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Abstract 
The current process industry faces remarkable challenges due to global competition, 

tightening environmental regulations, and the increasing complexity and integration of process 
plants. Especially, the pulp and paper industry has been under pressure in recent years to 
improve the efficiency of operations and to optimize production. 
   Managing abnormal events, such as disturbances, faults and failures is an essential part of 
improving the operation of process plants. Traditional plant automation systems are able to 
handle the typical faults and disturbances and to restore the process into a normal state. 
However, in order to address more complex faults, the automation systems must be 
accompanied by fault detection methods which provide the plant operators and maintenance 
with additional information about the faults. 
   This thesis presents the development of an integrated fault detection system for a board 
machine. The system was developed according to a created methodology which exploited the 
decomposition and control strategy of the process as well as fault analysis. The presented fault 
detection system consisted of four fault detection algorithms that addressed the faults having 
the most significant effect on the economic performance and operability of the process. The 
fault detection system comprised of a valve stiction detection system employing a parallel 
configuration of four different stiction detection algorithms, a robust detection method for 
non-stationary oscillations, a dynamic causal digraph -based method for detecting consistency 
sensor faults, a detection method for leakages and blockages in the drying section using non-
linear parity equations, and a self-organising map -based process monitoring method for 
detecting caliper sensor fouling. 
   The individual fault detection algorithms were tested and validated in case studies using 
simulations and industrial data. In addition, industrial experiments were carried out at the 
board machine. 

   The obtained results were very promising and showed that the presented methodology 
provided a systematic approach to the development of a fault detection system. The testing 
results indicated that the fault detection algorithms provide useful information for improving 
the operation and maintenance of the board machine. 
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1. Introduction

1.1 Background

The increasing complexity of modern production processes, intensifying

global competition, and environmental regulations pose remarkable chal-

lenges to the operation of production plants. The plants must run safely

and efficiently, with minimal disturbances to their operation or in the

quality of their products. There is also a constant demand to decrease

costs, reduce downtime, and to optimize production.

Improving operations is of particular importance in the papermaking

industry which has seen a remarkable transformation of the operating

environment in recent years. While some mills are being shut down due

to decreasing consumption of paper, the remaining ones are facing chal-

lenges to enhance efficiency. Competitiveness in the current markets re-

quires high quality products and high productivity of the paper mills.

An important aspect in improving process operation is the management

of abnormal events, such as disturbances, faults, and failures. All of these

events can have severe consequences to the production, process equip-

ment and to the environment (Venkatasubramanian, 2010). Moreover,

their economic impact can be remarkable; for example Nimmo (1995) has

reported that the U.S. petrochemical industry suffers from 10 billion dol-

lar losses annually due to improper abnormal event management (AEM).

In a wider context, AEM is a part of process supervision (Venkatasub-

ramanian et al., 2003c) that aims at showing the present state, indicating

undesired or unpermitted states, and taking appropriate actions to avoid

damage or accidents, as defined by Isermann (2006). Fault detection and

diagnosis (FDD) is an integral part of process supervision, since its ob-

jective is the timely detection and determination of the size and location
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of faults (Isermann & Ballè, 1997). Therefore, FDD provides crucial in-

formation for taking corrective actions to adjust the process operation to

the fault effects utilizing fault-tolerant control (e.g. Blanke et al., 2003)

or maintenance, for instance. In particular, the role of FDD in process

supervision has been stressed by Venkatasubramanian et al. (2003c), who

stated that the next grand challenge of control engineering is to automate

these tasks to support process operators.

Automatic fault detection and diagnosis faces, however, significant chal-

lenges in modern production plants. Large scale, complexity, and the in-

creased integration of processes impedes the reliable and timely detection

of faults. In particular, in the pulp and paper industry, where raw mate-

rial and water re-circulation is typical, fault effects propagate easily and

large parts of a process can be influenced by a fault. Therefore, it is crucial

to be able to detect faults at an early stage.

The development of fault detection and diagnosis theory and methods

has already been active since the early 1970’s (Ding, 2008). As a result, a

plethora of detection and diagnosis methods have been developed. Several

authors have been reviewed and classified these methods: early reviews

of FDD methods have been published for example by Willsky (1976), Him-

melblau (1978), Gertler (1988), and Frank (1990) and more recently e.g.

by Venkatasubramanian et al. (2003c), and Ding (2008).

A comprehensive review by Isermann (2006) considers the fault detec-

tion and diagnosis as separate tasks and classifies the corresponding meth-

ods according to their characteristics. The methods used for fault detec-

tion include limit or trend checking, signal model -based methods, pro-

cess model -based methods (e.g. Ding, 2008), and multi-variate statistical

techniques (e.g. Chiang et al., 2001). The fault diagnosis methods are cat-

egorized into classification techniques using, for example, pattern recog-

nition or statistical classifiers, and inference methods based on logic rules

or fuzzy and neural reasoning.

Each FDD method has its strengths and weaknesses, and it has been

stated that no single method meets the requirements for a good diagnos-

tic system (Dash & Venkatasubramanian, 2000). To overcome the disad-

vantages, hybrid approaches have been proposed that either combine the

results of different methods or combine incomplete process information

available from different types of methods (e.g. Chung et al., 1994; Vedam

& Venkatasubramanian, 1999; Lee & Yoon, 2001).

Furthermore, the role of process knowledge in the development of suc-
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Introduction

cessful FDD systems has been stressed. An appropriate FDD method has

also to be developed based on the process characteristics and the fault fea-

tures (Jämsä-Jounela, 2011), as especially in large and complex processes

understanding of process characteristics becomes increasingly important.

Prasad et al. (1998) have classified the types of process knowledge in-

volved in the FDD system development into structural, functional, mal-

function, and behavioural knowledge. Structural and functional knowl-

edge are typically formalized as process models to create analytical re-

dundancy, whereas malfunction and behavioural knowledge are used to

identify the needs and requirements of an FDD system.

1.2 Research problem and the asserted hypothesis

The main motivation for this thesis is to improve the operation of paper-

board making processes by means of automatic fault detection. By devel-

oping a fault detection system, the abnormal situations caused by faults

can be discovered earlier, which provides a possibility to tackle their ef-

fects more effectively and to increase the availability of the process. Gen-

erally the plant control system can handle typical disturbances, but in the

case of more complex and critical faults, advanced fault detection methods

are required.

The main benefits of fault detection and diagnosis are more stable pro-

duction, improved product quality, the reduction of operation costs, and

more efficient and appropriate maintenance. The diagnostic information

can be further utilized to make predictions on the future operation of the

process and/or to take corrective actions in terms of predictive mainte-

nance or fault-tolerant control, for instance.

The research on FDD methods has been very active already for several

decades, but still the literature on applications in process industry is in

the minority. Especially, studies on approaching industrial problems in

practice and on the utilization of process knowledge in the development

phase have been scarce. Typically, the research emphasizes theoretical

aspects and the fault detection applications are demonstrated on simu-

lated benchmark problems, instead of industrial processes.

This thesis addresses these issues by creating a methodology for fault

detection system development that can be applied to industrial processes.

The work focuses particularly on boardmaking processes, which are large

and complex systems. The aim is to cover the fault detection of a large-
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scale process by focusing on the faults that have the most significant effect

on the economic performance or operability of the process.

The hypothesis asserted in this thesis is:

An integrated fault detection system provides an opportunity to im-

prove the operation and performance of a papermaking process through

timely detection of faults. The fault detection methods for the system

are selected based on fault types obtained from a fault analysis, and

integrated to different process control hierarchy levels.

To prove the claims of the hypothesis presented above, the following

tasks are carried out during the research:

Task 1. A methodology for the development of a fault detection system

for an industrial process is created. The use of the methodology is

illustrated on a boardmaking process.

Task 2. A fault analysis is performed on the case process in order to dis-

cover the main causes for production losses, to identify the faults

having the most significant economic impact, their types and loca-

tions as well as to determine the main focus areas for the fault de-

tection system development.

Task 3. The fault detection algorithms are developed for each focus area

according to the fault types and their characteristics. In addition,

the structure of the process and its control strategy are considered

in the development.

Task 4. The developed fault detection system is tested with simulation

studies and industrial tests and its performance is evaluated. In

addition, the impact of the detection results on process operation is

analysed.

1.3 Scope and significance of the thesis work

This thesis addresses the fault detection of an industrial boardmaking

process by utilizing both model and data based methods. The main focus

is on the methodology development and on the fault detection algorithms

for the faults causing production losses and decreasing the performance

of the process. The methodology for fault detection system development
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covers the process decomposition based on knowledge about the structure

and control strategy of the process, the fault analysis as well as the de-

velopment of the fault detection algorithms. Finally, the algorithms are

tested and validated using simulations and industrial data.

The main contribution of this thesis is the integrated fault detection

system for a boardmaking process which utilizes available process knowl-

edge about the process characteristics and its control strategy. The fault

detection system covers the basic control, stabilizing and supervisory con-

trol levels of the process control hierarchy by incorporating several fault

detection algorithms to address the faults affecting each level. It is de-

veloped using the proposed systematic methodology that involves process

decomposition and fault analysis to identify the focus areas of fault detec-

tion.

The contribution and novelty of this thesis are also demonstrated in

the publications presenting the applications of the individual fault de-

tection modules included in the overall fault detection system develop-

ment. Publication I proposes a system for valve stiction detection that

employs several different stiction detection algorithms in parallel, and a

decision fusion technique to combine their results. Publication II presents

a new method for detecting non-stationary oscillations. The method uses

robust statistics to address noise and uncertainties related to industrial

processes and a procedure to stationarize the analysed signals before os-

cillation detection is performed. Publication III proposes an enhanced

dynamic causal digraph method and presents its application on the board

machine to detect consistency sensor malfunctions. Publication IV deals

with a non-linear parity equation method based on grey-box modelling

which utilizes structural process knowledge to reduce the dimensional-

ity of the process non-linearities. The method is applied to detection of

leakage and blockage faults in the drying section of the process. Publica-

tion V presents a process monitoring application based on self-organizing

maps to detect caliper sensor fouling. The self-organizing map method

is adapted to the case by creating calculated variables to describe the

chemical phenomena involved in fouling and by taking into account the

time-variant nature of the process.

Outside of the thesis scope are root cause analysis, fault accommodation

using fault-tolerant control or corrective actions as well as the software

engineering aspects of the system implementation at a plant.

15



Introduction

1.4 Outline of the thesis

This thesis is organized as follows. First, Chapter 2 presents the state-

of-the-art of the fault detection methods addressed in this thesis in ad-

dition to a brief introduction to the field of fault detection and diagnosis

in general. Next, the methodology for developing fault detection systems

is outlined in Chapter 3. The paperboard making process and its con-

trol strategy are described in Chapter 4. Then, Chapter 5 presents the

development of an integrated fault detection system for the case process.

Chapter 6 summarizes the detection results obtained in the application of

each developed fault detection algorithm, followed by concluding remarks

and possible future research directions in Chapter 7.
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2. Fault Detection in Process Systems;
State-of-the-art

This chapter presents the state-of-the-art of fault detection in process sys-

tems. First, the general concepts, definitions, and the classification of

fault detection and diagnosis methods are briefly described. Next, a sur-

vey of the relevant literature on the detection methods addressed in this

thesis is presented.

2.1 Introduction to fault detection and diagnosis

Fault diagnosis is a part of the supervision of technical systems which

aims at showing the present state, indicating undesired or unpermitted

states, and taking appropriate actions to avoid damage or accidents (Iser-

mann, 2006). In the general scheme of supervision, fault diagnosis aims

at determining the presence of a fault as well as its type, location, size,

and cause, see Figure 2.1. This information is crucial in order to deliver a

corrective action to the process in terms of maintenance or fault-tolerant

control (e.g. Blanke et al., 2003), for instance.

According to the definitions by Isermann & Ballè (1997), the fault detec-

tion task consists of the determination of presence and time of detection,

whereas the fault diagnosis task consists of the determination of type,

position, size and cause of the fault. In literature, fault diagnosis has

sometimes been further divided into two subtasks: fault isolation and

fault identification, where fault isolation involves the determination of

kind and location of the fault and fault identification means the determi-

nation of the size and time-variant behaviour of the fault. The scheme

presented in Figure 2.1 describes the steps of FDD and the refinement of

information in each step of the procedure (Isermann, 2006).

The first step, preceding fault detection, in the procedure is the feature

generation in which the available signals from a plant, namely input, out-
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Figure 2.1. General scheme of supervision of technical systems (Isermann, 2006)

put, and state variables, are analyzed and the information is consolidated

by means of various signal- or model-based methods. The features can be

process parameters (e.g. friction coefficient, inductance), process states

(e.g. pressure, a flow rate) or residuals.

Fault detection uses the features to decide whether a fault is present

in the system or not. In this step, the features are compared with their

nominal values and a fault is detected if the deviations exceed the spe-

cific thresholds. Fault detection results in symptoms for fault diagnosis

purposes.

Finally, in the fault diagnosis step the symptoms are evaluated and a

decision of the fault type and location can be made. The fault is diagnosed

using the classification of symptoms or the inference techniques.

Fault detection can be achieved by utilizing either hardware redun-

dancy or analytical redundancy (Gertler, 1998). The hardware redun-

dancy refers to the parallel operation of identical hardware elements

(Muenchhof et al., 2009). For instance, three sensors are used for the

same measurement and the values are statistically compared. The ap-

plication of hardware redundancy is limited to very critical units due to

its high cost. Analytical redundancy, on which this thesis solely focuses,

refers to the comparison of plant behaviour with analytically computed

behaviour using, for example, mathematical models .

Fault detection and diagnosis methods have been comprehensively sur-

veyed and classified by Venkatasubramanian et al. (2003c,a,b) and Iser-
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Figure 2.2. Classification of fault detection methods by Isermann (2006)

mann (2006, 2011). Here, the discussion follows the Isermann’s classifica-

tion in which the fault detection and diagnosis are addressed separately,

as illustrated by Figures 2.2 and 2.3.

The fault detection methods are classified into limit or trend checking,

signal model -based methods, process model -based methods, and multi-

variate statistical techniques. The limit and trend checking methods anal-

yse individual measurement signals using fixed or adaptive thresholds,

and change detection methods. The signal model-based methods can be

applied to individual or multiple signals and comprise correlation, spec-

trum or wavelet analyses (see Isermann, 2011). The process model -based

methods represent the largest category of fault detection methods and it

includes the classical observer methods, state and parameter estimation

techniques, parity equations, and neural networks. Finally, the category

of multi-variate data-based methods includes, for example, principal com-

ponent analysis (PCA) and partial least squares (PLS) and their exten-

sions.

Isermann categorizes the fault diagnosis methods into classification and

inference methods. The classification methods include pattern recognition

techniques, statistical, polynomial and geometrical classifiers, and artifi-

cial intelligence methods, such as fuzzy and neural net classifiers. Clas-

sification methods are typically used when no structural knowledge be-

tween the faults and symptoms is available. In such cases, the reference

symptoms for the faults are determined by training and learning (Iser-

mann, 2006). By contrast, if structural knowledge is available, the symp-

toms can be related to the faults by using inference methods. The common

inference methods include binary and approximate reasoning techniques.

However, none of the aforementioned fault detection and diagnosis meth-

ods are however sufficient alone to achieve effective diagnosis since all
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Figure 2.3. Classification of fault diagnosis methods by Isermann (2006)

methods have their characteristic strengths and weaknesses (Dinkar &

Venkatasubramanian, 1997; Dash & Venkatasubramanian, 2000). As a

solution, hybrid approaches that combine different methods have been de-

veloped. Thus, the weaknesses of individual methods can be compensated

and more accurate diagnosis results obtained.

A hybrid FDD method can be developed in two ways. The first way is

to operate several methods in parallel and then fuse the results of the

individual methods in order to conclude a final decision. The second way

is to combine the features generated by different methods and thereby

combine different types of process knowledge such as model-based and

data-based knowledge. (Dinkar, 1996).

The applications of hybrid FDD approaches to chemical processes have

been published increasingly in the recent years, with especially the use of

qualitative process models, such as signed digraphs (see Section 2.2.2) to-

gether with data-based methods, being particularly prominent. Lee et al.

(2003) have presented an application of SDGs and dynamic PLS to diag-

nose multiple faults in a stirred tank reactor. The SDG has been also

combined with dynamic kernel PLS and support vector regression (Lü &

Wang, 2008) as well as qualitative trend analysis (Maurya et al., 2007).

Also, the neural networks have been utilized extensively in hybrid FDD

systems. Applications to chemical plants have been presented, for exam-

ple, by Becraft & Lee (1993), who combined the neural networks with an

expert system, and Ruiz et al. (2001), who proposed a combination of them

and fuzzy logic.

Although the hybrid approaches are more appropriate than the typical

diagnosis methods, they do not address the size-related issues of large-

scale process systems. Therefore, process decomposition based strategies

have been introduced to address these issues, thus enabling adaptability
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and enhancing online detection and diagnosis. Such a strategy is referred

to as a bottom-up strategy which consists of the analysis of each subsys-

tem using lower level abstraction and combining their results via high

level supervision to achieve a final diagnostic decision Lee & Yoon (2001).

The following sections present fault detection methods from the cate-

gories shown in Figure 2.2 and surveys the related literature. First, the

model-based methods are addressed by describing the parity equation and

the causal digraph methods. Next, the self-organizing map is discussed,

which represents the data-based fault detection methods. Finally, the

signal-based methods are dealt with by introducing detection methods for

oscillations and valve stiction. The presented methods are selected due to

their importance and relevance to the integrated fault detection system

which will be described later in this thesis.

2.2 Model-based fault detection methods

2.2.1 Parity equation method

The parity equation method is one of the earliest approaches for fault de-

tection in technical systems. It is a model-based technique which exploits

the analytical redundancy principle; Figure 2.4 illustrates the method in

which a redundant process model is utilized to generate residuals by com-

paring its output with the actual process measurement. The residuals are

then evaluated for discrepancies caused by faults in the system.

According to Gertler (1998), the parity equation method was developed

in the field of aerospace research in the mid-1970’s. The first major contri-

bution is considered to be the theoretical formulation by Chow & Willsky

(1984), who presented the parity equation method for state-space models,

called the parity space method. Other parallel developments were pre-

sented by Ben-Haim (1980), who utilized redundant balance equations for

fault detection in nuclear systems. Later, the parity equation method has

also been formulated for input-output models (Gertler & Singer, 1985).

The parity space method for continuous time systems has also been pre-

sented by Medvedev (1995).

According to Isermann (2006), for a single-input single-output (SISO)

process the parity equation can be written in its computational form using
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Figure 2.4. Fault detection with parity equations using transfer functions (Isermann,
2006)

transfer function notation as:

r(s) = yp(s)− ym(s) = yp(s)−Gm(s)u(s), (2.1)

where yp(s) = Gp(s)u(s) is the process output, Gp(s) being the transfer

function of the process, and ym(s) = Gm(s)u(s) is the model output, Gm(s)

being the process model. The process model is assumed to be known and

has known, fixed parameters, such that:

Gp(s) = Gm(s) + ΔGm(s), (2.2)

where ΔGm(s) describes the model errors. By following the scheme pre-

sented in Figure 2.4, the parity equation r(s) can also be written as:

r(s) = Gp(s)[u(s) + fu(s)] + n(s) + fy(s)−Gm(s)u(s), (2.3)

where fu(s) and fy(s) are the input and output faults, respectively and

n(s) is noise. Substitution of (2.2) to the above yields:

r(s) = ΔGm(s)u(s) +Gp(s)fu(s) + n(s) + fy(s), (2.4)

which indicates the dependability of the parity equation of additive input

and output faults, the noise and model errors. Unfortunately, in the SISO

case, these effects cannot be separated.

The parity equation can also be written for a multi-input multi-output

(MIMO) process:

r(s) = ΔGm(s)u(s) +Gp(s)fu(s) + n(s) + fy(s). (2.5)

In the MIMO case, assuming only single input or single output faults,

some elements of r(s) deviate differently and some do not, which makes

the separation or isolation of the faults possible. These residual patterns
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are known as fault signatures and the approach is called structured resid-

uals (Gertler, 1998). Gertler and co-workers have studied comprehen-

sively the isolation ability and the optimality of the residuals (Gertler &

Luo, 1989; Gertler & Kunwer, 1995; Gertler & Singer, 1990).

The parity equation method has been also developed to detect faults

in non-linear systems. Guernez et al. (1997) presented an extension to

non-linear polynomial dynamic systems and later Yu & Shields (2001)

extended the method also to bilinear systems. By utilizing fuzzy par-

ity equations, Ballé (1999) addressed the fault detection of a non-linear

thermal plant. Gertler & Staroswiecki (2002) showed the connections be-

tween the parity space and input-output formulations and presented a

design technique for parity equation-based residual generation involving

mild non-linearities in inputs, outputs, and faults. Fully decoupled par-

ity equations, i.e. the residuals are decoupled from the system states and

unknown non-linearity, were developed by Chan et al. (2006). Recently,

the parity equation method has been extended by Blesa et al. (2012) to

linear parameter-varying systems to address non-linear behaviour. Fur-

thermore, it is stated by Isermann (2006) that the computational form of

a parity equation (2.1) can be extended to any non-linear process model.

Other important developments involve robust parity equations for un-

certain systems in which model uncertainty is addressed by interval Ploix

& Adrot (2006); Puig & Blesa (2013) or fuzzy techniques (Puig & Quevedo,

2002). Furthermore, adaptive parity equations have been presented by

Höfling & Isermann (1996), who utilized single-parameter tracking by re-

cursive system identification to adapt to changing process conditions.

2.2.2 Causal digraph methods

Causal digraph (CDG) based fault detection and diagnosis methods are

based on process models formalized as directed graphs, or digraphs for

short (Harary et al., 1965). In these methods, the causal relationships,

i.e. the arcs between nodes, are described by mathematical models and

the consistency between the models with respect to the process is utilized

for fault detection. The CDG based methods belong to model-based fault

detection methods and can be divided into three main categories based

on the mathematical techniques they utilize to describe the process vari-

ables and the causal relationships: signed digraphs (SDG), fuzzy causal

digraphs (FCDG) and dynamic causal digraphs (DCDG).

The first reported application of a causal digraph method for FDD was
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by Iri et al. (1979) who introduced the signed digraph (SDG) method. In

the SDG the causal effects are described with positive (+) and negative

(−) effects and the states of the variables as ”+”, ”0” or ”-” for high, normal

and low value, respectively. The diagnosis in (Iri et al., 1979) was carried

out by using the depth-first graph search algorithm proposed by Tarjan

(1972).

In order to increase the diagnosis resolution of the SDG, Shiozaki et al.

(1984) introduced a five-range pattern (+, +?, 0 , -?, -) of abnormality in-

stead of the original three-range one. By this improvement, the number

of false diagnosis results could be decreased. A further improvement to

fault diagnosis resolution of SDG was presented by Palowitch & Kramer

(1985), who introduced numerical deviation indices to measure the de-

viation of variable values from a steady-state. Also Chang & Yu (1990)

proposed a solution to improve the fault diagnosis resolution by consider-

ing the steady-state gains within the process to find the dominant fault

propagation path among multiple paths. Moreover, the resolution of the

SDG method has been improved by introducing composite arcs (Kramer &

Palowitch, 1987), by describing inverse and compensatory responses us-

ing the extended SDG (Oyeleye & Kramer, 1988), and by the Path-SDG

method (Mohindra & Clark, 1993).

Umeda et al. (1980) were the first researchers to consider temporal in-

formation within the signed digraph methods. They considered the nodes

of a SDG as variables in different time increments and as a result faults

could also be detected during transient periods. Later, Chang & Yu (1990)

proposed to discretize the process behavior into transient and steady state

behavior and to use different detection rules for both states in order to

determine the consistency of the arcs. Vianna & McGreavy (1995) intro-

duced a weighted digraph (WDG) which contained information on the dy-

namic phenomena of the process in terms of differential nodes connected

by temporal arcs (arcs representing the dynamics of the system) and of

algebraic nodes to represent the state of the process.

Fault diagnosis using SDGs in the early applications was based on an

assumption that a single fault is present at a time. This assumption

led to incomplete diagnosis in the case of multiple faults. This problem

was addressed by Finch et al. (1990), who introduced an additional arc

called an induced failure link, which allowed the diagnosis of one fault

and the expected induced faults. A more complete analysis of multiple

faults was given later by Lee et al. (1999). Another approach to multiple
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fault diagnosis utilizing distributed diagnosis was proposed in (Lee et al.,

2003), where SDGs and dynamic PLS (DPLS) were combined. Locally

constructed DPLS models were used to detect the fault and then the SDG

was used to locate the fault origin. Wan et al. (2013) proposed a combined

method in which SDG was used to derive a set of fault candidates and

dynamic PCA to refine the set in order to diagnose the fault.

The causal digraph based FDD methods are naturally suitable for large-

scale systems, since they contain information on the structure of the sys-

tem. Distributed fault diagnosis approaches utilizing SDGs have been

proposed e.g. by Mohindra & Clark (1993) and Lee et al. (1997). A two-tier

strategy for the fault diagnosis of large-scale systems was presented by

Tarifa & Scenna (1998a,b) who used SDGs along with fuzzy logic to detect

faults in a multi-stage flash desalination process. Lee & Yoon (2001) pro-

posed a decomposition strategy for a SDG-based fault diagnosis of large-

scale systems and applied it to a boiler plant. Also, Maurya et al. (2004)

addressed FDD in large-scale systems. They proposed to use redundant

equations based on for example mass or energy balances in conjunction

with an SDG in order to reduce the number of spurious diagnosis results.

The first step towards fuzzy causal digraph (FCDG) methods was taken

in (Yu & Lee, 1991), where a membership function approach was adopted

to combine the quantitative and qualitative representations for the cause-

effect models (arcs of the digraph). They introduced steady-state gains to

the arcs in terms of fuzzy sets. As a result, the fault diagnosis resolution

was improved by eliminating spurious solutions and the method was ex-

tended to cover multiple fault situations. Han et al. (1994) expanded the

idea by introducing fuzzy sets to describe also the variable states. How-

ever, the actual fuzzy causal digraph method was proposed later by Shih

& Lee (1995a,b). They expressed the states of the variables with fuzzy

sets and additionally used dynamic constraints called confluences to ex-

press the dynamic gain between variables.

The amount of quantitative information used in the causal digraph mod-

els has increased constantly along the development of these methods. The

first step towards dynamic CDG methods was presented by Leyval et al.

(1994), who introduced a concept of a qualitative transfer function (QTF)

to describe the cause-effect relationships between variables. Montmain &

Gentil (2000) extended this approach to use quantitative dynamic mod-

els, namely difference equations, to model the cause-effect relationships

and provided a detailed discussion on the generation of residuals with the
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causal structure.

The dynamic causal digraph produced two kinds of residual to be used

for fault detection and isolation: global (GR) and local residuals (LR). The

global residual was produced from the difference between the measure-

ment and the global propagation value:

GR(Y ) = Y (k)− Ŷ (k), (2.6)

where Y (k) is the measurement and Ŷ (k) is the global propagation value

obtained by:

Ŷ (k) = fY

(
Û(k − 1), Û(k − 2), . . .

)
, (2.7)

where fY is a discrete-time model describing the cause-effect relationship

from n predecessor nodes Ui to node Y . Û(k−τ) = {û1(k−τ), . . . , ûn(k−τ)}
are the lagged global propagation values from the predecessors with time

lags τ = 1, 2, . . . depending on the system order.

The local residuals were subcategorized into three types: individual lo-

cal residuals (ILR), multiple local residuals (MLR) and total local residu-

als (TLR) (Montmain & Gentil, 2000). The individual local residual was

produced by taking the difference between the measurement and the local

propagation value using only one measured input, while all the others are

propagation values from the parent nodes:

ILRm
Y = Y − Ȳ , (2.8)

Ȳ (k) = fY
(
Ū(m, k − 1), Ū(m, k − 2), . . .

)
,

where

Ū(m, k − τ) =

{
ūi(k − τ)

∣∣∣∣∣ūi(k − τ) =

⎧⎪⎨
⎪⎩
ûi(k − τ), i �= m

ui(k − τ), i = m
, 1 ≤ i ≤ n

}
,

(2.9)

ûi(k) is the lagged global propagated value from the predecessors, and

ui(k − τ) is the measurement for the i-th parent node. Similarly, the

MLR
P l
Y

Y was produced as:

MLR
P l
Y

Y = Y − Ȳ , (2.10)

Ȳ (k) = fY

(
Ū(P l

Y , k − 1), Ū(P l
Y , k − 2), . . .

)
,

where

Ū(P l
Y , k − τ) =

{
ūi(k − τ)

∣∣∣∣∣ūi(k − τ) =

⎧⎪⎨
⎪⎩
ûi(k − τ), i /∈ P l

Y

ui(k − τ), i ∈ P l
Y

, 1 ≤ i ≤ n

}
,

(2.11)
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P l
Y is the set of indices of the predecessors which used the measurement

as an input. The TLR(Y ) is produced with P l
Y = PY , where PY is the set

of indices of all the predecessors of Y .

The cumulative sum (CUSUM) method (Hinkley, 1971) was used to eval-

uate the residual signals in order to detect a change in the signal, which

would indicate a fault in the process. Later, other applications have been

presented, where the use of e.g. state-space models (Cheng et al., 2008)

and non-linear differential equations (Vadam et al., 1997) have been demon-

strated.

The use of dynamic models to describe the cause-effect models has ad-

vanced the development of new inference mechanisms for fault diagnosis

purposes. In the SDG and FCDG methods, the fault origin nodes have

been located mainly by applying graph search methods, while using the

DCDGs inference methods based on different types of quantitative resid-

uals can be used. The concept of this approach was first introduced by

Kramer (1987), who called this the general diagnostic framework. He,

however, did not differentiate between the model types to be used to de-

scribe the causal relationships. Later, Montmain & Gentil (2000) provided

an analysis of using this approach with dynamic causal digraph models.

Cheng et al. (2008) presented an additional step to the diagnosis, where

additional process knowledge was used to refine the results of causal in-

ference.

The fault isolation using the DCDG method is based on the residuals

represented by the equations above. Tables 2.1 and 2.2 describe the in-

ference rules which are used to evaluate the CUSUM calculation results

of different types of residuals, denoted by CU(r), where r is a residual

signal. By applying the rules to each detected residual, the fault can be

isolated and its propagation path extracted.

Table 2.1. Fault isolation rules of the dynamic causal digraph

CU(GR(Y ))CU(TLR(Y ))CU(ILRY (m))CU(ILRY (i))CU(MLRY (P1))CU(MLRY (P2))Decision
0 0 0 0 0 0 No fault

1/-1 0 0∗ 1/-1∗ 0∗ 1/-1∗ Fault propagates from

the parent node m
1/-1 0 1/-1∗∗ 1/-1∗∗ 1/-1∗∗ 0∗∗ Fault propagates from

the nodes with subscript

P2
1/-1 1/-1 1/-1 1/-1 1/-1 1/-1 Local fault on variable Y

∗ ∀i �= m, i ∈ PY ,m ∈ P1,m /∈ P2, PY is the set of subscripts of parent nodes of the node Y .
∗∗ ∀i,m, i ∈ PY ,m ∈ PY , ∀P1, P2 ⊆ PY .
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Table 2.2. Fault type rules of the dynamic causal digraph

CU(GR(X))∗ CU(TLR(X)) Fault nature
1/-1 1/-1 Local fault for that child node
1/-1 0 Process fault for the faulty node

0 1/-1 Measurement fault for the faulty node
∗ X is the subscript of any child node of the node Y .

2.3 Data-based fault detection using self-organizing maps

A self-organizing map, proposed by Kohonen (1982, 1998), is a type of

artificial neural network that is trained using unsupervised learning to

produce a low-dimensional representation of the input space of the train-

ing samples. The SOM produces a similarity graph of the input data,

called a map, by converting the nonlinear statistical relationships be-

tween high-dimensional data into simple geometric relationships on a

low-dimensional display, usually a two-dimensional grid of nodes. There-

fore, the SOM compresses the data, but preserves their topological proper-

ties (Kohonen, 2001). The SOM is essentially a classification method and

it belongs to the category of artificial intelligence methods in Figure 2.3.

A SOM consists of a number of nodes described with a d-dimensional

weight vector wi = [w1w2 . . . wd]. The SOM is trained by adapting the

weights of the nodes to match the input data. Training consists of the

search of the closest map units, called the best-matching units (BMU), of

the data samples and then the update of the weight vector of the BMU

and its neighbouring nodes. A BMU c is determined for a data sample

x ∈ Rd as follows:

||x−wc|| = min
i

||x−wi||, i = 1, 2, . . . ,m (2.12)

where || · || is Euclidean distance and m is the number of map nodes. The

weight vector of the BMU and the neighbouring nodes are updated ac-

cording to an update rule:

wi(t+ 1) = wi(t) + α(t)hci(t)[x(t)−wi(t)], (2.13)

where t denotes time, hci(t) is the neighbourhood kernel around the BMU

and α(t) is the learning rate. In the batch training procedure the BMUs

are calculated first for the whole data set, and then the weights are up-

dated at once as follows:

wi(t+ 1) =

∑m
j=1 hij(t)sj(t)∑m
j=1 nVj (t)hij(t)

, si(t) =

nVi∑
j=1

xj , (2.14)

where nVi is the number of samples in the Voronoi set of the node i.
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The SOM theory has been extensively studied and a large number of

modifications and extensions have been proposed (Kangas & Kaski, 1998).

One of these modifications is the adaptive subspace SOM, which can rec-

ognize changing patterns based on their invariant features described for

example by linear subspaces (Kohonen, 2001). Another improvement,

which addresses changing input information, is the feedback-SOM devel-

oped by Horio & Yamakawa (2001). Shah-Hosseini & Safabakhsh (2003)

introduced the time-adaptive SOM, which adapts the learning rates and

neighbourhood function radii during the training phase. Another branch

of SOM evolution deals with hierarchical SOMs that consist of network of

SOMs instead of individual nodes. The concept was first proposed by Sim-

ula et al. (1996) and later studied and formalized in detail by Furukawa

(2009).

The self-organizing map has a vast number of applications in the field

of computer science, such as visualization or pattern recognition. How-

ever, this survey concentrates on process industry applications, which

typically include data analysis and process monitoring approaches. The

SOMs have been applied to process analysis and the development of new

control strategies (Corona et al., 2010), product quality estimation and

process optimization (Abonyi et al., 2003), and to the modelling of a flu-

idized bed combustion process and its emissions, for instance (Liukkonen

et al., 2011). Next, some process monitoring case studies are introduced.

The SOM has been applied to monitoring of pulp quality in a continuous

digester (Ahola et al., 1999), the conditions of a steelmaking process, pro-

cess states (Cuadrado et al., 2002) and progress of a nuclear power plant

(Hakala et al., 2006), and of paper quality (Lampinen & Taipale, 1994).

In all of these applications, the basic SOM was trained with process data

and the regions of different process states were identified. Then, the state

of the process was visualized on the map and its progress was followed.

In order to improve the separation of different process conditions, López

Garciá & Machón González (2004) utilized k-means clustering. Following

a regular SOM training phase, they divided the map nodes into clusters

representing different process states using the k-means method. As a

result, the classification of the process states of a wastewater treatment

process was improved. A similar approach has been utilized by Liukkonen

et al. (2009) to the analysis of a wave soldering process and by Heikkinen

et al. (2011) to also study wastewaster treatment.

The SOM has been also combined with several other methods for process
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monitoring purposes. Kämpjärvi et al. (2008) proposed a monitoring sys-

tem for an ethylene cracking process, combining PCA, a radial basis func-

tion network, and a SOM. The system incorporated a SOM for which the

input data was transformed with PCA to capture only the most significant

process variation. The radial basis function network was used in parallel

to SOM to allow more accurate fault detection. The PCA pretreatment

for SOM has been also used by Bouhouche et al. (2011) for monitoring of

a metal production process. Fuertes et al. (2010) proposed a supervision

and fault detection scheme based on observing the process state transi-

tions using a SOM in conjunction with Petri nets and Markov chains to

analysis the state transition probabilities. Aldrich et al. (1995) addressed

the monitoring and control of a flotation process using the SOM and an

adaptive neural net system, while Jämsä-Jounela et al. (2003) monitored

a copper smelter using the SOM and heuristic rules for fault diagnosis

purposes. Chen & Yan (2012) have applied SOM accompanied by cor-

relative component analysis and later in Chen & Yan (2013) by Fisher

discriminant analysis to Tennessee-Eastman process.

2.4 Signal-based fault detection methods

The signal-based fault detection methods presented in this section cover

the methods for oscillation and valve stiction detection. Persistent oscilla-

tions and valve stiction are common problems in process plants and they

cause inefficient operation and production losses; oscillatory disturbances

readily propagate in processes and cause excessive variation in process

variables as well as in product quality.

The oscillations in process plants are typically originated under feed-

back control (Desborough & Miller, 2001; Ender, 1993) and they may have

various causes, which have been categorized by Thornhill & Horch (2007)

into non-linear and linear causes. The non-linear causes include for ex-

ample extensive static friction in the control valves, on-off or split-range

control, sensor faults, process non-linearities, and hydrodynamic insta-

bilities. The most common linear causes are poor controller tuning, con-

troller interactions, and structural problems involving process recycles

(Thornhill & Horch, 2007). Nevertheless, according to Choudhury et al.

(2008b), excessive static friction (stiction) in valves is the most common

cause of oscillatory control loops.
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2.4.1 Oscillation detection methods

The research on oscillation detection originates from control loop perfor-

mance analysis (see e.g. Qin (1998); Shardt et al. (2012)). Excessive oscil-

lations are a significant problem in control loops, and therefore a number

of methods have been developed to detect them, see e.g. Choudhury et al.

(2008b) and (Horch, 2006a). The methods for oscillation detection can

be classified into four categories: time-domain methods, auto-covariance

function methods, spectral methods, and multivariate methods.

The earliest oscillation detection approaches were based on the time-

domain properties of signals. One of the first methods developed by Häg-

glund (1995) utilized the integral absolute error (IAE) of a control error

signal detect the oscillation:

IAE =

∫ ti

ti−1

|e(t)|dt, (2.15)

where ti−1 and ti are two consecutive instances of zero-crossings. If the

IAE of a control error signal exceeds a certain limit IAElim frequently

over a supervision period, an oscillation is detected. Further discussion

on the industrial implementation of the IAE method has been presented

by Hägglund (2005).

Thornhill & Hägglund (1997) proposed another IAE-based method with

a similar approach as both methods studied the IAE between consecutive

zero-crossings. If the IAE was found to exceed a pre-set limit, they studied

the regularity of the periods using a regularity factor:

q =
mean(Ri+1)

std(Ri)
, (2.16)

where Ri = Δti+1/Δti is the ratio between adjacent zero-crossing inter-

vals Δt. If q < 1.3, an oscillation was detected. The Hägglund’s original

IAE method was improved by Forsman & Stattin (1999) who proposed

consideration of the upper and lower IAEs separately in order to address

the detection of asymmetric oscillations.

Another type of time-domain method was published by Salsbury & Sing-

hal (2005) whose approach utilized the estimation of ARMA-models based

on zero-crossings of a signal. The presence of oscillations could then be

determined from the roots of characteristic equations. Time-domain anal-

ysis of signals was also exploited by Srinivasan et al. (2007) who extracted

the dominant oscillation modes of a signal using empirical mode decom-

position in order to detect oscillations. Xia & Howell (2003) proposed an
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overall control loop performance index which incorporated oscillation de-

tection based on the signal-to-noise ratios of controller signals and process

noise.

The time-domain methods also comprise the auto-covariance function

(ACF) based methods. Miao & Seborg (1999) proposed a method based on

the decay ratio of an ACF, which measures the attenuation of an oscilla-

tion, for the detection task. The decay ratio is defined as R = a/b, where a

is the distance from the first maximum to the straight line connecting the

first two minima of the ACF, and b is the distance from the first minimum

and to the straight line that connects the the zero-lag auto-correlation co-

efficient and the first maximum. In case the decay ratio exceeds 0.5, the

presence of an oscillation is determined.

The ACF method by Thornhill et al. (2003b) detects the oscillations by

means of the regularity of zero-crossings in a filtered ACF and is capable

of detecting multiple oscillations with different frequencies. The oscilla-

tion regularity is measured using the following statistic:

r =
1

3
× T̄p

σTp

, (2.17)

where T̄p and σTp are the mean and standard deviation of time between

zero-crossings, respectively. Values of r > 1 indicate the presence of an

oscillation.

Due to their periodic nature, oscillatory signals have been widely de-

tected by utilizing spectral analysis. Thornhill et al. (2003a) proposed to

seek significant peaks in a signal’s power spectrum to detect oscillations.

The spectral content of a signal is also exploited in a method by Jiang

et al. (2007) who utilized the spectral envelope and statistical hypothesis

tests. Li et al. (2010) proposed a method which decomposes signals into

components using discrete cosine transform and detects the oscillation by

studying the regularity of zero-crossings of the different frequency com-

ponents. Improvements to their method were published in (Wang et al.,

2013). Signal decomposition has also been utilized by Srinivasan & Ren-

gaswamy (2012), who proposed a empirical mode decomposition method

which was capable to detect multiple oscillations.

The multivariate oscillation detection methods have proven to be par-

ticularly efficient in the analysis of plant-wide disturbances (Thornhill &

Horch, 2007) and they also include time domain and frequency domain

techniques. A time domain approach using multivariate autoregressive

analysis was proposed by Saarela (2002) in which the prediction errors
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of linear autoregressive models were used to analyse oscillatory signals.

This approach has been implemented into process analysis software pre-

sented in (Ritala, 1993). The frequency domain methods typically utilize

different decompositions of the power spectral matrix of process measure-

ments. Thornhill et al. (2002) presented an application of principal com-

ponent analysis on the spectral matrix. Other matrix decomposition tech-

niques, such as non-negative matrix factorization Xia et al. (2007); Tan-

girala et al. (2007) and independent component analysis (Xia et al., 2005;

Xia & Howell, 2005) have been applied to detect plant-wide oscillations.

In addition, the spectral envelope method (Jiang et al., 2007) has been

applied to solve the oscillation detection task involving multiple signals.

In addition, wavelet analysis has been used for oscillation detection.

Matsuo et al. (2003) developed a method which allows detecting multiple

oscillations with different frequencies, also in non-stationary signals.

2.4.2 Valve stiction detection methods

Valve stiction detection methods are typically applied in conjunction with

oscillation detection to verify whether the oscillation is caused by a faulty

valve in the loop or by an external disturbance. Stiction, as defined by

Choudhury et al. (2008a), refers to excessive static friction in valves that

generates a stick-slip motion of the valve stem. This behaviour results

typically in oscillations that propagate in the process and disturb the op-

eration.

Fault detection and diagnosis in valves is typically based on supervision

of the available measured variables (Isermann, 2011). Therefore, most

methods can only detect the presence of a specific fault type. To avoid this

limitation, special sensors can be installed in valves.

Kano et al. (2004) utilized special sensors installed on valves to detect

valve stiction using the measurement information about the valve posi-

tion and controller output. However, due to economic or operational is-

sues these sensors are rarely used in industrial plants and the research

interest has focused on methods that exploit the standard control-related

signals and their characteristics. These methods have been extensively

reviewed for example by Jelali & Huang (2010) and Choudhury et al.

(2008b). Comparative studies have been given by Rossi & Scali (2005),

Horch (2006a), and Jelali & Scali (2010).

The stiction diagnosis methods can be categorised into two basic types

based on the information they utilize: signal-based methods and model-
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based methods. The signal based methods consider the controller output

and process measurement signals and their key characteristics, whereas

the model based methods use first-principle models or system identifica-

tion techniques to diagnose sticky valves.

The signal-based methods can be further classified into shape-based

methods and nonlinearity methods, from which the shape-based methods

have been the most popular. There are however some methods outside of

these groups, such as the cross-correlation method by Horch (1999).

The shape-based methods study the distinctive characteristics of oscil-

lations induced by stiction. He et al. (2007) proposed a stiction index IC

based on a curve fitting approach that compares the fitting errors of sinu-

soidal and triangular signal shapes:

IC =
MSEsin

MSEsin +MSEtri
, (2.18)

where MSE refers to mean squared error of fitting. When IC with values

close to 0 this indicate non-stiction while IC values close to 1 indicate

strong stiction. When IC = 0.5 the method is unable to determine or rule

out the presence of stiction. Triangular function fitting was also used by

Scali & Ghelardoni (2008), who compared the shapes generated by stiction

and relay control.

Another similar approach was adopted by Hägglund (2011) who used the

fitting of a rectangular function to the control error signal to determine

stiction. The stiction index IR is defined as:

IR =
Vsine − Vsquare

Vsine + Vsquare
, (2.19)

where the loss functions Vsine and Vsquare (for a positive half-period) are

defined as follows:

Vsine =
n∑

i=1

(
e(ti)− asine sin

(
2π

Tp
ih

))2

(2.20)

and

Vsquare =

n∑
i=1

(e(ti)− asine)
2 , (2.21)

where h is the sampling period e(ti) is the control error signal, Tp is the

oscillation period calculated based on zero-crossings, and n is the number

of samples in the interval between zero crossings. The index IR can have

values between -1 and 1, with positive values indicating stiction.

Instead of the shape of a signal itself, Horch (2006b) analysed stiction

by studying the shape of its histogram. To calculate the stiction index, a
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Gaussian distribution defined as:

fG(x) =
1√
2πσ

exp

(−(x− μ)2

2σ2

)
(2.22)

and a camel distribution defined as:

fC(z) =
1

σ
√
2πσ

∫ A

−A

e
−(z−x−μ)2

2σ2

√
A2 − x2

dx (2.23)

were fitted to the sample histogram of the twice differentiated and filtered

signal ydf (t), given by:

ydf (t) =

(
(1− α)(1− q−1)

1− αq−1

)2

y(t) (2.24)

where y(t) is the process output, and α is a filter design parameter. Once

the fittings have been performed for both distributions, the mean squared

errors are calculated. If the fit for the Gaussian distribution is better,

stiction is determined to be present in the loop.

The shape of oscillating signals has been studied also using qualitative

analysis techniques. Yamasita (2006) utilized the shapes of the pv-op

(process variable-controller output) plots during oscillations to identify

parameters related to stiction. Rengaswamy et al. (2001) introduced qual-

itative shape analysis accompanied with neural networks to identify the

shapes of stiction-induced signals. Furthermore, stiction can be recog-

nized by analysing the symmetry of oscillations as presented by Singhal

& Salsbury (2005).

The signal-based methods attempt also to detect stiction by measuring

the non-linearity of the signals. These methods are based on an assump-

tion that in linear systems the observed non-linear behaviour is caused

by valve stiction. Choudhury et al. (2004, 2006) introduced a procedure in

which higher-order statistics, namely the bicoherence of a signal, is used

to measure non-linearity and stiction is then verified from pv-op plots

using an ellipse fitting technique. The method is based on the squared

bicoherence defined as follows:

bic2(f1, f2) :=
|B(f1, f2)|2

E{|X(f1)X(f2)|2}E{|X(f1 + f2)|2}+ ε
(2.25)

where B(f1, f2) is the bispectrum of the tested signal, ε is a small con-

stant, see (Choudhury et al., 2006), and X(f) is the Fourier transform of

the signal. To test the nonlinearity of a signal, two tests are required.

The first evaluates whether the squared bicoherence bic2(f1, f2) is zero for

all frequencies f1 and f2, indicating a Gaussian signal. If the signal is

non-Gaussian, i.e. bic2(f1, f2) is non-zero, it is further tested for non-zero
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constant squared bicohence, to find out if the signal is nonlinear. Two

indices representing these tests have been defined by Choudhury et al.

(2006). The non-Gaussianity index (NGI) is defined as:

NGI :=
Σbic2significant

L
− cχ

2

α

2K
(2.26)

where bic2significant represents the bicoherence values that exceed the limit

value cχ
2

α , L is the number of bic2significant, and K is the number of data

segments used in the bicoherence estimation, see e.g. Choudhury et al.

(2006). The non-linearity index NLI is defined as:

NLI := bic2max −
(

¯bic2robust + 2σbic2,robust

)
(2.27)

where ¯bic2robust and σbic2,robust are the robust mean and the robust stan-

dard deviation of the estimated squared bicoherence, respectively. These

parameters are calculated by neglecting the smallest and largest 10% of

the bicoherence values. Both indices, NGI and NLI, are bounded between

-1 and 1 and positive values of NGI and NLI indicate non-Gaussianity

and non-linearity, respectively.

Another method measuring signal nonlinearity was introduced by Thorn-

hill (2005). Her method employs surrogate data analysis to measure sig-

nal nonlinearity.

The model-based stiction detection methods rely mainly on system iden-

tification procedures to estimate stiction parameters. Srinivasan et al.

(2005) and Lee et al. (2008) proposed similar approaches, where the main

idea is the parameter identification of the non-linear part of a Hammer-

stein model. The difference between the methods is in the identification

algorithm and the structure of the linear part of the model. Hammerstein

models were utilized also by Karra & Karim (2009) as a part of a more

comprehensive valve stiction diagnosis methodology. Nallasivam et al.

(2010) presented a technique based on the identification of Volterra model

parameters which allowed extending the stiction diagnosis to non-linear

control loops. Another model-based approach was proposed by Stenman

et al. (2003) who presented a method which utilizes a segmentation model

to identify a jump sequences in the valve position to diagnose sticion.

Recently, the research focus has shifted from the development of indi-

vidual stiction diagnosis algorithms to combine them to create compre-

hensive control loop monitoring systems. Scali & Farnesi (2010) have pro-

posed such a system, in which stiction diagnosis is achieved by selecting

between stiction detection algorithms according to control loop character-

istics.
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3. Methodology for Fault Detection
System Development

This chapter presents the methodology for developing a fault detection

system for process industry applications. The methodology consists of five

major steps. The first step consists of process decomposition that is de-

scribed in Section 3.1. Second, a fault analysis is conducted for finding

out the main reasons for production losses by identifying the underlying

faults, their locations, causes, and the faulty devices as explained in Sec-

tion 3.2. As the third step, Section 3.3 describes the confirmation of the

focus areas for the fault detection system development and the determi-

nation of user requirements and system specifications. Next, development

of fault detection algorithms is presented in Section 3.4, and the testing,

implementation and validation of the developed algorithms are described

in Section 3.5.

This methodology provides a generic approach to fault detection system

development using the steps presented in Figure 3.1.

3.1 Process decomposition

A centralized approach to fault detection and diagnosis is seldom suffi-

cient for the investigation of large processes due to their complexity and

the diversity of features, such as process dynamics, non-linearity, in dif-

ferent parts of the process (Roychoudhury et al., 2009; Mjaavatten & Foss,

1997). Therefore, process decomposition, aimed at analysing the structure

of the process, is the first step of developing a fault detection system for

large-scale processes.

From a fault diagnosis point of view, an efficient decomposition scheme

should have two desired properties. The first property involves the min-

imizing the strength of interactions among subsystems and maximizing

that within each subsystem (Joe et al., 2006). The former aspect enhances
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Step 1
Process decomposition
Decomposing the plant based on its topology and structure into process units, sub

units, equipment, and components

Step 2

Fault analysis
Acquiring and analysing plant and maintenance data

Finding the main reasons for production losses

Identifying the faults having most significant impact on the losses; Studying the fault

locations and causes

Selecting fault candidates for focus areas

Step 3

Confirmation of fault detection focus areas, user requirements and system
specifications
Interviewing experienced plant personnel

Confirming focus areas for the system development from the fault candidates

Specifying user requirements and system specifications

Step 4

Development of fault detection methods
Developing fault detection methods according to the chosen faults, user requirements,

process knowledge, and plant data

Developing methods for combining diagnostic results (if applicable)

Step 5

Testing, implementation and validation of fault detection algorithms
Modelling, training and parameter selection for the algorithms

Off-line testing of the algorithms

Implementing the algorithms

On-line validation of the algorithms at the plant

Evaluating the performance of the fault detection system

Final implementation of the system

Figure 3.1. Main steps of the methodology for fault detection system development

fault localization among the subsystems, whereas the latter one improves

the resolution within each subsystem. The second property involves a

sufficient compromise between the number and sizes of subsystems.

Process decomposition relies on process knowledge that can be classi-

fied according to Prasad et al. (1998) into structural, functional, mal-

function, and behavioural knowledge. Particularly, structural and func-

tional knowledge about the process are exploited in the decomposition

step. Therefore, most fault detection methods for large scale processes ap-

ply structural or functional decomposition. However, it is stated that nei-

ther the structural decomposition nor the functional decomposition alone

is sufficient for fulfilling the above-mentioned desired properties of pro-

cess decomposition (Prasad et al., 1998). The functional decomposition

can cause overlapping process units among subsystems. Moreover, it can

result in a decomposition scheme, which has no analogy with the process

structure. The structural decomposition, on the other hand, can cause is-

sues about compromising the number and sizes of subsystems. In other

words, decomposition can result in too complex subsystems in the case of
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complicated process units.

Consequently, in this thesis, the decomposition methodology proposed

by Prasad et al. (1998) is suggested in order to obtain a hierarchical orga-

nization of a large-scale process. This decomposition methodology is based

on the general structure of process plants and involves a combination of

structural and functional decompositions.

The process decomposition methodology includes the following hierar-

chical levels:

1. Unit level: primary process systems

The plant is decomposed into process units that represent the primary

operations of a process. As a general structure, a chemical plant involves

three main sections in order: feed, reactions and separation. In the case

of a paper mill, the general structure includes raw material preparation,

paper manufacturing and post-processing.

2. Sub unit level: process subsystems

Each process unit is decomposed into subsystems by considering the in-

teractions. Control loops are not split into different subsystems and

strongly interacting control loops can be grouped together as well. Fur-

thermore, closely related process systems can be coupled together, e.g.,

the reactor and the cooling jacket around it as well as recycle streams

must be also considered.

3. Equipment level: process equipment and devices in each sub unit

The sub units are decomposed into individual devices or instruments as

they are determined as nodes under each subsystem.

4. Component level

Each piece of process equipment can be further decomposed into equip-

ment components for fault analysis purposes. In some cases, it may not

be necessary to decompose the process at this level, but it allows precise

analysis of fault locations.

The above methodology provides a hierarchical presentation of a large

scale process which is easy to understand, considering that the hierarchy

is based on the general structure of chemical processes. The process is

decomposed first into primary process units, then into sub units, process

equipment, and components.
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3.2 Fault analysis

Fault analysis aims at obtaining the malfunction and behavioural knowl-

edge about the process, see (Jämsä-Jounela, 2011). Specifically, its objec-

tive is to identify the sources of production losses and the most significant

faults that are causing the losses in a large-scale process. These faults

are then studied in accordance with the process decomposition to analyse

their locations and effect on the process. Consequently, the development

of fault detection methods is focused appropriately by concentrating on

the key areas, i.e. the faults and subsystems, which have the most sig-

nificant impact on plant performance. The emphasis is on the faults that

cannot be handled by the standard process automation system.

Fault analysis is carried out mainly as a data analysis, but it is recom-

mended to support it by interviewing plant personnel. The data sources

for analysis are long-term maintenance and production data as well as a

process measurement database. In addition, the alarm history is useful

for the analysis. The interviews of the plant personnel provide valuable

background information for the analysis and clarify the data findings.

When investigating the shut-downs and breaks in production, it is rec-

ommended first to categorize the types of production losses in planned

and unplanned shut-downs and short-term breaks. Next, the causes of

these events are divided into maintenance and operational. The benefits

of the developed fault detection methods particularly arise from studying

the faults that contribute the most to the shut-downs due to operational

reasons and cutting down the production losses due to them.

Finally, the faults causing the production losses are analysed. The ob-

jective is to discover the locations and causes of the faults, and to identify

the corresponding faulty devices. To this end, the faults shall be catego-

rized into basic fault types and causes. Lastly, each fault is associated

with the specific devices and components based on the maintenance data

or root cause analysis.

The process decomposition is utilized in fault analysis by dividing the

faults based on their location to the subsystems of the process. In each

subsystem there can be fault types specific for that subsystem, and there-

fore it is not sufficient to analyse the faults at the process level. Within

each subsystem, the faults can be further classified based on the process

equipment and components.
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3.3 Confirmation of fault detection focus areas, user requirements
and system specifications

The development of a fault detection system for an industrial process re-

quires background information concerning the aims of the system, expec-

tations of plant personnel and the restrictions of technical platforms, for

instance (Vermasvuori, 2008). The required background information can

be obtained from the plant operators and maintenance personnel by inter-

views that support the fault analysis. The plant personnel shall describe

their expectations and they shall prioritize and accept the fault analysis

results and the development objectives for the fault detection system.

In addition, information related to the user requirements and specifica-

tions of the detection system are obtained. The information to be acquired

includes the specifications for the required functionality of the system, de-

scription of the process conditions under which the system will be used,

specifications of the technical environment in which the system will be

implemented as well as the specifications of the user interfaces. All this

data is crucial for the development and operation of the system and it

should be acquired at an early stage of the development.

3.4 Development of fault detection methods

This step comprises the development of fault detection methods for the

confirmed focus areas as well as the design of methods in order to com-

bine diagnostic knowledge if applicable. The development of a suitable

method for a specific fault detection problem depends on the process and

its dynamics, available process knowledge and data, and especially the

faults and their characteristics. The fault effects must be analysed and

the detection methods are designed based on the features the faults gen-

erate.

Different fault detection methods possess different attributes that must

be considered when developing a method for a fault. Table 3.1 lists the

main fault detection approaches from the categories presented in Sec-

tion 2.1 and their applicability to the most common process and fault fea-

tures.

Generally, the signal-based methods have a very wide application do-

main. They do not require particular process knowledge and therefore are

easily applied for processes with various dynamic properties. However,
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Table 3.1. Suitability of the main fault detection approaches for different process and
fault features. Sign ’+’ indicates the approach is suitable, ’−’ not suitable and
’±’ suitable to some extent or suitability very case-specific.

Signal-based Model-based Data-based
Feature of process and/or fault Parity eqs, Parameter CDGs, Statistical, Classifiers

State est. est. Parity eqsa NNb

Linear and static + + + + + +
Linear and dynamic + + + + + +
Non-linear and static + ± − + + +
Non-linear and dynamic ± ± + + ± +
Complex/difficult to model + − − − + +
Causal dependencies not known + ± ± − + +
No faulty data available − + + + +c −
Distinctive signal behaviour + − − − + +
Fault effects compensated by SISO control − + + + + +
Number of faults is large − + − + + −
a Parity eqn’s with structured residuals
b Neural network regression
c Applies only for fault detection

they are only suitable when there exist clear signal patterns or features

and the fault effects are not compensated by process control (Choudhury

et al., 2008b; Thornhill & Horch, 2007).

The model-based approaches can cover linear dynamic and to some ex-

tent non-linear dynamic processes, but are typically inappropriate for pro-

cesses with complex physical phenomena due to the required modelling

effort (Venkatasubramanian et al., 2003c). Detection of a large number

of different faults is generally possible, except for the parameter estima-

tion techniques. The causal digraphs and parity equation methods using

structured residuals require detailed information about the causal depen-

dencies of the process, but are very effective methods if such information

is available (Montmain & Gentil, 2000).

Statistical data-based methods are also widely applicable, in particular

for large-scale processes, but their suitability is restricted in case of dy-

namic and non-linear processes. Classification methods always require

faulty data to be applied successfully and are rarely able to detect multi-

ple faults simultaneously (Venkatasubramanian et al., 2003b).

The suitability of fault detection approaches can also be studied with re-

spect to the process decomposition hierarchy. The signal-based methods

are typically suitable for individual components, devices, or equipment at

the basic control level. The model-based methods require substantial ef-

forts to develop and implement as well as in-depth knowledge about the

process. Therefore, they are typically feasible only to medium-scale appli-

cations, namely equipment, sub units, or small process units. In contrast,

the data-driven methods have a large applicability area, which can cover

all levels of the decomposition. Since they do not require extensive pro-

cess knowledge, the development effort is moderate even at the unit and
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plant levels.

In fault detection systems that incorporate several methods, the inter-

actions and co-operation of the methods must be considered. Through the

analysis of the process, its decomposition and the faults to be focused on,

the requirements for combining diagnostic information can be derived.

Typically, the results of several parallel methods monitoring the same

fault or subsystem are combined using e.g. decision fusion (Sinha et al.

(2008)). In the case of complex large-scale systems distributed or decen-

tralized techniques presented for example by Mjaavatten & Foss (1997),

Singh et al. (1983), or Vadigepalli & Doyle III (2003) can be adopted.

3.5 Testing, implementation and validation of fault detection
algorithms

The implementation of fault detection algorithms based on the developed

methods is a task in which the characteristics of each method have to be

considered in the context of practical implementation. This step addresses

the operational requirements, data preprocessing, the presentation of di-

agnostic information and user interfaces for the algorithms.

Prior to the testing, appropriate data are collected and the experiments

are designed. The testing of the algorithms is typically performed off-

line using collected measurement data and simulation experiments. The

outputs of the algorithms are evaluated with respect to available fault

data, such as maintenance reports or expert analysis.

Next, the algorithms are implemented with respect to the requirements

set by for example technical platforms and interfaces discussed in Sec-

tion 3.3. In addition, the data preprocessing procedures are specified and

implemented. Then, the validation of the algorithms is conducted on-line

at the plant in a realistic operation environment or under similar con-

ditions. The overall performance and applicability of the algorithms are

assessed and finally the fault detection can be implemented at the plant.
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4. Description of the Board Machine
Process and Its Control Strategy

4.1 Overview of the case process

The case process is a paperboard machine (later board machine or BM)

located in the Stora Enso’s Kaukopää mills in Imatra, Finland. The BM

produces three-layer uncoated liquid packaging boards and cup boards

with basis weights ranging from 190 to 420 g/m2. The raw materials used

are hardwood and softwood kraft pulps, chemi-thermomechanical pulp

(CTMP) and broke. The BM was originally built in 1961 and has under-

gone several improvements during its history; most recently its calender

section and former has been upgraded along with the automation system.

The basic features of the BM are summarized in Table 4.1.

The boardmaking process consists of the following primary sections:

stock preparation, an approach flow system (or short circulation), a wire

section, a press section, a drying section, and a calendar followed by reel-

ing, see Figure 4.1. In addition, there are several secondary sections, such

as broke processing, white water circulation, and reject handling.

Table 4.1. Basic features of the case board machine

Start-up 1961
Capacity 350000 t/a
Machine speed 200–600 m/min
Wire width 6.95 m
Max. trim width 6.36 m
Grammage 190-420 g/m2
Crew 8 + 1
Products Liquid packaging boards, cup board
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Figure 4.1. Overview of the boardmaking process (modified from (Sundholm, 2000))

4.2 Brief description of the boardmaking process

The boardmaking process begins with the preparation of raw materials

in the stock preparation section. Different types of pulp are refined and

blended according to a specific recipe in order to achieve the desired com-

position and properties for the board grade to be produced. In addition,

several additives such as starch and various size chemicals are added to

improve the quality of the final product. The consistency of the stock is

controlled by the addition of dilution water. Since the BM produces three-

layered board, there are two separate stock preparation sections: one to

blend the stock for the middle layer and one for the top and bottom layers.

The blended stock passes from the stock preparation to the approach

flow system. First, the stock is diluted in the wire pit to the correct con-

sistency for web formation. Next, the diluted stock is cleaned in the hydro-

cyclone cleaning plant in order to remove impurities and screened in the

machine screen. Then, the stock passes to the head box, from where it is

sprayed onto the wire as evenly as possible in order to form a solid board

web (Norman, 2000). For the production of three-layered board there are

three different approach flow systems and wires.

Next, the board web is dried in several stages. The first stage is the wire

section in which the water is drained through the wire. Furthermore,

three webs are combined in the wire section to form the final structure

of the product. The second stage is the press section in which the water
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is removed by mechanically pressing the web between the rollers. The

press section of the case process consists of three press nips. Finally, the

remaining water is evaporated in the drying section using the latent heat

of steam inside the drying cylinders (Kuhasalo et al., 2000). The drying

section consists of five drying groups, each of which comprise 4–18 drying

cylinders. For more details refer to Publication IV.

After the drying, the board is calendered in two phases in order to

achieve the desired surface properties. The purpose of calendering is

to manage the gloss, smoothness, density, and thickness of the board

(Ehrola et al., 1999). Finally, the board is reeled and transferred to post-

processing.

4.3 Control of the boardmaking process

The process automation of a board machine consists of two main systems:

a distributed control system (DCS) and a quality control system (QCS).

The QCS represents the highest level in the control hierarchy by con-

trolling the main quality variables, whereas the DCS system handles the

basic controls at a lower level. The overall control strategy of the board

machine is illustrated in Figure 4.2.

The QCS utilizes Honeywell’s Robust Model-Predictive Control Tech-

nology (RMPCT) to control the main quality variables: basis weight mois-

ture, and thickness (see e.g. Qin & Badgwell (2003) and Backström &

Baker (2008)). The quality variables are measured after the calender sec-

tion with a measurement scanner that traverses constantly across the

web. The calculated control actions are delivered as setpoints to lower

level controllers handled by the DCS.

Since the control of board web quality is a two-dimensional control prob-

lem, the QCS operates in a machine direction and in a cross direction. In

the machine direction, the quality variables are controlled by providing

setpoints for lower level controllers; the basis weight control is achieved

by adjusting the stock flow controller setpoints, whereas the moisture con-

trol governs the steam pressure setpoints in the drying section. In the

cross direction, the QCS system controls special actuators that adjust the

profiles of the quality variables. The basis weight profile is controlled by

the dilution water in the middle layer headbox, while the moisture profile

is controlled with a steam box located before the press section and with a

moisturizing device located in the drying section. The thickness profile is
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Figure 4.2. Overview of the board machine control
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controlled at the second calender.

The control at the DCS level consists of approximately 500 control loops

that adjust pressures, flows, level, etc. around the board machine. The

main control loops handled by the DCS are the stabilizing controls, i.e. the

control loops that receive their setpoints from the QCS: the stock flow con-

trollers and the steam pressure controllers. The stock flow controllers are

located in the approach flow system. There are three separate controllers

for which the total required stock flow is divided according to the desired

layer ratios. The stock flow is controlled by adjusting the rotation speeds

of the pumps located in each approach flow system. The steam pressure

controllers are located in the drying section and each drying group
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5. Development of the Integrated Fault
Detection System for a Board
Machine

This chapter addresses the development of an integrated fault detection

system for the case process. The methodology presented in Chapter 3 is

followed stepwise to demonstrate its application. First, the decomposition

of the board machine is given in Section 5.1. Then, the faults of the board

machine are analysed in Section 5.2. The overall structure of the fault

detection system is described in Section 5.3 and finally the development

of fault detection algorithms is outlined in Section 5.4.

5.1 Process decomposition

The board machine process was decomposed into subsystems using a topol-

ogy-based decomposition strategy presented in Section 3.1 in order to pro-

vide a framework for fault analysis and to facilitate the development of

the fault detection system. First, the process was divided into primary

process units. In the board machine case, there are seven main process

units: the stock preparation, the short circulation, the wire section, the

press section, the drying section, the calender section, the reeling sec-

tion, and the quality control system, and several secondary units that

were combined under ’Other functions’, see Figure 5.1. Next, at the sub

unit level, each primary unit was decomposed into smaller subsystems.

For example, the drying section was divided into the cylinder groups, the

hood, the steam and condensate system, and the pocket ventilation sys-

tem. Then, each subsystem was divided on the equipment level and the

corresponding components were listed.
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BM

Unit level

Stock preparation

Short circulation

Wire section

Press section

Drying section

Calender section

Reeling

Quality control system

Other functions

Sub unit level

Cylinder group 1
Cylinder group 2
Cylinder group 3
Cylinder group 4
Cylinder group 5
Hood
Steam and condensate system
Pocket ventilation
. . .

Equipment level

Cylinder 1
Cylinder 2
Cylinder 3
Cylinder 4
Rope wheels
Transmission
. . .

Component level

Cylinder
Axle
Bearings
Man-hole
Siphon
. . .

Figure 5.1. Process decomposition of the case board machine focusing on the drying sec-
tion

5.2 Fault analysis

The fault analysis carried out at the case process aimed at finding the

main focus areas for the development of the fault detection system. The

work was concentrated on the faults that affected the most process oper-

ation or product quality and could not be handled by the standard algo-

rithms in the automation systems. The main results of the analysis are

presented in this section according to Jämsä-Jounela et al. (2013).

The fault analysis was based on long-term production and maintenance

data that were collected from the board machine. Maintenance records,

production logs, and process measurement data for the year 2010 were

analysed. In addition, interviews of operating personnel were conducted.

5.2.1 Analysis of the production losses

The production losses, i.e. web breaks and shut-downs, were studied in

the first phase of the fault analysis. The results showed that the board

machine was operating 64% of time during the analysed time period, as

reported in Table 5.1. Over thirty percent of production time was lost due

to unplanned and planned shut-downs, whereas web breaks accounted for

approximately 5%.

On closer inspection, the statistics showed that the web breaks were

mainly due to operational reasons whereas the unplanned shutdowns

were equally caused by operational and maintenance reasons. The op-

erational causes consisted mainly of process disturbances whereas main-

tenance reasons included, among others, mechanical failures.

The results indicate that the most significant benefits could be achieved

by reducing the unplanned shut-downs caused by operational causes.
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Table 5.1. Distribution of production time, web breaks, and shut-downs, and the cause
distribution of the web breaks and unplanned shut-downs

Event Duration Cause
d % d %

Web break 13.2 4.5 Maintenance 0.6 4.5
Operational 12.4 93.9
Unspecified 0.2 1.5

Unplanned shut-down 42.7 14.6 Maintenance 21.3 49.9
Operational 20.4 47.8
Unspecified 1.0 2.3

Planned shut-down 49.9 17.1
Normal production 186.1 63.8

Total 291.9 100

Fault types
(n = 634)

Breakage 0.5 %

Clogging,
jamming 8.5 %

Fouling 1.9 %

Leakage 13.4 %
Loosening, disengagement 7.1 %

Malfunction 46.7 %

Noise 1.3 %
Overheating 1.4 %

Vibration 3.2 %

Other damage 12.8 %

Unlisted other
damage 0.5 %

Unspecified 2.8 %

Figure 5.2. Distribution of faults by the fault type

5.2.2 Distribution of the fault types, locations, and devices

The next phase of the fault analysis focused on studying the fault types,

the faultiest unit processes, and the devices associated with the faults.

According to the results, among the 634 analysed faults, the most com-

mon fault type was malfunction, see Figure 5.2. Other significant fault

types were leakage and loosening or disengagement, and clogging or jam-

ming. The collected data were influenced by the major commissions of

new process equipment in 2009, when the automation system, the cal-

ender section and a part of the wire section of the board machine were

renewed. As a result, the number of faults in 2010 was noticeably higher

than in a regular operating year. The number of faults is, however, at a

typical level after such upgrades as reported by the plant experts.

The analysed faults were assigned to the corresponding process units
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Fault locations
(n = 634)

Stock preparation 6.6 %

Short circulation 3.6 %

Wire section 10.1 %

Press section 5.8 %Drying section 6.9 %

Calender section 9.3 %

Reeling 9.8 %

QCS 18.0 %

Broke processing 6.2 %

Other functions 23.7 %

Figure 5.3. Distribution of the faults by the process sections

based on the process decomposition. Among the main process units, the

faults were distributed quite evenly, but the QCS emerged as the most

problematic section, see Figure 5.3. The faults related to ’Other func-

tions’ were not considered further in the analysis, since they concerned

the faults in the supporting facilities of the plant, such as the ventilation

of the machine hall or electrical systems.

Within each process section, the main fault types and devices were iden-

tified. For the sake of brevity only the drying section, short circulation and

QCS faults are presented here in Tables 5.2, 5.3 and 5.4, respectively. A

more detailed examination of the fault types is given in (Jämsä-Jounela

et al., 2013) and in Publication I, which presents further analysis of the

fault in basic control devices and actuators.

The faults located in the drying section are presented in Table 5.2 which

indicates that leakages are the most common fault type in this process

unit. Leakages were mainly focused on pumps, pipes and rolls. In addi-

tion, the share of malfunctions was considered significant, especially in

valves and positioners.

Table 5.3 presents the faults in the short circulation sections of the BM.

The most significant fault types are malfunction and vibration, which are

mainly associated with valves and pumps, respectively. Another remark-

able faulty device are the measurements, which in this case refer to a

consistency sensor. They are very important in terms of controlling the

basis weight of the board and therefore their importance was particularly

stressed by the plant personnel.

The most common fault type associated with the QCS was malfunction
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which accounted for 82.5% of all QCS faults. These faults were mainly

related to the measurement devices. The reasons for the malfunctions are

presented in Table 5.4 which reports the causes of all faults, malfunctions

and specifically of sensor malfunctions. It is immediately noted that im-

purities and moisture are the main causes of all QCS related faults and

particularly the sensor malfunctions. A further analysis of the mainte-

nance records revealed that fouling of the caliper sensor was the main

problem in this part of the process.

5.2.3 Focus areas of the fault detection system development

The fault analysis results were validated by expert interviews at the case

site. The process and maintenance experts reviewed the results and con-

firmed their validity as well as provided background information for de-

termining the focus areas for fault detection system development. As a

result, the following faults were identified as the main focus areas for the

development of the fault detection system:

1. valve malfunctions

2. consistency sensor malfunctions

3. clogging, jamming, and leakages in valves and pipes in the drying sec-

tion

4. board caliper measurement faults

Table 5.2. The fault types by device in the drying section of the board machine.

Device L
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ng
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l

(%) (%) (%) (%) (%) (%) (%)

Drive – – – – – 2.3 2.3
Drying cylinder – 6.8 4.5 – 2.3 – 13.6
Gear and transmission 4.5 – – – 2.3 – 6.8
Heat exchanger 2.3 – – – – – 2.3
Mechanical – – 2.3 – 4.5 – 6.8
Other mech. device – – 4.5 2.3 – – 6.8
Pipe 9.1 – – – – – 9.1
Positioner – – 9.1 – – – 9.1
Pressure device 2.3 – – – – – 2.3
Pump 11.4 – – – 6.8 2.3 20.5
Roll 6.8 2.3 – – 2.3 – 11.4
Valve 2.3 – 6.8 – – – 9.1

Total 38.6 9.1 27.3 2.3 18.2 4.5 100.0
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Table 5.3. The fault types by device in the short circulation of the board machine.

Device B
re
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(%) (%) (%) (%) (%) (%) (%) (%) (%)

Automation hw – – 4.3 – 8.7 4.3 0 0 17.3
Valves – – 4.3 – 21.7 – – – 26.0
Pipes – 4.3 4.3 – – – – – 8.6
Pumps – – – – 4.3 – 4.3 17.4 26.0
Measurements 4.3 – – – 8.7 – – – 13.0
Electrical – – – – 4.3 – – – 4.3
Mechanical – – – 4.3 – – – – 4.3

Total 4.3 4.3 13.0 4.3 47.8 4.3 4.3 17.4 100.0

Table 5.4. Causes of all QCS faults, sorted by malfunctions in general and sensor mal-
functions.

Cause A
ll

fa
ul

ts

M
al
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nc
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s
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ns
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m
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ti

on
s

(%) (%) (%)
Component failure 1.8 1.1 1.6
Corrosion/ oxidation 0.9 1.1 –
Exceptional conditions 1.8 2.1 1.6
Impurities, moisture 38.6 46.8 69.4
Misoperation 6.1 7.4 –
Normal wear 7.9 8.5 8.1
Other failure 3.5 3.2 1.6
Program fault 5.3 6.4 –
Safety switch 2.6 3.2 –
Unknown/unspecified 31.6 20.2 17.7
Total 100.0 100.0 100.0

Focus areas 1, 2 and 3 were direct conclusions from the fault analysis

results as they were clearly indicated by the fault statistics. The focus

area 2 appeared also in the statistics, but its importance was emphasized

by the process experts during the interviews. Further details of each focus

area are presented in the corresponding publications.

5.3 Structure of the integrated fault detection system

The integrated fault detection system consisted of four detection modules,

each representing an algorithm for addressing the valve, consistency sen-

sor, leakage and blockage, and caliper sensor faults in the corresponding
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Figure 5.4. Overview of the PAPYRUS project concept for plant asset management.
(Schlake et al., 2011)

process units or equipment. The developed system was a part of the plant

asset management framework which was created as a result of the re-

search conducted within the project ”Plug and Play monitoring and con-

trol architecture for optimization of large scale production processes, PA-

PYRUS” (EU-IST-2010-257580). The aim of the project was addressing a

complete process asset management loop from fault detection and diagno-

sis via prognosis to corrective actions in order to restore plant operation.

The overall scheme of the PAPYRUS project and the role of the fault de-

tection system as a part its diagnosis block is illustrated in Figure 5.4.

The system structure followed the decomposition and control strategy

of the process and it aimed at detecting the faults at the lowest possible

level of the process hierarchy, in order to prevent the fault effects from

propagating to the higher levels and finally adversely affecting the plant

performance and product quality. The fault detection modules were asso-

ciated with the levels of the process decomposition and control strategy

according to Figure 5.5.

The first and second fault detection modules concerned the basic control

level and were related to the faults in the process equipment. For detect-

ing valve stiction faults and the related oscillations, an approach utiliz-

ing four parallel methods was developed. The consistency sensor faults

were addressed with an algorithm based on the dynamic causal digraph

method.

The third module covered one unit of the process and was related to the
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Control
systems

QCS

Stabilizing
controls

Basic
controls

Board machine

Stock
prep.

Short
circ.

Wire
sect.

Press
sect.

Drying
sect.

Calend.
sect.

Drying
groups

Steam
& cond. HoodRefin-

ing
Blend-

ing

QI
Cs

Physical
systems

Process
decomposition

Equipment

Sub units

Units

Plant
Module 4:
Self-orga-

nizing map

Module 2:
Causal

digraphs

Module 3:
Non-linear
parity eqns

Module 1:
Oscillation and
valve stiction

detection

Figure 5.5. Overall structure of the fault detection system; the fault detection modules
with respect to the process decomposition and the control strategy.

process unit level control, i.e. the stabilizing controls. A non-linear par-

ity equation method based on grey-box modelling was developed, which

addressed the fault detection and diagnosis in the steam and condensate

system of the drying section by focusing on leaks and blocks in pipe lines

as well as jamming and clogging of valves.

The fourth module focused on the highest process decomposition level

and on the top of the process control hierarchy, as the QCS system covers

the whole process from the stock preparation to the reeling, see Figure 5.5.

The main problem related to the QCS was the fouling of the board caliper

sensor, for which a self-organizing map based process monitoring applica-

tion was developed.

The combination of results from the fault detection modules was not re-

quired with the current configuration, since the modules did not overlap

with respect to the process topology and the faults to be detected. Al-

though, the valve stiction detection module was applied to valves in the

stock preparation and the drying section, for which the DCDG and the

parity equation methods were developed respectively, the fault types were

however different. Therefore, the detection results of each module could

be handled independently.

The development and detailed descriptions of the algorithms for each

fault detection module are presented in the following subsection.

58



Development of the Integrated Fault Detection System for a Board Machine

5.4 Development of the fault detection algorithms

5.4.1 Detection of oscillations and valve stiction

Valve stiction is a special type of fault for which dedicated detection al-

gorithms have been developed. Valve stiction generates a wide range of

features due to the large diversity of controller dynamics and valve types.

Valve stiction detection algorithms are typically able to detect a subset

of the features and therefore each algorithm has its own advantages and

drawbacks, i.e. it performs well in some cases but sometimes may fail

completely to detect stiction. As a consequence, successful industrial ap-

plications typically require combinations of algorithms in order to com-

prehensively detect sticky valves. Therefore, the valve stiction diagnosis

system developed for the board machine consisted of well-established al-

gorithms running in a parallel configuration. In order to provide an over-

all detection result by combining the results of the individual algorithms,

a decision fusion approach was created. The decision fusion was based on

novel indices, which estimated the reliability of the detection decisions ob-

tained by the individual algorithms in each case and were used as weights

for the corresponding stiction indices. In this manner, all algorithms con-

tributed to the final decision, improving the reliability of the results and

avoiding ambiguous or contradictory detections.

Detection of oscillations is typically a prior step in valve stiction detec-

tion and therefore an algorithm for detecting oscillations was developed.

The algorithm features a procedure which computes and removes the non-

stationary baseline of the analysed signal before an oscillation detection

index is calculated. The baseline computation procedure was introduced

since the aim was to create an autonomous method that requires no tun-

ing parameters and therefore filtering approaches were considered un-

suitable. The method also utilizes robust statistics in order to increase

its resistance against noise and outliers, which are common in industrial

processes.

The detection system for oscillations and valve stiction consisted of the

following phases: (1) data preprocessing during which tasks such as veri-

fying sampling time and removing outliers, large disturbances, and gaps

in the data were performed; (2) detection of oscillations; (3) calculation of

stiction indices; (4) calculation of the reliability indices; (5) the final phase

in which the integrated detection decision was achieved. The entire pro-
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Figure 5.6. The oscillation and valve stiction detection system using parallel configura-
tion of four stiction detection algorithms.

cedure is illustrated in Figure 5.6.

For detecting oscillations a new detection method was developed. In

Publication I, the oscillation detection was carried out using the method

presented by the author in (Tikkala et al., 2010). However, an improved

method called the Robust Zero-Crossing (RZC) method was later devel-

oped and reported in Publication II.

The RZC method computed the moving trend, or the ”baseline” of a non-

stationary signal by finding the consecutive ZC intervals and the local

minimum and maximum values of the signal between them. Next, a sta-

tistical test was used to determine the presence of an oscillation. The RZC

method is described in the following.

For a discrete-time signal x(t), t = 1, . . . , n, the time instants of zero-

crossings tz,i were defined as:

tz,i ={t | sign{x(t− 1)− b(t− 1)} �= sign{x(t)− b(t)}},
i = 1, . . . ,m (5.1)

where b(t) is the baseline of the signal at time t and m is the number of

zero-crossings in x(t). The local maxima and minima, a+i and a−i , are used

to calculate the shift in the signal’s baseline for each interval:

b(t) =

⎧⎪⎨
⎪⎩
a−i +

a+i −a−i
2 , t = tz,i, i = 1, . . . ,m

b(t− 1), otherwise,
(5.2)

where

a+i =max{x(t1)− b(t1), x(t2)− b(t2)},
tz,i−1 ≤ t1 ≤ tz,i, tz,i−2 ≤ t2 ≤ tz,i−1, (5.3)

and

a−i =min{x(t1)− b(t1), x(t2)− b(t2)},
tz,i−1 ≤ t1 ≤ tz,i, tz,i−2 ≤ t2 ≤ tz,i−1, (5.4)
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In order to stationarize x(t), the baseline was corrected by backward

shifting and interpolation. The backward shifting was done because b(t) is

computed based on the last two half periods and therefore it lags behind

the true baseline, the estimate of which is denoted as bc(t) hereinafter.

The backward shifting was defined as bc(tz,i) = b(tz,i+1), and the interpo-

lation as follows:

bc(t) = bc(tz,i) + (t− tz,i)
bc(tz,i)− bc(tz,i−1)

tz,i − tz,i−1
, tz,i−1 < t ≤ tz,i (5.5)

Finally, the signal was stationarized by subtracting the computed base-

line xs(t) = x(t)− bc(t).

The determination of the presence of an oscillation was based on an

index rRZC representing the regularity of zero-crossings:

rRZC =
1

3

Δ̃tz
MAD(Δtz)

, (5.6)

where Δ̃tz is the median of time between consecutive zero-crossings and

MAD(Δtz) =
1

m− 1

m∑
i=1

(|tz,i − Δ̃tz|). (5.7)

When an oscillation was detected, valve stiction detection was carried

out using the histogram method (Horch, 2006b), the curve fitting method

(He et al., 2007), the rectangular fitting method (Hägglund, 2011), and

the bicoherence method (Choudhury et al., 2006). The first three meth-

ods based their diagnosis on the shape of a signal, or in case of Horch’s

method, its histogram and the fourth method was based on evaluating

the non-linearity of a process signal (see Section 2.4). The methods were

applied to the oscillating signal and the reliability indices were computed

to obtain the final result. The overall detection result was computed as a

weighted average of the stiction indices provided by the methods:

S =
1

n

n∑
i=1

risi, (5.8)

where n is the number of methods used in parallel, ri are the reliability

indices and si are the individual stiction indices. Specifically, the num-

ber n defines the number of reliable methods in the calculation period;

a method i is considered as reliable if the reliability exceeds a certain

threshold wi > θ. The threshold can be set to θ = 0.5, for instance. In

other words, if the reliability of a method is low, it is excluded from the

overall index calculation.

61



Development of the Integrated Fault Detection System for a Board Machine

The histogram method by Horch (2006b) is based on studying the shape

of the histogram of the analysed signal. The reliability index for the his-

togram method rih was constructed using the Gaussian and camel fitting

errors as follows:

rih = 1− 2
min(d2g, d

2
c)

d2g + d2c
, (5.9)

where d2g is the squared 2-norm of the error fitting of the Gaussian dis-

tribution and d2c is the squared 2-norm of the error fitting of the camel

distribution. The values of rih range from 0 to 1; the closer the value is to

1, the more reliable the stiction index can be considered.

In the curve fitting method, the stiction index may provide inaccurate

results when the MSE of both sinusoidal and triangular signals is unable

to match the original signal. Thus, the reliability index was constructed

using the fitting residuals of both signals:

ric = 1− 2
min(dsin, dtri)

dsin + dtri
, (5.10)

where dsin and dtri are the fitting errors of the sinusoidal and triangular

signal respectively.

The rectangular fitting method presented by Hägglund (2011) evaluates

the best match between a sine wave or a square wave and the oscillating

control error signal. Thus, the reliability index of the rectangular fitting

method rir employed the values of the sine and square loss functions, since

functionally they are similar to the fitting errors used in the histogram

and curve fitting methods:

rir = 1− 2
min(Vsine, Vsquare)

Vsine + Vsquare
, (5.11)

In terms of reliability, the most important feature of the data for the bi-

coherence based non-linearity indices is the stationarity of the data. This

requirement is however seldom achieved when using real industrial data,

even after it has been pre-processed. To this end, a reliability index was

defined for the NGI and NLI computation. Standard statistical tests, Stu-

dent’s t-test and χ2-test are used to calculate the mean and the standard

deviation, respectively. To compute of the reliability index, the data was

divided into l segments for which the mean x̄i and standard deviation σi

were calculated and tested against the null hypothesis xi = 0 and σi = 1.

The reliability index rib was defined as follows:

rib = rx̄ · rσ, (5.12)
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where

rx̄ = 1− #{x̄i | |Ti| > Tlim}
l

(5.13)

and

rσ = 1− #{σi |χ2
i < χ2

lim,l or χ2
i > χ2

lim,u}
l

. (5.14)

In the above, Ti = x̄i/(σi/
√
n) is the t-statistic for testing the mean of

the data segment i, Tlim is the limit for the confidence level of 0.05. The

variable χ2
i = ((n − 1)σ2

i )/(σ
2) denotes the test statistic for testing the

standard deviation for the data segment i, while χ2
lim,l and χ2

lim,u are the

lower and upper limits for the confidence level of 0.05. The operator #{}
takes the number of elements in the set.

5.4.2 Dynamic causal digraph for consistency sensor
malfunctions

A dynamic causal digraph based fault detection algorithm was developed

to address the detection of consistency sensor malfunctions in the stock

preparation section. The consistency sensor faults cannot be detected di-

rectly from the measurement signal, since the consistency is tightly con-

trolled and the faults are often compensated by the controller. Therefore,

signal-based methods were not an option and model-based approaches

were required. The selection of the DCDG method was justifiable, since

the causal dependencies in the stock preparation and short circulation

are straightforward, but dynamic models are however needed to describe

the tank dynamics. Another contributing factor was the need for fault

isolation properties.

The CDG model developed for the board machine covered the stock prepa-

ration and short circulation. The digraph model consisted a mixture of

static and dynamic models for different parts of the process depending on

the process dynamics in each part. The stock mixing part was represented

with static equations describing the ideal mixing of stock and dilution wa-

ter and the tanks were modelled with first-order dynamics, for instance.

These models were used to create analytical redundancy for the consis-

tency sensors for fault detection purposes. The resulted residuals were

analysed using the causal inference mechanisms to confirm the faults.

The application of the DCDG method comprised an off-line modelling

phase and an on-line phase. In the modelling phase, a causal digraph

model of the process was derived. The overall structure of the CDG model
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containing two stock preparation sections and three short circulation sec-

tions is presented in Figure 5.7. In the following, the cause-effect models

for the stock preparation 2 and short circulation 2 sections are briefly dis-

cussed to illustrate the modelling phase. The variables for the presented

equations are listed in Table 5.5.

The equation for the consistency of pine pulp pcon2 was derived based

on an ideal mixing model:

pcon2 =
pdflow2 · conlong + (pflow2− pdflow2) · spcon)

pflow2
, (5.15)

where spcon = 4.5 % and conlong = 0.02 % are the consistencies of dilution

water and pine pulp, respectively. The flows pdflow2 and pflow2 were

estimated from the corresponding valve openings using a neural network

model.

The consistency of machine chest conm2 was modelled as follows:

conm2 =
dflow2 · conlong + bleflow2 · blecon2

bleflow2 + dflow2
, (5.16)

where the intermediate flow variables dflow2 and bleflow2 were again

estimated based on valve positions using neural networks and blecon2 was

computed from equation:

d(Mb · blecon2)
dt

= pflow2·pcon2 + cflow2 · ccon2 + broflow2 · brocon2

+ fo · sccon2− bleflow2 · blecon2. (5.17)

In (5.17), fo = bleflow2− pflow2− cflow2− broflow2 is the overflow from

the machine chest to blend chest and Mb is the mass of pulp in the blend

chest, which is assumed to be constant. The consistency in the machine

chest sccon2 was modelled using the mass balance:

d(Mm · sccon2)
dt

= conm2 ·mcflow2−fo ·sccon2−scflow2 ·sccon2, (5.18)

where Mm is the mass of pulp in the machine chest and mcflow2 = fo +

scflow2.

The cause-effect models for the short circulation section consisted of

static regression models for variables headflow2, scflow2, acceptcon2, and

headcon2 and a first-order transfer function model for wpcon2. In addition,

the white water consistency was calculated as follows:

wwcon2 =
α

100 · β · headcon2, (5.19)

where α = 0.1 and β = 0.95 are the ratios of solid content and water that

pass through the wire, respectively.
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Table 5.5. Description of the variables of the causal digraph model

Stock preparation 2
Variable Description Type Unit

broval2 valve opening for the broke line A %
broflow2 mass flow of the broke M kg/s
brodval2 dilution water valve opening for the broke line A %
brodflow2 dilution water flow for the broke line E kg/s
brocon2 broke consistency M %
pspeed2 pine pump rotation speed A %
pflow2 mass flow of the pine stock M kg/s
pdval2 dilution water valve opening for the pine line A %
pdflow2 dilution water flow for the pine line E kg/s
pcon2 pine consistency M %
cspeed2 CTMP pump rotation speed A %
cflow2 mass flow of the CTMP M kg/s
cdval2 dilution water valve opening for the CTMP line A %
cdflow2 dilution water flow for the CTMP line E kg/s
ccon2 CTMP consistency M %
mcval2 dilution water valve opening for the machine chest A %
dflow2 dilution water flow for the machine chest E kg/s
conm2 consistency before the machine chest M %
ppress2 pressure before the pine valve M kg/s
cpress2 pressure before the CTMP valve M kg/s
sccon2 consistency of the machine chest M %

Short circulation 2
Variable Description Type Unit

bwspeed2 basis weight pump rotation speed A %
scflow2 flow from the machine chest (thick stock flow ) M kg/s
wpcon2 wire pit consistency M %
acceptcon2 consistency of accept flow from the hydrocyclone M %
headspeed2 headbox feed pump rotation speed A %
headflow2 mass flow through the headbox M kg/s
headcon2 headbox consistency M %
sliceopen2 slice opening of the headbox A mm
drybw2 dry basis weight of the layer 2 M g/m2

The on-line phase was divided into three main tasks: residual genera-

tion, fault detection using the CUSUM method, and fault isolation. The

four different types of residuals were generated using the digraph model

and the process measurements, see Section 2.2.2. Then, the CUSUM

method was used to detect significant changes in the residuals and to

trigger fault isolation reasoning and fault type identification. Fault iso-

lation aimed at finding the propagation path of the detected fault by uti-

lizing the inference mechanism based on the global and local residuals

(see Table 2.1) and finally the fault type was identified using the rules in

Table 2.2.
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Figure 5.7. Causal digraph structure of the three-layer board machine.

5.4.3 Non-linear parity equation method based on grey-box
models for the drying section faults

The leakage and blockage faults in the steam and condensate system of

the drying section were addressed by a parity equation algorithm based

on grey-box models utilizing structural knowledge of the process. Static

equations were considered sufficient for the drying section, since there are

no large volumes for the mass to accumulate. However, non-linear equa-

tions were required due to the strong non-linear behaviour of mass flow

through a valve. The equations were derived according to the structure

of the flow network and they described the mass balances of the drying

groups. The steam and condensate system does not however feature suf-

ficient flow measurements and therefore a special approach was adopted.

Mass flows were estimated by a novel, patented technique that utilized

the available pressure measurements and valve positions and iteratively

solved the mass balance equations (Zakharov, 2011). By incorporating the

structure of the process into the equations, the non-linearity of the pro-

cess could be described with low-dimensional valve models instead of a

high-dimensional black-box model for the whole process. The parameters

of these functions were estimated board machine data.

The application of this method consisted of two phases. The off-line

phase covered modelling of the mass balances, estimation of model pa-

rameters using measurement data, and determination of fault detection

thresholds. The on-line phase consisted of residual generation, change de-
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tection using the cumulative sum (CUSUM) method (Hinkley, 1971), and

fault isolation using a structured residuals technique.

The model equations were defined to be of the following form:

k∑
i=1

aixi +
l∑

i=1

F 1
i (x

1
i ) +

m∑
i=1

F 2
i (x

2
i , y

2
i ) +

n∑
i=1

F 3
i (x

3
i , y

3
i , z

3
i ) = 0, (5.20)

where variables x, y and z are process or computed variables, k is the

number of linear terms involved in the equation with coefficients ai, and

l, m and n are the numbers of nonlinear functions with one, two and three

arguments, respectively. F 1, F 2 and F 3 were defined using the following

parameterization:

F 1(x) =
∑

i=1,...,p

big
x
i (x), (5.21)

F 2(x, y) =
∑

i=1,...,p

∑
j=1,...,q

bi,jg
x
i (x)g

y
j (y) (5.22)

F 3(x, y, z) =
∑

i=1,...,p

∑
j=1,...,q

∑
j=1,...,r

bi,j,kg
x
i (x)g

y
j (y)g

z
k(z), (5.23)

where bi, bi,j and bi,j,k are the coefficients of the non-linear functions, and

p, q, and r are the number of the basis functions gxi , gyj and gzk related to

process variables x, y and z, respectively. Piece-wise linear basis functions

were selected for this case study.

A mass balance model was created to describe the steam feed and the

steam balances of the steam groups (SG) 3, 4, 7, and 8 as illustrated by

Figure 5.8. Since steam flow measurements were only available for the

feed steam headers, the steam flow to each SG was estimated using a

novel technique that is based on empirical valve models (Zakharov, 2011).

The models for the valves were estimated using measurement data of

the pressure difference across the valves and the valve openings. The

complete model consisted of the following equations created based on the

structure of the drying section:

f3,in10(V3,ΔP3) + f4,in(V4,ΔP4) + f7,in(V7,ΔP7) + f8,in(V8,ΔP8) = Fin,10

(5.24)

f1,in(V1,ΔP1) + f2,in(V2,ΔP2) + f3,in5(V3,ΔP3) + FCal = Fin,5 (5.25)

f8,c(V8,c,ΔP8,c) + f8,pd(V8,pd,ΔP8,pd) = F8,in (5.26)

f7,c(V7,c,ΔP7,c) + f7,pd(V7,pd,ΔP7,pd) = F7,in (5.27)

f3,c(V3,c,ΔP3,c) + f3,pd(V3,pd,ΔP3,pd) = F3,in5 + F3,in10 + F4,c (5.28)

f4,c(V4,c,ΔP4,c) + f4,pd(V4,pd,ΔP4,pd) = F4,in (5.29)
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In the above equations, fi(Vi,ΔPi) refer to the identified valve model,

where Vi is the valve opening and ΔPi is the pressure difference across

the valve for the drying group i. Fi are the mass flows. Subscripts c refer

to the condensate flow and pd to pressure difference control valve located

in the condensate line. The input and output variables of the Equations

(5.19-25) are also summarized in Table 5.6.

Next, the detection thresholds for each residual were defined for the

CUSUM method using the standard deviations of modelling errors. Fi-

nally, the residual-fault incidence matrix was determined for fault isola-

tion purposes.

Figure 5.8. Simplified flowsheet of the drying section

5.4.4 Self-organizing map for caliper sensor fouling

A process monitoring method based on the SOM algorithm was developed

in order to detect caliper sensor fouling. The mechanisms and chemistry

behind the fouling phenomenon are very complex and therefore the prob-

lem was addressed with a non-linear data-based method. The SOM was

selected due to its ability to handle a large number of variables having

non-linear relationships and to identify the process condition in which

fouling is occurring by classifying the process data. The use of a classi-

fier method was motivated by the availability of faulty and healthy data.
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Table 5.6. Summary of the developed parity equations

Equation Inputs Outputs

10 bar steam feed 10 bar feed steam flow Steam flows to SGs 3, 4, 7, 8

5 bar steam feed 5 bar feed steam flow Steam flows to SGs 1, 2, 3
Steam flow to calender

Steam group 8 10 bar steam flow to SG8 Steam flow from SG8
Condensate flow from SG8

Steam group 7 10 bar steam flow to SG7 Steam flow from SG7
Condensate flow from SG7

Steam group 4 10 bar steam flow to SG4 Steam flow from SG4
Condensate flow from SG4

Steam group 3 10 bar steam flow to SG3 Steam flow from SG3
5 bar steam flow to SG3 Condensate flow from SG3
Condensate flow from SG4

In addition, the known chemical phenomena related to fouling could be

incorporated as calculated variables and appended to the training data.

The SOM also possesses strong visualization properties, and it has suc-

cessful applications in various process monitoring tasks (Jämsä-Jounela

et al., 2003; Hakala et al., 2006).

The monitoring method consisted of two main phases: a training phase

and an online phase. The training phase comprised the selection of input

variables, data preprocessing, determining the training parameters, and

training of the SOM using industrial data. The online phase consisted of

the calculation of the best-matching units (BMUs), the visualization and

analysis of the results.

The input variables for the SOM were selected based on process data

analysis using correlation analysis, the SOM and process knowledge. The

data analysis results are presented in (Tikkala et al., 2011). Apart from

the specific temperatures and chemical flows, the input variables for the

SOM included calculated variables (see e.g. Komulainen et al., 2004) de-

scribing the important process phenomena related to fouling. In (Tikkala

et al., 2011), it was discovered that the neutral size is the main chemical

affecting fouling, and therefore the following variables were introduced.

The first calculated variable R described the chemical reaction between

size molecules and wood fibers with an exponential function resembling

the Arrhenius equation for the reaction rate constant. According to Neimo

(1999), the reaction of size molecules with wood fibres is favoured by high

pH. Therefore, the exponential term was multiplied by the pH of the stock

as follows:

R = e−1/TW · pH, (5.30)
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Table 5.7. List of variables for the SOM monitoring application

# Variable Description

1 F Caliper control error (cv-sp)
2 dF Filtered derivative of F
3 R Reaction of the size molecules and fibres
4 C Curing of the size molecules
5 S Adsorption of size particles
6 Tcal 1st calender thermo roll temperature
7 P0 Zero-pressure level of the secondary hood
8 TH Hood ventilation air temperature
9 FWS Wet strength size flow
10 FS Starch flow
11 FNS Neutral size flow
12 FRS Retention starch flow
13 FRA Retention agent flow
14 TW Temperature of the web

where TW is the temperature of the web. The second calculated vari-

able, C, provided insight into curing, i.e. orientation phase, of the size

molecules. Curing is favoured by high temperature and impeded by the

moisture of the web (Neimo, 1999), leading to the following expression for

C:

C =
TW

M
, (5.31)

where M is the moisture of the web. The last calculated variable S de-

scribes the starch ratio of the stock. Since the amount of starch has a

positive effect on the adsorption of the size particles (Neimo, 1999), S was

defined as:

S =
FS

Ftop
, (5.32)

where FS is the starch flow and Ftop is the stock flow for the top layer.

The final list of variables for the SOM monitoring is presented in Ta-

ble 5.7. For the details on data preparation and preprocessing, please

refer to Publication V.

The training was performed using the batch training algorithm and the

relevant training parameters have been presented in Table 3 of Publi-

cation V. The SOM algorithm and defining the training parameters are

further discussed by Vesanto et al. (2000). The training phase resulted

in a map that described the process conditions and the regions of faulty

operation could be identified.

In the online phase, the SOM was used to classify the current process

state based on the different operation regions on the map. The best-

matching units, i.e. the closest map nodes, were computed for each new
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data sample and the results were analysed and visualized on the SOM. In

order for the SOM to adapt to the varying conditions of the board machine

process, the SOM was re-trained during the online phase. The re-training

phase consisted of a short training step, in which the weights of the map

were updated using recent data and the previous weights as initial val-

ues.
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6. Summary of the Fault Detection
Results

The summary of the testing results of each fault detection algorithm is

presented in this chapter. First, Section 6.1 discusses the results of os-

cillation and valve stiction detection. Then, the results of the consistency

sensor malfunction detection are presented in Section 6.2, followed by the

results of detecting the leakages and blockages in the drying section using

the non-linear parity equation algorithm (Section 6.3). The monitoring re-

sults of the SOM-based caliper sensor fouling detection are addressed in

Section 6.4. Section 6.5 deals with the industrial validation results of the

developed fault detection algorithms and finally the fault detection results

are evaluated and discussed in Section 6.6.

6.1 Detection of oscillations and valve stiction

The oscillation and valve stiction detection algorithms were tested with

two different tests. The first test concentrated on oscillation detection,

whereas the second test focused on the valve stiction detection and the

reliability indices. The results are presented in Publication II and Publi-

cation I respectively, and summarized in the following.

The robust zero-crossing method was tested with ten control loops from

the board machine; two flow control loops from the stock preparation (FC1

and FC2), one level control loop (LC1) and seven pressure control loops

(PC1 to PC7) from the drying section. The selected control loops exhibited

oscillatory behaviour with different and sometimes irregular shapes of

oscillation and some of the signals were corrupted by noise, as illustrated

in Figure 6.1.

The oscillations were detected successfully in each loop and the esti-

mated periods were close to the actual observed periods. The oscillation

indices rRZC reported in Table 6.1 are all above the threshold rlim = 1
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Figure 6.1. Board machine data for oscillation detection tests.

Table 6.1. Oscillation detection results on the board machine data.

Loop Period pRZC rRZC

samples minutes
FC1 27–30 4.5–5.0 26 1.73
FC2 20–23 3.3–3.8 20 1.31
LC1 16–17 2.7–2.8 16 3.79
PC1 13–17 2.2–2.8 16 1.74
PC2 12–15 2.0–2.5 10 1.06
PC3 15–18 2.5–3.0 15 3.49
PC4 15–19 2.5–3.2 16 3.06
PC5 14–17 2.3–2.8 16 6.93
PC6 17–18 2.8–3.0 16 4.90
PC7 15–18 2.5–3.0 14 2.60

which indicate a correct detection result in each case. The oscillation

periods pRZC were correctly estimated in most of the cases. However,

some variation in the results occurred in the case of loops FC2, PC2, PC6

and PC7 for which the estimated period is slightly less than the observed

period. This was a consequence of measurement noise that skewed the

distribution of zero-crossings and biased the estimation of the oscillation

period. In particular, in the loop PC2, the measurement noise in the sig-

nal disturbed the oscillation detection. The oscillation index was just over

the detection limit and the noise caused the period to be estimated sig-

nificantly smaller than the actual value. However, a correct detection

decision was still made by the RZC algorithm.

The second test employed data from four critical control loops of the case

process: a pressure control loop in the steam group 2, a flow control loop

in the birch dosing, a pressure difference loop in the steam group 8 and a

flow loop in the stock mixing. The implemented valve stiction algorithms
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Table 6.2. Valve stiction detection results. Stiction indices for the curve fitting method
(sC ), the histogram method (sH ), the rectangular fitting method (sR), the bico-
herence method, and the integrated index.

Test cases and Month sC sH sR Bicoherence Integrated
maintenance description NGI NLI index

Case 1: Jan 0.59 0 -0.04 0.21 0.46 0.54
Sticky valve Feb 0.71 1 0.17 0.21 0.87 0.65

Mar 0.67 1 0.21 0.20 0.67 0.64

Case 2: Jan 0.56 0.5 0.49 0.22 0.45 0.64
Malfunction Feb 0.6 1 0.44 0.22 0.41 0.44

Mar 0.55 1 0.43 0.21 0.50 0.58

Case 3: Jan 0.59 1 0.60 0.19 0.56 0.50
Sticky valve Feb 0.58 1 0.51 0.19 0.47 0.49

Mar 0.58 1 0.41 0.19 0.69 0.44

Case 4: Jan 0.50 1 0.13 0.29 0.22 0.61
Malfunction Feb 0.57 1 0.43 0.21 0.41 0.55

Mar 0.54 1 0.40 0.27 0.43 0.84

were first tested separately and then in parallel by weighting the results

according to their reliability indices.

The individial stiction indices showed that the algorithms provided simi-

lar results in the cases in which the oscillation of a signal was strong, how-

ever, there were some time periods where the results did not agree. Ta-

ble 6.2 summarizes the stiction indices produced by the individual meth-

ods and the integrated stiction detection for all cases in the first test. The

obtained results showed that the use of the reliability indices was effec-

tive in combining and weighting the decisions. The parallel configuration

provided more robust and stable results than the individual stiction de-

tection algorithms.

6.2 Detection of consistency sensor malfunctions

The fault detection method for consistency sensor faults was tested in sim-

ulation studies using an advanced board machine simulator (Lappalainen,

2004) implemented in the APROS simulation environment (Silvennoinen

et al., 1989). This section briefly presents the results from Publication III,

while further studies on consistency sensor faults have been carried out

by the author in (Tikkala, 2008).

A consistency sensor fault in the stock preparation section was studied.

The fault was simulated by introducing a negative bias to the sensor of the

pine pulp line in the simulation model. The residuals were generated us-

ing collected data from the simulator, and the CUSUM method was used
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Figure 6.2. Global residual of pine pulp consistency pcon2 (left y-axis) and its detection
results (right y-axis).
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Figure 6.3. Fault diagnosis results for the fault scenario 1.

for fault detection. The fault was detected in variable pcon2, whose global

simulation value, global residual and the detection results are illustrated

in Figure 6.2. By applying the rules in Tables 2.1 and 2.2 in Section 2.2.2,

it was inferred that the fault is a local sensor fault related to the consis-

tency of pine pulp line, see Figure 6.3. Due to the nature of the fault,

neither the fault separation nor the inference between the arcs needed to

be performed.

6.3 Detection of leakages and blockages in the drying section

The operation of the non-linear parity equation algorithm was tested in

two case studies. The first case considered a valve blockage, whereas the
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Figure 6.4. Schematic of the steam and condensate system of the drying section. Loca-
tions of fault case 1: valve blockage in steam group 3, and case 2: measure-
ment fault in the 10 bar steam feed.

second case studied a measurement fault, both cases being confirmed by

the maintenance records of the mill. The results are briefly presented

in the following while a more detailed presentation of them is given in

Publication IV.

The first fault considered a blockage of the valve located between the 5

bar steam header and the steam group 3, as shown in Figure 6.4. The com-

parison of the estimated flow rate to the steam groups and the 5 bar feed

steam flow presented in Figure 6.5 (top) clearly indicates the discrepancy

caused by the fault. During the periods between 2200–2400 and 2460–

2630 samples, the flow should have been significantly higher than was

actually measured. To isolate the fault correctly, the other residuals were

inspected. The fault was also detected from Figure 6.5 (bottom) which

shows the comparison of the estimated inflow and outflow of the SG3. All

other residuals remained undisturbed which resulted in an unambiguous

detection of the inflow to the SG3 being partly blocked. A confirmation

was received from the maintenance records which reported a blockage in

that valve.

The second case study considered a fault in the flow rate measurement

of the 10 bar feed steam, the process location of which is shown in Fig-
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Figure 6.5. Estimations of the mass balances of the 5 bar feed steam flow (top) and the
steam group 3 (bottom)

Figure 6.6. Estimation of the 10 bar feed steam flow

ure 6.4. A disturbed residual was detected in the estimation of the 10 bar

feed steam flow as illustrated by Figure 6.6. The fault effect is visible since

approximately t = 2500. Since all other residuals remained undisturbed,

the fault was unambiguously isolated and it was concluded to be related

to the flow measurement. The maintenance records verified the result as

they reported that the flow meter had been replaced shortly afterwards.
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6.4 Monitoring of the caliper sensor fouling

The process monitoring scheme for caliper sensor fouling was tested with

industrial data collected from the board machine. The results presented

in Publication V are summarized in the following.

Training and testing of the SOM was carried out using six data sets,

each data set representing one month of operational data. Training was

first carried out using data sets 1 and 2, and its results are illustrated

in Figure 6.7. First, the top left panel of the figure, the unified distance

matrix (U-matrix), displays the clustering of the training data. Next, the

single variable maps describe the distribution of high and low values of

each variable on the map and finally, the bottom right panel shows the

distribution of faulty and normal data samples on the map. A major clus-

ter of faulty samples is located in the middle of the left hand side of the

map. Furthermore, a minor faulty data cluster is located in the bottom

left corner of the map. These were identified as the faulty regions for the

on-line test phase. In addition to the identification of the faulty regions,

the effects of the individual variables on fouling were studied. Especially,

the effect of temperature conditions and neutral size chemistry on dirt

build-up was confirmed from Figure 6.7.

The monitoring test results using the SOM are presented in Figure 6.8,

where the panels from top to bottom show the process state estimation

results for the data sets D3, D4, D5 ,and D6, respectively. To reduce noise

and the rate of false alarms, the estimated state was filtered using a mov-

ing average filter with a window length of 5 samples. By comparing the

estimated state and the fault indicator presented in Figure 6.8, it was

confirmed that the SOM gave a rather good estimate of the actual pro-

cess conditions. Caliper sensor fouling was detected in most of the cases.

Especially when fouling had been occurring for a longer time period, as

demonstrated with the data sets D3 and D6, the SOM was able to detect

the conditions correctly. Difficulties with the detection however arose in

shorter faulty periods.

The performance of the SOM was summarized by computing the rates of

correctly estimated states, falsely estimated states and uncertain states,

see Table 6.3. The SOM was on average able to estimate the state of the

process correctly in over 70% of the time. The rate of falsely estimated

states was rather low, on average below 20%.

The perceived errors may have resulted from the fault indicator, which
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Figure 6.7. Overview of the SOM analysis for the training data: U-matrix, single vari-
ables maps and distribution of the faulty and normal operation samples.

Figure 6.8. The monitoring results using the SOM. From top to bottom: D3, D4, D5, and
D6

.

had been created based on the dates of the maintenance reports and then

confirmed by visual inspection of the data. As a result, the fault indicator

might not have been exactly aligned with actual fouling and all fouling

instances might not have been reported properly in the database.
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Table 6.3. Results of the monitoring tests using the SOM

D3 D4 D5 D6

(%) (%) (%) (%)

Correct process states 61.7 67.0 86.2 69.9
False process states 19.0 29.0 10.8 19.8
Uncertain process states 19.3 4.0 3.0 10.3

6.5 Industrial validation results

The fault detection algorithms developed for the board machine were also

tested with industrial experiments in order to validate their operation.

The objective of the experiments was to artificially generate faults in the

process and to collect data for testing the detection algorithms. Two ex-

periments were conducted to study the performance of the non-linear par-

ity equation algorithm and the valve stiction detection system, since they

were considered as the algorithms with most commercial potential by the

industrial partners. Experiments were not carried out to further validate

the SOM or the DCDG method, because such experiments could not be

done during the normal operation of the board machine.

6.5.1 Industrial validation experiments

The experiments were conducted during normal production on Decem-

ber 13, 2012 by the industrial partner and they consisted of two separate

cases related to the board machine drying section. Due to production and

quality limitations, the experiments were short, lasting in total about two

hours, and the magnitude of the created faults was relatively low.

The first experiment case was an emulated measurement fault in the

pressure measurement of Steam Group 3. According to the plant person-

nel, the measurement signal was frozen for three times during one hour

(12:00–13:00) causing disturbance to the pressure control and thus exces-

sive variation in board moisture. Figure 6.9 shows the behaviour of board

moisture, pressure in the Steam Group 3 and the pressure control valve

opening during the experiment case 1 (highlighted area). The measure-

ment signal was frozen for the first time at 12:05, released and frozen

again at 12:26. After releasing the measurement at 12:37, the control

loop was allowed to stabilize, until the pressure measurement was frozen

again at 12:40 and finally released at 12:48. A small portion of data was

lost from the beginning of the experiment due to communication problems

in the information systems.
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Figure 6.9. Industrial validation experiment case 1 (highlighted area): Moisture of the
board (top), Pressure measurement of steam group 3 (middle), and the corre-
sponding pressure valve opening (bottom). Missing data (11:50–12:15) indi-
cated with dots

Figure 6.10. Industrial validation experiment case 2 (highlighted area): Moisture of the
board (top), Pressure measurement of steam group 4 (middle), and the cor-
responding pressure valve opening (bottom). Missing data (11:50–12:15)
indicated with dots

As the second validation case, an artificial valve stiction fault was cre-

ated in the Steam Group 4. The pressure control valve of that group was

disturbed by disconnecting the pressurized air supply to its actuator in

order to replicate stiction. The actuator was obstructed five times during

the experiment, which lasted for one hour (13:00–14:00), again causing

disturbance to the pressure control and board moisture. The setpoint of

the pressure controller was changed several times in order to evoke os-

cillations for stiction detection algorithms. Figure 6.10 presents the vari-

ables related to this case, from top to bottom: board moisture, pressure

measurement in the Steam Group 4, and the pressure controller output.
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Table 6.4. Stiction and reliability indices for the validation experiment 2

Method si wi S

Curve fitting 0.58 0.17 0.82
Histogram 1 0.59
Rectangular fitting 0.62 0.54
Bicoherence 0.65 0.5

6.5.2 Validation of the non-linear parity equation algorithm

The non-linear parity equation algorithm for detecting leakages and block-

ages was evaluated using both validation cases. The experimental data

were used to compute the residuals according to the Equations (5.19-25).

The residual signals during the validation cases are presented in Fig-

ure 6.11 together with the detection thresholds. Due to the missing data

segment at the beginning of the experiments, the residuals were not com-

puted reliably before 12:40.

However, the measurement fault was successfully detected by the par-

ity equation method. The residual for the Steam Group 3 was exceeding

the detection threshold, as illustrated by Figure 6.11. The other resid-

uals remained undisturbed, which suggested that the fault was isolated

correctly to the Steam Group 3.

For the second validation case there were two residual exceeding the

detection threshold, which was set to 0.5 based on the standard deviation

of model errors from the training phase. The detected residuals were re-

lated to the 10 bar steam supply and the Steam Group 4 which indicated

a fault in the steam feed to Group 4. This result also coincides with the

experiment description and the fault was detected and isolated success-

fully. Despite the fact that the objective of this experiment was to emulate

valve stiction, it also disturbed the mass balance calculation and the fault

was detected by this algorithm.

6.5.3 Validation of the valve stiction detection system

The valve stiction detection algorithms were used to analyse the vali-

dation experiment in which stiction was created artificially. The pres-

sure measurement and controller output signals were analysed using all

four stiction detection algorithms and the corresponding reliability in-

dices were calculated. Table 6.4 presents the results, which clearly demon-

strated stiction in that loop; the combined stiction index was 0.82. All

stiction algorithms indicated stiction also individually, however the reli-

83



Summary of the Fault Detection Results

Figure 6.11. Residuals of the non-linear parity equation algorithm for the industrial val-
idation experiments. The solid black line indicates the residual and the
horizontal grey lines denote the detection thresholds.

ability of the curve fitting method was low and therefore that result was

disregarded.

6.6 Discussion

The testing of the fault detection algorithms delivered promising results

regarding industrial implementation. Each algorithm proved to be able to

detect the respective faults, and the most of the results could be verified

by the plant personnel or maintenance data. Systematic fault propagation

analysis was not carried out since it was outside of the scope of this thesis.

The benefits of timely fault detection were, however, estimated based on

expert opinions.

The valve malfunction case studies proved that the oscillation detec-

tion and valve stiction diagnosis algorithms performed well in the indus-

trial environment. The oscillation detection method seemed to be robust

against noise and uncertainties in data and to handle non-stationary sig-

nals well. The method can be applied to automatically analyse large
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amounts of signals, since it does not require any tuning parameters set

by the user.

The integrated valve stiction diagnosis system also provided promising

results. The use of reliability indices facilitated the interpretation of stic-

tion indices and allowed the fusion of the individual indices into an overall

diagnosis decision. The results of the individual algorithms were not con-

sistent in all cases, but by evaluating the respective reliability indices the

false or uncertain results could be successfully neglected. This kind of

approach possesses major potential for industrial implementation on al-

ready existing automation system platforms, therefore, it could be easily

commissioned at the plant.

The oscillations induced by stiction in control valves are detrimental to

the process. By detecting oscillations and stiction, the process variability,

which typically propagates to large parts of the process, can be reduced.

Lower variability will result in lower product quality variation and less

wear in the control valves.

The CDG algorithm was successful in detecting the consistency sensor

malfunctions. The method is very general and thus it can be utilized for

various other fault types as demonstrated in Publication III. The extent

of the CDG model can be adjusted based on the requirements of the ap-

plication. In this case, the model covered two process units, namely the

stock preparation and the short circulation, for which the consistency sen-

sors are the most crucial. More significant benefits could be obtained by

applying the CDG method to difficult process faults.

The benefits of detecting consistency sensor malfunctions are more ac-

curate control of pulp quality and tracking of used raw materials. The

improved control of stock consistency decreases fluctuations in the pulp

quality and therefore it contributes to reducing production losses due to

basis weight variations. Another important economic aspect is the track-

ing of raw material consumption. False consistency measurements may

lead to the wrong proportions of raw materials. As a result, excessive

amounts of expensive pulp grades can be consumed instead of more inex-

pensive mechanical pulps.

Faults in the drying section were detected and diagnosed successfully by

the non-linear parity equation method. As shown by the cases presented

in Section 6.3, the non-linear parity equation method was capable of de-

tecting typical faults in the steam and condensate system. These results

were also validated by the maintenance records of the plant. The novel
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algorithm, which estimated the flows indirectly using the available pres-

sure measurements and valve positions, provided means to compute the

mass balances for a system that lacks of sufficient measurements infor-

mation for traditional methods.

Detection of drying section faults, such as blockages and leakages has

direct consequences on the economy of the process. The early detection

of leakages is important in order to trigger maintenance actions to pre-

vent energy losses due to wasted steam. Energy savings are also obtained

by detecting blockages which increase pumping costs and might reduce

drying capacity. By reducing the capacity of the drying section, these

faults can also affect the moisture of the board which is not desirable

since moisture is one of the key quality variables and has strict limits set

by customers.

The SOM algorithm was shown to be a useful tool for monitoring and

visualizing the process conditions related to caliper sensor fouling. The

main contributing factors were the integration of process knowledge in

terms of calculated variables and the adaptation to changing process con-

ditions by the re-training steps. The calculated variables improved the

classification ability of the SOM by taking into account the main chem-

ical phenomena related to fouling. Furthermore, the regular re-training

steps of the SOM addressed the time-invariant nature of the process. The

obtained results were fairly good, however for industrial implementation

and use their reliability must be improved. For this reason, more detailed

data about the rate of fouling in different conditions should be acquired.

The analysis of fouling and related chemical phenomena have benefited

the plant operations. According to the plant experts, the results have con-

tributed to the operation of the plant and as a consequence more attention

has been paid to the cleaning of the sensor. The sensor fouling does not

cause direct production losses, but with close monitoring of the sensor

state the maintenance actions can be planned better and the quality of

the product can be followed more accurately.

The above discussion points out that the developed fault detection algo-

rithms have potential to decrease the operational costs of the case board

machine. Timely fault detection allows the planning of the maintenance

actions in a more appropriate way and the minimization of the fault ef-

fects on the process operation and economy. These results therefore sup-

port confirming the hypothesis outlined at the start of this thesis.
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7. Conclusions

This thesis presented a methodology for developing fault detection sys-

tems for industrial processes and illustrated its application to a board-

making process. The fault detection system development was based on

a process decomposition and fault analysis of the case process. First,

the process was decomposed into process units, subsystems, and process

equipment and its control strategy was analysed to examine the struc-

ture of the process and to facilitate the fault analysis. The fault analysis

in turn aimed at identifying the faults causing production losses as well

as the sections of the process which are affected by them. Then, the fault

detection algorithms were developed to address the faults and finally they

were tested and validated in industrial test cases.

The methodology provided a systematic approach for fault detection sys-

tem development. Since modern production processes are large-scale and

complex, the number of possible faults that can occur is too large to be cov-

ered by any single fault detection method or system. As a consequence,

the developed system comprised multiple algorithms that concentrated on

the most significant faults of the board machine.

The developed fault detection algorithms were successfully tested and

validated with industrial case studies. The tests were mainly carried out

using industrial data provided by the plant. Simulations were used only

for the testing of the dynamic causal digraph method, since the experi-

ments related to cause-effect model identification could not be carried out

at the plant. The detection results obtained using real measurement data

demonstrated the actual industrial potential of the algorithms.

The results indicated that the algorithms provide essential information

for planning maintenance actions and to improve the operation of the

machine. There is a need to integrate the production and maintenance

information systems at the plant in order to facilitate such system devel-
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opment in the future.

The hypothesis of this thesis was that an integrated fault detection sys-

tem, for which the development of fault detection algorithms is based on

fault types obtained from fault analysis, provides an opportunity to im-

prove the operation and performance of the process through the timely

detection of faults. By referring to the fault detection results presented in

Section 6 and to their practical implications as well as to the discussion

above, the hypothesis was verified.

The results of and the experience on industrial testing of these fault

detection algorithms provide several possible directions for further devel-

opment and future research.

The valve stiction and oscillation detection algorithms have significant

potential for future research. The system combining different stiction de-

tection algorithms could be improved by a more comprehensive analysis

of the applicability of each algorithm and by developing an automatic se-

lection procedure to choose the best algorithms for each case. Such an

approach could then be implemented directly to a process automation sys-

tem to assess the performance of control loops.

Further research could also be focused on applying the reliability esti-

mation and decision fusion approach to the monitoring of caliper sensor

fouling. The SOM could be accompanied with other monitoring methods

in order to improve the resolution and accuracy of the results. In addition,

the adaptivity of the SOM could be studied in more detail to investigate

the conditions and optimal points for re-training.

However, the most interesting and theoretically challenging topic will

be the combination of diagnostic knowledge from different fault detection

modules via systematic analysis of the interactions between them and

the faults. Merging detection and isolation results from several modules

would allow more comprehensive diagnosis of faults on a large-scale ba-

sis and provide an opportunity to develop new control strategies that are

able accommodate the faults. After the diagnosis step, plant behaviour

could be predicted using the knowledge about fault propagation and the

controllers reconfigured to mitigate the fault effects in order prevent prop-

agation to a higher level of control hierarchy and to maintain acceptable

product quality. Such an approach would facilitate closing the plant asset

management loop discussed in Section 3.
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Publication III

Figure 14: Caption should read ”. . . for fault scenario 2”.
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