-Deduction Systems

The decision procedure Gauss-DPLL to solve formulas consisting of clauses

and xor-constraints by Baumgartner and Massacci [2000] has two infer-

ence rules Gauss− and Gauss+ that correspond to taking the linear com-

bination of two xor-constraints provided that they share at least one vari-

able. The deductions by the xor-deduction system IGJ can be simulated

by the inference rules Gauss− and Gauss+ 1.

3.5 Experimental Evaluation

Here we give an overview of how the xor-deduction systems UP, Subst,

IGJ, and EC presented in this chapter compare to each other in practice.

The aim is not to outperform the reference solver, unmodified minisat ver-

sion 2.0 core by Eén and Sörensson [2003], but to examine how much the

search space (the number of heuristic decisions2) can be reduced by incor-

porating xor-reasoning into a SAT solver. There are many possible xor-

reasoning module integration strategies and some work better than oth-

ers on a given instance and a given xor-deduction system. Here we have

chosen the integration strategy (out of the ones we have implemented)

that gives the highest reduction in the number of heuristic decisions on

A5/1 and Trivium benchmarks. The chosen integration strategy is slightly

different from the essential skeleton of DPLL(XOR) in Figure 2.1, which

typically gives better propagation performance. Instead of giving all xor-

assumptions to the xor-reasoning module at once, one xor-assumption is

given at a time and after that all new xor-implied literals are processed.

Figures 3.10, 3.11, and 3.13 show the results of running each solver

configuration on each benchmark instance for at most one hour on 20-

core Intel E5-2680 v2 with 256 GB RAM per processor. Memory limit for

one solver instance was set to 10 GB. The xor-deduction system IGJ has

the lowest median number of decisions for A5/1, FEAL, SAT Competition,

and Trivium benchmarks, but on DES, Grain, and Hitag2 there is hardly

any difference to UP, which performs plain unit propagation. Some SAT

Competition instances consist only of xor-constraints, so IGJ solves them

1The inference rules Gauss− and Gauss+ are revisited in Section 4.3.
2We could have alternatively chosen to report the number of conflicts instead of
the number of decisions. For some (artificial) formulas, such as

∧1000000
i=1 (ai∨¬ai),

there can be a major difference in how many decisions a SAT solver requires to
solve it compared to the number of conflicts. However, we have verified that for
the reported benchmark instances, the number of decisions correlates strongly
with the number of conflicts.

48

XOR-Deduction Systems

without needing xor-assumptions. The xor-deduction system Subst solves

more Grain instances than IGJ, but IGJ performs significantly better

than Subst on A5/1, FEAL, and SAT Competition benchmarks. The xor-

deduction system IGJ also solves more Trivium instances than Subst.

DES, Grain, and Hitag2 benchmark instances are not solved with signif-

icantly fewer decisions with any xor-deduction system. The xor-reasoning

module integration strategy in Figure 2.1, that emphasizes the CNF-part

more, works better for these benchmarks. The DES benchmark instances

have small and simple xor-clusters, so great reduction in the number of

decisions is not expected. The structure of the DES benchmark instances

is discussed more in [III]. Grain and Hitag2 benchmarks have large xor-

clusters and xor-deduction systems can deduce many xor-implied literals,

so we expected to see some reduction in the number of decisions. It is left

for future work to study these instances further and to understand why

these xor-deduction systems do not work as expected.

The motivation behind EC was to have an equally strong but more effi-

ciently implementable proof system to Subst. However, this is not reflected

in the results as EC consistently requires more decisions to solve in-

stances than Subst, although it does solve more FEAL instances than Subst.

This may be explained by how EC computes implying clauses for xor-

implied literals. The xor-deduction system EC computes implying clauses

using furthest cuts, which seems to work the best for EC, but Subst uses

first CNF-compatible cuts, which give better results for Subst. Also, EC

uses expensive breadth-first search to minimize implying clauses, which

incurs a significant overhead. The equivalence reason graph used in EC

gives more freedom to choose how implying clauses are computed, so ide-

ally it could be used to compute “better” implying clauses than what Subst

computes. It remains open whether EC can be made to compute “bet-

ter” implying clauses and whether it can be implemented more efficiently

than Subst. Even if Subst remains practically more relevant than EC, the

xor-deduction system EC has theoretical value in succinctly characteriz-

ing equivalence reasoning which is shown in Section 5.2 to have a close

connection with structural properties of xor-constraint conjunctions.

49

XOR-Deduction Systems

A5/1 (640 instances) DES (51 instances)

Solver # Decisions Time (s) Solver # Decisions Time (s)

IGJ 640 3099 1.9 UP 51 72062 12.2

minisat 626 37096 5.0 IGJ 51 89991 19.2

UP 613 34910 5.0 SUBST 51 91826 17.3

SUBST 597 3134 5.2 minisat 51 97652 14.5

EC 548 5762 19.4 EC 51 249363 73.7

FEAL (84 instances) Grain (357 instances)

Solver # Decisions Time (s) Solver # Decisions Time (s)

minisat 84 811828 54.1 minisat 323 265328 282.1

UP 84 1594754 145.7 UP 313 261088 275.1

IGJ 79 73113 92.8 SUBST 222 127654 1759.7

SUBST 21 - - IGJ 186 239424 3267.4

EC 21 - - EC 165 - -

Hitag2 (306 instances) SAT (474 instances)

Solver # Decisions Time (s) Solver # Decisions Time (s)

minisat 295 1100849 280.0 IGJ 295 1094153 1069.5

UP 282 1404806 488.1 minisat 279 14857305 1401.7

SUBST 190 2631385 2219.3 UP 271 18892454 1613.3

IGJ 171 1556543 3098.2 SUBST 212 - -

EC 102 - - EC 130 - -

Trivium (1020 instances)

Solver # Decisions Time (s)

minisat 902 9361 3.8

UP 893 10751 5.8

IGJ 873 2569 21.3

SUBST 826 2872 47.5

EC 735 3732 142.0

Figure 3.10. Number of solved instances (#), median decisions, and median solving time
(timeout 1h) on the seven benchmark families

50

XOR-Deduction Systems

 1

 10

 100

1000

 0 100 200 300 400 500 600

A5/1 (time)

minisat
EC

SUBST
IGJ
UP

 1000

 10000

 100000

 1e+06

 1e+07

 0 100 200 300 400 500 600

A5/1 (decisions)

 1

 10

 100

1000

 0 10 20 30 40 50 60

DES (time)

 10000

 100000

 1e+06

 0 10 20 30 40 50 60

DES (decisions)

 1

 10

 100

1000

 0 10 20 30 40 50 60 70 80 90

FEAL (time)

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 10 20 30 40 50 60 70 80 90

FEAL (decisions)

minisat
EC

SUBST
IGJ
UP

Figure 3.11. Solving time and number of decisions as functions of solved instances (part
1/3)

51

XOR-Deduction Systems

 1

 10

 100

1000

 0 50 100 150 200 250 300

Grain (time)

minisat
EC

SUBST
IGJ
UP

 10000

 100000

 1e+06

 1e+07

 0 50 100 150 200 250 300

Grain (decisions)

 1

 10

 100

1000

 0 50 100 150 200 250 300

Hitag2 (time)

 100000

 1e+06

 1e+07

 0 50 100 150 200 250 300

Hitag2 (decisions)

 1

 10

 100

1000

 0 50 100 150 200 250 300

SAT (time)

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 50 100 150 200 250 300

SAT (decisions)

minisat
EC

SUBST
IGJ
UP

Figure 3.12. Solving time and number of decisions as functions of solved instances (part
2/3)

52

XOR-Deduction Systems

 1

 10

 100

1000

 0 100 200 300 400 500 600 700 800 900

Trivium (time)

minisat
EC

SUBST
IGJ
UP

 1000

 10000

 100000

 1e+06

 1e+07

 0 100 200 300 400 500 600 700 800 900

Trivium (decisions)

Figure 3.13. Solving time and number of decisions as functions of solved instances (part
3/3)

53

XOR-Deduction Systems

54

4. Parity Explanations

In this chapter, we develop new techniques to exploit structural proper-

ties of xor-constraints for xor-deduction systems based on xor-derivations,

e.g. UP, Subst, and EC presented in Chapter 3. We introduce new tech-

niques to explain why a literal was implied or why a conflict occurred

in the xor-part; such explanations are needed by the CDCL part. The

new core idea is to not see xor-level propagations as implications but as

linear arithmetic equations. As a result, the new proposed parity explana-

tion techniques can (i) provide smaller clausal explanations for the CDCL

part, and also (ii) derive new xor-constraints that can then be learned

in the xor-part. By learning new xor-constraints, we aim at, similarly to

clause learning in CDCL solvers, enhancing the deduction capabilities of

the xor-reasoning module. We introduce the new techniques using the

very simple xor-deduction system UP, which allows only unit propagation

on xor-constraints, and then show that the new parity explanation tech-

niques also extend to more general xor-deduction systems, for instance to

Subst, an xor-deduction system capable of equivalence reasoning in addi-

tion to unit propagation. We conclude the chapter by evaluating the effect

of the proposed techniques experimentally.

4.1 From Implicative Explanations to Parity Explanations

As explained in Section 3.1, the CDCL part of the DPLL(XOR) framework

requires an implying clause for each xor-implied literal. These can be

computed by interpreting the ⊕-Unit+ and ⊕-Unit− as implications. The

UP xor-deduction system (and also the xor-deduction systems Subst and

EC) use the inference rules in an “implicative way”. For instance, the

inference rule ⊕-Unit+ is implicitly interpreted as

55

Parity Explanations

if the xor-constraints (x ≡ �) and C hold, then C [x/�] also holds.

Similarly, the implicative explanation for an xor-implied literal l̂ label-

ing a non-input node v in a UP-derivation under a CNF-compatible cut

W has been defined to be a conjunction Expl(v,W) of literals with φxor |=
Expl(v,W) ⇒ l̂ holding. We now propose an alternative method allowing

us to compute a parity explanation Expl⊕(v,W) that is an xor-constraint

such that

φxor |= Expl⊕(v,W) + l̂

holds. The variables in Expl⊕(v,W) will always be a subset of the variables

in the implicative explanation Expl(v,W) computed on the same cut.

The key observation for computing parity explanations is that the infer-

ence rules can in fact also be read as equations over xor-constraints under

some provisos. As an example, the ⊕-Unit+ rule can be seen as the equa-

tion (x ≡ �) + C = C [x/�] provided that (i) x ∈ C, and (ii) C is in the

normal form. That is, the linear combination of the two premises equals

the consequence xor-constraint of the rule. The provisos are easy to ful-

fill: (i) we have already assumed all xor-constraints to be in the normal

form, and (ii) applying the rule when x /∈ C is redundant and can thus be

disallowed. The reasoning is analogous for the ⊕-Unit− rule and thus for

UP rules we have the equations:

(x ≡ �) + C = C [x/�] (4.1)

(x ≡ ⊥) + C = C [x/⊥] (4.2)

As all the UP-rules can be interpreted as equations of form “the linear

combination of left-premise and right-premise equals the consequence”,

we can expand any xor-constraint C in a node of a UP-derivation by iter-

atively replacing it with the left hand side of the corresponding equation.

As a result, we will get a linear combination of xor-constraints that is log-

ically equivalent to C; from this, we can eliminate the xor-constraints in

φxor and get an xor-constraint D such that φxor |= D + C. Formally, as-

sume a UP-derivation G = 〈V,E, L〉 for φxor∧ l1∧ ...∧ lk. For each non-input

node v in G, and each cut W = 〈Va, Vb〉 of G for v, the parity explanation

of v under W is Expl⊕(v,W) = fW (v), where fW is recursively defined as

earlier for Expl(v,W) except that the case “E4” is replaced by

E4 If u is a non-input node in Vb, then fW (u) = fW (u1)+fW (u2), where u1

and u2 are the source nodes of the two edges incoming to u.

56

Parity Explanations

We now illustrate parity explanations and show that they can be smaller

(in the sense of containing fewer variables) than implicative explanations:

Example 5. Consider again the UP-derivation given in Figure 3.2. Take

the cut 4 first; we get Expl⊕(v12,W) = c ⊕ e ≡ ⊥. Now we can verify

that φxor |= Expl⊕(v12,W) + L(v12) as φxor |= (c ⊕ e ≡ ⊥) + (f ≡ �), i.e.

c ⊕ e ⊕ f ≡ � is an xor-constraint in φxor. Observe that the implicative

explanation c∧ e of v12 under the cut is just one conjunct in the disjunctive

normal form (c ∧ e) ∨ (¬c ∧ ¬e) of c⊕ e ≡ ⊥.

On the other hand, under the cut 2 we get Expl⊕(v12,W) = d. Now φxor |=
Expl⊕(v12,W) + L(v12) holds as φxor |= (d ≡ �)+(f ≡ �), i.e. d⊕f ≡ ⊥ is a

linear combination of the xor-constraints in φxor. Note that the implicative

explanation for v12 under the cut is (c ∧ d), and no CNF-compatible cut for

v12 gives the implicative explanation (d) for v12. ♣

We observe that vars(Expl⊕(v,W)) ⊆ vars(Expl(v,W)) by comparing the

definitions of Expl(v,W) and Expl⊕(v,W). The correctness of Expl⊕(v,W),

formalized in the following theorem, can be established by induction and

using Equations (4.1) and (4.2). Observe that the following theorem is a

special case of Theorem 5 given later.

Theorem 3 (Thm. 1 of Laitinen et al. [2014b]). Let G = 〈V,E, L〉 be a UP-

derivation on φxor ∧ l1 ∧ · · · ∧ lk, v a node in it, and W = 〈Va, Vb〉 a cut for v.

The following fact holds: φxor |= Expl⊕(v,W) + L(v).

Recall that the CNF-part solver requires an implying clause C for each

xor-implied literal, forcing the value of the literal by unit propagation. A

parity explanation can be used to get such implying clause by taking the

implicative explanation as a basis and omitting the literals on variables

not occurring in the parity explanation:

Theorem 4 (Thm. 2 of Laitinen et al. [2014b]). Let G = 〈V,E, L〉 be a

UP-derivation on φxor ∧ l1 ∧ · · · ∧ lk, v a node with L(v) = l̂ in it, and W =

〈Va, Vb〉 a CNF-compatible cut for v. Then φxor |= (
∧

u∈S L(u)) ⇒ l̂, where

S = {u ∈ reasons(W) | vars(L(u)) ⊆ vars(Expl⊕(v,W))}.

Observing that only expressions of the type fW (u) occurring an odd

number of times in the expression fW (v) remain in Expl⊕(v,W), we can

derive a more efficient graph traversal method to compute parity expla-

nations. That is, when computing a parity explanation for a node, we

traverse the derivation backwards from it in a breadth-first order. If we

traverse a node u and notice that its traversal is requested because an

57

Parity Explanations

even number of its successors have been traversed, then we don’t need

to traverse u further or include L(u) in the explanation if u was on the

“reason side” Va of the cut.

Example 6. Consider again the UP-derivation in Figure 3.2 and the CNF-

compatible cut 1 for v12. When we traverse the derivation backwards,

we observe that the node v9 has an even number of traversed successors;

we thus don’t traverse it (and consequently neither v8, v5, v4 or v1). On

the other hand, v6 has an odd number of traversed successors and it is

included when computing Expl⊕(v12,W). Thus we get Expl⊕(v12,W) =

L(v6) = (d) and the implying clause for f is d ⇒ f , i.e. (¬d ∨ f). ♣

Although parity explanations can be computed quite fast using graph

traversal as explained above, this can still be computationally prohibitive

on “xor-intensive” instances because a single CNF-level conflict analysis

may require that implying clauses for hundreds of xor-implied literals are

computed. In our current implementation, we compute the closest CNF-

compatible cut (for which parity explanations are very fast to compute

but equal to implicative explanations and produce clausifications of single

xor-constraints as implying clauses) for an xor-implied literal l̂ when an

explanation is needed in the regular conflict analysis. The computation-

ally more expensive furthest cut is used if an explanation is needed again

in the conflict-clause minimization phase of minisat. It is left for future

work to develop a more efficient way to compute furthest cuts. Using dy-

namic programming to cache parity explanations for xor-implied literals

may improve the performance significantly provided that the quadratic

memory overhead is acceptable.

4.2 Learning Parity Explanations

As explained in the previous section, parity explanations can be used to

derive implying clauses, which are required by the conflict analysis en-

gine of the CDCL solver, that are shorter than those derived using the

classic implicative explanations. In addition to this, parity explanations

can be used to derive new xor-constraints that are logical consequences

of φxor; these xor-constraints D can then be learned, meaning that φxor

is extended to φxor ∧ D, the goal being to increase the deduction power

of the xor-deduction system. As an example, consider again Example 5

and recall that the parity explanation for v12 under the cut 2 is d. Now

58

Parity Explanations

conflict &

backjump

CNF ad ¬c
aa ¬caUP

CNF ad ¬c
aa ¬caUP b

b dd

da e

e ...

b

b ¬d
¬da¬e

¬e ...

Figure 4.1. Communication between CNF-part and UP-module in a case when duplicate
xor-constraints are learned; the d and a superscripts denote decision literals
and xor-assumptions, respectively.

φxor |= (d ≡ �) + (f ≡ �), i.e. φxor |= (d⊕ f ≡ ⊥), holds, and we can extend

φxor to φ′
xor = φxor∧(d⊕f ≡ ⊥) while preserving all the satisfying truth as-

signments. In fact, it is not possible to deduce (f ≡ �) from φxor ∧ (d ≡ �)

by using UP, but (f ≡ �) can be deduced from φ′
xor∧(d ≡ �). Thus learning

new xor-constraints derived from parity explanations can increase the de-

duction power of the UP xor-deduction system in a way similar to conflict-

driven clause learning increasing the power of unit propagation in CDCL

SAT solvers.

However, if all such derived xor-constraints are learned, it is possible to

learn the same xor-constraint many times, as illustrated in the following

example and Figure 4.1.

Example 7. Let φxor = (a ⊕ b ⊕ c ≡ ⊥) ∧ (b ⊕ c ⊕ d ⊕ e ≡ �) ∧ ... and

assume that CNF-part solver gives its first decision level literals a and ¬c
as xor-assumptions to the UP-module; the module deduces b and returns it

to the CNF solver. At the next decision level the CNF-part guesses d, gives

it to UP-module, which deduces e, returns it to the CNF-part, and the CNF-

part propagates it so that a conflict occurs. Now the xor-implied literal e is

explained and a new xor-constraint D = (a⊕ d⊕ e ≡ ⊥) is learned in φxor.

After this the CNF-part backtracks, implies ¬d at the decision level 1, and

gives it to the UP-module; the module can then deduce ¬e without using D.

If ¬e is now explained, the same “new” xor-constraint (a ⊕ d ⊕ e ≡ ⊥) can

be derived. ♣

The example illustrates a commonly occurring case in which a derived

xor-constraint contains two or more literals on the latest decision level (e

and d in the example); in such a case, the xor-constraint may already exist

in φxor. A conservative approach to avoid learning the same xor-constraint

twice, under the reasonable assumption that the CNF and xor-reasoning

module parts saturate their propagations before new heuristic decisions

are made, is to disregard derived xor-constraints that have two or more

variables assigned on the latest decision level. If a learned xor-constraint

for xor-implied literal l̂ does not have other literals on the latest decision

level, it can be used to infer l̂ with fewer decision literals. Note that it may

59

Parity Explanations

also happen that an implying clause for an xor-implied literal l̂ does not

contain any literals besides l̂ on the latest decision level; the CNF-part

may then compute a conflict clause that does not have any literals on the

current decision level, which needs to be handled appropriately.

In order to avoid slowing down propagation in our implementation, we

store and remove learned xor-constraints using a strategy adopted from

minisat: the maximum number of learned xor-constraints is increased at

each restart and the “least active” learned xor-constraints are removed

when necessary. However, using the conservative approach to learning

xor-constraints, the total number of learned xor-constraints rarely ex-

ceeds the number of original xor-constraints.

4.3 Generalizing Parity Explanations

So far in this chapter we have considered the xor-deduction system UP

which is only capable of unit propagation. We can in fact extend the in-

troduced concepts to more general inference systems and derivations.

Define an xor-derivation similarly to UP-derivation except that there is

only one inference rule:

⊕-Gen :
D1 D2

D1 +D2

where D1 and D2 are xor-constraints. The inference rule ⊕-Gen is a gener-

alization of the rules Gauss− and Gauss+ in Baumgartner and Massacci

[2000]. Now Theorems 3 and 4 can be shown to hold for such derivations

as well. The following theorem establishes the correctness of parity ex-

planations on (general) xor-derivations using the inference rule ⊕-Gen:

Theorem 5. Let G = 〈V,E, L〉 be an xor-derivation on φxor ∧ l1 ∧ · · · ∧ lk,

v a node in it, and W = 〈Va, Vb〉 a cut for v. The following fact holds:

φxor |= Expl⊕(v,W) + L(v).

Proof. We show that φxor |= (fW (u) + L(u)) for each node u in G by induc-

tion on the structure of the derivation G.

If u is an input node with L(u) ∈ φxor, then fW (u) = ⊥ ≡ ⊥ and φxor |=
(⊥ ≡ ⊥) + L(u) as L(u) is a conjunct in φxor.

If u is an input node with L(u) ∈ {l1, ..., lk}, then fW (u) = L(u) and

φxor |= L(u) + L(u) holds trivially.

If u is a non-input node in Va, then fW (u) = L(u) and φxor |= (L(u)+L(u))

holds trivially.

60

Parity Explanations

If u is a non-input node in Vb with two incoming edges from nodes u1

and u2 respectively, then fW (u) = fW (u1) + fW (u2). Because L(u) is ob-

tained from L(u1) and L(u2) by applying ⊕-Gen, we have established that

φxor |= (L(u1) + L(u2)) + L(u). By the induction hypothesis the equations

φxor |= (fW (u1)+L(u1)) and φxor |= (fW (u2)+L(u2)) hold. By taking the lin-

ear combination of these equations we get the equation φxor |= (fW (u1) +

fW (u2))+ (L(u1)+L(u2)). We now take the linear combination of this and

the previously established equation φxor |= (L(u1)+L(u2))+L(u) resulting

in φxor |= (fW (u1)+fW (u2))+L(u) and substituting (fW (u1)+fW (u2)) with

fW (u) using the equation fW (u) = fW (u1) + fW (u2) we get the equation

φxor |= (fW (u) + L(u)).

We have established for each u in G that φxor |= (fW (u) + L(u)) holds. It

follows that φxor |= Expl⊕(v,W) + L(v).

A parity explanation on a (general) xor-derivation can be used to get

an implying clause by taking the implicative explanation as a basis and

omitting the literals on variables not occurring in the parity explanation:

Theorem 6. Let G = 〈V,E, L〉 be an xor-derivation on φxor ∧ l1 ∧ · · · ∧ lk,

v a node with L(v) = l̂ in it, and W = 〈Va, Vb〉 a CNF-compatible cut for

v. Then φxor |= (
∧

u∈S L(u)) ⇒ l̂, where S = {u ∈ reasons(W) | vars(L(u))
⊆ vars(Expl⊕(v,W))}.

Proof. If φxor is unsatisfiable, then φxor |= (
∧

u∈S L(u)) ⇒ l̂ holds trivially.

Assume that φxor is satisfiable. As vars(
∧

u∈S L(u)) = vars(Expl⊕(v,W))

and φxor |= Expl⊕(v,W) + l̂, it must be that either φxor |= (
∧

u∈S L(u)) ⇒ l̂

or φxor |= (
∧

u∈S L(u)) ⇒ ¬l̂ holds (both cannot hold because then φxor

would be unsatisfiable). If φxor |= (
∧

u∈S L(u)) ⇒ ¬l̂ holds, then, as S ⊆
reasons(W) holds, φxor |= (

∧
u∈reasons(W) L(u)) ⇒ ¬l̂ would also hold. Com-

bined with the property φxor |= (
∧

u∈reasons(W) L(u)) ⇒ l̂ of implicative ex-

planations, this means that φxor is unsatisfiable, contradicting our as-

sumption. Therefore, φxor |= (
∧

u∈S L(u)) ⇒ l̂ must hold.

We have seen in Section 3.1 that the inference rules ⊕-Unit+ and ⊕-Unit−

of UP xor-deduction system are a special case of ⊕-Gen. As another con-

crete example of xor-reasoning module implementing a sub-class of ⊕-Gen,

consider the Subst module presented in Section 3.2. In addition to the unit

propagation rules of UP in Figure 3.1, it has two inference rules allowing

equivalence reasoning:

⊕-Eqv+ :
x⊕ y ≡ ⊥ C

C [x/y]
⊕-Eqv− :

x⊕ y ≡ � C

C [x/(y ⊕�)]

61

Parity Explanations

Figure 4.2. A Subst-derivation

where the symbols x and y are variables while C is an xor-constraint in

the normal form with an occurrence of x. Note that these Subst rules are

indeed instances of the more general inference rule ⊕-Gen. For instance,

given two xor-constraints C1 = (c ⊕ d ≡ ⊥) and C2 = (b ⊕ d ⊕ e ≡ �),

Subst can produce the xor-constraint C2 [d/c] = (b⊕c⊕e ≡ �) which is also

inferred by ⊕-Gen: (C1+C2) = (c⊕ d⊕ b⊕ d⊕ e ≡ ⊥⊕�) = (b⊕ c⊕ e ≡ �).

As an example, Figure 4.2 shows a Subst-derivation on φxor ∧ (a ≡ �),

where φxor = (a⊕ b⊕ c ≡ �)∧ (a⊕ c⊕ d ≡ �)∧ (b⊕ d⊕ e ≡ �). The literal

e is Subst-derivable on φxor ∧ (a); the xor-reasoning module returns e as

an xor-implied literal on φxor after a is given as an xor-assumption. The

CNF-compatible cut 1 for the literal e gives the implicative explanation

(a) and thus the implying clause (¬a ∨ e) for e. Parity explanations are

defined for Subst in the same way as for UP; the parity explanation for the

literal e in the figure is � and thus the implying clause for e is (e).

Parity explanations can also be defined in a similar way for the xor-

deduction system EC that is based on equivalence class manipulation.

For instance, consider the equivalence reason graph in Figure 3.8. By

taking the union of reasons for the edges of the cyclic path with an odd

number of disequality edges b
i ≡ �— g
f ≡ �— h i ≡ �— e d ≡ �— c a ≡ �— b, we

get an implicative explanation (¬a ∨ ¬d ∨ ¬i ∨ ¬f) for the xor-conflict. By

omitting those edge labels which occur an even number of times, we get a

parity explanation (a⊕ d⊕ f ≡ �) for the xor-conflict.

62

Parity Explanations

4.4 Experimental Evaluation

This section is a continuation to Section 3.5 that studies how much the

search space (the number of heuristic decisions) can be reduced by inte-

grating the xor-deduction systems UP, Subst, and IGJ to minisat version

2.0 core by Eén and Sörensson [2003]. Now we evaluate how the xor-

deduction system UP enhanced with parity explanations performs on the

same benchmarks. The reference solver configuration here is UP+fcut,

where fcut stands for furthest cut. It computes implicative explanations

using furthest cuts selectively when an implying clause is needed in the

conflict-clause minimization phase (see Section 4.1 for details). The solver

configuration UP+pexp is otherwise identical to UP+fcut but computes shorter

implying clauses using parity explanations when furthest cuts are used.

The solver configuration SUBST+p is otherwise identical to SUBST but it

computes implying clauses using parity explanations always. The solver

configuration UP+learn adds xor-constraint learning (see Section 4.2) to

UP+pexp. The solvers minisat, SUBST, and IGJ are included for compari-

son.

Figures 4.3, 4.4, 4.5, and 4.6 show the results of running each solver

configuration on each benchmark instance for at most one hour on 20-

core Intel E5-2680 v2 with 256 GB RAM per processor. Memory limit for

one solver instance was set to 10 GB. Using parity explanations in the

conflict-clause minimization phase but without learning them does not

give noticeable advantage on most of these benchmarks, that is, UP+fcut

and UP+pexp perform similarly. The notable exception is the FEAL bench-

mark family whose instances are solved faster without learning parity

explanations. Only 21 instances are solved by SUBST, but SUBST+p solves

all instances with lowest median time and lowest median number of deci-

sions. However, UP+pexp still performs similarly to UP+fcut. Adding parity

explanations as learned xor-constraints reduces the number of decisions

significantly for the benchmarks A5/1, SAT, and Trivium and this is re-

flected also in the solving time of UP+learn. The Grain benchmarks are

solved with fewer decisions, but the computational overhead is too high,

so UP+learn manages to solve fewer Grain instances than UP+pexp.

The solver configuration IGJ clearly outperforms UP+learn when solv-

ing A5/1 and FEAL benchmark instances, but solves fewer instances of

other benchmark families. Section 7.3 compares the xor-deduction sys-

tem UP with parity explanations to Gauss-Jordan elimination on a the-

63

Parity Explanations

oretical level. Chapter 6 presents techniques to improve solving perfor-

mance for IGJ i) by decomposing the xor-part into distinct xor-constraint

conjunctions that can be handled in separate (dense) matrices and ii) by

eliminating variables that have occurrences only in the xor-part.

The solver SUBST+p solves more instances than SUBST on most bench-

mark families, and the difference is noticeable on A5/1, FEAL, Hitag2,

and SAT benchmark families. Only Grain and Trivium benchmark fami-

lies are solved faster with SUBST. Using parity explanations in the solver

SUBST+p does not incur a significant overhead, so it is not clear why SUBST+p

performs worse than SUBST on the Grain and Trivium benchmarks.

64

Parity Explanations

A5/1 (640 instances) DES (51 instances)

Solver # Decisions Time (s) Solver # Decisions Time (s)

IGJ 640 3099 1.9 IGJ 51 89991 19.2

UP+learn 639 20651 4.2 UP+learn 51 90122 16.2

minisat 626 37096 5.0 SUBST+p 51 90439 17.0

UP+fcut 617 30036 5.6 SUBST 51 91826 17.3

UP+pexp 611 32745 5.6 UP+pexp 51 91832 17.6

SUBST+p 603 5289 7.6 UP+fcut 51 95881 16.6

SUBST 597 3134 5.2 minisat 51 97652 14.5

FEAL (84 instances) Grain (357 instances)

Solver # Decisions Time (s) Solver # Decisions Time (s)

SUBST+p 84 200141 25.6 minisat 323 265328 282.1

minisat 84 811828 54.1 UP+pexp 315 271660 320.8

UP+fcut 84 1426547 150.8 UP+fcut 306 244842 267.9

UP+pexp 83 1131949 109.2 UP+learn 290 153123 420.0

IGJ 79 73113 92.8 SUBST 222 127654 1759.7

UP+learn 35 - - SUBST+p 198 247511 2773.1

SUBST 21 - - IGJ 186 239424 3267.4

Hitag2 (306 instances) SAT (474 instances)

Solver # Decisions Time (s) Solver # Decisions Time (s)

minisat 295 1100849 280.0 UP+learn 301 1930731 428.3

UP+pexp 284 1358081 459.0 IGJ 295 1094153 1069.5

UP+learn 282 1028143 357.2 minisat 279 14857305 1401.7

UP+fcut 281 1247305 434.0 UP+fcut 269 22568178 2231.6

SUBST+p 247 1661239 1068.4 SUBST+p 267 14226864 2207.2

SUBST 190 2631385 2219.3 UP+pexp 267 28097432 2007.9

IGJ 171 1556543 3098.2 SUBST 212 - -

Trivium (1020 instances)

Solver # Decisions Time (s)

UP+learn 907 6739 8.9

minisat 902 9361 3.8

UP+fcut 881 9718 5.2

UP+pexp 880 9442 5.1

IGJ 873 2569 21.3

SUBST 826 2872 47.5

SUBST+p 803 2985 60.4

Figure 4.3. Number of solved instances (#), median decisions, and median solving time
(timeout 1h) on the seven benchmark families

65

Parity Explanations

 1

 10

 100

1000

 0 100 200 300 400 500 600

A5/1 (time)

minisat
SUBST+p

IGJ
UP+fcut

UP+pexp
UP+learn

 1000

 10000

 100000

 1e+06

 1e+07

 0 100 200 300 400 500 600

A5/1 (decisions)

 1

 10

 100

1000

 0 10 20 30 40 50 60

DES (time)

 10000

 100000

 1e+06

 0 10 20 30 40 50 60

DES (decisions)

 1

 10

 100

1000

 0 10 20 30 40 50 60 70 80 90

FEAL (time)

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 10 20 30 40 50 60 70 80 90

FEAL (decisions)

minisat
SUBST+p

IGJ
UP+fcut

UP+pexp
UP+learn

Figure 4.4. Solving time and number of decisions as functions of solved instances (part
1/3)

66

Parity Explanations

 1

 10

 100

1000

 0 50 100 150 200 250 300

Grain (time)

minisat
SUBST+p

IGJ
UP+fcut

UP+pexp
UP+learn

 10000

 100000

 1e+06

 1e+07

 0 50 100 150 200 250 300

Grain (decisions)

 1

 10

 100

1000

 0 50 100 150 200 250 300

Hitag2 (time)

 100000

 1e+06

 1e+07

 0 50 100 150 200 250 300

Hitag2 (decisions)

 1

 10

 100

1000

 0 50 100 150 200 250 300

SAT (time)

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 50 100 150 200 250 300

SAT (decisions)

minisat
SUBST+p

IGJ
UP+fcut

UP+pexp
UP+learn

Figure 4.5. Solving time and number of decisions as functions of solved instances (part
2/3)

67

Parity Explanations

 1

 10

 100

1000

 0 100 200 300 400 500 600 700 800 900

Trivium (time)

minisat
SUBST+p

IGJ
UP+fcut

UP+pexp
UP+learn

 1000

 10000

 100000

 1e+06

 1e+07

 0 100 200 300 400 500 600 700 800 900

Trivium (decisions)

Figure 4.6. Solving time and number of decisions as functions of solved instances (part
3/3)

68

5. Classifying Parity Constraints

So far in this thesis, we have developed different xor-deduction systems

to detect unsatisfiability of a set of parity constraints and deducing xor-

implied literals. The presented xor-deduction systems have different trade-

offs between proof system strength and computational complexity. Using

stronger parity reasoning may prune the search space efficiently, but in-

curs some computational overhead. The “structure” of parity constraints

ultimately dictates whether the search space can be pruned by stronger

parity reasoning. In an optimal setting, an actual implementation of

an xor-deduction system would carry out only the necessary propagation

steps to deduce deducible xor-implied literals or to detect unsatisfiability,

but in practice it can be challenging to engineer such an implementation.

In this chapter, we develop efficient approximating tests to decide if unit

propagation or equivalence reasoning is enough to achieve full propaga-

tion in a given conjunction of parity constraints. The part of a set of parity

constraints for which stronger parity reasoning cannot detect more xor-

implied literals can then be handled by unit propagation leaving a smaller

set of parity constraint for stronger xor-deduction systems. By analyzing

the constraint graph primed by a set of parity constraints, we can charac-

terize equivalence reasoning using the cycles in the graph. The presence

of cycles in the graph indicates that equivalence reasoning might be use-

ful, so absence of such cycles indicates that unit propagation is enough for

so called “tree-like” parts. If the constraint graph has cycles, equivalence

reasoning might be useful, but it does not give any indication of whether

it is enough to deduce all xor-implied literals. We develop an approximat-

ing test to detect whether the cycles in the graph belong to a restricted

class for which equivalence reasoning can detect all xor-implied literals.

This kind of syntactic analysis bears a resemblance to a number of tech-

niques including (i) detecting polynomially solvable classes of CNF con-

69

Classifying Parity Constraints

sisting of Horn-clauses and binary clauses (Fourdrinoy et al. [2007]), (ii)

detecting and exploiting symmetries in CNF (Darga et al. [2004]), (iii)

polynomial algorithms for solving “tree-like” constraint satisfaction prob-

lems (chapter 9 in Dechter [2003]), and (iv) recovering and exploiting

other “hidden structure” in CNF to recognize and solve instances within

some polynomial bound (Samer and Szeider [2009]).

5.1 When Unit Propagation Deduces All Xor-Implied Literals

We first study the problem of deciding, given an xor-constraint conjunc-

tion, whether unit propagation can always deduce all xor-implied literals.

We use the xor-deduction system UP to define when unit propagation can

always deduce all xor-implied literals:

Definition 2. A conjunction φxor of xor-constraints is UP-deducible if for

all l1, ..., lk, l̂ ∈ lits(φxor) the following facts hold: (i) if φxor ∧ l1 ∧ ... ∧ lk is

unsatisfiable, then φxor ∧ l1 ∧ ... ∧ lk �UP ⊥, and (ii) φxor ∧ l1 ∧ ... ∧ lk |= l̂

implies φxor ∧ l1 ∧ ... ∧ lk �UP l̂ otherwise.

We analyze what xor-deduction systems can deduce by using a graph

primed by a conjunction of xor-constraints.

Definition 3. A constraint graph of an xor-constraint conjunction φxor is a

bipartite graph 〈V,E〉 where each xor-constraint in φxor and each variable

in vars(φxor) has a corresponding node in V and there is an edge in E

between a variable node and an xor-constraint node if the variable has an

occurrence in the xor-constraint.

Although we do not know of an easy way of detecting whether a given

conjunction of xor-constraints is UP-deducible, we show that “tree-like”

xor-constraint conjunctions are UP-deducible.

Definition 4. A conjunction φxor is tree-like if its constraint graph is a tree

or a union of disjoint trees.

Example 8. The conjunction (a⊕b⊕c ≡ �)∧(b⊕d⊕e ≡ �)∧(c⊕f⊕g⊕ ≡ ⊥)

is tree-like; its constraint graph is given in Figure 5.1(a). On the other

hand, the conjunction (a ⊕ b ⊕ c ≡ �) ∧ (a ⊕ d ⊕ e ≡ �) ∧ (c ⊕ d ⊕ f ≡
�) ∧ (b⊕ e⊕ f ≡ �), illustrated in Figure 5.1(b), is not tree-like.

Theorem 7 (Thm. 1 of Laitinen et al. [2014a]). If a conjunction of xor-

constraints φxor is tree-like, then it is UP-deducible

70

Classifying Parity Constraints

�

�

d e f g

cb

a

⊥

��
�

� b

c

f

a

d

e

(a) (b)

Figure 5.1. Two constraint graphs

Note that not all UP-deducible xor-constraints are tree-like. For in-

stance, (a⊕b ≡ �)∧(b⊕c ≡ �)∧(c⊕a ≡ ⊥) is satisfiable and UP-deducible

but not tree-like. No binary xor-constraints are needed to establish the

same, e.g., (a⊕ b⊕ c ≡ �)∧ (a⊕d⊕e ≡ �)∧ (c⊕d⊕f ≡ �)∧ (b⊕e⊕f ≡ �)

considered in Example 8 is satisfiable and UP-deducible but not tree-like.

5.1.1 Experimental Evaluation

We have studied the SAT Competition benchmark instances (see Sec-

tion 2.6) and found out that out of these 474 instances, 61 are tree-like.

As shown in the earlier example, there exists UP-deducible instances that

are not tree-like. To test whether any of the 413 non-tree-like instances we

found are UP-deducible, we generated randomized saturated UP-derivations

from those instances and then tested with the IGJ xor-deduction system

(Gauss-Jordan elimination) whether unit propagation could detect all xor-

implied literals.

The randomized testing could prove for all except one of the 413 non-

tree-like instances that they are not UP-deducible. In these instances

tree-like classification seems to approximate quite well UP-deducibility.

Detailed results are shown in Figure 5.2(a). The columns “probably Subst”

and “cycle-partitionable” are explained later. In the non-tree-like instances,

on average 11% of the xor-constraints are tree-like.

The instances for which unit propagation detects all xor-implied literals

do not benefit from stronger parity reasoning. To confirm this, we ran

71

Classifying Parity Constraints

SAT Competition

2005 2007 2009 2011

instances 857 376 573 1200

with xors 123 100 140 111

probably UP 19 10 18 15

tree-like 19 9 18 15

probably Subst 20 21 52 40

cycle-partitionable 20 13 24 40

Figure 5.2. Instance classification

 1

 10

 100

 1000

 0 10 20 30 40 50 60

tim
e

(s
)

number of problems solved

no Gaussian
Gaussian

Figure 5.3. cryptominisat run-times on tree-like instances

cryptominisat 2.9.2 on the 61 aforementioned tree-like instances in two ways

on 12-core Intel X5650 with 48GB memory (2 GB memory limit per task).

In the first run, parity reasoning was disabled. In the second run, full

Gaussian elimination was used. The results in Figure 5.3 confirm that for

these tree-like instances it is better to use plain unit propagation instead

of Gaussian elimination.

Our other benchmark families (see Chapter 2.6) exhibit a more homo-

geneous structure, so the average proportions of tree-like xor-constraints

shown in Figure 5.4 are descriptive.

72

Classifying Parity Constraints

Benchmark family Tree-like All Tree-like ratio

A5/1 716.5 1332.5 0.54

FEAL 0.0 3933.7 0.00

Grain 661.8 664.7 0.10

DES 198.4 542.3 0.37

Hitag2 1060.5 3909.5 0.27

Trivium 0.0 8167.4 0.00

Figure 5.4. Average number of tree-like xor-constraints in other benchmark families

�

�
�

�
⊥

⊥

⊥
f gb

a

d

c e

h ij

k m

Figure 5.5. A constraint graph

 1

 10

 100

 1000

 10000

 0 50 100 150 200 250 300

tim
e

(s
)

number of problems solved

no Gaussian
Gaussian

Gaussian, tree-parts with CNF

Figure 5.6. Run-times of cryptominisat on Hitag2 instances

73

Classifying Parity Constraints

5.1.2 Clausification of Tree-like Parts

There are many real-world instances that are not tree-like. However, a

significant subset of the xor-constraints may form a tree-like xor-constraint

conjunction. For example, consider the xor-constraint conjunction φxor

whose constraint graph is shown in Figure 5.5.

Tree-like parts can be exploited by applying stronger parity reasoning

techniques only on the non-tree-like parts. The tree-like parts can be

handled by plain unit propagation without risk of not detecting some xor-

implied literals. We found that this technique may lead to faster solving

time on some instances.

In the Hitag2 benchmarks, roughly one fourth of the xor-constraints are

in the tree-like part. We ran cryptominisat 2.9.2 on these instances with three

modes: (i) without Gaussian elimination, (ii) with Gaussian elimination,

and (iii) with Gaussian elimination and tree-like parts translated to CNF.

The results are shown in Figure 5.6. Relatively costly Gaussian elimi-

nation seems to be useful only for the harder instances. There are also

instance families that do not contain any tree-like parts (e.g. our known-

plaintext attack on the Trivium cipher) or have very small tree-like parts

(e.g. known-plaintext attack on the Grain cipher). We also conducted a

similar study with Minisat 2.0 core enhanced with Subst xor-deduction sys-

tem but found no runtime improvements. We can thus conclude that the

potentially beneficial effect of translating tree-like parts to CNF depends

both from the solver and the benchmark.

We also ran cryptominisat 2.9.2 using the same three modes on the 413

aforementioned non-tree-like SAT Competition instances. We measured

the proportions of tree-like parts in these instances. The results are shown

in Figure 5.7. The biggest instance with a significant tree-like part in this

set has 312707 xor-constraints and 229067 of them are tree-like. Many

of these instances have a large tree-like part. Figure 5.8 shows the com-

parison of solving time with three different modes. Using Gaussian elim-

ination on the non-tree-like part can be very useful. However, for larger

matrices, the computational overhead of Gaussian elimination is signifi-

cant. By translating tree-like parts to CNF, some of these matrices can be

made smaller and this results in a fairly consistent speedup.

74

Classifying Parity Constraints

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

%
 tr

ee
-li

ke
 x

or
-c

on
st

ra
in

ts

instance

Figure 5.7. Relative tree-like part sizes of non-tree-like SAT Competition instances

5.2 When Equivalence Reasoning Deduces All Xor-Implied Literals

As shown earlier, unit propagation cannot detect all xor-implied literals

on many real-world instances. Now we study how equivalence reasoning

can be characterized as a structural property of the constraint graph. By

exploiting this connection, we develop a fast approximating test to detect

whether equivalence reasoning is enough to detect all xor-implied literals.

We first establish a close connection between equivalence reasoning and

cycles in the constraint graph by using the EC xor-deduction system. To

simplify the following translations and related proofs, we consider a re-

stricted class of xor-constraints.

Definition 5. A conjunction of xor-constraints φxor is in 3-xor normal form

if (i) every xor-constraint in is has exactly three variables, and (ii) each pair

of xor-constraints shares at most one variable.

Given a φxor, an equisatisfiable 3-xor normal form formula can be ob-

tained by (i) eliminating unary and binary xor-constraints by unit prop-

agation and substitution, (ii) cutting longer xor-constraints as described

above, and (iii) applying the following rewrite rule:

(x1⊕x2⊕x3 ≡ p1)∧(x2⊕x3⊕x4 ≡ p2) � (x1⊕x2⊕x3 ≡ p1)∧(x1⊕x4 ≡ p1⊕p2)

In 3-xor normal form, ⊕-Conflict is actually a shorthand for two applica-

75

Classifying Parity Constraints

 1

 10

 100

 1000

 0 50 100 150 200 250 300

tim
e

(s
)

number of problems solved

no Gaussian
Gaussian

Gaussian, tree-parts with CNF

Figure 5.8. Run-times of non-tree-like SAT Competition instances

tions of ⊕-Imply and one application of Conflict, so the rule ⊕-Imply succinctly

characterizes equivalence reasoning. We now prove that the rule ⊕-Imply

is closely related to the cycles in the constraint graphs.

Definition 6. An xor-cycle is a conjunction of xor-constraints having the

form (x1⊕x2⊕ y1 ≡ p1) ∧ · · · ∧ (xn−1⊕xn⊕ yn−1 ≡ pn−1) ∧ (x1⊕xn⊕ yn ≡
pn), abbreviated with XC (〈x1, ..., xn〉 , 〈y1, ..., yn〉 , p) where p = p1 ⊕ ...⊕ pn.

We call x1, ..., xn the inner variables and y1, ..., yn the outer variables of the

xor-cycle.

Example 9. The CNF-xor instance shown in Figure 5.5 has one xor-cycle

(a⊕ b⊕ c ≡ ⊥)∧ (c⊕ d⊕ e ≡ �)∧ (b⊕ d⊕ j ≡ �), where b, c, d are the inner

and a, e, j the outer variables.

A key observation is that the ⊕-Imply rule can be used to deduce an xor-

implied literal exactly when there is an xor-cycle such that the values of

the outer variables except for one are already deduced:

Lemma 8 (Lem. 1 of Laitinen et al. [2014a]). Assume an EC-derivation G

on ψ = φxor ∧ l1 ∧ ... ∧ lk, where φxor is a 3-xor normal form xor-constraint

conjunction. There is an extension G′ of G where an xor-constraint (y ≡
p⊕p′1⊕ ...⊕p′n−1) is derived using ⊕-Imply on the xor-constraints {(x1⊕x2 ≡
p1⊕ p′1), ..., (xn−1⊕xn ≡ pn−1⊕ p′n−1), (x1⊕xn⊕ y ≡ pn)} if and only

if there is an xor-cycle XC (〈x1, ..., xn〉 , 〈y1, ...yn−1, y〉 , p) ⊆ φxor where p =

p1⊕ ...⊕ pn such that ψ �EC (yi≡p′i) for each yi ∈ {y1, ..., yn−1}.

76

Classifying Parity Constraints

The presence of xor-cycles in the problem implies that equivalence rea-

soning might be useful, but does not give any indication of whether it is

enough to always deduce all xor-implied literals. Again, we do not know

any easy way to detect whether a given xor-constraint conjunction is Subst-

deducible (or equivalently, EC-deducible). However, we can obtain a very

fast structural test for approximating EC-deducibility as shown and ana-

lyzed in the following.

We say that a 3-xor normal form xor-constraint conjunction φxor is cycle-

partitionable if there is a partitioning (Vin, Vout) of vars(φxor) such that

for each xor-cycle XC (X,Y, p) in φxor X ⊆ Vin and Y ⊆ Vout. That is,

there should be no variable that appears as an inner variable in one xor-

cycle and as an outer variable in another. For example, the instance

in Figure 5.5 is cycle-partitionable as ({b, c, d}, {a, e, f, ...,m}) is a valid

cycle-partition. On the other hand, the one in Figure 5.1(b) is not cycle-

partitionable (although it is UP-deducible and thus EC-deducible). If such

cycle-partition can be found, then equivalence reasoning is enough to al-

ways deduce all xor-implied literals.

Theorem 9 (Thm. 2 of Laitinen et al. [2014a]). If a 3-xor normal form xor-

constraint conjunction φxor is cycle-partitionable, then it is Subst-deducible

(and thus also EC-deducible).

Detecting whether a cycle-partitioning exists can be efficiently imple-

mented with a variant of Tarjan’s algorithm for strongly connected com-

ponents.

To evaluate the accuracy of the technique, we applied it to the SAT Com-

petition instances. The results are shown in the “cycle-partitionable” and

“probably Subst” columns in Figure 5.2(a), where the latter gives the num-

ber of instances for which our random testing procedure described in Sec-

tion 5.1.1 was not able to show that the instance is not Subst-deducible.

We see that the accuracy of the cycle-partitioning test is (probably) not

perfect in practice although for some instance families it works very well.

77

Classifying Parity Constraints

78

6. Decomposing Parity Constraints

In the DPLL(XOR) setting, the problem instance to be solved is given

in two parts: the CNF-part and the xor-part. The top-level SAT solver

takes care of the CNF-part and the associated xor-reasoning module han-

dles the xor-part. We now explore some techniques to improve solving

performance by decomposing the xor-part into distinct xor-constraint con-

junctions. Decomposition methods can be used to improve performance in

various ways, but here our primary aim is to improve the memory usage

of Gauss-Jordan elimination when using dense matrix representation.

In this chapter, we develop a new decomposition theorem that some-

times allows us to split the xor-constraint part into components that can

be handled individually. The technique exploits a variant of “biconnected

components” by splitting the xor-part into components that are connected

to each other by single cut variables. We prove that if we can provide full

propagation for each of the components, we have full propagation for the

whole xor-part as well. This is useful for reducing memory usage and im-

proving propagation efficiency when using Gauss-Jordan elimination on

dense matrices. We show that the memory usage sometimes can be opti-

mized further by eliminating some of the variables occurring only in the

xor-part while preserving the biconnected component decomposition. We

develop also a generalization of the decomposition theorem that allows to

decompose the instance using a set of cut variables.

Dechter [2003] describes a CSP solution technique in which a CSP is de-

composed into an acyclic graph of sub-problems which can then be solved

in polynomial time using a message-passing algorithm. Bozzano et al.

[2006] suggest an efficient method to solve Satisfiability Modulo Theories

problems involving two theories T1 and T2 by using a SAT solver as a top-

level search engine to enumerate truth assignments on literals in T1 ∪ T2

and checking consistency of each theory in isolation. As such, this does

79

Decomposing Parity Constraints

not guarantee that the two partial models are mutually consistent, but

the solver guarantees mutual consistency on demand by finding a truth

assignment to all the possible equalities between the “interface” variables,

that is, variables belonging both to T1 and T2. While in our work we only

consider a single theory involving xor-constraints, the decomposition the-

orem presented in Section 6.3 and applied in Section 7.5.3 is similar to the

methods presented in Bozzano et al. [2006] in the sense that the conjunc-

tion of xor-constraints is decomposed into two parts and can be solved in

isolation provided that mutual consistency is achieved by communicating

all the possible linear combination involving shared variables.

6.1 Biconnected Component Decomposition

If dense representation for matrices is used, the worst-case memory use

for Gauss or Gauss-Jordan elimination on O(ne), where n is the number

of variables and e is the number of linearly independent xor-constraints

in a given φxor. In this case, decomposing variable-disjoint sets of xor-

constraints into distinct matrices can lower the memory usage.

We now present an improved decomposition technique based on bicon-

nected components of constraint graph. The technique is formally cap-

tured in the theorem that states that full propagation can be achieved

by (i) propagating values only through “cut variables”, and (ii) providing

full propagation for “biconnected components” connected by cut variables.

Each component can be handled by a separate xor-reasoning module and

there is no need to consider equivalences or other relationships between

variables in different modules.

Formally, given an xor-constraint conjunction φxor, we define that a cut

variable is a variable x ∈ vars(φxor) for which there is a partition (Va, Vb)

of xor-constraints in φxor with vars(Va) ∩ vars(Vb) = {x}; such a partition

(Va, Vb) is called an x-cut partition of φxor. The biconnected components

of φxor are defined to be the equivalence classes in the reflexive and tran-

sitive closure of the relation {(D,E) | D and E share a non-cut variable}
over the xor-constraints in φxor.

For graphs, (i) a connected component of constraint graph G is a maximal

connected subgraph of G, and (ii) a cut vertex is a vertex of G is a vertex

in it whose removal will break a connected component of G into two or

more connected components, and (iii) a biconnected component of G is a

maximal biconnected subgraph (a graph is biconnected if it is connected

80

Decomposing Parity Constraints

�
�

�
�

�

⊥

⊥
⊥ �c

a

b
f

e

d

l m

n o

g

h
j

i

k

D3

D4

D5

D6 D7

D8

D9

D2

D1

Figure 6.1. The constraint graph of the conjunction φxor in Example 10

and removing any vertex leaves the graph connected).

Example 10. The constraint graph of the conjunction φxor = (a⊕ b⊕ c ≡ �)∧
(b⊕ d⊕ e ≡ �)∧(c⊕ e ≡ �)∧(d⊕ e⊕ f ≡ ⊥)∧(f ⊕ g ⊕ h ≡ �)∧(h⊕ i⊕j ≡
⊥)∧(i⊕ j ⊕ k ≡ �)∧(f ⊕ l ⊕m ≡ �)∧(l⊕n⊕o ≡ ⊥) is shown in Figure 6.1.

The cut vertices of it are D1, D4, f , D5, h, D6, D7, D8, l, and D9. Its bicon-

nected components are the subgraphs induced by the vertex sets {a,D1},

{D1, b,D2, d, c,D3, e,D4}, {D4, f}, and so on. Observe that the biconnected

components are not vertex-disjoint.

Since constraint graphs have vertices also for xor-constraints, the bicon-

nected components of a constraint graph G for φxor do not directly corre-

spond to the biconnected components of φxor. However, the cut vertices

of G correspond exactly to the cut variables of φxor. Therefore, we have

linear-time algorithm for computing the biconnected components of φxor:

1. Build the constraint graph G for φxor.

2. Use an algorithm by Hopcroft and Tarjan [1973] to compute the bicon-

nected components of G in linear time; as a byproduct the algorithm

gives cut vertices as well.

3. Build the biconnected components of φxor by putting two xor-constraints

in the same component if they share a non-cut variable.

Since biconnected components are connected to each other only through

cut variables, they can actually be handled by different xor-reasoning

modules in the DPLL(XOR) framework. The CNF-part solver can com-

municate values of cut variables between xor-reasoning modules; if one

xor-reasoning module implies the value of a cut variable, it can be commu-

nicated to another xor-reasoning module as an xor-assumption. The next

81

Decomposing Parity Constraints

theorem states that this kind of decomposition preserves full propagation

provided that each xor-reasoning module can provide full propagation for

its component.

Theorem 10 (Thm. 4 of Laitinen et al. [2012]). Let (Va, Vb) be an x-cut

partition of φxor. Let φa
xor =

∧
D∈Va

D, φb
xor =

∧
D∈Vb

D, and l1, ..., lk, l̂ ∈
lits(φxor). Then the following facts hold:

• If φxor ∧ l1 ∧ ... ∧ lk is unsatisfiable, then

1. φa
xor ∧ l1 ∧ ... ∧ lk or φb

xor ∧ l1 ∧ ... ∧ lk is unsatisfiable; or

2. φa
xor ∧ l1 ∧ ... ∧ lk |= (x ≡ px) and φb

xor ∧ l1 ∧ ... ∧ lk |= (x ≡ px ⊕ �) for

some px ∈ {⊥,�}.

• If φxor ∧ l1 ∧ ... ∧ lk is satisfiable and φxor ∧ l1 ∧ ... ∧ lk |= l̂, then

1. φa
xor ∧ l1 ∧ ... ∧ lk |= l̂ or φb

xor ∧ l1 ∧ ... ∧ lk |= l̂; or

2. φa
xor ∧ l1 ∧ ... ∧ lk |= (x ≡ px) and φb

xor ∧ l1 ∧ ... ∧ lk ∧ (x ≡ px) |= l̂; or

3. φb
xor ∧ l1 ∧ ... ∧ lk |= (x ≡ px) and φa

xor ∧ l1 ∧ ... ∧ lk ∧ (x ≡ px) |= l̂.

We observe the following: some biconnected components can be single-

ton sets. Basic unit propagation provides full propagation for such sets.

Such singleton components originate from “tree-like” parts of φxor: the

trees can be “outermost” (constraints D8 and D9 in Figure 6.1) or between

two non-tree-like components (D5 in Figure 6.1). Thus our new result in

a sense subsumes the result in Section 5.1.2 (originally in [III]) where we

suggest clausification of “outermost” tree-like parts.

6.1.1 Experimental Evaluation

To evaluate the relevance of detecting biconnected components, we stud-

ied the SAT Competition benchmark instances. We first examine how the

memory usage can be improved by removing (i) tree-like xor-constraints

and (ii) storing each biconnected component in a separate matrix. Fig-

ures 6.2 and 6.3 show the reduction in memory usage when using dense

matrix representation to represent the xor-constraints. As already shown

82

Decomposing Parity Constraints

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1 100 10000 1e+06 1e+08 1e+10 1e+12

w

ith
ou

t t
re

e-
lik

e
xo

r-
co

ns
tr

ai
nt

s

in xor-constraints matrices

Figure 6.2. Reduction in memory usage for dense matrix representation when tree-like
xor-constraints are removed

in the previous chapter, a significant proportion of xor-constraints in these

competition instances are tree-like and performing additional reasoning

beyond unit propagation cannot be used to detect more implied literals.

Removing these tree-like xor-constraints from Gauss-Jordan matrices re-

duces the memory usage greatly. An additional reduction in memory us-

age is obtained by storing each biconnected component in a separate ma-

trix.

We ran minisat 2.0 core augmented with four different xor-reasoning mod-

ules (unit propagation (UP), equivalence reasoning (Subst), incremental

Gauss-Jordan elimination (IGJ), and a variant of IGJ exploiting bicon-

nected components) and cryptominisat 2.9.2 on these instances at most hour

on 12-core Intel X5650 with 48GB memory (2 GB memory limit per task)1.

Figure 6.4 shows the number of instances solved with respect to the

number of heuristic decisions. Unit propagation and equivalence rea-

soning perform similarly on these instances2. Incremental Gauss-Jordan

solves a substantial number of the instances almost instantly and also

manages to solve more instances in total. The solver cryptominisat 2.9.2

1The solver configuration IGJ performs better in Section 3.5 due to higher mem-
ory limit and newer CPU.
2In these experiments, the solver configuration with Subst translates all xor-
constraints to CNF to resort to equivalence reasoning only when unit propaga-
tion is saturated, so the results differ from the ones presented in Section 3.5

83

Decomposing Parity Constraints

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1 100 10000 1e+06 1e+08 1e+10 1e+12

in

 b
ic

on
nc

et
ed

 c
om

po
ne

nt
 m

at
ric

es

without tree-like xor-constraints

Figure 6.3. Reduction in memory usage for dense matrix representation when only bi-
connected components are counted in SAT 2005-2011 competition instances.
Although the difference seems negligible in logarithmic scale, the memory
consumption is reduced by additional 13.5% on average in 110 instances hav-
ing multiple biconnected components.

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 50 100 150 200 250 300

de
ci

si
on

s

solved instances

IGJ
UP

SUBST
cryptominisat 2.9.2
IGJ (biconnected)

IGJ (no implied)

Figure 6.4. Number of SAT 2005-2011 competition instances solved with respect to deci-
sions

84

Decomposing Parity Constraints

 1

 10

 100

 1000

 0 50 100 150 200 250 300

tim
e

(s
)

solved instances

IGJ
UP

SUBST
cryptominisat 2.9.2
IGJ (biconnected)

IGJ (no implied)

Figure 6.5. Number of SAT 2005-2011 competition instances solved with respect to time

performs very well on these instances. Figure 6.5 shows the number of

instances solved with respect to time. Since equivalence reasoning does

not reduce the number of decisions, the computational overhead is re-

flected in the slowest solving time. Incremental Gauss-Jordan is compu-

tationally more intensive but complete parity reasoning pays off on these

instances leading to fastest solving compared to our other xor-reasoning

modules. Omitting tree-like xor-constraints from Gauss-Jordan matrices

and splitting biconnected components into separate matrices lowers the

overall memory requirement enough to solve more instances within the

2 GB memory limit. In [IV], we reported a reduction in the solving time

by splitting biconnected components into separate matrices. However, in

our current implementation the overhead per Gauss-Jordan matrix is sig-

nificant and the solving time was not greatly improved. To illustrate the

effect of implied literals deduced by Gauss-Jordan, we also ran a solver us-

ing Gauss-Jordan only to detect conflicts and otherwise resorting to unit

propagation. More instances are solved when all implied literals are de-

duced.

Biconnected components may be exploited even without modifying the

solver. The solver cryptominisat accepts as its input a mixture of clauses and

xor-constraints. When Gaussian elimination is used, the solver stores

each connected component in a separate matrix. By translating each

singleton biconnected component into CNF, some non-trivial biconnected

85

Decomposing Parity Constraints

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000si
ng

le
to

n
bi

co
nn

ec
te

d
co

m
po

ne
nt

s
tr

an
sl

at
ed

 to
 C

N
F

tree-like xor-constraints translated to CNF

Figure 6.6. Effect in solving time for cryptominisat when singleton biconnected components
in SAT competition instances are translated to CNF

components may become connected components and are then placed into

separate matrices improving memory usage. We considered the 110 SAT

competition instances with multiple biconnected components and found

60 instances where some biconnected components could be separated by

translating singleton biconnected components to CNF. Figures 6.6 and 6.7

show the effect of the translation in the number of decisions and solving

time. The solver cryptominisat 2.9.2 solves 44 of the unmodified instances.

After the translation, cryptominisat 2.9.2 is able to solve 50 instances and

slightly faster.

6.2 Eliminating XOR-Internal Variables

A CNF-xor formula φor ∧ φxor may have xor-internal variables occurring

only in φxor. Such variables can be eliminated from φxor as described

in Laitinen et al. [2010] by substituting them with their “definitions”; e.g.

if x1 ⊕ x2 ⊕ x3 ≡ � is an xor-constraint where x1 is an xor-internal vari-

able, then remove the xor-constraint and replace every occurrence of x1

in all the other xor-constraints by x2 ⊕ x3 ⊕ �. When using dense matrix

representation, the matrices can be made more compact by eliminating

xor-internal variables. For instance, one of our Trivium benchmark in-

stances has 5900 xor-internal variables out of 11484 variables and 8590

86

Decomposing Parity Constraints

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1000 10000 100000 1e+06 1e+07 1e+08si
ng

le
to

n
bi

co
nn

ec
te

d
co

m
po

ne
nt

s
tr

an
sl

at
ed

 to
 C

N
F

tree-like xor-constraints translated to CNF

Figure 6.7. Effect in solving time for cryptominisat when singleton biconnected components
in SAT competition instances are translated to CNF

parity constraints in two connected components. The total number of

elements in the matrices is 55 × 106 elements. By eliminating all xor-

internal variables this can be reduced to 8 × 106 elements. The instance

has three biconnected components (as all of our Trivium instances) and

storing them in separate matrices requires 33×106 elements in total. But,

if a cut variable connecting the biconnected components is xor-internal, it

is eliminated and the two biconnected components are merged into one

bigger biconnected component. To preserve biconnected components, only

the variables occurring in a single biconnected component and not in the

CNF-part should be eliminated. There are 5906 such variables in the in-

stances and after the elimination the total number of elements in three

matrices is 5×106. Figures 6.8 and 6.9 show the effect of eliminating such

variables in our Trivium instances. Unit propagation benefits from elim-

ination of xor-internal variables. Fewer watched literals (variables) are

needed for longer xor-constraints to detect when an implied literal can be

deduced. The solver configuration using incremental Gauss-Jordan elim-

ination manages to solve all of our benchmark instances with reduced

solving time.

Related work. The solver cryptominisat by Soos et al. [2009]; Soos [2010]

eliminates some xor-internal variables that occur only at most two xor-

constraints. Variables having only one occurrence are dependent and are

87

Decomposing Parity Constraints

 1000

 10000

 100000

 1e+06

 0 50 100 150 200 250 300 350 400 450

de
ci

si
on

s

solved instances

IGJ
IGJ (var elim)

UP
UP (var elim)

Figure 6.8. Effect of eliminating xor-internal variables while preserving biconnected
components on the number of decisions on smaller Trivium benchmark set
(459 instances)

 1

 10

 100

 1000

 0 50 100 150 200 250 300 350 400 450

tim
e

(s
)

solved instances

IGJ
IGJ (var elim)

UP
UP (var elim)

Figure 6.9. Effect of eliminating xor-internal variables while preserving biconnected
components on the solving time on smaller Trivium benchmark set (459 in-
stances)

88

Decomposing Parity Constraints

removed along with the corresponding xor-constraint from the instance.

Variables with two occurrences are eliminated by adding linear combina-

tion of the two corresponding xor-constraint in the instance.

6.3 N-cut decomposition

The new decomposition technique is a generalization of the method pre-

sented in the previous section, which states that, in order to guaran-

tee full propagation, it is enough to (i) propagate only values through

“cut variables”, and (ii) have full propagation for the “biconnected com-

ponents”. Now we extend the technique to larger cuts. Given an xor-

constraint conjunction φxor, a cut variable set is a set of variables X ⊆
vars(φxor) for which there is a partition (Va, Vb) of xor-constraints in φxor

with vars(Va) ∩ vars(Vb) = X; such a partition (Va, Vb) is called an X-cut

partition of φxor. If full propagation can be guaranteed for both sides of

an X-cut partition, then communicating the implied linear combinations

involving cut variables is enough to guarantee full propagation for the

whole instance:

Theorem 11 (Thm. 6 of Laitinen et al. [2013]). Let (Va, Vb) be an X-cut

partition of φxor. Let φa
xor =

∧
D∈Va

D, φb
xor =

∧
D∈Vb

D, and l1, . . . , lk, l̂ ∈
lits(φxor). Then the following facts hold:

• If φxor ∧ l1 ∧ · · · ∧ lk is unsatisfiable, then

1. φa
xor ∧ l1 ∧ · · · ∧ lk or φb

xor ∧ l1 ∧ · · · ∧ lk is unsatisfiable; or

2. φa
xor ∧ l1 ∧ · · · ∧ lk |= (X ′ ≡ p) and φb

xor ∧ l1 ∧ . . . lk |= (X ′ ≡ p ⊕ �) for

some X ′ ⊆ X and p ∈ {�,⊥}.

• If φxor ∧ l1 ∧ · · · ∧ lk is satisfiable and φxor ∧ l1 ∧ · · · ∧ lk |= l̂, then

1. φa
xor ∧ l1 ∧ · · · ∧ lk |= l̂ or φb

xor ∧ l1 ∧ · · · ∧ lk |= l̂; or

2. φα
xor ∧ l1 ∧ · · · ∧ lk |= (X ′ ≡ p) and φβ

xor ∧ l1 ∧ · · · ∧ lk ∧ (X ′ ≡ p) |= l̂ for

some X ′ ⊆ X, p ∈ {�,⊥}, α ∈ {a, b}, and β ∈ {a, b} \ {α}.

By applying Theorem 11 we can decompose triconnected (4-connected,

89

Decomposing Parity Constraints

Figure 6.10. Constraint graph of an xor-constraint conjunction

5-connected, etc.) components. As with biconnected component decompo-

sition presented in Section 6.1, this may allow lower memory usage for

Gauss or Gauss-Jordan elimination on dense matrices. Also, each com-

ponent may be handled by a separate xor-reasoning module. However,

as components may be connected with more than one variable, implied

linear combinations involving shared variables must be communicated

between the xor-reasoning modules. Communicating such linear combi-

nations may be done by introducing auxiliary variables as illustrated in

the following example.

Example 11. Consider the constraint graph in Figure 6.10. The cut vari-

able set {x2, x3, x6} partitions the xor-constraints into two conjunctions

φa
xor = (x1 ⊕ x6 ⊕ x7 ≡ �) ∧ (x2 ⊕ x3 ⊕ x7 ≡ �) and φb

xor = (x2 ⊕ x5 ⊕ x8 ≡
⊥)∧(x3⊕x4⊕x5 ≡ �)∧(x4⊕x6⊕x8 ≡ ⊥). Note that φb

xor |= (x2⊕x3⊕x6 ≡ �)

and φa
xor ∧ (x2 ⊕ x3 ⊕ x6 ≡ �) |= (x1 ≡ �). The possible implied lin-

ear combinations involving variables in the cut variable set {x2, x3, x6} are

(x2 ≡ p), (x3 ≡ p), (x6 ≡ p), (x2 ⊕ x3 ≡ p), (x2 ⊕ x6 ≡ p), (x3 ⊕ x6 ≡ p),

(x2 ⊕ x3 ⊕ x6 ≡ p) where p ∈ B. By adding on both sides φa
xor and φb

xor xor-

constraints φ = (a2,3⊕x2⊕x3 ≡ ⊥)∧ (a2,6⊕x2⊕x6 ≡ ⊥)∧ (a3,6⊕x3⊕x6 ≡
⊥)∧ (a2,3,6 ⊕ x2 ⊕ x3 ⊕ x6 ≡ ⊥) where a2,3, a2,6, a3,6, a2,3,6 are new auxiliary

variables, all possible implied linear combinations can be communicated

by assigning the variables x2, x3, x6, a2,3, a3,6, a2,6, a2,3,6 appropriately, e.g.

φb
xor ∧ φ |= (a2,3,6 ≡ �) and φa

xor ∧ φ ∧ (a2,3,6 ≡ �) |= (x1 ≡ �).

The number of auxiliary variables is 2n −n− 1 where n is the size of the

cut variable set, so only relatively small cut variable sets can be used in

practice. Theorem 11 may be iteratively applied multiple times to parti-

tion the formula further provided that auxiliary variables are considered

as original variables in subsequent decompositions.

In the following, we apply the decomposition method using a tree decom-

position to obtain small (candidate) cut variable sets. Formally, a tree de-

composition of a graph G = 〈V,E〉 is a pair 〈X,T 〉, where X = {X1, . . . , Xn}
is a family of subsets of V , and T is a tree whose nodes are the subsets Xi,

90

Decomposing Parity Constraints

(a) (b)

Figure 6.11. (a) primal graph, (b) tree decomposition for the primal graph

satisfying the following properties: (i) V = X1 ∪ · · · ∪Xn, (ii) if 〈v, v′〉 ∈ E,

then {v, v′} ⊆ Xi for at least one Xi ∈ X. and (iii) if a node v is in two

sets Xi and Xj , then all nodes in the path between Xi and Xj contain v.

The width of a tree decomposition is the size of its largest set Xi minus

one. The treewidth tw(G) of a graph G is the minimum width among all

possible tree decompositions of G.

Each pair of adjacent nodes in a tree decomposition defines a cut vari-

able set, so a tree decomposition can be used to obtain a list of small cut

variable sets. The primal graph for an xor-constraint conjunction φxor is a

graph such that the nodes correspond to the variables of φxor and there is

an edge between two variable nodes if and only if both variables have an

occurrence in the same xor-constraint.

Example 12. Figure 6.11(a) shows the primal graph for the xor-constraint

conjunction illustrated in Figure 6.10 and Figure 6.10 shows a tree decom-

position for the primal graph.

6.3.1 Experimental Evaluation

We first studied how the memory usage of the IGJ xor-deduction system

can be improved by applying N-cut decomposition in a controlled test en-

vironment when using dense matrix representation to manipulate xor-

constraints. We created an artificial CNF-xor instance that consists of

201 parts that form a chain where consecutive parts share 63 variables

out of which six are “interface” variables and 57 =
(
6
2

)
+ · · ·+ (

6
6

)
are aux-

iliary variable tracking the relevant linear combinations of the interface

variables. The parts consist of xor-constraints with three or four vari-

91

Decomposing Parity Constraints

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90 100

tim
e

(s
)

random seed

200 matrices
100 matrices
50 matrices
25 matrices

Figure 6.12. Time spent solving an artificial CNF-xor instance decomposed into indepen-
dent dense matrices using N-cut decomposition. The instance is solved with
100 different random seeds.

matrices 25 50 100 200

Median solving time (s) 56.0 35.7 24.1 18.1

Combined matrix sizes (×106) 21814 10930 5488 2767

Speedup w.r.t 25 matrices 1.0 1.57 2.32 3.09

Figure 6.13. Results on solving an artificial CNF-xor instance decomposed using N-cut
decomposition.

ables. One part, whose xor-constraints are straightforwardly translated

to CNF, has 15× 10+2× 63 = 276 variables and xor-constraints. The rest,

200 parts, have 60× 60+ 2× 63 = 3726 variables and xor-constraints. The

instance is unsatisfiable. The structure of the instance makes it possible

to partition it into separate matrices. Figure 6.12 shows solving time with

different random seeds when the instance is decomposed into 25, 50, 100,

and 200 matrices. Figure 6.13 shows median solving times, combined ma-

trix sizes and relative speedup with respect to solving the instance with

25 matrices. The memory usage is almost halved by doubling the number

of matrices. The instance is crafted in such a way that most of the solv-

ing time is spent on the xor-part, so the results indicate how much the

performance can improved in near-optimal conditions. Additional matri-

ces incur some overhead, which explains why the relative speedup grows

slower as the number of matrices is increased.

We studied how much dense matrix representation memory usage could

92

Decomposing Parity Constraints

be improved in SAT Competition instances using N-cut decomposition.

We applied the junction tree algorithm described in Pearl [1982] to obtain

a tree decomposition of the primal graph and a list of small cut variable

sets as described in Section 6.3. Each cut variable set involving at most

eight variables was tested and the instance was partitioned using the cut

variable set giving the highest reduction in total memory usage. Appro-

priate auxiliary “interface” variables were added to communicate relevant

linear combinations of variables shared between the resulting parts. The

resulting parts were partitioned further using the unused cut variable

sets until the reduction in combined matrix sizes was less than 10000.

Figure 6.14 shows the reduction in memory usage compared to original in-

stances where tree-like xor-constraints are removed and xor-clusters are

stored in individual matrices. Biconnected component decomposition is

included for comparison. We also ran minisat with IGJ xor-deduction sys-

tem to find out whether the reduction in memory usage is reflected in

solving time. Unfortunately, there was no noticeable difference, which

may be explained by the number of additional matrices which incur some

overhead. It is left for future work to implement a more efficient version of

IGJ xor-deduction system that scales better with hundreds or even thou-

sands of matrices sharing small number of variables.

93

Decomposing Parity Constraints

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

m
em

or
y

us
ag

e
of

 o
rig

in
al

 (
%

)

instances

N-cut decomposition
Biconnected components decomposition

Figure 6.14. Reduction in memory usage for dense matrix representation when (i) bicon-
nected components in SAT 2005-2011 competition instances are stored in
separate matrices and (ii) N-cut decomposition is greedily applied to bicon-
nected components. Tree-like xor-constraints are removed in the original
instances.

94

7. Simulating Parity Reasoning

Stronger parity reasoning may prune the search space effectively but at

the expense of high computational overhead, so resorting to simpler but

more efficiently implementable systems, e.g. unit propagation, may lead

to better performance. In this chapter, we study to what extent such

simpler systems can simulate stronger parity reasoning engines in the

DPLL(XOR) framework. Instead of developing yet another propagation

engine and assessing it through an experimental comparison, we believe

that useful insights can be acquired by considering unanswered questions

on how some existing propagation engines and proof systems relate to

each other on a more fundamental level. Several experimental studies

have already shown that SAT solvers extended with parity reasoning en-

gines can outperform unmodified solvers on some instances families, so

we focus on more general results on the relationships between resolution,

unit propagation, equivalence reasoning, parity explanations, and Gauss-

Jordan elimination.

We show that resolution can simulate equivalence reasoning efficiently,

which raises a question whether significant reductions in solving time

can be gained by integrating specialized equivalence reasoning in a SAT

solver since in theory it does not strengthen the underlying proof sys-

tem of the SAT solver. In practice, though, the performance of the SAT

solver is largely governed by variable selection and other heuristics that

are likely to be non-optimal, which may justify the pragmatic use of equiv-

alence reasoning.

Although equivalence reasoning alone is not enough to cross the “expo-

nential gap” between resolution and Gauss-Jordan elimination, another

light-weight parity reasoning technique comes intriguingly close at sim-

ulating complete parity reasoning. We show that parity explanations

on nondeterministic unit propagation derivations can simulate Gauss-

95

Simulating Parity Reasoning

Jordan elimination on a restricted yet practically relevant class of xor-

constraint conjunctions. Choosing assumptions and unit propagation steps

nondeterministically may not be possible in an actual implementation

with greedy propagation strategies. However, as observed in Section 4.4,

the simulation may still work in an actual implementation to some degree

provided that parity explanations are stored as learned xor-constraints.

Additional xor-constraints can also be added to the formula in a prepro-

cessing step in order to enable unit propagation to deduce more implied

literals, which has the benefit of not requiring modifications to the SAT

solver. The connection between equivalence reasoning and xor-cycles en-

ables us to consider a potentially more efficient way to implement equiv-

alence reasoning. By enumerating these cycles and adding a new linear

combination of the original constraints for each such cycle to the instance,

we can achieve an instance in which unit propagation simulates equiva-

lence reasoning. As there may be an exponential number of such cycles,

we develop another translation to simulate equivalence reasoning with

unit propagation. The translation is polynomial as new variables are

introduced; we prove that if new variables are not allowed, then there

are instances families for which polynomially sized simulation transla-

tions do not exists. translation can be optimized by adding only a selected

subset of the new parity constraints. Finally, we also present a transla-

tion that enables unit propagation to simulate parity reasoning systems

stronger than equivalence reasoning through the use of additional xor-

constraints on auxiliary variables. The translation takes into account the

structure of the original conjunction of xor-constraints and can produce

compact formulas for sparsely connected instances. Using the translation

to simulate full Gauss-Jordan elimination with plain unit propagation re-

quires an exponential number of additional xor-constraints in the worst

case. Recently, it has been shown in Gwynne and Kullmann [2013] that

a conjunction of xor-constraints does not have a polynomial-size “arc con-

sistent” CNF-representation, which implies it is not feasible to simulate

Gauss-Jordan elimination by unit propagation in the general case. On

many instances, though, better solver performance can be obtained by

simulating a weaker parity reasoning system as it reduces the size of the

translation substantially. By applying our previous results on detecting

whether unit propagation or equivalence reasoning is enough to deduce

all implied literals, the size of the translation can be optimized further.

The experimental evaluation suggests that the translation can improve

96

Simulating Parity Reasoning

overall solving performance on some instances.

7.1 Resolution does not Simulate Parity Explanations

Parity explanations presented in Chapter 4 can be shorter than implica-

tive explanations making them potentially more effective in pruning the

search space of the CDCL SAT solver. Now we show that this is the case

at least in theory; parity explanations can be used to refute some hard

formulas that do not have polynomial-size refutation proofs.

We use the “parity graph” formulas defined by Urquhart [1987]. A parity

graph is an undirected, connected, edge-labeled graph G = 〈G,E〉 where

each node v ∈ V is labeled with a charge c(v) ∈ {⊥,�} and each edge

〈u, v〉 ∈ E is labeled with a distinct variable. The total charge c(G) =⊕
v∈V c(v) of a parity graph G is the parity of all node charges. Given a

node v, we define the xor-constraint α(v) = q1 ⊕ · · · ⊕ qn ≡ c(v), where

q1, . . . , qn are the variables used as labels in the edges connected to v, and

xorclauses(G) =
∧

v∈V α(v). For an xor-constraint C over n variables, let

cnf(C) denote the equivalent CNF formula, i.e. the conjunction of 2n−1

clauses with n literals in each. Define clauses(G) =
∧

v∈V cnf(α(v)).

As proven in Lemma 4.1 in Urquhart [1987], xorclauses(G) and clauses(G)

are unsatisfiable if and only if c(G) = �. Parity graphs can be used to

derive formulas that have large resolution proofs: there is an infinite se-

quence G1, G2, . . . of degree-bounded parity graphs such that c(Gi) = �
for each i and the following holds:

Lemma 12 (Thm. 5.7 of Urquhart [1987]). There is a constant c > 1 such

that for sufficiently large m, any resolution refutation of clauses(Gm) con-

tains cn distinct clauses, where clauses(Gm) is of length O(n), n = m2.

Our important result on parity explanation follows: if G is any parity

graph G such that c(G) = �, provided that a number of xor-assumptions

can be made, an empty parity explanation can be derived from xorclauses(G)

refuting the formula with a single parity explanation:

Theorem 13 (Thm. 3 of Laitinen et al. [2014b]). Let G = 〈V,E〉 be a par-

ity graph such that c(G) = �. There is a UP-refutation for xorclauses(G) ∧
q1 · · · ∧ qk for some xor-assumptions q1, . . . , qk, a node v with L(v) = ⊥
in it, and a cut W = 〈Va, Vb〉 for v such that Expl⊕(v,W) = �. Thus

xorclauses(G) |= (� ⇔ ⊥), showing xorclauses(G) unsatisfiable.

It has been shown by Pipatsrisawat and Darwiche [2011] that resolution

97

Simulating Parity Reasoning

Figure 7.1. A Subst-derivation

is the underlying proof system in CDCL SAT solvers. Also, provided that

xor-constraints are of bounded length, unit propagation on xor-constraints

can be efficiently simulated by translating the xor-constraints to CNF and

propagating the CNF clauses. It follows that:

Corollary 1. There are families of unsatisfiable CNF-xor formulas for

which DPLL(XOR) using UP-module (i) has polynomial sized proofs if par-

ity explanations are allowed, but (ii) does not have such if the “classic”

implicative explanations are used.

Although the CDCL SAT solver generally does not make the required

xor-assumptions needed for an empty implying clause, parity explana-

tions can be added as learned xor-constraints as explained in Section 4.2.

When parity explanations are learned in this way, instances derived from

parity graphs are solved fast.

7.2 Resolution Simulates Equivalence Reasoning Polynomially

As observed in the previous section, there are infinite families of xor-

constraint conjunctions φxor such that the straightforward CNF-translation∧
D∈φxor

cnf(D) does not have polynomial-size resolution refutation. How-

ever, such xor-constraint conjunctions can be solved in polynomial time by

Gaussian elimination. Gaussian elimination can be computationally in-

tensive for larger matrices, so computationally faster but “weaker” equiv-

98

Simulating Parity Reasoning

Figure 7.2. A resolution derivation for an implying clause (the dotted arrows) related to
Figure 7.1

alence reasoning systems have been proposed.

We now consider how relation relates to the two equally powerful xor-

deduction systems Subst and EC that both implement a form of equiva-

lence reasoning. The xor-deduction system Subst is simpler, so we use it in

this study. If Subst can be used to derive an xor-constraint, then an equiv-

alent result can be derived with resolution from the CNF-translation of

the instance with a “pseudolinear” increase in the number of clauses:

Theorem 14 (Thm. 1 of Laitinen et al. [2013]). Assume a Subst-derivation

G = 〈V,E, L〉 on a conjunction ψ of xor-constraints. There is a resolution

derivation π on
∧

D∈ψ cnf(D) such that (i) if v ∈ V and L(v)
= �, then the

clauses cnf(L(v)) occur in π, and (ii) π has at most |V |2m−1 clauses, where

m is the number of variables in the largest xor-constraint in ψ.

A similar result is already observed in Li [2000b] when restricted to

binary and ternary xor-constraints.

Resolution can also be used to derive clausal explanations for xor-implied

literals from the CNF-translation of the instance without the use of xor-

assumptions:

Theorem 15 (Thm. 2 of Laitinen et al. [2013]). Assume a Subst-derivation

G = 〈V,E, L〉 on φxor ∧ l1 ∧ · · · ∧ lk and a CNF-compatible cut W = (Va, Vb).

There is a resolution derivation π on
∧

D∈φxor
cnf(D) such that (i) for each

vertex v ∈ Vb with L(v)
= �, π includes all the clauses in {Expl(v,W) ⇒ C|

99

Simulating Parity Reasoning

C ∈ cnf(L(v))}, and (ii) π has at most |V |2m−1 clauses, where m is the num-

ber of variables in the largest xor-constraint in φxor.

Figures 7.1 and 7.2 illustrate how to derive the implying clause x → ¬t
using the construction.

Beame et al. [2004] formalize clause learning as a proof system and

shows that when unlimited restarts are allowed, clause learning is equally

powerful to resolution. Zhang and Malik [2003] describe how to check the

validity of unsatisfiability claims computed by SAT solver by extracting

a resolution refutation from the trace produced by the SAT solver. Res-

olution can thus be seen as the underlying proof system in CDCL SAT

solvers. The same holds for a DPLL(XOR) with Subst or EC in the xor-

reasoning module: resolution can be used to derive all implicative expla-

nations required by the CDCL SAT solver and then considered as nor-

mal clauses when producing the resolution proof simulating the execu-

tion of the CDCL SAT solver. As shown by Pipatsrisawat and Darwiche

[2011], CDCL SAT solvers can polynomially simulate resolution, so it fol-

lows that:

Corollary 2. For CNF-xor instances with fixed width xor-constraints, the

underlying proof system of a DPLL(XOR) solver using Subst or EC as the

xor-reasoning module is polynomially equivalent to resolution.

7.3 Parity Explanations (Almost) Simulate Gauss-Jordan
Elimination

As observed earlier in Section 7.1, parity explanations can be used to re-

fute some hard formulas whose CNF-translations do not have polynomial-

size resolution refutations. Now we strengthen the result and show that

parity explanations on UP-derivations can produce xor-constraints corre-

sponding to the explanations produced by Gauss-Jordan elimination, pro-

vided that one can make the suitable xor-assumptions and each variable

in the xor-constraint conjunction occurs at most three times.

Theorem 16 (Thm. 3 of Laitinen et al. [2013]). Let φxor be a conjunc-

tion of xor-constraints such that each variable occurs in at most three xor-

constraints.

If φxor is unsatisfiable, then there is a UP-derivation on φxor ∧ y1 ∧ ...∧ ym

with some y1, ..., ym ∈ vars(φxor), a vertex v with L(v) = (⊥ ≡ �) in it, and a

100

Simulating Parity Reasoning

cut W for v such that Expl⊕(v,W) = (⊥ ≡ ⊥) and thus Expl⊕(v,W)+L(v) =

(⊥ ≡ �).

If φxor is satisfiable and φxor |= (x1 ⊕ ... ⊕ xk ≡ p), then there is a UP-

derivation on φxor ∧ (x1 ≡ p1) ∧ ... ∧ (xk ≡ pk) ∧ y1 ∧ ... ∧ ym with some

y1, ..., ym ∈ vars(φxor)\{x1, ..., xk}, a vertex v with L(v) = (⊥ ≡ �) in it, and

a cut W for v such that Expl⊕(v,W) + L(v) = (x′1 ⊕ ... ⊕ x′l ≡ p′) for some

{x′1, ..., x′l} ⊆ {x1, ..., xk} and p′ ∈ {⊥,�} such that φxor |= (x′1⊕ ...⊕x′l ≡ p′).

Implying clauses for xor-implied literals provided by Gauss-Jordan elim-

ination xor-deduction system presented in Section 3.4 are based on prime

implicate xor-constraints because Gauss-Jordan elimination uses reduced

row-echelon form matrices and explanations are derived from the rows

of such matrices. This has an interesting consequence; provided that

unlimited restarts are allowed, the CDCL SAT solver equipped with UP

xor-deduction system, parity explanations and xor-constraint learning as

described in Section 4.2 can in theory simulate Gauss-Jordan elimination

xor-deduction system in the DPLL(XOR) framework on instances where

each variable occurs at most three times. All linear combinations that

the Gauss-Jordan xor-deduction system needs in its derivations can be

learned first with parity explanations.

7.4 Simulating Equivalence Reasoning with Unit Propagation

The connection between equivalence reasoning and xor-cycles studied in

Section 5.2 enables us to consider a potentially more efficient way to

implement equivalence reasoning. We now present three translations

that add redundant xor-constraints with the aim that unit propagation

is enough to always deduce all xor-implied literals in the resulting xor-

constraint conjunction. The first translation is based on the xor-cycles of

the formula and does not add auxiliary variables, the second translation

is based on explicitly communicating equivalences between the variables

of the original formula using auxiliary variables, and the third translation

combines the first two.

The redundant xor-constraint conjunction, called an EC-simulation for-

mula ψ, added to φxor by a translation should satisfy the following: (i) the

satisfying truth assignments of φxor are exactly the ones of φxor ∧ ψ when

projected to vars(φxor), and (ii) if l̂ is EC-derivable from φxor∧(l1)∧· · ·∧(lk),
then l̂ is UP-derivable from (φxor ∧ ψ) ∧ (l1) ∧ · · · ∧ (lk).

101

Simulating Parity Reasoning

7.4.1 Simulation without extra variables

We first present an EC-simulation formula for a given 3-xor normal form

xor-constraint conjunction φxor without introducing additional variables.

The translation adds one xor-constraint with the all outer variables per

xor-cycle:

cycles(φxor) =
∧

XC (〈x1,...,xn〉,〈y1,...,yn〉,p)⊆φxor

(y1 ⊕ ...⊕ yn ≡ p)

For example, for the conjunction φxor in Figure 5.5 cycles(φxor) = (a⊕ e⊕
j ≡ ⊥).

Theorem 17. If φxor is a 3-xor normal form xor-constraint conjunction,

then cycles(φxor) is an EC-simulation formula for φxor.

The translation is intuitively suitable for problems that have a small

number of xor-cycles, such as the DES cipher. Each instance of our DES

benchmark (4 rounds, 2 blocks) has 28–32 xor-cycles. We evaluated the

translation experimentally on this benchmark using cryptominisat 2.9.2, min-

isat 2.0, minisat 2.2, and minisat 2.0 extended with the UP xor-reasoning mod-

ule. The benchmark set has 51 instances and the clauses of each instance

are permuted 21 times randomly to negate the effect of propagation order.

The results are shown in Figure 7.3. The translation manages to slightly

reduce solving time for cryptominisat, but this does not happen for other

solver configurations based on minisat, so the slightly improved perfor-

mance is not completely due to simulation of equivalence reasoning using

unit propagation. The xor-part (320 xor-constraints of which 192 tree-

like) in DES is negligible compared to CNF-part (over 28000 clauses), so

a great reduction in solving time is not expected.

Although equivalence reasoning can be simulated with unit propaga-

tion by adding an xor-constraint for each xor-cycle, this is not feasible

for all instances in practice due to the large number of xor-cycles. We

now show that, if auxiliary variables are not allowed, there are families

of xor-constraint conjunctions without polynomial-size EC-simulation for-

mulas. Consider the xor-constraint conjunction D(n) = (x1 ⊕ xn+1 ⊕ y) ∧∧n
i=1(xi⊕xi,a⊕xi,b)∧(xi,b⊕xi,c⊕xi+1)∧(xi⊕xi,d⊕xi,e)∧(xi,e⊕xi,f ⊕xi+1)

whose constraint graph is shown in Figure 7.4. Observe that D(n) is cycle-

partitionable and thus Subst/EC-deducible. But all its EC-simulation for-

mulas are at least of exponential size if no auxiliary variables are allowed:

Lemma 18 (Lem. 2 of Laitinen et al. [2014a]). Any EC-simulation for-

mula ψ for D(n) with vars(ψ) = vars(D(n)) contains at least 2n xor-constraints.

102

Simulating Parity Reasoning

 1

 10

 100

 0 200 400 600 800 1000 1200

tim
e

(s
)

number of problems solved by cryptominisat

original instances
with cycles EC-simulation formula

Figure 7.3. Solving time with and without cycles(φxor) translation on DES instances

�

�

x1

x1,a

x1,b

x1,c

x2
� �

�
x1,e

x1,d x1,f

...
xn+1xnx3

y

Figure 7.4. The constraint graph of D(n)

103

Simulating Parity Reasoning

7.4.2 Simulation with extra variables: basic version

Our second translation Eq(φxor) avoids the exponential increase in size by

introducing a quadratic number of auxiliary variables.

Now the translation is

Eq(φxor) =

⎛
⎝ ∧

(xi ⊕xj ⊕xk≡p)∈φxor

(eij ⊕xk≡p⊕�)∧(eik ⊕xj≡p⊕�)∧
(xi⊕ ejk≡p⊕�)

⎞
⎠ ∧

⎛
⎝ ∧

xi,xj ,xk∈vars(φxor),i<j<k

(eij ⊕ ejk ⊕ eik ≡ �)

⎞
⎠

where (i) the first line ensures that if we can deduce that two variables

in a ternary xor-constraint are (in)equivalent, then we can deduce the

value of the third variable, and vice versa, and (ii) the second line encodes

transitivity of (in)equivalences. The translation enables unit propagation

to deduce all EC-derivable literals over the variables in the original xor-

constraint conjunction:

Theorem 19. If φxor is an xor-constraint conjunction in 3-xor normal form,

then Eq(φxor) is an EC-simulation formula for φxor.

7.4.3 Simulation with extra variables: optimized version

The translation Eq(φxor) adds a cubic number of xor-constraints with re-

spect to the variables in φxor. This is infeasible for many real-world in-

stances. The third translation combines the first two translations by im-

plicitly taking into account the xor-cycles in φxor while adding auxiliary

variables where needed. The translation Eq�(φxor) is presented in Fig-

ure 7.5. The xor-constraints added by Eq�(φxor) are a subset of Eq(φxor)

and the meaning of the variable eij remains the same. The intuition be-

hind the translation, on the level of constraint graphs, is to iteratively

shorten xor-cycles by “eliminating” one variable at a time by adding aux-

iliary variables that “bridge” possible equivalences over the eliminated

variable. The line 2 in the pseudo-code picks a variable xj to eliminate.

While the correctness of the translation does not depend on the choice,

we decided to use a heuristic approach to pick a variable that shares xor-

constraints with fewest variables because the number of xor-constraints

produced in lines 3–9 is then smallest. The loop in line 3 iterates over all

possible xor-cycles where the selected variable xj and two “neighboring”

non-eliminated variables xi,xk may occur as inner variables. The line 4

104

Simulating Parity Reasoning

Eq�(φxor): start with φ′
xor = φxor and V = vars(φxor)

1. while (V
= ∅):

2. xj ← extract a variable v from V

minimizing | vars({C ∈ φ′
xor | v ∈ vars(C)}) ∩ V |

3. for each (xi ⊕xj ⊕ eij ≡ pij), (xj ⊕xk ⊕ ejk ≡ pjk) ∈ φ′
xor

such that xi, xk ∈ V ∧ xi
= xj
= xk

4. if (xi ⊕ xk ⊕ y ≡ p′ik) ∈ φ′
xor

5. eik ← y; pik ← p′ik
6. else

7. eik ← new variable; pik ← �
8. φ′

xor ← φ′
xor ∧ (xi ⊕ xk ⊕ eik ≡ pik)

9. φ′
xor ← φ′

xor ∧ (eij ⊕ ejk ⊕ eik ≡ pij ⊕ pjk ⊕ pik)

10. return φ′
xor\φxor

Figure 7.5. The Eq� translation

checks if there already is an xor-constraint that has both xi and xk. If

so, then in line 5 an existing variable is used as eik capturing the equiva-

lence between the variables xi and xk. If the variable pik is �, then eik is

true when the variables xi and xk have the same value. The line 9 adds

an xor-constraint ensuring that transitivity of equivalences between the

variables xi, xj , and xk can be handled by unit propagation.

Example 13. Consider the xor-constraint conjunction φxor = (x1⊕x2⊕x4 ≡
�) ∧ (x2⊕x3⊕x5 ≡ �) ∧ (x5⊕x7⊕x8 ≡ �) ∧ (x4⊕x6⊕x7 ≡ �) shown

in Figure 7.6(a). The translation Eq�(φxor) first selects the variables in

{x1, x3, x6, x8} one by one as each appears in only one xor-constraint. The

loop in lines 3–9 is not executed for any of them. The remaining vari-

ables are V= {x2, x4, x5, x7}. Assume that x2 is selected. The loop in lines

3–9 is entered with values xi=x4, xj=x2, eij=x1, xk=x5, ejk=x3, pij=�, and

pjk=�. The condition in line 4 fails, so the xor-constraints (x4⊕x5⊕ e45≡�)

and (x1⊕x3⊕ e45≡�),where e45 is a new variable, are added. The result-

ing instance is shown in Figure 7.6(b). Assume that x5 is selected. The loop

in lines 3–9 is entered with values xi=x4, xj=x5, eij=e45, xk=x7, ejk=x8,

pij=�, and pjk=�. The condition in line 4 is true, so eik=x6, and the xor-

constraint (x6⊕x8⊕ e45≡�) is added in line 9. The final result is shown

in Figure 7.6(c).

Theorem 20. If φxor is an xor-constraint conjunction in 3-xor normal form,

then Eq�(φxor) is an EC-simulation formula for φxor.

105

Simulating Parity Reasoning

(a) (b) (c)

Figure 7.6. Constraint graphs illustrating how the translation Eq� adds new xor-
constraints

7.5 Simulating Stronger Parity Reasoning with Unit Propagation

The previous section presents three different translations for simulating

equivalence reasoning with unit propagation. We now present a transla-

tion that adds redundant xor-constraints and auxiliary variables in the

problem guaranteeing that unit propagation is enough to always deduce

all xor-implied literals in the resulting xor-constraint conjunction. The

translation thus effectively simulates a complete parity reasoning en-

gine based on incremental Gauss-Jordan elimination presented in [IV]

and in Han and Jiang [2012]. The translation is based on ensuring that

each relevant linear combination of original variables has a corresponding

“alias” variable, and adding xor-constraints that enable unit propagation

to infer values of “alias” variables when corresponding linear combina-

tions are implied. The translation, which is exponential in the worst case,

can be made polynomial by bounding the length of linear combinations

to consider. While unit propagation may not be able then to deduce all

xor-implied literals, the overall performance may be improved greatly.

The redundant xor-constraint conjunction, called a GE-simulation for-

mula ψ, added to φxor by the translation should satisfy the following: (i)

the satisfying truth assignments of φxor are exactly the ones of φxor ∧ ψ

when projected to vars(φxor), and (ii) if φxor is satisfiable and φxor∧ l1∧· · ·∧
lk |= l̂, then l̂ is UP-derivable from (φxor ∧ψ)∧ l1 ∧ · · · ∧ lk, and (iii) if φxor is

unsatisfiable, then (φxor ∧ ψ) �UP (⊥ ≡ �).

The translation k-Ge, presented in Figure 7.8, where k stands for the

maximum length of linear combination to consider, “eliminates” each vari-

able of the conjunction φxor at a time and adds xor-constraints produced

by the subroutine translation ptable , presented in Figure 7.7. Although

the choice of variable to eliminate does not affect the correctness of the

translation, we employ a greedy heuristic to select a variable that shares

xor-constraints with the fewest variables. The number of xor-constraints

produced in the subroutine ptable is then the smallest. The translation

106

Simulating Parity Reasoning

ptable(Y, φxor, k): start with φ′
xor = φxor

1. for each Y ′ ⊆ Y such that |Y ′| ≤ k and Y ′
= ∅
2. if there is no a ∈ vars(φ′

xor) such that (a⊕ Y ′ ≡ ⊥) is in φ′
xor

3. φ′
xor ← φ′

xor ∧ (a⊕ Y ′ ≡ ⊥) where a is a new “alias” variable for Y ′

4. if (Y ′ ≡ p) is in φ′
xor and (a ≡ p) is not in φ′

xor

5. φ′
xor ← φ′

xor ∧ (a ≡ p)

6. for each pair of subsets Y1, Y2 ⊆ Y such that |Y1| ≤ k, |Y2| ≤ k, and Y1
= Y2

7. if there is “alias” variable a3 ∈ vars(φ′
xor)

such that (a3 ⊕ (Y1 ⊕ Y2) ≡ ⊥) is in φ′
xor

8. a1 ← the “alias” variable v such that (v ⊕ Y1 ≡ ⊥) is in φ′
xor

9. a2 ← the “alias” variable v such that (v ⊕ Y2 ≡ ⊥) is in φ′
xor

10. if (a1 ⊕ a2 ⊕ a3 ≡ ⊥) is not in φ′
xor

11. φ′
xor ← φ′

xor ∧ (a1 ⊕ a2 ⊕ a3 ≡ ⊥)

12. return φ′
xor \ φxor

Figure 7.7. The ptable translation

k-Ge(φxor): start with φ′
xor = φxor and V = vars(φxor)

1. while (V
= ∅):

2. Let clauses(x, φ′
xor) = {D | D in φ′

xor and x ∈ vars(D)}
3. Let x be a variable in V minimizing | vars(clauses(x, φ′

xor)) ∩ V |
4. φ′

xor ← φ′
xor ∧ ptable(vars(clauses(x, φ′

xor)) ∩ V, φ′
xor, k)

5. Remove x from V

6. return φ′
xor\φxor

Figure 7.8. The k-Ge translation

ptable(Y, ψ, k) adds “alias” variables and O(22k)+|φxor| xor-constraints to ψ

with the aim to simulate Gauss-Jordan row operations involving at most k

variables in the xor-constraints of the eliminated variable (the set Y) and

no other variables. Provided that the maximum length of linear combina-

tions to consider, the parameter k, is high enough (k ≥ |Y |), the resulting

xor-constraint conjunction ψ ∧ ptable(Y, ψ, k) has a UP-propagation table

for the set of variables Y ⊆ vars(φxor), denoted by Y ⊆UP ψ, meaning that

the following conditions hold for all Y ′, Y1, Y2 ⊆ Y :

PT1: There is an “alias” variable for every non-empty subset of Y : if Y ′ is

a non-empty subset of Y , then there is a variable a ∈ vars(ψ) such that

(a ⊕ Y ′ ≡ ⊥) is in ψ, where (a ⊕ Y ′ ≡ ⊥) for Y ′ = {y′1, . . . , y′n} means

(a⊕ y′1 ⊕ · · · ⊕ y′n ≡ ⊥).

107

Simulating Parity Reasoning

PT2: There is an xor-constraint for propagating the symmetric difference

of any two subsets of Y : if Y1 ⊆ Y and Y2 ⊆ Y , then there are variables

a1, a2, a3 ∈ vars(ψ) such that (a1⊕Y1 ≡ ⊥), (a2⊕Y2 ≡ ⊥), (a3⊕ (Y1⊕Y2) ≡
⊥), and (a1 ⊕ a2 ⊕ a3 ≡ ⊥) are in ψ.

PT3: Alias variables of original xor-constraints having only variables of Y

are assigned: if (Y ′ ≡ p) is an xor-constraint in ψ such that Y ′ ⊆ Y , then

there is a variable a ∈ vars(ψ) such that (a⊕ Y ′ ≡ ⊥) and (a ≡ p) is in ψ.

A UP-propagation table for a set of variables Y in ψ guarantees that if

some alias variables a1, . . . , an ∈ vars(ψ) binding the variable sets Y1, . . . , Yn ⊆
Y are assigned, the alias variable a ∈ vars(ψ) bound to the linear combi-

nation (Y1 ⊕ · · · ⊕ Yn) is UP-deducible: ψ ∧ (a1 ≡ p1) ∧ · · · ∧ (an ≡ pn) �UP

(a ≡ p1 ⊕ · · · ⊕ pn).

Provided that sufficiently long linear combinations are considered (the

parameter k), UP-propagation tables added by the k-Ge enable unit propa-

gation to always deduce all xor-implied literals, and thus simulate a com-

plete Gauss-Jordan propagation engine:

Theorem 21. If φxor is an xor-constraint conjunction, then k-Ge(φxor) is a

GE-simulation formula for φxor provided that k = | vars(φxor)|.

Example 14. Consider the xor-constraint conjunction φ
(0)
xor = (x1⊕x6⊕x7 ≡

�)∧(x2⊕x3⊕x7 ≡ �)∧(x2⊕x5⊕x8 ≡ ⊥)∧(x3⊕x4⊕x5 ≡ �)∧(x4⊕x6⊕x8 ≡
⊥) illustrated in Figure 6.10.

With the elimination order (x1, x7, x4, x5, x2, x3, x6, x8) and k = 4, the

translation k-Ge first extends φxor to φ
(1)
xor with ptable({x1, x6, x7} , φxor, k).

These xor-constraints include (i) the “alias binding constraints” (see PT1)

a1⊕x1 ≡ ⊥, a6,7⊕x6⊕x7 ≡ ⊥, a1,6,7⊕x1⊕x6⊕x7 ≡ ⊥, (ii) the “linear

combination constraint” (see PT2) a1⊕ a6,7⊕ a1,6,7 ≡ ⊥, and (iii) the “orig-

inal constraint binder” (see PT3) a1,6,7 ≡ �, where ai,... is the alias for the

subset {xi, ...} of the original variables. After unit propagation, these con-

straints imply the binary constraint a1⊕ a6,7 ≡ � allowing us to deduce x1

from the parity a6,7 of x6 and x7.

Eliminating x4 adds ptable({x3, x4, x5, x6, x8} , φ(2)
xor, k), including the con-

straints a3,4,5⊕ a4,6,8⊕ a3,5,6,8 ≡ ⊥, a3,4,5 ≡ �, and a4,6,8 ≡ �, propagating

a3,5,6,8 ≡ �.

Eliminating x5 adds ptable({x2, x3, x5, x6, x8} , φ(3)
xor, k) (observe that x6 is

in the set as it occurs in the constraint a3,5,6,8⊕x3⊕x5⊕x6⊕x8 ≡ ⊥ added

in the previous step), including a2,5,8⊕ a2,3,6⊕ a3,5,6,8 ≡ ⊥ and a2,5,8 ≡ ⊥.

108

Simulating Parity Reasoning

At this point we could already unit propagate x1 ≡ � (from a3,5,6,8 ≡ �,

a2,5,8 ≡ ⊥, and a2,5,8⊕ a2,3,6⊕ a3,5,6,8 ≡ ⊥ we get a2,3,6 ≡ � and from this

then a6,7 ≡ ⊥ and finally a1 ≡ �, i.e. x1 ≡ �).

Note that the translation 3-Ge(φxor) is not a GE-simulation formula for

φxor because ptable does not add “alias” variables for any 4-subset of origi-

nal variables and the linear combination of any two original xor-constraints

has at least four variables.

7.5.1 Propagation-preserving xor-simplification

Some of the xor-constraints added by k-Ge can be redundant regarding

unit propagation. We now present a simplification method that preserves

literals that can be implied by unit propagation. There are two sim-

plification rules, given a pair of xor-constraint conjunctions 〈φa, φb〉 (ini-

tially 〈φxor, ∅〉): [S1] an xor-constraint D in φa be can moved to φb, re-

sulting in 〈φa \ {D} , φb ∪ {D}〉, and [S2] an xor-constraint D in φa can

be simplified with an xor-constraint D′ in φb to (D + D′) provided that

|vars(D′) ∩ vars(D)| ≥ |vars(D′)|−1, resulting in 〈(φa \ {D}) ∪ {D +D′} , φb〉.

Theorem 22. If 〈φ′
a, φ

′
b〉 is the result of applying one of the simplification

rules to 〈φa, φb〉 and φa∧φb∧ l1∧· · ·∧ lk �UP l̂, then φ′
a∧φ′

b∧ l1∧· · ·∧ lk �UP l̂.

Example 15. The conjunction 3-Ge((x1⊕x2⊕x3⊕x4 ≡ ⊥)) contains the

alias binding constraints D1 := (a1,2,3,4⊕x1⊕x2⊕x3⊕x4 ≡ ⊥), D2 :=

(a1,2⊕x1⊕x2 ≡ ⊥), D3 := (a3,4⊕x3⊕x4 ≡ ⊥), as well as the linear com-

bination constraint D4 := (a1,2⊕ a3,4⊕ a1,2,3,4 ≡ ⊥). The alias binding con-

straint D1 can in fact be eliminated by first applying the rule S1 to the xor-

constraints D2, D3, and D4. Then, by using the rule S2, the xor-constraint

D1 is simplified first with D2 to (a1,2,3,4⊕ a1,2⊕x3⊕x4 ≡ ⊥) and then with

D3 to (a1,2,3,4⊕ a1,2⊕ a3,4 ≡ ⊥), and finally with D4 to (⊥ ≡ ⊥).

7.5.2 Experimental Evaluation

To evaluate the translation k-Ge, we ran cryptominisat 2.9.6, glucose 2.3, and

zenn 0.1.0 on the seven benchmark families with the translations k-Ge

and Eq�1. It is intractable to simulate full Gauss-Jordan elimination

for these instances, so we adjusted the k-value of each call to the sub-

routine ptable(Y, ψ, k) to limit the number of additional xor-constraints.

1The experimental evaluation of Eq� and k-Ge in [V] is partially erroneous. See
Laitinen et al. [2013] for the corrected version.

109

Simulating Parity Reasoning

The translation was computed for each connected component separately.

We found relatively good performance when solving SAT Competition in-

stances by (i) stopping when |Y | > 66, (ii) setting k = 1 when it was

detected that unit propagation deduces all xor-implied literals, (iii) set-

ting k = 2 when |Y | ∈ [10, 66] or when |Y | < 10 and it was detected that

equivalence reasoning deduces all xor-implied literals, (iv) setting k = 3

when |Y | ∈ [6, 9], setting k = |Y | when |Y | ≤ 5. With these parameters,

the worst-case number of xor-constraints added by the subroutine ptable

is 2145. Figure 7.9 shows the increase in formula size by the translation

k-Ge on SAT Competition instances. The translation Eq�was computed

in a similar way. The results, shown in Figures 7.10, 7.11, 7.12, 7.22,

7.14, 7.15, 7.16, 7.17, 7.18, 7.19, 7.20, and 7.21, were obtained by run-

ning each solver configuration on each benchmark instance for at most

one hour on 20-core Intel E5-2680 v2 with 256 GB RAM per processor.

Memory limit for one solver instance was set to 10 GB. The solver con-

figuration k-Ge computes the translation k-Ge before running the corre-

sponding solver, and k-Ge simp additionally preprocesses the instance with

propagation-preserving xor-simplification. The solver configurations Eq*

and Eq* simp behave similarly but use the translation Eq�. The time spent

in computing the translations is included.

When solving with cryptominisat, the translations reduce solving time on

A5/1 instances. The translations reduce number of decisions on A5/1,

FEAL, Trivium, and some SAT Competition instances. The translation

k-Ge reduces number of decisions more than Eq� on FEAL and Trivium

instances.

When solving with glucose, the translations reduce solving time for FEAL

instances. The translations reduce number of decisions on A5/1, FEAL,

Trivium and some SAT Competition instances. The translation k-Ge re-

duces number of decisions more than Eq� on Trivium instances.

When solving with zenn, the translations enable the solver to solve more

A5/1 instances. The translations reduce number of decisions on FEAL,

Trivium, and SAT Competition instances.

Propagation-preserving xor-simplification incurs a noticeable delay pro-

portional to number of xor-constraints before search for solution can be

started. The translation Eq� may be more compact compared to the trans-

lation k-Ge because it does not benefit from the xor-simplification. The

translation k-Ge, however, performs better with the xor-simplification on

i) with cryptominisat, on A5/1 and Trivium instances, ii) with glucose and

110

Simulating Parity Reasoning

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10
 100

 1000
 10000

 100000

k-
G

e
xo

r-
co

ns
tr

ai
nt

s

original xor-constraints

Figure 7.9. Xor-constraints in SAT 05-11 instances

zenn, on A5/1 and Hitag2 instances.

The choice of parameters for the translations was made based on the

performance on one benchmark family only and the same parameters

were used for all benchmark families. It is left for future work to find out

whether it is possible to choose more appropriate parameters for other

benchmark families.

Finally, we present an overall comparison of the solver configurations

presented in Chapters 3, 4, and 7. Figures 7.24, 7.25, 7.26, 7.27, 7.28,

7.29, and 7.30 show the number of solved instances, the median number

of decisions and the median solving time for the 24 solver configurations

on the seven benchmark families.

7.5.3 Polynomial-size translation for instances of bounded
treewidth

The number of xor-constraints produced by the translation k-Ge depends

strongly on the instance, as shown in Figure 7.9. Now we connect the

worst-case size of a ptable-based GE-simulation formula to treewidth, a

well-known structural property of (constraint) graphs used often to char-

111

Simulating Parity Reasoning

acterize the hardness of solving a problem, e.g. an instance of CSP with

bounded treewidth can be solved in polynomial time (shown by Freuder

[1990]). See Samer and Szeider [2010] for a more complete overview on

solving CSPs with bounded treewidth. They use the term incidence graph

to discuss constraint graphs. We apply the decomposition method pre-

sented in Section 6.3 to produce a polynomial-size GE-simulation formula

for instances of bounded treewidth. We also present some found upper

bounds for treewidth in SAT Competition instances that illustrate to what

extent parity reasoning can be simulated through unit propagation. As

illustrated in Section 6.3, each pair of adjacent nodes in a tree decom-

position defines a cut variable set, so it suffices to add a UP-propagation

table for each node’s variable set. If an xor-constraint conjunction has

a bounded treewidth, the tree decomposition can be used to construct a

polynomial-size GE-simulation formula:

Theorem 23. If {X1, . . . , Xn} is the family of variable sets in the tree de-

composition of the primal graph of an xor-constraint conjunction φxor and

φ0, . . . , φn is a sequence of xor-constraint conjunctions such that φ0 = φxor

and φi = φi−1 ∧ ptable(Xi, φi−1, |Xi|) for i ∈ {1, . . . , n}, then φn \ φxor is a

GE-simulation formula for φxor with O(n22k)+ |φxor| xor-constraints, where

k = max(|X1|, . . . , |Xn|).

To find out to what extent unit propagation can simulate stronger parity

reasoning, we studied the 474 SAT Competition benchmark instances. We

applied the junction tree algorithm described in Pearl [1982] to get an up-

per bound for treewidth. The found treewidths are shown in Figure 7.23.

There are some instances that have compact GE-simulation formulas, but

for the majority of the instances, full GE-simulation formula is likely to be

intractably large. For these instances a powerful solution technique can

be to choose a suitable propagation method for each biconnected compo-

nent separately, either through a translation or an xor-reasoning module.

Related work. Subst-simulation and GE-simulation formulas are closely

related to the problem of finding good CNF-representations of systems of

linear equations over the two-element field (conjunctions of xor-constraints)

studied in Gwynne and Kullmann [2013]. In their work, the basic qual-

ity criterion is “arc consistency”, that is, for every partial truth assign-

ment to the (original) variables of the conjunction of xor-constraints, all

implied literals can be deduced by unit propagation. They show that

there is no AC-representation of polynomial size for arbitrary conjunc-

112

Simulating Parity Reasoning

tion of xor-constraints. They develop a translation that produces an AC-

representation of a conjunction of xor-constraints by enumerating all lin-

ear combinations of the xor-constraints, and then introducing auxiliary

variables to split longer xor-constraints to an equisatisfiable conjunction

of xor-constraints of at most three variables. The translation adds at most

2m new xor-constraints where m is the number of original xor-constraints,

and it is thus more compact than the translation k-Ge, which is exponen-

tial in the number of variables. However, in practice, the translation k-Ge

can produce much smaller GE-simulation formulas because it takes into

account the structure of the xor-constraint conjunction.

To obtain CNF-representations stronger than mere AC, Gwynne and

Kullmann [2013] consider the class PC which stands for propagation-

complete clause-sets, introduced in Bordeaux and Marques-Silva [2012].

The stronger criterion requires that for all partial truth assignments to

the variables of a conjunction of xor-constraints, involving also possible

auxiliary variables, all implied literals can be deduced by unit propaga-

tion. Gwynne and Kullmann [2013] develop a propagation-completeness

ensuring translation for xor-constraint conjunctions of at most two xor-

constraints. They define an incidence graph as bipartite graph where i)

each variable has a node and each xor-constraint has a node, and ii) there

is an edge between a variable node and an xor-constraint node if the vari-

able has an occurrence in the xor-constraint. They conjecture in Conjec-

ture 11.1 that there is a propagation-completeness ensuring translation

that the number of added xor-constraints is exponential in the treewidth

of the incidence graph of the original conjunction of xor-constraints. This

is closely related to Theorem where we define a polynomial GE-simulation

formula for xor-constraint conjunctions whose primal graphs have bounded

treewidth. We conjecture that the translation also ensures propagation-

completeness.

113

Simulating Parity Reasoning

 1

 10

 100

 1000

 0 100 200 300 400 500 600

A5/1 (time)

cryptominisat
Eq* simp

Eq*
k-Ge simp

k-Ge

 1000

 10000

 100000

 1e+06

 1e+07

 0 100 200 300 400 500 600

A5/1 (decisions)

 1

 10

 100

 0 10 20 30 40 50 60

DES (time)

 10000

 100000

 0 10 20 30 40 50 60

DES (decisions)

 1

 10

 100

 0 10 20 30 40 50 60 70 80 90

FEAL (time)

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60 70 80 90

FEAL (decisions)

cryptominisat
Eq* simp

Eq*
k-Ge simp

k-Ge

Figure 7.10. Solving time and number of decisions as functions of solved instances
(cryptominisat part 1/3)

114

Simulating Parity Reasoning

 1

 10

 100

 1000

 0 50 100 150 200 250 300 350

Grain (time)

cryptominisat
Eq* simp

Eq*
k-Ge simp

k-Ge
 10000

 100000

 1e+06

 1e+07

 0 50 100 150 200 250 300 350

Grain (decisions)

 1

 10

 100

 1000

 0 50 100 150 200 250 300

Hitag2 (time)

 100000

 1e+06

 1e+07

 0 50 100 150 200 250 300

Hitag2 (decisions)

 1

 10

 100

 1000

 0 50 100 150 200 250 300

SAT (time)

 10000

 100000

 1e+06

 1e+07

 0 50 100 150 200 250 300

SAT (decisions)

cryptominisat
Eq* simp

Eq*
k-Ge simp

k-Ge

Figure 7.11. Solving time and number of decisions as functions of solved instances
(cryptominisat part 2/3)

115

Simulating Parity Reasoning

 1

 10

 100

 1000

 0 100 200 300 400 500 600 700

Trivium (time)

cryptominisat
Eq* simp

Eq*
k-Ge simp

k-Ge

 1000

 10000

 100000

 1e+06

 1e+07

 0 100 200 300 400 500 600 700

Trivium (decisions)

Figure 7.12. Solving time and number of decisions as functions of solved instances
(cryptominisat part 3/3)

116

Simulating Parity Reasoning

A5/1 (640 instances) DES (51 instances)

Solver # Decisions Time (s) Solver # Decisions Time (s)

Eq* simp 607 24722 9.0 k-Ge 51 76706 8.1

Eq* 605 19724 6.8 k-Ge simp 51 77799 8.0

k-Ge simp 591 23558 21.4 Eq* 51 92624 11.6

k-Ge 571 24739 22.3 cryptominisat 51 93695 10.9

cryptominisat 504 340275 8.3 Eq* simp 51 96072 16.6

FEAL (84 instances) Grain (357 instances)

Solver # Decisions Time (s) Solver # Decisions Time (s)

k-Ge 84 66274 54.8 cryptominisat 356 253777 46.2

k-Ge simp 84 68468 76.0 k-Ge simp 54 - -

Eq* simp 84 91303 14.9 k-Ge 41 - -

Eq* 84 95753 14.8 Eq* 28 - -

cryptominisat 84 200137 4.4 Eq* simp 23 - -

Hitag2 (306 instances) SAT (474 instances)

Solver # Decisions Time (s) Solver # Decisions Time (s)

cryptominisat 306 577225 61.9 Eq* 312 2092268 588.6

Eq* simp 257 519855 831.0 Eq* simp 309 1961380 642.4

Eq* 257 531972 852.6 cryptominisat 308 2090916 442.0

k-Ge 133 - - k-Ge 300 1754659 1093.3

k-Ge simp 105 - - k-Ge simp 294 2219722 1167.7

Trivium (1020 instances)

Solver # Decisions Time (s)

cryptominisat 713 8344 1.6

Eq* simp 498 - -

Eq* 494 - -

k-Ge simp 434 - -

k-Ge 425 - -

Figure 7.13. Number of solved instances (#), median decisions, and median solving time
(timeout 1h) on the seven benchmark families (results for cryptominisat)

117

Simulating Parity Reasoning

 1

 10

 100

 1000

 0 100 200 300 400 500 600

A5/1 (time)

glucose
Eq* simp

Eq*
k-Ge simp

k-Ge

 1000

 10000

 100000

 1e+06

 1e+07

 0 100 200 300 400 500 600

A5/1 (decisions)

 1

 10

 100

 0 10 20 30 40 50 60

DES (time)

 10000

 100000

 0 10 20 30 40 50 60

DES (decisions)

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90

FEAL (time)

 1000

 10000

 100000

 1e+06

 1e+07

 0 10 20 30 40 50 60 70 80 90

FEAL (decisions)

glucose
Eq* simp

Eq*
k-Ge simp

k-Ge

Figure 7.14. Solving time and number of decisions as functions of solved instances
(glucose part 1/3)

118

Simulating Parity Reasoning

 1

 10

 100

 1000

 0 50 100 150 200 250 300

Grain (time)

glucose
Eq* simp

Eq*
k-Ge simp

k-Ge
 10000

 100000

 1e+06

 0 50 100 150 200 250 300

Grain (decisions)

 1

 10

 100

 1000

 0 50 100 150 200 250 300

Hitag2 (time)

 100000

 1e+06

 1e+07

 0 50 100 150 200 250 300

Hitag2 (decisions)

 1

 10

 100

 1000

 0 50 100 150 200 250

SAT (time)

 10000

 100000

 1e+06

 1e+07

 0 50 100 150 200 250

SAT (decisions)

glucose
Eq* simp

Eq*
k-Ge simp

k-Ge

Figure 7.15. Solving time and number of decisions as functions of solved instances
(glucose part 2/3)

119

Simulating Parity Reasoning

 1

 10

 100

 1000

 0 100 200 300 400 500 600

Trivium (time)

glucose
Eq* simp

Eq*
k-Ge simp

k-Ge

 1000

 10000

 100000

 1e+06

 1e+07

 0 100 200 300 400 500 600

Trivium (decisions)

Figure 7.16. Solving time and number of decisions as functions of solved instances
(glucose part 3/3)

120

Simulating Parity Reasoning

A5/1 (640 instances) DES (51 instances)

Solver # Decisions Time (s) Solver # Decisions Time (s)

k-Ge simp 640 148695 43.1 k-Ge simp 51 84465 7.6

k-Ge 640 183445 69.3 k-Ge 51 85196 7.3

glucose 640 187170 3.4 glucose 51 90127 7.5

Eq* simp 640 205392 45.6 Eq* 51 110672 10.6

Eq* 640 217652 22.8 Eq* simp 51 113465 11.3

FEAL (84 instances) Grain (357 instances)

Solver # Decisions Time (s) Solver # Decisions Time (s)

k-Ge simp 84 94335 80.0 glucose 323 270533 252.0

k-Ge 84 126654 62.5 Eq* simp 80 - -

Eq* simp 84 143244 18.3 Eq* 76 - -

Eq* 83 207108 20.9 k-Ge simp 46 - -

glucose 28 - - k-Ge 40 - -

Hitag2 (306 instances) SAT (474 instances)

Solver # Decisions Time (s) Solver # Decisions Time (s)

glucose 301 726224 127.7 Eq* simp 282 3777279 1104.5

Eq* 247 747539 1068.6 glucose 281 4384845 874.1

Eq* simp 216 663520 1584.0 Eq* 272 4174640 1293.8

k-Ge simp 145 - - k-Ge simp 263 4257933 2166.7

k-Ge 86 - - k-Ge 258 5174093 2078.7

Trivium (1020 instances)

Solver # Decisions Time (s)

glucose 682 3212 2.9

k-Ge 306 - -

k-Ge simp 292 - -

Eq* simp 285 - -

Eq* 252 - -

Figure 7.17. Number of solved instances (#), median decisions, and median solving time
(timeout 1h) on the seven benchmark families (results for glucose)

121

Simulating Parity Reasoning

 1

 10

 100

 1000

 0 100 200 300 400 500 600

A5/1 (time)

zenn
Eq* simp

Eq*
k-Ge simp

k-Ge

 1000

 10000

 100000

 1e+06

 1e+07

 0 100 200 300 400 500 600

A5/1 (decisions)

 1

 10

 0 10 20 30 40 50 60

DES (time)

 10000

 100000

 0 10 20 30 40 50 60

DES (decisions)

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90

FEAL (time)

 1000

 10000

 100000

 1e+06

 1e+07

 0 10 20 30 40 50 60 70 80 90

FEAL (decisions)

zenn
Eq* simp

Eq*
k-Ge simp

k-Ge

Figure 7.18. Solving time and number of decisions as functions of solved instances (zenn

part 1/3)

122

Simulating Parity Reasoning

 1

 10

 100

 1000

 0 50 100 150 200 250 300 350

Grain (time)

zenn
Eq* simp

Eq*
k-Ge simp

k-Ge
 10000

 100000

 1e+06

 1e+07

 0 50 100 150 200 250 300 350

Grain (decisions)

 1

 10

 100

 1000

 0 50 100 150 200 250 300

Hitag2 (time)

 100000

 1e+06

 1e+07

 0 50 100 150 200 250 300

Hitag2 (decisions)

 1

 10

 100

 1000

 0 50 100 150 200 250 300

SAT (time)

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 50 100 150 200 250 300

SAT (decisions)

zenn
Eq* simp

Eq*
k-Ge simp

k-Ge

Figure 7.19. Solving time and number of decisions as functions of solved instances (zenn

part 2/3)

123

Simulating Parity Reasoning

 1

 10

 100

 1000

 0 100 200 300 400 500

Trivium (time)

zenn
Eq* simp

Eq*
k-Ge simp

k-Ge

 1000

 10000

 100000

 1e+06

 1e+07

 0 100 200 300 400 500

Trivium (decisions)

Figure 7.20. Solving time and number of decisions as functions of solved instances (zenn

part 3/3)

124

Simulating Parity Reasoning

A5/1 (640 instances) DES (51 instances)

Solver # Decisions Time (s) Solver # Decisions Time (s)

k-Ge simp 633 71065 16.3 zenn 51 82050 5.7

k-Ge 598 84837 17.7 k-Ge 51 91097 7.4

Eq* 595 62646 6.7 k-Ge simp 51 91097 7.5

Eq* simp 593 48462 5.2 Eq* simp 51 95106 8.0

zenn 551 59616 4.0 Eq* 51 99548 8.8

FEAL (84 instances) Grain (357 instances)

Solver # Decisions Time (s) Solver # Decisions Time (s)

Eq* simp 84 160957 21.5 zenn 352 211980 103.0

k-Ge 84 169530 94.5 Eq* simp 202 444935 2679.7

Eq* 84 201723 22.9 Eq* 196 501079 2946.7

zenn 84 254023 4.6 k-Ge 78 - -

k-Ge simp 83 167844 100.2 k-Ge simp 78 - -

Hitag2 (306 instances) SAT (474 instances)

Solver # Decisions Time (s) Solver # Decisions Time (s)

zenn 305 724854 74.5 zenn 307 3378537 625.2

Eq* simp 247 553934 799.4 Eq* 292 3069530 793.2

Eq* 241 621766 941.6 Eq* simp 290 2085935 734.5

k-Ge simp 156 594356 3475.4 k-Ge simp 270 3181330 1749.0

k-Ge 134 - - k-Ge 270 3184636 1953.3

Trivium (1020 instances)

Solver # Decisions Time (s)

zenn 492 - -

Eq* 354 - -

k-Ge simp 343 - -

Eq* simp 339 - -

k-Ge 335 - -

Figure 7.21. Number of solved instances (#), median decisions, and median solving time
(timeout 1h) on the seven benchmark families (results for zenn)

125

Simulating Parity Reasoning

A5/1 (640 instances) DES (51 instances)

Solver # Decisions Time (s) Solver # Decisions Time (s)

Eq* simp 607 24722 9.0 k-Ge 51 76706 8.1

Eq* 605 19724 6.8 k-Ge simp 51 77799 8.0

k-Ge simp 591 23558 21.4 Eq* 51 92624 11.6

k-Ge 571 24739 22.3 cryptominisat 51 93695 10.9

cryptominisat 504 340275 8.3 Eq* simp 51 96072 16.6

FEAL (84 instances) Grain (357 instances)

Solver # Decisions Time (s) Solver # Decisions Time (s)

k-Ge 84 66274 54.8 cryptominisat 356 253777 46.2

k-Ge simp 84 68468 76.0 k-Ge simp 54 - -

Eq* simp 84 91303 14.9 k-Ge 41 - -

Eq* 84 95753 14.8 Eq* 28 - -

cryptominisat 84 200137 4.4 Eq* simp 23 - -

Hitag2 (306 instances) SAT (474 instances)

Solver # Decisions Time (s) Solver # Decisions Time (s)

cryptominisat 306 577225 61.9 Eq* 312 2092268 588.6

Eq* simp 257 519855 831.0 Eq* simp 309 1961380 642.4

Eq* 257 531972 852.6 cryptominisat 308 2090916 442.0

k-Ge 133 - - k-Ge 300 1754659 1093.3

k-Ge simp 105 - - k-Ge simp 294 2219722 1167.7

Trivium (1020 instances)

Solver # Decisions Time (s)

cryptominisat 713 8344 1.6

Eq* simp 498 - -

Eq* 494 - -

k-Ge simp 434 - -

k-Ge 425 - -

Figure 7.22. Number of solved instances (#), median decisions, and median solving time
(timeout 1h) on the seven benchmark families (results for cryptominisat)

 1

 10

 100

 1000

 10000

 50 100 150 200 250 300 350 400 450

m
ax

 tr
ee

w
id

th

instance

Figure 7.23. Treewidth in SAT 05-11 instances

126

Simulating Parity Reasoning

Solver # Decisions Time(s)

IGJ 640 3099 1.9

glucose 640 187170 3.4

glucose+Eq* 640 217652 22.8

glucose+k-Ge simp 640 148695 43.1

glucose+Eq* simp 640 205392 45.6

glucose+k-Ge 640 183445 69.3

UP+learn 639 20651 4.2

zenn+k-Ge simp 633 71065 16.3

minisat 626 37096 5.0

UP+fcut 617 30036 5.6

UP 613 34910 5.0

UP+pexp 611 32745 5.6

cryptominisat+Eq* simp 607 24722 9.0

cryptominisat+Eq* 605 19724 6.8

SUBST+p 603 5289 7.6

zenn+k-Ge 598 84837 17.7

SUBST 597 3134 5.2

zenn+Eq* 595 62646 6.7

zenn+Eq* simp 593 48462 5.2

cryptominisat+k-Ge simp 591 23558 21.4

cryptominisat+k-Ge 571 24739 22.3

zenn 551 59616 4.0

EC 548 5762 19.4

cryptominisat 504 340275 8.3

Figure 7.24. Number of solved instances (#), median decisions, and median solving time
(timeout 1h) on the benchmark family A5/1 (640 instances)

127

Simulating Parity Reasoning

Solver # Decisions Time(s)

zenn 51 82050 5.7

glucose+k-Ge 51 85196 7.3

zenn+k-Ge 51 91097 7.4

zenn+k-Ge simp 51 91097 7.5

glucose 51 90127 7.5

glucose+k-Ge simp 51 84465 7.6

zenn+Eq* simp 51 95106 8.0

cryptominisat+k-Ge simp 51 77799 8.0

cryptominisat+k-Ge 51 76706 8.1

zenn+Eq* 51 99548 8.8

glucose+Eq* 51 110672 10.6

cryptominisat 51 93695 10.9

glucose+Eq* simp 51 113465 11.3

cryptominisat+Eq* 51 92624 11.6

UP 51 72062 12.2

minisat 51 97652 14.5

UP+learn 51 90122 16.2

UP+fcut 51 95881 16.6

cryptominisat+Eq* simp 51 96072 16.6

SUBST+p 51 90439 17.0

SUBST 51 91826 17.3

UP+pexp 51 91832 17.6

IGJ 51 89991 19.2

EC 51 249363 73.7

Figure 7.25. Number of solved instances (#), median decisions, and median solving time
(timeout 1h) on the benchmark family DES (51 instances)

128

Simulating Parity Reasoning

Solver # Decisions Time(s)

cryptominisat 84 200137 4.4

zenn 84 254023 4.6

cryptominisat+Eq* 84 95753 14.8

cryptominisat+Eq* simp 84 91303 14.9

glucose+Eq* simp 84 143244 18.3

zenn+Eq* simp 84 160957 21.5

zenn+Eq* 84 201723 22.9

SUBST+p 84 200141 25.6

minisat 84 811828 54.1

cryptominisat+k-Ge 84 66274 54.8

glucose+k-Ge 84 126654 62.5

cryptominisat+k-Ge simp 84 68468 76.0

glucose+k-Ge simp 84 94335 80.0

zenn+k-Ge 84 169530 94.5

UP 84 1594754 145.7

UP+fcut 84 1426547 150.8

glucose+Eq* 83 207108 20.9

zenn+k-Ge simp 83 167844 100.2

UP+pexp 83 1131949 109.2

IGJ 79 73113 92.8

UP+learn 35 - -

glucose 28 - -

SUBST 21 - -

EC 21 - -

Figure 7.26. Number of solved instances (#), median decisions, and median solving time
(timeout 1h) on the benchmark family FEAL (84 instances)

129

Simulating Parity Reasoning

Solver # Decisions Time(s)

cryptominisat 356 253777 46.2

zenn 352 211980 103.0

glucose 323 270533 252.0

minisat 323 265328 282.1

UP+pexp 315 271660 320.8

UP 313 261088 275.1

UP+fcut 306 244842 267.9

UP+learn 290 153123 420.0

SUBST 222 127654 1759.7

zenn+Eq* simp 202 444935 2679.7

SUBST+p 198 247511 2773.1

zenn+Eq* 196 501079 2946.7

IGJ 186 239424 3267.4

EC 165 - -

glucose+Eq* simp 79 - -

zenn+k-Ge 78 - -

zenn+k-Ge simp 77 - -

glucose+Eq* 76 - -

cryptominisat+k-Ge simp 54 - -

glucose+k-Ge simp 46 - -

cryptominisat+k-Ge 41 - -

glucose+k-Ge 40 - -

cryptominisat+Eq* 28 - -

cryptominisat+Eq* simp 23 - -

Figure 7.27. Number of solved instances (#), median decisions, and median solving time
(timeout 1h) on the benchmark family Grain (357 instances)

130

Simulating Parity Reasoning

Solver # Decisions Time(s)

cryptominisat 306 577225 61.9

zenn 305 724854 74.5

glucose 301 726224 127.7

minisat 295 1100849 280.0

UP+pexp 284 1358081 459.0

UP+learn 282 1028143 357.2

UP 282 1404806 488.1

UP+fcut 281 1247305 434.0

cryptominisat+Eq* simp 257 519855 831.0

cryptominisat+Eq* 257 531972 852.6

zenn+Eq* simp 247 553934 799.4

SUBST+p 247 1661239 1068.4

glucose+Eq* 247 747539 1068.6

zenn+Eq* 241 621766 941.6

glucose+Eq* simp 215 663520 1584.0

SUBST 190 2631385 2219.3

IGJ 171 1556543 3098.2

zenn+k-Ge simp 155 600458 3475.4

glucose+k-Ge simp 143 - -

zenn+k-Ge 134 - -

cryptominisat+k-Ge 133 - -

cryptominisat+k-Ge simp 104 - -

EC 102 - -

glucose+k-Ge 86 - -

Figure 7.28. Number of solved instances (#), median decisions, and median solving time
(timeout 1h) on the benchmark family Hitag2 (306 instances)

131

Simulating Parity Reasoning

Solver # Decisions Time(s)

cryptominisat+Eq* 312 2092268 588.6

cryptominisat+Eq* simp 308 1972539 642.4

cryptominisat 307 2127930 442.0

zenn 307 3378537 625.2

UP+learn 301 1930731 428.3

cryptominisat+k-Ge 300 1754659 1093.3

cryptominisat+k-Ge simp 294 2219722 1167.7

zenn+Eq* 292 3069530 793.2

IGJ 292 1397013 1069.5

zenn+Eq* simp 290 2085935 734.5

glucose+Eq* simp 282 3777279 1104.5

glucose 281 4384845 874.1

minisat 279 14857305 1401.7

glucose+Eq* 272 4174640 1293.8

UP 271 18892454 1613.3

zenn+k-Ge simp 270 3181330 1749.0

zenn+k-Ge 270 3184636 1953.3

UP+fcut 269 22568178 2231.6

UP+pexp 267 28097432 2007.9

SUBST+p 266 14369875 2207.2

glucose+k-Ge simp 261 5121320 2166.7

glucose+k-Ge 258 5174093 2078.7

SUBST 211 - -

EC 130 - -

Figure 7.29. Number of solved instances (#), median decisions, and median solving time
(timeout 1h) on the benchmark family SAT (474 instances)

132

Simulating Parity Reasoning

Solver # Decisions Time(s)

UP+learn 907 6739 8.9

minisat 902 9361 3.8

UP 893 10751 5.8

UP+fcut 881 9718 5.2

UP+pexp 880 9442 5.1

IGJ 873 2569 21.3

SUBST 826 2872 47.5

SUBST+p 803 2985 60.4

EC 735 3732 142.0

cryptominisat 713 8344 1.6

glucose 682 3212 2.9

cryptominisat+Eq* simp 498 - -

cryptominisat+Eq* 494 - -

zenn 492 - -

cryptominisat+k-Ge simp 434 - -

cryptominisat+k-Ge 425 - -

zenn+Eq* 354 - -

zenn+k-Ge simp 343 - -

zenn+Eq* simp 339 - -

zenn+k-Ge 335 - -

glucose+k-Ge 306 - -

glucose+k-Ge simp 292 - -

glucose+Eq* simp 285 - -

glucose+Eq* 252 - -

Figure 7.30. Number of solved instances (#), median decisions, and median solving time
(timeout 1h) on the benchmark family Trivium (1020 instances)

133

Simulating Parity Reasoning

134

8. Conclusions

The research problem studied in this thesis is to develop methods to solve

a relevant class of the propositional satisfiability (SAT) problem: to assign

the variables of a propositional formula consisting of clauses and parity

(xor) constraints in a way that the formula evaluates to ”true“ or to con-

clude that it is not possible. Such problems, common in application do-

mains such as circuit verification, bounded model checking, logical crypt-

analysis, and approximate model counting, can be challenging for modern

conflict-driven clause learning SAT solvers without specialized parity rea-

soning techniques.

The research problem is addressed by basing on the previously intro-

duced DPLL(XOR) framework that allows the results in this thesis to

be used with small effort in existing and future conflict-driven clause-

learning SAT solvers. The thesis develops three new xor-deduction sys-

tems, UP, EC and IGJ, and a number of other techniques to enhance

them and relate them to each other and to other systems, such as the

previously introduced xor-deduction system Subst. The new xor-deduction

systems differ in proof system strength, implementation efficiency and

how implying clauses needed for conflict analysis in SAT solver are com-

puted.

The baseline xor-deduction system UP that performs plain unit prop-

agation on xor-constraints offers an efficiently implementable reference

solution technique to which other xor-deduction systems and additional

methods can be compared. The xor-deduction system EC performs a form

of equivalence reasoning equally strong to Subst that allows to compute

shorter xor-explanations than Subst. The xor-deduction system IGJ per-

forms incremental Gauss-Jordan elimination, a complete parity reasoning

technique.

The structure of the problem has a strong impact on which xor-deduction

135

Conclusions

system performs the best. It is found that problems consisting mostly of

complex tightly connected xor-constraints are solved the fastest by Gauss-

Jordan elimination, while problems exhibiting easily recognizable “tree-

like” structure do not benefit from proof systems stronger than unit prop-

agation, and are thus UP-deducible. Naturally, there are xor-constraint

conjunctions for which equivalence reasoning is a complete parity rea-

soning technique. Some of such Subst-deducible (or EC-deducible) xor-

constraint conjunctions can be detected by our fast structural test based

on the close connection between equivalence reasoning and cycles in the

(xor) constraint graph. It remains open whether more accurate fast tests

for UP-deducibility and Subst-deducibility can be developed, or it is compu-

tationally beyond practical applicability, e.g. coNP-complete. One could

also envision incomplete xor-deduction systems stronger than Subst and

develop corresponding fast structural tests to always use the optimal xor-

deduction system for given a problem to solve.

Besides proof system strength, the quality of implying clauses given

by an xor-deduction system affects the overall performance of SAT solv-

ing. The thesis develops new techniques for analyzing xor-derivations

produced by the xor-deduction systems UP, Subst, and EC allowing one

to obtain parity explanations for xor-implied literals. Parity explana-

tions translate to shorter implying clauses, give very short unsatisfiability

proofs for formulas hard for resolution, and can also used to derive and

learn new xor-constraints. Provided that additional non-deterministic as-

sumptions can be made, it is shown that parity explanations on plain unit

propagation xor-derivations can simulate a complete Gauss-Jordan elim-

ination parity reasoning engine on a restricted but practically relevant

class of xor-constraint conjunctions. It is left for future work to discover

how parity explanations be exploited to greater degree and to find out

whether parity explanations on plain unit propagation derivations in fact

simulate Gauss-Jordan elimination on all xor-constraint conjunctions.

Even if it is possible to detect accurately which xor-deduction system to

use with a given xor-constraint conjunction, it may be of limited use if only

a small part of the problem requires stronger parity reasoning. The thesis

develops methods to decompose xor-constraint conjunctions into separate

subproblems that can be handled separately to some extent. Primarily

motivated by reducing the memory usage of incremental Gauss-Jordan

elimination when using dense matrix representation, the new methods to

decompose xor-constraint conjunctions are also useful in conjunction with

136

Conclusions

the approximating structural tests to detect UP-deducibility and Subst-

deducibility to allow more fine-grained selection of solving technique for

different parts of the problem.

To leverage SAT solvers without parity reasoning techniques, the the-

sis develops four translations that enable unit propagation to simulate

stronger xor-deduction systems by adding redundant xor-constraints in

the problem description. It is shown that without auxiliary variables, an

exponential number of additional xor-constraints are needed to simulate

equivalence reasoning while with auxiliary variables, a cubic number of

additional xor-constraints suffices. This number may often be reduced

significantly by using our translations that take into account the struc-

ture of the xor-constraint conjunction, and by our simplification technique

that preserves literals implied by unit propagation. While it is techni-

cally possible to simulate complete parity reasoning engine, e.g. Gauss-

Jordan elimination, by adding redundant xor-constraints, the resulting

formula may be prohibitively large. However, it is shown that complete

parity reasoning engine can be simulated with a polynomial number of

additional xor-constraints for instances of bounded treewidth. In prac-

tice, a viable solution technique may be to use these translations partially

to strengthen unit propagation only when it can be done with a limited

number of xor-constraints.

The practical and theoretical results in this thesis may be applied di-

rectly to solve even larger problems in the application domains where

parity constraints are already used as a part of the modeling language.

The theoretical results provide a foundation for building next generation

SAT solvers capable of handling xor-constraints effectively. Finally, the

results encourage using parity constraints as a part of the modeling lan-

guage despite their reputation for hindering solving performance, because

parity constraints provide structure which can be exploited.

137

Conclusions

138

Bibliography

S. B. Akers. Binary decision diagrams. IEEE Transactions on Compututers,
27(6):509–516, June 1978.

Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigder-
son. Space complexity in propositional calculus. SIAM Journal on Computing,
31(4):1184–1211, 2002.

Fahiem Bacchus. Enhancing Davis Putnam with extended binary clause rea-
soning. In Proceedings of the 18th AAAI Conference on Artificial Intelligence
(AAAI-2002), pages 613–619. AAAI Press, 2002.

Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Sat-
isfiability modulo theories. In Biere et al. Biere et al. [2009], pages 825–885.

Peter Baumgartner and Fabio Massacci. The taming of the (X)OR. In John W.
Lloyd, Verónica Dahl, Ulrich Furbach, Manfred Kerber, Kung-Kiu Lau, Catus-
cia Palamidessi, Luís Moniz Pereira, Yehoshua Sagiv, and Peter J. Stuckey,
editors, Computational Logic, volume 1861 of Lecture Notes in Computer Sci-
ence, pages 508–522. Springer, 2000.

Paul Beame, Henry Kautz, and Ashish Sabharwal. Towards understanding and
harnessing the potential of clause learning. Journal of Artificial Intelligence
Research, 22:319–351, 2004.

Daniel Le Berre and Anne Parrain. The sat4j library, release 2.2. JSAT, 7(2-
3):59–6, 2010.

Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Hand-
book of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Ap-
plications. IOS Press, 2009.

Eli Biham and Orr Dunkelman. Cryptanalysis of the A5/1 GSM stream cipher. In
Bimal K. Roy and Eiji Okamoto, editors, INDOCRYPT, volume 1977 of Lecture
Notes in Computer Science, pages 43–51. Springer, 2000.

Lucas Bordeaux and João Marques-Silva. Knowledge compilation with empower-
ment. In Mária Bieliková, Gerhard Friedrich, Georg Gottlob, Stefan Katzen-
beisser, and György Turán, editors, SOFSEM 2012: Theory and Practice of
Computer Science, volume 7147 of Lecture Notes in Computer Science, pages
612–624. Springer Berlin Heidelberg, 2012.

139

Bibliography

Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi Junttila, Sil-
vio Ranise, Peter van Rossum, and Roberto Sebastiani. Efficient theory com-
bination via boolean search. Information and Computation, 204(10):1493 –
1525, 2006.

Christophe De Cannière. Trivium: A stream cipher construction inspired by
block cipher design principles. In Sokratis K. Katsikas, Javier Lopez, Michael
Backes, Stefanos Gritzalis, and Bart Preneel, editors, Information Security,
9th International Conference, ISC 2006, Samos Island, Greece, August 30 -
September 2, 2006, Proceedings, volume 4176 of Lecture Notes in Computer
Science, pages 171–186. Springer, 2006.

J. Chen. Building a hybrid SAT solver via conflict-driven, look-ahead and XOR
reasoning techniques. In Oliver Kullmann, editor, Theory and Applications
of Satisfiability Testing - SAT 2009, 12th International Conference, SAT 2009,
Swansea, UK, June 30 - July 3, 2009. Proceedings, volume 5584 of Lecture
Notes in Computer Science, pages 298–311. Springer, 2009.

Nicolas Courtois, Sean O’Neil, and Jean-Jacques Quisquater. Practical algebraic
attacks on the hitag2 stream cipher. In Pierangela Samarati, Moti Yung, Fabio
Martinelli, and Claudio A. Ardagna, editors, Information Security, volume
5735 of Lecture Notes in Computer Science, pages 167–176. Springer, 2009.

William Craig. Linear reasoning. a new form of the herbrand-gentzen theorem.
Journal of Symbolic Logic, 22(3):250–268, 09 1957.

David Cyrluk, M. Oliver Möller, and Harald Rueß. An efficient decision proce-
dure for the theory of fixed-sized bit-vectors. In Orna Grumberg, editor, Com-
puter Aided Verification, 9th International Conference, CAV ’97, Haifa, Israel,
June 22-25, 1997, Proceedings, volume 1254 of Lecture Notes in Computer Sci-
ence, pages 60–71. Springer, 1997.

Paul T. Darga, Mark H. Liffiton, Karem A. Sakallah, and Igor L. Markov. Exploit-
ing structure in symmetry detection for CNF. In Sharad Malik, Limor Fix, and
Andrew B. Kahng, editors, Proceedings of the 41th Design Automation Confer-
ence, DAC 2004, San Diego, CA, USA, June 7-11, 2004, pages 530–534. ACM,
2004.

Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

Rina Dechter. Constraint Processing. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2003.

DES. Data encryption standard. U. S. Department of Commerce, National Bu-
reau of Standards, 1977.

David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for
program checking. Journal of the ACM, 52(3):365–473, 2005.

Bruno Dutertre and Leonardo Mendonça de Moura. A fast linear-arithmetic
solver for DPLL(T). In Thomas Ball and Robert B. Jones, editors, Com-
puter Aided Verification, 18th International Conference, CAV 2006, Seattle,
WA, USA, August 17-20, 2006, Proceedings, volume 4144 of Lecture Notes in
Computer Science, pages 81–94. Springer, 2006.

140

Bibliography

Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Enrico
Giunchiglia and Armando Tacchella, editors, Theory and Applications of Sat-
isfiability Testing, 6th International Conference, SAT 2003. Santa Margherita
Ligure, Italy, May 5-8, 2003 Selected Revised Papers, volume 2919 of Lecture
Notes in Computer Science, pages 502–518. Springer, 2003.

Niklas Eén and Niklas Sörensson. Translating pseudo-boolean constraints into
SAT. Journal on Satisfiability, Boolean Modeling and Computation, 2:1–26,
2006.

Olivier Fourdrinoy, Éric Grégoire, Bertrand Mazure, and Lakhdar Sais. Reduc-
ing hard SAT instances to polynomial ones. In IEEE International Conference
on Information Reuse and Integration, IRI 2007, pages 18–23. IEEE Systems,
Man, and Cybernetics Society, 2007.

Eugene C. Freuder. Complexity of k-tree structured constraint satisfaction prob-
lems. In Proceedings of the 8th National conference on Artificial intelligence -
Volume 1, pages 4–9. AAAI Press, 1990.

Eugene Goldberg and Yakov Novikov. Berkmin: A fast and robust sat-solver.
Discrete Applied Mathematics, 155(12):1549–1561, 2007.

Carla P. Gomes, Bart Selman, and Henry A. Kautz. Boosting combinato-
rial search through randomization. In Jack Mostow and Chuck Rich, ed-
itors, Proceedings of the 15th National/10th Conference on Artificial Intel-
ligence/Innovative Applications of Artificial Intelligence, AAAI ’98/IAAI ’98,
pages 431–437. AAAI Press / The MIT Press, 1998.

Matthew Gwynne and Oliver Kullmann. On SAT representations of XOR con-
straints. CoRR, abs/1309.3060, 2013.

Matthew Gwynne and Oliver Kullmann. On sat representations of xor con-
straints. In Adrian-Horia Dediu, Carlos Martín-Vide, José-Luis Sierra-
Rodríguez, and Bianca Truthe, editors, Language and Automata Theory and
Applications, volume 8370 of Lecture Notes in Computer Science, pages 409–
420. Springer International Publishing, 2014.

Cheng-Shen Han and Jie-Hong Roland Jiang. When boolean satisfiability meets
gaussian elimination in a simplex way. In Proceedings of the 24th International
Conference on Computer Aided Verification, CAV’12, pages 410–426, Berlin,
Heidelberg, 2012. Springer-Verlag.

Martin Hell, Thomas Johansson, and Willi Meier. Grain: a stream cipher for
constrained environments. International Journal of Wireless and Mobile Com-
puting, 2(1):86–93, 2007.

Marijn Heule and Hans van Maaren. Aligning CNF- and equivalence-reasoning.
In Hoos and Mitchell Hoos and Mitchell [2005], pages 145–156.

Marijn Heule, Mark Dufour, Joris van Zwieten, and Hans van Maaren.
March_eq: Implementing additional reasoning into an efficient look-ahead
SAT solver. In Hoos and Mitchell Hoos and Mitchell [2005], pages 345–359.

Holger H. Hoos and David G. Mitchell, editors. Theory and Applications of Sat-
isfiability Testing, 7th International Conference, SAT 2004, Vancouver, BC,
Canada, May 10-13, 2004, Revised Selected Papers, volume 3542 of Lecture
Notes in Computer Science. Springer, 2005.

141

Bibliography

John E. Hopcroft and Robert Endre Tarjan. Efficient algorithms for graph ma-
nipulation [h] (algorithm 447). Communications of the ACM, 16(6):372–378,
1973.

George Katsirelos and Laurent Simon. Learning polynomials over gf(2) in a sat
solver. In Proceedings of the 15th International Conference on Theory and Ap-
plications of Satisfiability Testing, SAT’12, pages 496–497, Berlin, Heidelberg,
2012. Springer-Verlag.

Tero Laitinen, Tommi Junttila, and Ilkka Niemelä. Extending clause learning
DPLL with parity reasoning. In Proceedings of the 19th European Conference
on Artificial Intelligence, ECAI 2010, pages 21–26. IOS Press, 2010.

Tero Laitinen, Tommi Junttila, and Ilkka Niemelä. Extending clause learning
SAT solvers with complete parity reasoning (extended version). arXiv docu-
ment arXiv:1207.0988 [cs.LO], 2012.

Tero Laitinen, Tommi Junttila, and Ilkka Niemelä. Simulating parity reasoning
(extended version). arXiv document arXiv:1311.4289 [cs.LO], 2013.

Tero Laitinen, Tommi Junttila, and Ilkka Niemelä. Classifying and propagat-
ing parity constraints (extended version). arXiv document arXiv:1406.4698
[cs.LO], 2014.

Tero Laitinen, Tommi Junttila, and Ilkka Niemelä. Conflict-driven XOR-clause
learning (extended version). arXiv document arXiv:1407.6571 [cs.LO], 2014.

Matthew D. T. Lewis, Tobias Schubert, and Bernd Becker. Speedup techniques
utilized in modern SAT solvers. In Fahiem Bacchus and Toby Walsh, editors,
Theory and Applications of Satisfiability Testing, 8th International Conference,
SAT 2005, St. Andrews, UK, June 19-23, 2005, Proceedings, volume 3569 of
Lecture Notes in Computer Science, pages 437–443. Springer, 2005.

Chu Min Li. Equivalency reasoning to solve a class of hard SAT problems. Infor-
mation Processing Letters, 76(1-2):75–81, 2000.

Chu Min Li. Integrating equivalency reasoning into Davis-Putnam procedure. In
Proceedings of the 17th National Conference on Artificial Intelligence and 12th
Conference on Innovative Applications of Artificial Intelligence, pages 291–296.
AAAI Press / The MIT Press, 2000.

Chu Min Li. Equivalent literal propagation in the DLL procedure. Discrete Ap-
plied Mathematics, 130(2):251–276, 2003.

Vasco M. Manquinho and Olivier Roussel. The first evaluation of pseudo-boolean
solvers (PB’05). Journal on Satisfiability, Boolean Modeling and Computation,
2:103–143, 2006.

George H. Mealy. A Method for Synthesizing Sequential Circuits. Bell System
Technical Journal, 34(5):1045–1079, 1955.

Shoji Miyaguchi. The feal cipher family. In AlfredJ. Menezes and ScottA. Van-
stone, editors, Advances in Cryptology-CRYPT0’ 90, volume 537 of Lecture
Notes in Computer Science, pages 628–638. Springer, 1991.

142

Bibliography

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th
Design Automation Conference, DAC 2001, Las Vegas, NV, USA, June 18-22,
2001, pages 530–535. ACM, 2001.

Greg Nelson and Derek C. Oppen. Fast decision procedures based on congruence
closure. Journal of the ACM, 27(2):356–364, 1980.

Robert Nieuwenhuis and Albert Oliveras. Fast congruence closure and exten-
sions. Information and Computing, 205(4):557–580, 2007.

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT
modulo theories: From an abstract Davis-Putnam-Logemann-Loveland proce-
dure to DPLL(T). Journal of the ACM, 53(6):937–977, 2006.

Richard Ostrowski, Éric Grégoire, Bertrand Mazure, and Lakhdar Sais. Recov-
ering and exploiting structural knowledge from CNF formulas. In Pascal Van
Hentenryck, editor, Principles and Practice of Constraint Programming - CP
2002, 8th International Conference, CP 2002, Ithaca, NY, USA, September
9-13, 2002, Proceedings, volume 2470 of Lecture Notes in Computer Science,
pages 185–199. Springer, 2002.

Judea Pearl. Reverend Bayes on inference engines: A distributed hierarchical
approach. In Proceedings of the National Conference on Artificial Intelligence,
AAAI 1982, pages 133–136. AAAI Press, 1982.

Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-learning SAT
solvers as resolution engines. Artificial Intelligence, 175(2):512–525, 2011.

Lawrence Ryan. Efficient algorithms for clause-learning SAT solvers. Master’s
thesis, Simon Fraser University, Burnaby, BC, Canada, 2004.

Marko Samer and Stefan Szeider. Fixed-parameter tractability. In Biere et al.
Biere et al. [2009], pages 425–454.

Marko Samer and Stefan Szeider. Constraint satisfaction with bounded
treewidth revisited. Journal of Computer and System Sciences, 76(2):103 –
114, 2010.

Roberto Sebastiani. Lazy satisability modulo theories. Journal on Satisfiability,
Boolean Modeling and Computation, 3(3-4):141–224, 2007.

João P. Marques Silva and Karem A. Sakallah. GRASP - a new search algo-
rithm for satisfiability. In Proceedings of the 1996 International Conference
on Computer-Aided Design, November 10-14, 1996, San Jose, CA, USA, pages
220–227. ACM and IEEE Computer Society, 1996.

João P. Marques Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause
learning SAT solvers. In Biere et al. Biere et al. [2009], pages 131–153.

M. Soos, K. Nohl, and C. Castelluccia. Extending SAT solvers to cryptographic
problems. In Oliver Kullmann, editor, Theory and Applications of Satisfiability
Testing - SAT 2009, 12th International Conference, SAT 2009, Swansea, UK,
June 30 - July 3, 2009. Proceedings, volume 5584 of Lecture Notes in Computer
Science, pages 244–257. Springer, 2009.

143

Bibliography

Mate Soos. Enhanced gaussian elimination in DPLL-based SAT solvers. In Prag-
matics of SAT, pages 1–1, Edinburgh, Scotland, GB, July 2010.

G. S. Tseitin. On the complexity of derivations in the propositional calculus.
Studies in Mathematics and Mathematical Logic, Part II:115–125, 1968.

Alasdair Urquhart. Hard examples for resolution. Journal of the ACM,
34(1):209–219, 1987.

Sean Andrew Weaver. Satisfiability advancements enabled by state ma-
chines. PhD thesis, University of Cincinnati, Cincinnati, OH, USA, 2012.
AAI3554401.

Lintao Zhang and Sharad Malik. Validating SAT solvers using an independent
resolution-based checker: Practical implementations and other applications.
In 2003 Design, Automation and Test in Europe Conference and Exposition
(DATE 2003), 3-7 March 2003, Munich, Germany, pages 880–885. IEEE, 2003.

Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad Malik.
Efficient conflict driven learning in boolean satisfiability solver. In Proceedings
of the 2001 International Conference on Computer-Aided Design, November 4-
8, 2001, San Jose, CA, USA, pages 279–285. ACM, 2001.

144

9HSTFMG*afjeea+

ISBN 978-952-60-5944-0 (printed)
ISBN 978-952-60-5945-7 (pdf)
ISSN-L 1799-4934
ISSN 1799-4934 (printed)
ISSN 1799-4942 (pdf)

Aalto University
School of Science
Department of Information and Computer Science
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-D

D
 177

/2
014

T
ero L

aitinen
E

xtending SA
T

 Solver w
ith Parity R

easoning
A

alto
 U

n
ive

rsity

Department of Information and Computer Science

Extending SAT Solver with
Parity Reasoning

Tero Laitinen

DOCTORAL
DISSERTATIONS

	Aalto_DD_2014_177_Tero_Laitinen_verkkoversio

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

