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1. Introduction

1.1 Social cognitive neuroscience

Social interactions are ubiquitous in human societies and understanding 

how our brain makes sense of the flood of information in social situations is 

a major goal of social cognitive neuroscience. The current research aims to 

develop and apply methods that allow us to study the neural processes that 

enable us to understand other individuals in complex naturalistic 

conditions. Social cognition covers a wide range of functions that are 

necessary for successful social interactions. A broad definition of social

cognition attributes to it all “processes that subserve behavior in response 
to conspecifics” (Adolphs 1999), and social interactions may even span 

across different species (Frith and Frith 2012). The studies presented here

concentrate on perception and understanding of social events, often dubbed 

social perception. This is in contrast to other skills needed in active 

participation in social interactions, such as speech production and turn-

taking in conversations. However, there is no perfect division of social skills

into active and perceptual categories as perception and action are strongly 

linked in social contexts (Garrod and Pickering 2004).

1.1.1 Neural correlates for perception of social cues

Earlier in the 20th century typical locations of brain lesions causing 

prosopagnosia (“face blindness”) in humans had been described (Meadows 

1974), and studies had shown, for example, that face sensitive neurons exist 

in the monkey temporal cortex (Perret et al., 1982). Some 

electrophysiological studies in humans had also addressed face perception 

(see e.g. Lu et al., 1991). However, social cognitive neuroscience only took 

off as a separate field of study around the turn of the millennium (Singer 

2012). This was catalyzed by the first functional neuroimaging findings of 

elementary brain functions underlying social processing, such as face

(Haxby et al., 2000; Kanwisher et al., 1997) and body perception (Downing 

et al., 2001), and the first reviews of neural correlates of social cognition in 
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humans (see e.g. Adolphs 1999; Allison et al., 2000).

In typical experiments, researchers have used stimuli such as isolated 

pictures of faces and houses and compared the responses elicited by the two 

stimulus categories to each other. Such studies demonstrated the existence 

of face and body sensitive brain regions (Kanwisher et al., 1997; Haxby et 

al., 2000; Downing et al., 2001) in the occipital and temporal regions of the

human brain. Similar experimental setups have been used to present 

subjects, for example, with biological motion (Servos et al., 2002) using 

simplified stimuli such as point light displays showing the trajectories of 

the joints of a moving person with dots of light — a simple stimulus that 

causes vivid perception of a person moving. Point light displays also have

the added benefit that changing the location of the dots largely retains the 

complexity of the stimulus but eliminates the perception of biological 

motion. While simple motion usually activates particularly the motion 

sensitive visual area V5/MT (middle temporal visual area) (Thompson and 

Parasuraman 2012), biological motion and action perception cause stronger 

and more wide-spread activity of an extended network of brain areas, often 

referred to as the “action-observation network” including parietal, temporal 

and premotor areas (Nummenmaa et al., 2014).

Action observation activates some of the same brain systems that are 

responsible for action production. These so called “mirror neurons” were 

first reported single-cell recordings in monkeys demonstrating the 

existence of cells that fire when the monkey performs an action or sees the 

experimenter perform the same action (for a review, see Rizzolatti and 

Craighero 2004). Recently, nearly twenty years after the first reports in 

monkeys, Mukamel and co-workers (2010) were the first to present direct 

evidence for the existence of mirror neurons in humans using intracortical 

electrodes. Their results indicated that cells with mirroring properties may 

be more wide-spread in the human cortex — including neurons in medial 

frontal and medial temporal areas — than previously shown in monkeys.

Moreover, vicarious neural activity is observed not only for motor actions, 

but also for viewing others being touched, and observing emotional 

expressions (Frith 2007; Keysers et al., 2010). Thus, representing the 

internal states of others could more generally recruit the same neural 

populations as experiencing the state firsthand. However, far-reaching

theories of mirror neurons as the basis of understanding others have also

recently been criticized (see e.g. Hickock 2008; Caramazza et al., 2014).

Figure 1 summarizes major areas participating consistently in various 

subprocesses of social cognition in the human brain based on prior 

literature. However, the list is not exhaustive, and other parts of the brain

may participate in the functions mentioned here. For example, in addition 
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to the areas traditionally linked to processing of emotions there is evidence 

that areas such as the dorsolateral prefrontal cortex may participate in

emotion processing with non-linear response profiles (Viinikainen et al., 

2010).

Figure 1. Schematic depiction of the social brain areas. Areas participating 

in different subprocesses of social cognition are color-coded and approximate 

locations on the PALS12 atlas template (Van Essen 2005) are shown with the 

ellipses. Most of the depicted regions are bilateral but some are only shown on one 

hemisphere for simplicity. Abbreviations: EBA – extrastriate body area, FBA –

fusiform body area, FEF – frontal eye field, FFA – fusiform face area, IPS/SPL –

intraparietal sulcus/superior parietal lobule, mPFC – medial prefrontal cortex, 

OFA – occipital face area, PCC/Pcu – posterior cingulate cortex/precuneus, PMC –

premotor cortex, pSTS – posterior superior temporal sulcus, ptIFG/poIFG –

inferior frontal gyrus pars triangularis/pars opercularis, TPJ – temporoparietal 

junction, V5/MT – middle temporal visual area.

Partly overlapping regions of the fusiform gyrus, particularly in the right 

hemisphere, participate in processing faces and bodies (Schwarzlose et al., 

2005). In addition to the fusiform gyrus, a more widespread network of 

brain areas, including inferior occipital, temporal and parietal regions, 

participate in face processing (Haxby et al., 2000). Additionally, temporo-

occipital parts of the extrastriate visual cortex, dubbed extra-striate body

area (EBA), take part in the processing of bodies (Peelen and Downing 

2007).

Speech processing has traditionally been attributed to left-lateralized 

areas in the inferior frontal cortex (“Broca’s area”) and temporoparietal 
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junction (“Wernicke’s area”) although the location and functional role of 

the latter has recently been questioned (DeWitt and Rauschecker 2012). 

Human voice also activates the superior temporal sulcus bilaterally (Belin 

et al., 2000). Listening to longer passages of speech tend to activate larger, 

bilateral brain regions including large parts of the superior temporal gyrus 

and sulcus, and parts of the precuneus/posterior cingulate cortex, and 

premotor/prefrontal cortex (Lerner et al., 2011). However, although the 

activity is bilateral, the activated areas are often more extensive in the left 

hemisphere.

1.1.2 Affective neuroscience

Although brain basis of emotions have largely been studied separately 

from brain functions related to social cognition — partly because much of 

affective neuroscience studies have focused on basic emotions such as fear 

and happiness (Hamann 2012) — emotions affect multiple aspects of social 

cognition. Neuroscientific research of emotions has concentrated on the 

perception of, for example, emotional facial expressions (Morris et al., 

1996) and emotionally arousing pictures (Heinzel et al., 2005). While 

several brain areas have been linked to some aspects of emotional 

processing, such as activation of the amygdala for fear and the anterior 

insula for disgust, it is still largely unknown precisely how different 

emotions are coded in the brain. Moreover, the functional role of the areas

that are active during emotional processing may not be limited to emotions. 

For example, amygdala may play a more general role in associating positive 

or negative value to stimuli (Frith 2007). Earlier theories have posited that 

emotions can be divided into discrete categories, which have their distinct 

neural correlates in the brain. These theories are partly based on the 

observation that basic emotions, such as fear, anger and sadness, have 

distinct facial expressions that are shared across cultures (Ekman et al., 

1969). Other theories suggest that emotions are based on more general 

underlying processes or dimensions of emotions, such as valence and 

arousal (Russell 1980; for a review, see Russel and Barret 1999). More 

complex constructionist models posit that all emotions are based on several 

processes, such as physiological state, cognitive appraisal of the situation 

and bodily state, and memory processes, that together make up the 

experience of discrete emotions (e.g. Wilson-Mendenhall et al., 2011). Thus,

several emotions may employ partly similar brain areas but the pattern of 

activation over the whole brain could distinguish between different 

emotional states (for a review, see Hamann 2012).
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1.1.3 Theory of mind and perspective taking

Higher-level social cognitive processes depend on several lower-level 

processes, including perception of bodies, biological motion, facial identity, 

gaze direction, and speech. We use this information, as well as memories 

from previous encounters, to predict other persons’ goals and future 

actions. We tend to automatically predict the intentions of others. The

tendency to perceive intentionality is so strong that we often spontaneously 

describe even inanimate objects or moving geometrical shapes as doing 

things out of their own volition (see e.g. Heider and Simmel 1944). 

Understanding conspecifics by observation and prior knowledge is at the 

core of social perception, and has, at least in humans, developed into a 

“Theory of mind” (Premack and Woodruff 1978).

Theory of mind refers to skills that allow us to infer what other people 

know or think, and how they are likely to act in a given situation. It is 

closely related to perspective taking that allows us to take the point of view 

of another person or a given role. Theory of mind and perspective taking 

are complex social skills that develop relatively late in life, approximately 

between 4 and 6 years of age (Blakemore 2008; Frith and Frith 2003), and 

often still improve in old age when other cognitive skills may already be in 

decline (Happé et al., 1998; Hari and Kujala 2009). It has also been 

suggested that understanding others may partly rely on covert mirroring of 

their actions and emotions as an initial prediction of their intentions that 

may be built on as more information becomes available (Frith 2007).

Theory of mind has been studied, for example, by asking people to read 

the mental states of characters in cartoons and stories (Gallagher et al., 

2000). It has often been associated with activity in midline brain structures 

such as medial prefrontal cortex and posterior cingulate cortex, and/or 

precuneus, which have been proposed to participate in internally-focused 

social processing (Lieberman 2007) — were it evaluating the internal states 

of the self or inferring the thoughts of another person. Additionally, the 

temporoparietal junction (TPJ) and the adjoining posterior superior 

temporal sulcus (pSTS) have been consistently associated with several 

higher order social functions (Decety and Lamm 2007; Hein and Knight 

2008) including theory of mind. However, while the right TPJ activates 

during theory of mind tasks it seems not to participate in spatial 

perspective taking (David et al., 2008) during similar experimental 

conditions. This suggests that during simple perspective taking tasks people 

do not need to read the mind of others. There is also evidence that in some 

conditions people take other people’s presence and perspective into account 

automatically without explicitly engaging their theory of mind (Frith 2012).
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Every person has a unique perspective to events unfolding in the outside 

world. Not only do people have separate physical bodies, leading to 

different visual perspectives that enable people to see different things from 

each other, but prior life experiences affect significantly how we interpret 

incoming information (Pronin et al., 2002). Changing one’s perspective to 

align it with someone else’s may even be very difficult. In everyday life 

people may, for example, perceive events of a football game, such as 

fairness of the penalties or roughness of the play, quite differently 

depending on which team they are rooting for (Hastorf and Cantril 1954). 

However, the current tasks and goals of an individual may also change their 

perspective toward the outside world in the short term. Here, the 

perspectives that affect the way information is gathered and processed in 

task-relevant ways will be referred to as psychological perspectives to 

differentiate them, for example, from the spatial perspectives that affect 

what is visible to a person from a particular physical location.

Psychological perspective of a person can be manipulated experimentally 

to influence encoding, comprehension and recall of a stimulus. For 

example, if the same text is read from two different perspectives 

interpretation and recall of text content (Anderson and Pichert 1978), visual 

sampling of the text (Kaakinen et al., 2002) and even the size of the 

functional visual field (Kaakinen and Hyönä 2014) may change depending 

on the relevance of the text content for the current perspective. These 

studies have used generalized perspectives, such as interior designer vs.
burglar, to guide the attention to different details while the participants 

read a story describing the interiors of houses. They have shown, for 

example, that people recall more perspective-relevant vs. irrelevant details 

about the stories they have read, and that the time spent on fixating on 

parts of the text depends both on the perspective-relevance of the text 

passage as well as the particular perspective the individuals are currently 

taking (Kaakinen and Hyönä 2008). However, little is known about the 

brain mechanisms underlying perspective taking, particularly during 

perception of naturalistic social events.

1.2 Studies of human brain function using naturalistic stimuli

Traditional neuroscientific research has concentrated on studying brain 

responses to isolated and often very impoverished stimuli, and tried to 

piece together how the brain would combine these processes to represent 

increasingly complex features of the natural world. Through these well-

controlled experiments, we have gained important insight into the 

processing of simple sensory features, and even some higher-level 
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processes. However, recent work has challenged the assumptions that 

neural responses to, for example, complex speech sounds can be derived 

from activity elicited by simple synthetic stimuli often used in research

(David et al., 2009). Response properties of neurons seem to dynamically 

adapt to stimuli that are currently behaviorally relevant (Fritz et al., 2007). 

Moreover, the same brain region may participate in multiple brain 

networks depending on the current task; anatomically similar areas of the 

superior temporal sulcus have been implicated in a wide variety of 

functions including audiovisual integration, theory of mind, and speech 

perception (Hein and Knight 2008). Such context dependence highlights 

the need for more complex and naturalistic experimental paradigms to 

address the question of how the dynamic natural world is represented in 

the brain.

There are major obstacles in understanding how the brain processes 

naturalistic scenes because of the complexity of the incoming sensory 

streams where multiple features overlap and are correlated with each other. 

However, during the last decade first steps have been taken toward 

analyzing brain activity during complex stimulation (for a review, see Spiers 

and Maguire 2007) such as viewing movies (Bartels and Zeki 2004a; 

Hasson et al., 2004), listening to continuous auditory stimuli such as 

stories (Hasson et al., 2008; Lerner et al., 2011) or audio dramas (Boldt et 

al., 2013), playing video games (Kätsyri et al., 2013) or driving virtual car

simulations (Calhoun and Pearlson 2012).

First functional brain imaging studies using movie stimuli demonstrated 

that brain functions related to some features of movies, such as speech and

perceived intensity of colors (Bartels and Zeki 2004a) or global and local 

motion (Bartels et al., 2008) could be mapped during free viewing 

conditions to brain areas consistent to those previously revealed by simple 

stimuli. Furthermore, Hasson and co-workers (2004) demonstrated that 

when subjects are watching the same movie stimulus their brain activity 

becomes highly similar (temporally correlated across subjects) in large 

parts of the brain. While the first study of inter-subject correlation (ISC) of 

brain activity revealed that activity mostly in sensory and associative 

cortices becomes correlated across participants during movie viewing,

subsequent studies revealed that ISCs can also be observed in the prefrontal 

cortex (Jääskeläinen et al., 2008) when the subjects were first allowed to 

watch the opening scenes of the movie outside the scanner, presumably 

getting them more engaged in the movie events. Furthermore, the spatial

extent of the correlated areas depends on the type of stimulus: carefully 

directed movies cause the activity of large portions of the cerebral cortex to 

become correlated across individuals while undirected videos of real life 
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cause little correlation across viewers beyond the early sensory cortices

(Hasson et al., 2010). This raises the intriguing possibility that similar brain 

activity time courses reflect not only the similarity of the sensory features of 

the stimuli but also the similarity of the subsequent higher-order 

processing of the incoming sensory streams.

While ISC is simple to apply and does not require any model of the stimuli 

or hemodynamic response it alone cannot give direct information about 

what the brain regions exhibiting ISC are doing during the experiment. 

However, there are various ways in which such information can be gained, 

for example, by examining the stimulus content at instances when a given 

brain region showing high ISC is particularly active (Hasson et al., 2004)

or, more recently, comparison of ISC strength across different conditions.

For example, researchers have presented with video or audio clips of the 

same stimulus material shuffled in different time scales (Hasson et al., 

2008; Lerner et al., 2011). These experiments have shown that while the 

ISC in early visual and auditory areas is strong even when the stimulus is 

played backwards or scrambled in short time scales, areas such as posterior 

temporal lobe and precuneus require longer continuous passages to show 

significant ISC. These observations suggest that the latter areas may 

integrate information over longer temporal windows.

Researchers have also started to address how ISC changes in time. A

recent study showed that the strength of ISC within a group of participants 

followed the experienced emotional valence and arousal (Nummenmaa et 

al., 2012) during viewing of emotional videos. Using a related method of 

inter-subject phase synchrony (Glerean et al., 2012) another recent study 

revealed that activity in the action observation network becomes 

synchronized across participants when they mentally simulate boxers’ 

actions depicted in video clips (Nummenmaa et al., 2014).

In addition to stimulus-model based analysis methods and ISC, several 

studies have used independent component analysis (ICA) to study the brain 

networks activating during stimuli (Bartels and Zeki 2004b; Bartels and 

Zeki 2005; Malinen et al., 2007) and particularly during resting state in the 

absence of any particular task (Kiviniemi et al., 2003; Damoiseaux et al., 

2006; Biswal et al., 2010). Unlike ISC or model-based methods, ICA reveals 

brain regions that covary within the brains of single subjects. It does not 

necessarily require that the brains of the subjects are activating similarly as 

long as the spatial patterns are similar. This allows the mapping of “resting 

state” networks that are largely similar to those observed during movie 

viewing (Lahnakoski 2010) as well as other tasks (Smith et al., 2009). 

Similar networks and large-scale properties of brain network architecture 

have also been studied using the tools of network analysis (Sporns 2011).
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Generally, methods based on covariation of activity across brain areas, 

such as ICA and network analysis methods, reveal converging spatial 

patterns of functional brain networks. Typically, ICA is used to reveal a few 

tens of networks that are thought to reflect the underlying functional 

architecture of the brain (Damoiseaux et al., 2006; Biswal et al., 2010) such 

as the sensorimotor, visual, auditory and the ”default mode” networks. First 

observation of such covarying functional network was made in the motor 

system (Biswal et al., 1995) using a seed-voxel based approach where the 

time course of one voxel was correlated against all other voxels in the brain. 

Similar approach can also be extended to large-scale brain networks by 

calculating the temporal correlation between all pairs of regions. Various 

network analysis methods can be used to reveal more diverse information 

about the underlying brain networks at different scales (Sporns 2011).

Calculating a network representation of the brain also allows direct 

comparison of various network measures and, for example, personality

traits or developmental abnormalities of individuals. In contrast, because 

many ICA algorithms are stochastic the results may depend on the 

initialization and sampling of the data (Himberg et al., 2004). This may add 

noise to the results thus complicating comparisons between datasets.

Traditional experiments employing simplified stimuli have usually used 

linear modeling methods to analyze brain activity during stimulation or 

tasks. However, there is no single approach that can address the multitude 

of possible research questions during naturalistic stimulation experiments.

Thus, additional work is still required to find the most appropriate analysis 

approaches and experimental designs to test specific hypotheses in future 

experiments employing naturalistic stimulation (Hasson and Honey 2012).

The studies presented here assess the applicability of stimulus modeling, 

functional connectivity, ICA, and ISC in analysis of brain imaging data 

gathered during complex stimulation and tasks. The studies demonstrate

how various brain processes can be studied in naturalistic stimulus

conditions. The results reveal brain areas that participate in processing of 

both simple stimulus features and social stimulus content, and areas that 

enable higher-order perspective taking during naturalistic stimulus 

conditions.
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2. Methods

2.1 Magnetic resonance imaging

Magnetic resonance imaging (MRI) has quickly become a widely used tool 

in brain research after its first clinical applications for studying anatomical 

brain images in the 1980s and the rapid development of imaging sequences 

in the 1990s allowing different contrasts between brain tissues (Mandeville 

and Rosen 2002). The first 1-dimensional MR images were produced 

already in the beginning of 1950s (Carr 2004). However, equipment and 

mathematical techniques for practical 2- and 3-dimensional imaging were 

developed in 1970s (see e.g. Lauterbur 1973) allowing the first images of 

live animals (Lauterbur 1974) and finally leading to MR imaging of humans 

toward the end of the decade (Damadian et al., 1977).

The basis of the MRI signal is an intrinsic property of elementary particles 

called spin. Unpaired spins in matter have a magnetic moment, which tends 

to align to external magnetic fields (Figure 2). Because the nuclei of

hydrogen atoms, the most abundant atoms in the human body, have such 

unpaired spins, magnetic fields can be used to image the soft tissue in the 

body (Mandeville and Rosen 2002). Other nuclei with unpaired spins can 

also be imaged with MRI (Huettel et al., 2004:pp. 49–73) but this chapter 

will focus on hydrogen atoms.

In the absence of an external magnetic field the spins of the hydrogen 

protons can be oriented in any direction (Figure 2a). However, when a

strong magnetic field (usually 1.5 or 3 T in current commercial devices) is 

introduced in the bore of the MRI device, the spins of the hydrogen nuclei

in the imaged tissue tend to align either parallel or anti-parallel to the 

magnetic field (Figure 2b). This strong magnetic field is referred to as B0

(Huettel et al., 2004:pp. 49–73) and it is desirable that it has a constant 

strength in the entire tissue being imaged.

In addition to aligning along the direction of the external field, the 

magnetic moments precess around the direction of the field with an angular 

frequency, called Larmor frequency. The angular frequency is dependent on 

11



Methods

the strength of the field and is denoted by (Figure 3). This frequency 

dependence on the magnetic field is exploited in MRI by introducing 

smaller magnetic fields, called gradient fields, the strength of which has a 

maximally linear gradient in a given direction. Thus, the gradient fields 

cause the magnetic moments to precess around the field B0 with slightly 

different angular frequency depending on the location within the field

(Huettel et al., 2004:pp. 49–73).

Figure 2: a) Spins of hydrogen nuclei in the absence of a magnetic field may have 

any orientation. b) In external magnetic field spins arrange so that they are either 

parallel (red) or anti-parallel (blue) to the external field.

Figure 3: The magnetic moments ( ) of hydrogen protons in a magnetic field (B0)

precess around the direction of the field at Larmor frequency ( ) that is dependent 

on the magnitude of the field.

Because the characteristic frequency of the precession is dependent on the 

field strength and gradient fields are used to cause the magnetic field to 

have a known spatial distribution, properly designed radio-frequency (RF) 

pulse sequences can be used to deposit energy selectively into a given

spatial location. The RF-pulses cause the axis of precession to turn in 

relation to the external magnetic field. Once the RF pulse ends the spins 

return to their natural state precessing around the external field emitting 
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the deposited energy as a nuclear magnetic resonance signal in a process 

called relaxation (Huettel et al., 2004:pp. 49–73).

Relaxation happens at different rates in the longitudinal and transverse 

directions in relation to the field B0. Longitudinal relaxation is often 

referred to as T1 and transverse as T2 relaxation according to the time 

constants describing the relaxation times in the differential equations

describing the relaxation process. Critically, the relaxation takes place at 

different rates in different tissues. This enables the tissues to be separated 

in the acquired images (Huettel et al., 2004:pp. 99–126) by selecting 

appropriate imaging parameters. Main imaging parameters defining the 

contrast between different tissues are the repetition time (TR) of the RF-

pulses that defines the time between two successive excitations, and echo 

time (TE), which defines the time between the excitatory RF-pulse and data 

acquisition. By proper selection of these parameters the desired contrast 

between tissues can be maximized. Figure 4 schematically depicts typical 

time courses of relaxation in two hypothetical tissue types and shows how 

the T1 and T2 contrasts between these tissues vary as a function of time.

Figure 4: Schematic time courses of T1 recovery and T2 decay in two theoretical 

tissues with typical time constants for gray matter (red) and white matter (blue) 

after an excitation pulse at time t=0. By properly selecting the parameters TR and 

TE the T1 or T2 contrast between the tissues can be maximized (green curve).

2.1.1 Functional magnetic resonance imaging

Functional magnetic resonance imaging (fMRI) is a set of techniques 

developed to extend MRI sequences to allow the study of hemodynamic 

brain functions. These techniques include quicker image acquisition 

schemes, and imaging parameters optimized for detecting small 

inhomogeneities in magnetization of brain tissue as a function of blood flow 

and oxygen content. The development of these techniques was initiated by 

13



Methods

the findings of Ogawa and co-workers (1990) that discovered that 

measuring the inhomogeneity of the magnetic field inside the brain gives 

information about local blood oxygenation. The next year, Belliveau and co-

workers (1991) demonstrated that visual stimulation increased the local 

blood volume in the visual cortex, which could be measured using MRI 

equipment using intravenously administered paramagnetic contrast agent. 

Subsequently, both Bandettini (1992) and Kwong (1992) independently 

demonstrated with their co-workers that the blood oxygenation level-

dependent (BOLD) signal can be used to measure brain activity completely 

non-invasively.

The local inhomogeneities in the MRI signal yield information of brain 

function because oxygenated hemoglobin (i.e. hemoglobin bound to 

oxygen) has different magnetic properties than deoxygenated hemoglobin. 

Oxygenated hemoglobin is diamagnetic, meaning that it has no unpaired 

electrons and zero magnetic moment. In contrast, deoxygenated 

hemoglobin is paramagnetic meaning that it has unpaired electrons and 

nonzero magnetic moment causing it to have a positive magnetic 

susceptibility (i.e. it is magnetized in a magnetic field). This causes local 

distortions in the magnetic field, and reduces the relative signal strength 

received from the nearby brain areas. During neural activity, excess of fresh 

oxygenated blood is rushed to the active sites in the brain causing a net 

increase in the oxygenated hemoglobin. Thus, the signal from the active 

brain areas is increased (Huettel et al., 2004:pp. 159–184) causing the 

observed BOLD effect.

The transverse, T2 relaxation mentioned in the previous chapter happens 

through two different processes: pure T2 relaxation caused by the loss of 

phase coherence between the precessing protons, and T2+ relaxation caused 

by inhomogeneities in the magnetic field. These two types of relaxation 

combine to give the total transverse relaxation time constant termed T2*

(Huettel et al., 2004:pp. 49–73). Because the total transverse relaxation is 

sensitive to the inhomogeneity of the magnetic field, and the local 

inhomogeneity of the magnetic field depends on the relative concentrations 

of oxygenated and deoxygenated hemoglobin, the imaging parameters in 

functional MRI are typically optimized for T2* contrast.

Because fMRI measures the brain at the level of blood flow, rather than 

neuronal activity, it gives an indirect measure of brain function. The signal 

changes are relatively slow in comparison with the underlying electrical 

signaling. Blood oxygenation changes evolve over several seconds after the 

onset of the electrical activity and reach a peak typically between 4 and 6 

seconds after the neural activation. After the peak, the blood oxygen 

content starts to decrease usually going slightly below the baseline after 
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approximately 10 seconds after the onset, and finally returning to the 

baseline around 30 seconds after the initial neuronal activation (Huettel et 

al., 2004:pp. 159–184). In data analysis, the hemodynamic response 

function (HRF) is often assumed to be a linear response to neural activity,

and a simple convolution is used to model the hypothetical hemodynamic 

response to the experimental conditions (Figure 5). However, there are 

situations when this assumption is violated. For example, there are cases 

when a hemodynamic response may be triggered without underlying neural 

activity, for example, when an excitation is anticipated due to repetitive 

stimulation (Sirotin and Das 2009). Although the linear relationship of 

hemodynamic and neural activity is a simplification, and the precise 

mechanism of the neurovascular coupling responsible for the hemodynamic 

response is still largely unresolved, this model has proven useful in practice.

In practice, the HRF is often approximated as a linear combination of two 

gamma functions.

Figure 5. Stereotyped hemodynamic responses caused by underlying neural 

activity of durations between 0.1 to 30 seconds at 1 s intervals. Typically the HRF is 

modeled as a linear, time-invariant system and a simple convolution of the 

stimulus and the hemodynamic impulse response function is used to estimate the 

shape of the response.

Typical anatomical MRI scans of the whole brain take several minutes. 

Thus, quicker image acquisition schemes had to be developed to enable 

higher data acquisition rates that allow the blood oxygenation changes to be 

sampled in time. Most common acquisition approach for fMRI is the echo 

planar imaging (EPI) scheme where an entire slice of data is recorded after 

a single excitation pulse. Gradient fields are then switched systematically to 

sample the frequency and phase encoding direction of the slice (Mansfield 

1977). In contrast, in traditional MRI, a separate excitation pulse precedes 

the acquisition of every voxel. Additionally, a lower resolution is used in 

fMRI compared to conventional MRI to further reduce the acquisition time.
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These techniques allow imaging of the entire brain in approximately 2 

seconds (Mandeville and Rosen 2002) making the sampling of the 

relatively slow hemodynamic changes possible.

2.2 Eye tracking

Gaze direction is an important cue of the focus of attention and intentions

of an individual in everyday life. Tracking of gaze direction has been used as 

a tool in experimental psychology for decades to study how people gather 

information from text and images (Henderson 2003), and more recently 

videos (e.g. Wang et al. 2012)

Eye movements consist of fixations on spatial locations, during which the 

eyes stay still on a target and visual information is encoded, and saccades,

or rapid eye movements from one location to another, during which visual 

encoding is suppressed. These are typically analyzed by calculating the 

durations of the fixations on given targets, which is usually strongly related 

to the current focus of attention of the subject, and amplitudes of the 

saccades, which may relate to the current attentional mode (e.g. focal vs. 

ambient processing; Pannasch and Velichkovsky 2009). In addition smooth 

pursuit eye movements are employed when a person follows a moving 

object with their eyes (Henderson 2003).

One of the pioneers of using gaze tracking was the Russian physiologist 

Alfred Yarbus, who employed contact lenses equipped with small mirrors to 

enable the online tracking of gaze direction while his subjects viewed 

photos (Yarbus 1967). He demonstrated, for example, that the eyes, which 

provide the most salient social cues in the face, are fixated 

disproportionately more than other parts of the face. However, while 

viewing videos of people speaking, this tendency seems to be replaced by 

more dynamic patterns of fixations oriented to the locations that are most 

informative at any given time (Võ et al., 2012).

While the classical studies of eye gaze required somewhat invasive 

methods to gather accurate data on the direction of eye gaze, the current 

methods are completely noninvasive. However, most of them still require 

the viewer to stay relatively still in relation to the equipment used to record 

the eye movements. Most common methods use algorithms based on 

corneal reflections (Horimoto and Mimica 2004) recorded using video 

cameras from a known position to calculate the location of the gaze at each 

moment of time. The sampling rates can range from tens of hertz to 1000 

Hz or more in commercial eye tracking systems.

During complex dynamic stimulation, region-based analysis of fixations is 

more demanding. Therefore, in addition to traditional analysis of fixations 
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and saccades, recent studies have also analyzed the similarity of the eye 

movement time courses between individuals. Studies have compared eye 

movements across healthy human subjects (Wang et al., 2012), between 

typically developed humans and individuals with autism spectrum disorder

(ASD) (Hasson et al., 2009), and even across humans and non-human 

primates (Shepherd et al., 2010). These studies demonstrated, respectively,

that the reliability of gaze across participants increases the longer the 

stimulus clips are, that the eye movement patterns of individuals with ASD 

are less reliable than those of control subjects, and that there are striking 

similarities in the fixation patterns of monkeys and humans, although there 

are differences as well. Similarly to the inter-subject correlation of brain 

activity, which will be introduced in chapter 2.3.2, the analysis of the 

reliability of eye movements has the benefit that there is no need for an 

explicit model of where subjects should or should not look. This can be 

beneficial, particularly when comparing the gaze between groups, or when 

the behavioral effects of a task are previously unknown.

2.3 fMRI signal analysis methods

There are two major classes of analysis methods employed in this thesis: 

model based and data driven. Traditionally, model based approaches, such 

as the general linear model (GLM), have been used to compare the brain 

activity during a task to a baseline condition. In contrast, data driven 

approaches, as the name implies, do not require any instartiation about the 

external stimulus. However, there are important differences between data 

driven methods. Blind source separation techniques, such as ICA, use 

computational means to find networks of brain areas co-activating in time. 

Similar co-activations can also be studied with network analysis methods,

which can be used to study brain networks at various scales. These methods 

can often be used without any external source of synchrony, such as 

auditory or visual stimulation. In contrast, ISC reveals the brain areas that 

share a temporal fingerprint across subjects. Therefore, ISC analysis 

requires that the subjects are exposed to an external source of 

synchronization, such as a movie, but does not need a model of the 

experiment.

Prior to analysis, several preprocessing steps are typically performed. 

Temporal filtering is performed to remove slow signal drifts, and possibly 

other sources of noise. Motion correction is used to transform the brain into 

the same orientation in all acquired images. Spatial smoothing is done both 

to average out uncorrelated noise and to increase the overlap of activated 

areas across participants despite the anatomical differences between their 
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brains. Finally, the subjects’ brains are transformed into a standard space to 

allow comparison of analysis results across individuals.

2.3.1 General linear modeling

General linear modeling (GLM) has long been the standard way of 

analyzing fMRI data. In GLM analysis the data is explained by a weighted 

sum of explanatory variables and additive noise as follows:

= + + + + +
The n are the weights of each explanatory variable xjn, Yj are the 

observations and j are the noise terms that are assumed to be independent 

and identically distributed Gaussian random variables with zero mean and 

variance 2 (Kiebel and Holmes 2007).

Typically the experimental conditions have been modeled as box car 

functions where a condition is either on or off. These conditions are 

represented in a so-called design matrix that contains the explanatory 

variables (xjn) in its columns. A linear sum of the columns is then fitted to 

the observations in the least squares sense to find the optimal column 

vector containing the weights ( n) of each explanatory variable, and the 

model fit is estimated (Kiebel and Holmes 2007).

More recently parametric modulations of the modeled experimental 

conditions have been introduced where the activity level of a given brain 

region may depend (linearly or non-linearly) on, for example, the loudness 

of an auditory stimulus, or subject’s performance in a given task (Friston et 

al., 2007). GLM has been implemented in several software packages for 

fMRI analysis, such as Statistical Parametric Mapping (SPM,

http://www.fil.ion.ucl.ac.uk/spm/), and FMRIB Software Library (FSL, 

http://fsl.fmrib.ox.ac.uk/fsl/).

2.3.2 Inter-subject correlation

Inter-subject correlation approach for fMRI analysis was first introduced 

by Hasson and co-workers (2004) in an experiment where five people 

watched a movie during fMRI recording. They demonstrated that a large 

part of the brain functioned similarly across subjects during movie viewing 

using an elegantly simple approach where they calculated the pairwise 

Pearson’s correlation coefficients of voxel time series across subjects at each 

location in the brain. When the correlation coefficients were averaged 

across the subject pairs they showed that statistically significant 
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correlations were seen particularly in the posterior parts of the brain. The 

ISC approach is demonstrated in Figure 6.

The power of ISC approach in naturalistic stimulation experiments is that 

there is no need for creating an a priori model of the experiment. In fact it 

would be impossible to exhaustively model all the content in a movie. It has 

been demonstrated (Pajula et al., 2012) that despite the lack of knowledge 

of external stimuli ISC produces highly similar results as a traditional GLM 

approach in simplified experimental conditions. However, connecting the 

ISC map to the external stimulus causing it can be difficult if ISC is 

calculated over a long and complex stimulus such as an entire movie. One 

option to gain more specific knowledge of what causes the observed ISCs is 

to calculate the measure in shorter time windows. However, reliable 

calculation of correlation coefficients requires several time samples (Fisher 

1921). Thus, in a signal as slow as fMRI there could be several stimulus 

features that could be responsible for the observed synchronization of brain 

activity even if a sliding temporal window was used. To alleviate the 

problem, differences in observed ISCs caused by experimental 

manipulations of the stimulus content have been used to elucidate 

principles of brain functions without the need for a traditional stimulus 

model (Hasson et al., 2008; Lerner et al., 2011). ISC method has also been 

extended with non-parametric statistical comparison of ISC strength across 

different frequency bands (Kauppi et al., 2010). Similar statistical tests can 

also be applied to across conditions testing to gain knowledge of 

significance of observed changes in ISCs, as has been done in publication

III of the present work. Recently, these comparisons have also been 

implemented in the ISC toolbox (https://code.google.com/p/isc-toolbox/

(Kauppi et al., 2014)).

2.3.3 Independent component analysis

Independent component analysis (ICA) is a blind source separation

technique that has been used to find statistically independent signal sources 

particularly in the analysis of resting state fMRI data (Kiviniemi et al., 

2003; Damoiseaux et al., 2006; Biswal et al., 2010), and denoising of the 

fMRI signal by removing artifacts (Tohka et al., 2008). The networks 

revealed by ICA during rest are also remarkably similar during tasks (Smith 

et al., 2009; Lahnakoski 2010). 
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Figure 6: Schematic depiction of inter-subject correlation method. The 

pairwise correlations of voxel time series are calculated for the same voxel across 

subjects. The average inter-subject correlation is then calculated over the pairs. The 

procedure is repeated for all voxels and a statistical threshold is calculated to reveal 

which areas activate in a similar manner across subjects. The plots and the r-values 

in the figure are based on actual fMRI data from study I.

The assumption underlying the ICA model is that the observed signals are 

unknown mixtures of relatively few underlying latent variables. The goal of 

ICA is to estimate both the underlying independent sources and their 

relative mixing weights from the observed data (Hyvärinen and Oja 2000). 

Figure 7 illustrates this by an example where five different mixes of two 

images are subjected to ICA. The estimated independent components in 

this noise-free example are very similar to the original images, but slight 

mixing of the original images remains in one of the source estimates.

The ICA mixing model can be expressed formally by the equation= ,

where is the matrix of observed signals, is the matrix of weights of the 

source signals, and is the matrix of source signals to be estimated 

(Hyvärinen and Oja 2000). Thus, the ICA model is very similar to the GLM 

but, critically, neither the source signals nor their weights are predefined 

and both have to be estimated from the data.
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Figure 7: Example of ICA in practice. Five different mixed images (X) of the 

original source images (S) are observed, where the mixing of the images is defined 

through the mixing matrix (A). ICA estimates the original images and mixing 

weights from the mixed images. Estimated images resemble the original images, 

although some mixing remains (silhouettes of the houses on the cheek of the 

kitten). The images were reshaped into vectors prior to estimation and FastICA 

algorithm with gauss nonlinearity and symmetric estimation approach was used for 

the separation.

The goal of ICA is to reveal the underlying source signals with as few 

assumptions as possible. In fact, it is often enough to assume that the 

sources are statistically independent and non-Gaussian (Hyvärinen and Oja 

2000). Several different approaches can be used to achieve independence of 

source estimates. Typically independence is achieved by minimizing (or 

maximizing) some objective function, such as negentropy of source 

estimates (Hyvärinen 1999) or joint entropy of the outputs of the nonlinear

neural network used for the separation (Bell and Sejnowski 1995), as used 

by the most prevalent ICA algorithms used in fMRI studies, FastICA, and 

Infomax, respectively. Both of these methods have been shown to reveal 

similar estimates of the underlying brain networks, and the results are 

consistent across repetitions (Correa et al., 2007) despite the stochastic 

nature of the algorithms.

The original four-dimensional single-subject fMRI data is typically 

converted into a two dimensional matrix with temporal and spatial 

dimensions before it is subjected to ICA. ICA has also been extended to 

group studies either by concatenating the data of the subjects or explicitly 

extending the data by adding a subject/session dimension to the analysis

(Beckmann and Smith 2004). ICA has been applied in both spatial and 

temporal dimensions (Calhoun et al., 2001). Spatial ICA assumes that the 

data is composed of independent spatial patterns, or functional brain 

networks. In contrast, temporal ICA assumes the components are 

independent in time.  Although spatial ICA has been more common in fMRI 

studies, temporal ICA has also been used, for example, to reveal sub-
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divisions of the auditory cortex (Seifritz et al., 2002) showing transient and 

sustained responses to stimuli.

Because both underlying signals and their weights are estimated at the 

same time in the ICA model, the signals can only be estimated up to a scalar 

multiplier. Thus, the estimates are often standardized and the sign of the

components is inferred from results. For the same reason, the order of the 

signals is arbitrary, because the order of the summation does not change 

the result of the linear sum (Hyvärinen and Oja 2000). Therefore, the 

selection of relevant components for further study requires some additional 

information either from the person performing the analysis, or from the 

properties of the components themselves.

The number of independent components needed to explain the data in 

fMRI experiments is an open question. Automatic ways to select the 

dimensionality of the data have been implemented, for example, in 

toolboxes such as FSL and Group ICA fMRI Toolbox (GIFT,

http://mialab.mrn.org/software/gift/index.html), but they have also 

received criticism (Li et al., 2007; Cordes and Nandy 2006). In practice, a

predefined number of ICs is often chosen based on prior literature (see e.g. 

Biswal et al., 2010). Some studies have also estimated the stability of the 

results and selected the appropriate number of ICs based on their stability

(see e.g. Pamilo et al., 2012). Number of components estimated varies from 

study to study, but often a few dozen are calculated. However, the typical 

networks revealed by ICA of fMRI data seem relatively robust to different 

numbers of components selected. Some of the networks may be split into 

smaller subunits when a larger number of ICs are estimated (Lahnakoski 

2010; Pamilo et al., 2012), but further work should address what is the 

most informative parcellation of the brain for particular applications.

2.3.4 Network analysis

Network analysis consists of a wide range of methods that can be applied 

to practically any data that can be represented as a network (for a review, 

see Newman 2003). A network consists of a set of nodes that are connected 

by edges. For example, the nodes could depict people and edges could 

represent social ties, or nodes could be brain regions and edges could be 

anatomical or functional connections between them. This type of 

description can give important information on the information flow 

between brain regions.

In network science systems can be viewed at several levels, starting from

global properties of the network of interest — such as average path length, 

describing the number of links one must on average traverse to reach any 
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node from any other node — to local properties — such as degree of a node, 

that is the number of neighbors, or links a node has. In between these 

extremes one can analyze, for example, the sub-networks, or community 

structure of a network, that may reveal functional modules of a brain 

network, or social groups within a larger population (for a primer on brain 

network analysis, see Sporns 2011).

Community structure of a network can be studied with various methods. 

One of the most successful methods in network science is the Infomap 

algorithm that uses random walks as a proxy of information flow within a 

given network (Rosvall and Bergstrom 2007). The method parcellates the 

network into sub-graphs and describes the paths of the network with the 

aid of these communities. The aim of this process is to find the optimal 

parcellation that retains as much information about the original network 

while minimizing the description length of the community structure — that 

is listing the nodes and the links in and between the communities with as 

few bits as possible, while concurrently minimizing the additional 

information needed to describe the network exactly. Other approaches to 

parcellation of networks include, for example, several clustering algorithms. 

Generally, the sub-networks are spatially similarly distributed as the 

independent components revealed by ICA (see e.g. van den Heuvel et al., 

2008). However, whereas spatial independent components have only one 

value for each voxel that describes the weight of that voxel in the time 

course of the independent component, functional networks are desribed by 

the strengths of connections (e.g. temporal correlation) between all pairs of 

nodes. Thus, a network representation is a more rich description of the 

covariance structure. However, as the number of nodes and edges 

increases, the interpretation and visualization of brain networks becomes 

challenging. In this work, the functional sub-networks of the human brain 

are studied with both ICA and the Infomap community detection algorithm.

2.4 Stimulus modeling

Modeling the experimental conditions and stimuli is a major challenge in 

naturalistic neuroscience experiments. It is obvious that it is impossible to 

exhaustively model every possible perception a viewer may have during 

movie viewing, even if the color and brightness of each pixel are exactly 

defined at each time point by the video file. People rarely experience movies 

as series of color changing dots but rather focus on the people and objects 

depicted in the images. Similarly, low-level auditory features do not explain 

the entire experience while listening to the movie soundtrack containing 

complex stimuli such as speech and music.
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In visual domain, various low-level visual features, such as color, 

luminosity, orientation and different spatial frequencies (Itti and Koch 

2001) describing the visual salience in images, have been used to quantify

pictures and videos in modeling of visual attention. Researchers have also 

used computational models based on knowledge on the organization of the 

visual cortex to classify natural pictures based on brain activity (Kay et al., 

2008). In computer vision, methods have been devised to identify objects

from images using, for example, local scale invariant features (Lowe 1999),

or distributions of a set of basis functions, such as Haar wavelets, to 

describe edges in images (Papageorgiou and Poggio 2000).

In auditory domain various auditory features, such as loudness, or spectral 

characteristics (Alluri et al., 2012) can be extracted from sound files 

automatically. Loudness is often estimated as the root-mean-square (RMS) 

energy of the audio waveform. Spectral characteristics employed in the 

current work include the spectral entropy and spectral spread. Spectral 

entropy characterizes the randomness of the spectrum estimated as the 

Shannon entropy of the spectrum. Spectral spread is the standard deviation 

of the spectrum. Additionally the zero crossing rate of the audio waveform, 

which yields a simple estimate of the noisiness of the audio signal, is used 

in study I of the current work. The calculation of these and other auditory 

features are implemented in the MIRtoolbox (Lartillot and Toiviainen 

2007).

Relatively few studies have tried to model dynamic audiovisual naturalistic 

stimuli. In a landmark study, Bartels and Zeki (2004a) showed that 

subjects’ hemodynamic activity in the sensory and associative cortices 

followed their self-reported intensity of color, faces, language, and human 

bodies in an action movie that were rated by the subjects over time. More 

recently, large collections of hierarchical semantic categories have been 

used to characterize video clips, and analyzed using regularized linear 

regression analysis (Huth et al., 2012). However, the reliability of these 

category representations across individual is still relatively unexplored.

Although some more complex features of interest, such as faces, can be 

recognized from images automatically, higher-level descriptions of the 

stimulus material often need to be manually evaluated. In current work, 

manual, semi-automatic, and computational methods are used to 

characterize the content of short video clips and longer movies, and map 

the brain regions participating in their processing using the signal analysis 

methods described above.
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3. Goals of the current research

The studies presented here aim to bridge the gap between traditional

experiments using simple well-controlled stimuli and the complexity of 

real-world social situations. Overall goal of these studies is to develop and 

validate approaches to analyze functional neuroimaging data gathered 

during perception of naturalistic social events and apply these approaches 

to further the understanding of the brain basis of social perception. The 

studies further aim to assess the reliability of brain activity related to social 

cognition across subjects.

Study I tested the hypothesis that through careful modeling of complex 

dynamic stimuli we could map the brain regions participating in their 

processing. Moreover, the model driven analyses were expected to give both 

converging and complementary information about functional architecture 

of the brain compared to ICA that was used to reveal functional brain 

networks. Particularly, we expected that with careful stimulus modeling,

the functions of the networks extracted by ICA could be revealed by 

comparing their activity timecourses to those of the stimulus features. We 

further expected that the networks could possibly be further divided into 

more specialized sub-units using voxel-wise analysis.

Study II aimed to reveal the organization of brain regions participating in 

processing multiple types of social content through stimulus modeling

methods validated in Study I. A particular aim was to test whether a 

collection of short videos could be used as an efficient independent localizer 

of social brain regions.

Study III tested the hypothesis that when people take a similar perspective 

toward external events, their brain activity in areas participating in the task 

of perspective taking becomes synchronized across participants. Thus, 

similarity of brain activity between individuals could be associated with 

similarity of interpretation and, ultimately, mutual understanding.
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4. Summaries of the studies

4.1 Data acquisition and preprocessing

4.1.1 Magnetic resonance imaging

All fMRI data were gathered at the Advanced Magnetic Imaging (AMI) 

centre of Aalto University. Data were gathered with a General Electric Signa 

3-tesla MRI scanner (GE Healthcare Ltd., Chalfront St Giles, UK) except 

the data for experiment 2 of study III, which were gathered with Siemens 

MAGNETOM Skyra 3T MRI scanner (Siemens Healthcare, Erlangen, 

Germany).

All data were gathered with EPI pulse sequence sensitive to BOLD contrast 

with a 64x64 matrix with field of view of 230 mm. Slice thickness was 3–4

mm, TR ranged from 2000 to 2112 ms, and TE from 30 to 32 ms.

4.1.2 Preprocessing of fMRI data

Standard preprocessing steps including removal of initial volumes to allow 

for the stabilization of magnetization, temporal high-pass filtering, motion 

correction, spatial normalization to MNI standard space (Montreal 

Neurological Institute) through individual anatomical images and spatial 

smoothing was performed using FSL software.

4.1.3 Eye gaze recording

Eye gaze was recorded in Study III with an EyeLink 1000 eye tracker (SR 

Research, Mississauga, Ontario, Canada; sampling rate 1000 Hz) both 

inside and outside of the MRI scanner. A nine-point calibration and 

validation was completed prior to the experiment. Saccade detection was 

performed using a velocity threshold of 30°/s and an acceleration threshold 

of 4000°/s2.
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4.2 Study I: Stimulus-Related Independent Component and 
Voxel-Wise Analysis of Human Brain Activity during Free 
Viewing of a Feature Film

4.2.1 Aim of the study

The study aimed to reveal how low- and higher-level auditory and visual 

stimulus features activate brain regions and networks in naturalistic 

conditions. The annotated stimulus features were fitted to both voxel-wise 

data and brain network time courses extracted by independent component 

analysis (ICA). Finally, the results of the two approaches were compared 

with each other.

4.2.2 Materials and methods

Ten healthy volunteers viewed a re-edited 23-minute version of the feature 

film "The Match Factory Girl" (Dir. Aki Kaurismäki) during fMRI 

acquisition. Several stimulus features were modeled to allow the mapping 

of the brain regions participating in their processing. The features included 

manual annotations of speech, lead and background singing, and 

instrumental music. Zero crossing rate, spectral spread, spectral entropy 

and root mean square energy of the sound track were computed from the 

audio waveform. Visual motion of the heads, hands, bodies, and inferred 

motion of visually occluded body parts, and mechanical motion was 

manually estimated. Prominence of sharp contrast edges in the images was 

estimated using spatial high-pass filtering. The stimulus models are 

described in Figure 8. In addition to the manual annotation of visual 

motion, semi-automatic motion capture software was used to validate the 

ratings of motion of body parts (heads, bodies and hands), and non-

biological objects.

The analysis of the data was two-fold: the functionally connected networks 

of the brain were estimated using ICA and, additionally, the stimulus 

models were used to predict the activity time courses of both functional 

networks, and individual voxels within the brain. Inter-subject correlations 

of IC time series was used to select stimulus-related ICs of interest for 

further analysis. Finally, the results obtained using these two methods were 

compared to reveal the similarities and differences between the approaches.

28



Summaries of the studies

Figure 8. Stimulus models used in Study I. A: Sound was annotated 

manually for speech, lead and background singing, and instrumental music. Low-

level features (zero-crossing rate, spectral spread, entropy and RMS energy) were 

extracted computationally. B: High-frequency spatial content from the movie was 

extracted using discrete cosine transform. The size (C) and motion strength (D) of 

tracked objects in images were graded on a three point scale (0–2), and final score 

for the motion of specific body part or object was calculated as the sum of the 

motion and size for those time points where motion was present.
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4.2.3 Results

The results of the ICA analysis revealed networks of brain areas that are 

very similar to the intrinsic functional networks revealed in several resting 

state studies (Damoiseaux et al., 2006; Lahnakoski 2010; Biswal et al., 

2010). The stimulus model based analysis of the brain activity revealed that 

areas included in a particular IC had distinct sensitivity profiles to stimulus 

features compared with the brain areas included in other ICs. Two ICs were 

found to be sensitive to the auditory model and four ICs sensitive to the 

visual features.

Figure 9 depicts the two ICs that were sensitive to auditory features. 

Particularly, IC1 was sensitive to the overall loudness of the soundtrack, 

although more so to speech, while IC2 was more selectively activated only 

during occurrences of speech in the movie, and did not follow the low-level 

features of the soundtrack (Figure 10). However, a more fine-grained 

separation of brain areas was revealed with stimulus modeling approach in 

the auditory cortex (Figure 11). Furthermore, the ICs often covered a 

larger area of the cortex than the results revealed by model based analysis. 

In particular, the areas in the posterior temporal, and lateral occipital 

cortices were strongly functionally connected to the other areas of the ICs 

but not significantly correlated with the stimulus model (Figure 12).

Parts of the ICs may activate independently of each other during parts of 

the experiment (see time-points A–D in Figure 9). This may cause them to 

not be significantly correlated with the stimulus model in a voxel-wise 

analysis, even if they still are significantly functionally connected with other 

regions of the IC based on the activity timecourses over the entire 

experiment. Similarly to the auditory ICs, the ICs sensitive to the visual 

features showed variable sensitivity profiles to stimulus features, and the 

ICs were spatially larger than the areas responsive to the full visual model. 

Together, the visual ICs covered brain regions very similar to those 

responsive to the different visual features in the single-feature analysis 

presented in Figure 11 B.
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Figure 9: Two ICs that were found to be sensitive to auditory features in 
Study I. Spatial maps show the locations of the strongest voxels of the ICs. The bar 

plots show the normalized weights used to fit the auditory model to the mean

activity of the IC over subjects. The mean time courses (dark gray; ±95% 

confidence interval light gray) of the ICs are plotted with the time course of the 

fitted stimulus model (black) below the spatial maps. R2 indicates the coefficient of 

determination of the fitted model and time course of the ICs. Vertical bars show 

time intervals when there is speech (red), singing (yellow), and music (blue) in the 

sound track. Additional abbreviations: AC – auditory cortex, MTG – middle 

temporal gyrus, SMA – supplementary motor area. Activation peaks labeled A–D 

are not explained by stimulus model and are caused by activity in isolated sub-

regions of IC2, whereas speech (peaks E–H) causes robust activity in the entire 

network represented by IC2.
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Figure 10: Weights of auditory features in single-feature GLM analysis
of IC1 and IC2. Asterisks indicate weights that differ significantly from zero or 

between the ICs.

Figure 11: Model based voxel-wise results. A: Spatial maps of brain areas 

activated by sound loudness (red), speech (blue), and music (green). Overlap of 

loudness, speech, and music sensitive areas are indicated by mixed colors. B:
Spatial maps of brain areas activated by hand motion (red), body motion (blue), 

and contrast edges (green) in the image. Overlapping areas are indicated by mixed 

colors. Additional abbreviations: M1L — primary motor cortex, lip area, dmPFC –

dorsomedial prefrontal cortex, HG – Heschl’s gyrus, lOC/sOC – lateral/ superior 

occipital cortex, OP – occipital pole, TOJ – temporo-occipital junction.
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Figure 12: Comparison of speech sensitive IC2 and areas correlated 
with the auditory model in the voxel-wise analysis. LEFT: Areas where 

ICA and voxel-wise results differed are color-coded with red–yellow, and 

overlapping areas are green. The upper-triangle entries of the correlation matrix

between the regions are presented on grey background. The grey shades

correspond to the magnitudes of correlation. RIGHT: The correlation coefficients 

of the auditory model with each ROIs time courses. Color coding corresponds to 

the colors on the brain images. Asterisks indicate significant correlations in both 

panels.

4.2.4 Conclusions

The results show that both converging and complementary information 

can be revealed using stimulus modeling and model-free methods that 

reveal the functional covariance structure of the fMRI data. In this case,

more fine-grained details could be revealed about some of the brain 

networks with a carefully constructed stimulus model. However, the 

covariance, or network structure, between brain regions may contain 

important additional information. Some regions may generally covary with 

other regions of the networks represented by the ICs but act independently 

at given instances. Thus, to understand the brain more fully, both 

covariation between brain regions as well as their activity time courses 

should be studied.
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4.3 Study II: Naturalistic fMRI mapping reveals superior 
temporal sulcus as the hub for the distributed brain 
network for social perception

4.3.1 Aim of the study

The aim was to reveal brain areas that are particularly important in 

perception of socially relevant stimulus content compared with contrasting 

non-social content. A particular aim was to see to what extent the results 

previously reported in reductionist experiments generalize to more 

naturalistic stimulus environments. Furthermore, the study aimed to test

whether the use of a large set of video clips would allow efficient 

localization of brain regions participating in processing of multiple types of 

social content in a relatively short experiment. This would allow the 

stimulus material and model to be used as an independent localizer to 

pinpoint social brain regions of interest for further studies.

4.3.2 Materials and methods

Twenty healthy volunteers watched 137 carefully pre-selected short movie 

clips that were rated (on a continuous scale from 0 to 1 at 5 Hz sampling 

frequency) by two independent raters for eight social (faces, bodies, 

biological motion, goal-oriented action, emotion, social interaction, pain, 

and speech) and six contrasting non-social features (houses, objects, rigid 

motion, non-goal-oriented action, humans not participating in social 

interaction, and non-human sounds). Figure 13 shows illustrations of all 

the modeled features included in the study. The models of the stimulus 

content were used as explanatory variables in a GLM analysis to reveal 

which areas participated in processing of the single variables, and areas that 

responded preferentially to social vs. non-social content. Finally, a 

functional network was built based on the temporal correlation of the brain 

areas that responded to multiple social features, and community detection 

was used to parcellate the network to describe the functional sub-networks 

participating in social perception.
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Figure 13: Examples of movie scenes representing the stimulus features 
modeled in Study II. Frame color of the images indicates the social (white) and 

non-social (red) features.

4.3.3 Results

Contrasting social vs. non-social features in the GLM analysis revealed 

that temporal areas, amygdala, thalamus, premotor cortex and parts of 

medial prefrontal cortex were significantly more sensitive to social than 

non-social features. The opposite was true for many visual areas (Figure 
14a). Areas similar to those showing a preference to social vs. non-social 

features, particularly in the posterior temporal lobe, were sensitive to 

several different social categories (Figure 14b), and specifically, posterior 

STS was significantly activated by all social features.

Figure 15 shows the parameter estimates of the GLM analysis reflecting 

the relative response strengths of the brain areas that were sensitive to 

multiple social features. The pSTS is the only region that both (i) 

significantly responds to all social features with nearly equal amplitude, and 

(ii) does not respond to any of the non-social features.

Figure 16 visualizes the extended brain network specialized for social 

perception based on the correlation between the response time courses of 

areas that were responsive to multiple social features. These regions are 

split into four separate subnetworks using network community detection,

and the results largely follow networks also revealed in Study I using ICA as 

well as other prior studies (Damoiseaux et al., 2006; Biswal et al., 2010). 

The fronto-temporal network forms a central core of this network, and 

particularly, the right pSTS is the strongest hub of the network. Compared 

with other regions of interest, areas that are part of the same sub-network 

also share more similar distributions of parameter estimates for stimulus 

features than areas that are in different networks, although the response 

amplitudes may differ (Figure 15).
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Figure 14: Summary of brain areas showing preference to social 
stimulus features. A: Contrast showing which brain areas were activated more 

by social than non-social features (hot colors) or vice versa (cold colors). B:
Cumulative activation map showing the number of individual social features that 

significantly correlated with the activity of each brain area. The results indicate that 

particularly the posterior temporal lobe areas are important for processing all types 

of social content considered in this study. Additional abbreviations: ACC – anterior 

cingulate cortex, FG – fusiform gyrus, IPL – inferior parietal lobule, PHG –

parahippocampal gyrus, POS – parieto-occipital sulcus.

4.3.4 Conclusions

The results demonstrate the feasibility of mapping brain regions 

participating in several subtasks of social perception during a single 

relatively short experiment. The results are largely concordant with the 

results of prior studies. The stimulus material and corresponding models of

stimulus content can be used as an independent localizer of the “social 

brain” regions participating in the processing of the annotated stimulus 

content for future studies. Furthermore, the results reveal that the posterior 

temporal lobe, and particularly the pSTS region, plays an important role in 

social perception. This area may act as a connector hub of the social brain 

integrating multiple types of social information together with sub-networks 

more specialized to particular types of social information.
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Figure 15: Beta weight parameter estimates in the GLM analysis in 
regions that were responsive to multiple social categories. Social features 

are plotted with gray bars and non-social features in white bars on gray 

background. Error bars correspond to the 95% confidence interval of the mean beta 

weight across subjects. Asterisks indicate the significance of the contrast in the 

GLM analysis. The areas responding more to non-social vs. social features 

presented in the article have been omitted. Additional abbreviations: aIns –

anterior insula a/mSTS – anterior/middle superior temporal sulcus.

Figure 16: Functional similarity structure of the brain areas activated 
by multiple social features. The thickness of the edges indicates the correlation 

coefficients between the time courses of the regions of interest, and the diameter of 

the nodes indicate the number of edges connected to the node (degree). Left

hemisphere nodes are indicated by striped colors.

37



Summaries of the studies

4.4 Study III: Synchronous brain activity across individuals 
underlies shared psychological perspectives

4.4.1 Aim of the study

Study III aimed to demonstrate how taking different perspectives toward 

naturalistic scenes influences the subjects’ attention and behavior while 

viewing a movie, and how the differences in processing manifest in the 

brain activity. The specific hypothesis was that similar mind states would be 

reflected in similar brain states when people view the same stimulus having 

two different perspectives.

4.4.2 Materials and methods

Initially, in Experiment 1 of the study, the viewing patterns of 31 

participants were recorded using EyeLink1000 gaze tracker while they 

watched the first 10 minutes of a television show (Desperate Housewives, 

Season 1, Episode 15, Cherry Alley Productions, 2005). All participants 

watched the video twice either taking a perspective hypothesized to bias 

their attention to social content (being a police detective) or to non-social, 

inanimate objects (being an internal/external decorator) (see Figure 17
A). The perspective taking was motivated by a short background story for 

both perspectives. Same experimental paradigm was presented to 20 

different subjects during fMRI. The order of the perspectives was 

counterbalanced in both experiments.

In Experiment 2 further 13 subjects were recruited for concurrent 

recording of fMRI and eye tracking data to verify that the comparison of eye 

movements and fMRI responses was not biased because separate subjects 

were analyzed in the two cases. The eye tracking data of two of the subjects

in Experiment 2 were lost due to technical difficulties leaving 11 subjects 

left for the final eye gaze analysis. The subjects were further asked to fill in 

questionnaires on the difficulty of the perspective taking task and their 

attention towards perspective-relevant and irrelevant content in the 

stimulus. Finally, in their freeform accounts the subjects described their 

behavior during the different tasks (Experiments 1 and 2) and what in 

particular in the stimulus they found important for the different tasks 

(Experiment 2 only).

The saccade amplitudes and fixation durations between perspectives were 

compared and the inter-subject similarity of gaze locations was analyzed

based on the spatial correlation of fixation heat maps during each 2-second 

time window corresponding to the TR of the fMRI data. The fixation heat 
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maps were created by placing a Gaussian kernel (FWHM ~ 2.35º in the 

visual field) at each fixation position within the viewing area. Additionally, 

the average fixation patterns between perspectives were compared using 

similar fixation heat maps created over the whole video presentation.

The fMRI data were analyzed using ISC. The pairwise correlations 

between subjects were calculated for both perspectives. Non-parametric 

permutation testing was used to find significant differences in the strength 

of ISC across the perspectives. Furthermore, Mantel tests (see Figure 17
B) and k-nearest-neighbors (kNN) classifiers (see Figure 17 C) were used 

to reveal areas whose ISC was predictive of the particular perspective the 

subjects were taking. Classification was performed with all possible odd k-

values (1–19 in experiment 1; 1–11 in experiment 2) yielding the percentage 

of correctly classified subjects for each k-value. Only those areas, whose 

classification accuracy was higher than chance for at least half of the k-

values are reported in the results. Analogous classifier was also used to 

assess whether gaze patterns alone were predictive of the perspectives of 

the subjects.

Figure 17: Experimental design and analyses. A: Participants watched the 

same movie clip twice from social (detective) and non-social (interior decorator) 

perspectives, with the starting perspective counterbalanced across participants. 

B: Mantel test was used to compare the pairwise ISC values (upper triangle entries) 

with a correlation matrix template (lower triangle entries) where ISC in same-

perspective pairs (red) was higher than different-perspective pairs (blue). 

C: Subjects were classified using a k-nearest-neighbors classifier according to the 

labels of the training subjects (detective–red, decorator–blue) with whom their ISC 

was highest. In the visualization the proximity between two dots reflects the 

strength of the ISC between those subjects. The nearest three neighbors are 

indexed according to their proximity to the current subject, and the links are 

highlighted with the color corresponding to their class. For k=3 the current subject 

(white dot) would be classified as a detective because two of the three nearest 

neighbors (neighbors 2 and 3) are detectives.
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4.4.3 Results

The subjects reported that they paid more attention to task-relevant vs. 
task-irrelevant features in both conditions (Figure 18 A). The reported 

bias of attention toward task relevant features did not differ across 

conditions. The subject also reported that they found both tasks equally 

difficult (Figure 18 B). In their freeform reports, the subjects further 

indicated that they were behaving in perspective-relevant manner. For 

example, subjects in the Detective perspective reported assessing the 

motives, utterances and facial expressions of the characters. In contrast, in 

the Decorator perspective, subjects reported thinking of ways how to 

improve the interiors of the houses, and focusing on the background and 

furniture visible in the stimulus.

Figure 18: Behavioral results. A: Distributions of ratings across subject of 

their attention (on scale 1–5) to perspective-relevant and irrelevant items. B:
Subjective evaluations of the difficulty of the tasks on a scale from 1 (very difficult) 

to 5 (very easy). Detective perspective is indicated by pink and decorator 

perspective with light blue color. The red crosses indicate the mean of the ratings 

across subjects.

Detective (’social’) perspective biased fixations towards the center of the 

screen where the actors were typically shown, whereas decorator (‘non-

social’) perspective biased fixations towards the edges of the screen where 

the interiors/exteriors were shown (Figure 19 A). Furthermore, 

participants made shorter saccades and longer fixations during detective 

than decorator perspective (Figure 19 B). Inter-subject synchronization of 

eye movements (eyeISC) was significantly stronger during the detective 

than in the decorator perspective (Figure 19 C). Crucially, the difference in 

the strength of eyeISC manifested only after the opening credits, which

contained no task-relevant information (see the beginning of the 

timecourses in Figure 19 A). The results of the eye-tracking data analysis 

were similar both inside and outside of the scanner (Figure 19 D–E).
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Figure 19: Eye movement patterns across tasks. A: The subtraction 

heatmaps (T-scores, unthresholded) show regions receiving more fixations in the 

social (turquoise to blue) and non-social (yellow to red) perspective conditions. 

Heatmaps were computed over the entire experiment and are here shown overlaid 

on a sketch of a representative frame of the movie. B: Saccades were longer in the 

decorator condition and fixations were longer in the detective condition. C: Time 

courses of inter-subject synchronization (±95% confidence interval) of gaze 

position within perspectives (red and blue) and across perspectives (black dashed 

line). Time points with significantly different eyeISC across conditions are 

indicated by vertical bars. Opening credits are indicated by gray striped 

background. D and E: Correspondence of eyeISC values in Experiment 1 vs. 
Experiment 2 in detective and decorator conditions, respectively. Dashed red line 

indicates the region where eyeISC in both experiments would be of the same 

magnitude.

Figure 20 shows the contrast of ISC strength between the perspective 

taking conditions. Activity in most of the occipital lobe and parts of the 

STG, STS and TPJ was more correlated across participants in the Detective 

vs. Decorator condition. Only region showing the opposite effect was 

located in the junction of ventral anterior cingulate cortex and orbitofrontal 

cortex, but this effect was not replicable in either experiment alone.
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Figure 20: Brain regions exhibiting stronger ISC in the detective vs.
decorator perspective (orange to yellow) and vice versa (blue to 
turquoise). A: Results are calculated on the pooled data of both experiments.

Results are thresholded at p < 0.05 (FWE controlled). White outlines show areas 

where ISC was higher within vs. across (see Figure 21). Additional abbreviations: 

MOC – medial occipital cortex, PPC – posterior parietal cortex, vACC/OFC –

ventral anterior cingulate cortex/orbitofrontal cortex, VTC – ventral temporal 

cortex. B: Areas where ISC was stronger in Detective vs. Decorator perspective in 

Experiment 1 (red), Experiment 2 (blue) or in both experiments (yellow). White 

outlines indicate the results based on the pooled data in panel A.

Lateral occipital, inferior temporal, and posterior parietal cortical regions 

showed significantly higher ISC in subject pairs assuming the same 

perspective than in pairs assuming different perspectives (Figure 21 B).

Therefore, we could predict the correct perspective of the left-out subjects 

based on the ISC with significantly above-chance accuracy in these higher-

order areas (Figure 21 A). The results of the classification analysis were 

replicable in both fMRI datasets as well as in the joint analysis. Highest 

classification accuracies were approximately 93% in single-experiment 

analysis (N=13) and approximately 88% in the pooled data (N=33).
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Figure 21: Areas showing higher ISC within vs. across conditions.
A: Brain regions where accuracy of voxel-by-voxel classification based on pairwise 

ISC values calculated over the entire stimulus was significantly above chance level 

(p<0.001, uncorrected) with at least half of the k-values. The color coding (red—

yellow) indicates the average accuracy over the classification results. White outlines 

indicate areas exhibiting higher within vs. across perspectives ISC in the Mantel 

test. B: Areas where classification accuracy was significantly above chance level 

(threshold as in panel A) in Experiment 1 (red), Experiment 2 (blue) or both 

(yellow). C: Scatter plots show the subjects plotted on a 2D plane using 

multidimensional scaling where the proximity between two subjects corresponds to 

their ISC at the brain regions annotated in panel A. Blue and red background colors 

indicate areas where new subjects would be classified as decorators and detectives, 

respectively, using a kNN classifier trained on the entire group (k = 33).
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4.4.4 Conclusions

The results of this series of experiments demonstrate the feasibility of 

studying complex social and cognitive tasks, such as perspective taking, 

during naturalistic experimental conditions. Similarity of brain activity in 

lateral occipital cortex, parahippocampal gyrus, and posterior parietal 

cortex, and eye gaze reflect both the similarity of psychological perspectives 

as well as the particular perspective the subjects are taking.  Additionally, 

taking the “social” vs. “non-social” perspective increases the ISC in the 

pSTS shown to be important for social perception in Study II as well as 

large parts of the occipital lobe. Moreover, the results were replicated in two 

independent experiments demonstrating the robustness of the findings. 

The increased ISC of brain activity while subjects were taking similar vs.
dissimilar perspectives toward the movie events supports the hypothesis 

that similar mental states are associated with similar brain activity patterns.
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5. Discussion

The studies presented in this thesis reveal how the brain processes 

complex social information during viewing of naturalistic audiovisual

stimulation. Study I demonstrated that both converging and 

complementary information of brain areas and networks participating in 

the processing of complex stimuli may be revealed using linear modeling 

methods and ICA. Study II both confirmed results from Study I, such as the 

location of speech sensitive regions, and extended these by revealing the 

pSTS region as the integrating hub of a distributed brain network for social 

perception. This network consisted of partially specialized subnetworks 

participating in more specific social tasks. Finally, Study III demonstrated 

that even complex brain processes such as perspective taking could be 

studied in naturalistic experimental conditions with carefully planned

experimental designs, yielding high replicability across experiments.

Together, these studies show the feasibility and power of naturalistic 

experimental designs in probing multiple brain processes simultaneously 

that have previously required lengthy series of experiments. Furthermore, 

the dynamic stimuli and tasks employed in these studies increase the 

ecological validity of experimental conditions, and enable probing more 

complex social cognitive brain functions than is possible with simplified 

static stimuli.

5.1 Brain regions and networks processing naturalistic stimuli

Study I revealed convergent results between stimulus driven analyses and 

model free independent component analysis that was subsequently 

correlated with the stimulus models. However, some regions that were 

included in the brain networks found by ICA were not significantly 

correlated with the relatively simple stimulus models employed in the study

although they were functionally connected with the other regions of the 

functional networks. These regions included parts of the posterior temporal

lobe, temporo-occipital visual areas, posterior parietal cortex, as well as 
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some prefrontal regions. Together with the results of Study II, these 

differences suggest that these regions participate in processing of more 

diverse set of stimulus features than were modeled in Study I, while they 

still show significant functional connectivity with other regions processing 

more selectively the biological motion categories and speech to which the 

ICs were sensitive.

Similar observation of specialization of the temporo-frontal network of 

IC2 to speech, and superior temporal IC1 more generally to sounds in Study 

I was also found in a recent study using an audio-story as a stimulus (Boldt 

et al., 2013). Thus, the observation seems to generalize to different stimuli 

and modalities. However, since some parts of the stimulus in Study I 

activated sub-regions of the speech-sensitive IC2 independently, the

network may consist of distinct nodes that work together during speech 

comprehension and independently when other type of processing is 

required. For example, in Study I, sub-regions of the speech-sensitive 

network seemed to activate during some instances of visual presentation of 

language. Furthermore, in Study II, the activity of posterior regions of the 

network followed multiple social signals presented in short videos as 

discussed below.

5.2 Posterior STS as an integrating hub of the social brain

Study II revealed that the pSTS region responds to a very wide range of 

social signals during presentation of short audiovisual movie clips. 

Moreover, the responses seem selective to social vs. non-social contents of 

the videos. Recently, Watson and co-workers (2014) found additional 

evidence of the preference of the pSTS region to social stimuli supporting 

the results of Study II presented here. They showed that large parts of the 

STS respond selectively to people in visual, audiovisual and auditory 

stimuli. Particularly, posterior regions of the STS were further found to be 

heteromodal areas that integrated auditory and visual information so that 

the responses were higher to audiovisual stimuli than either modality alone.

However, it is obvious from the results of Study II that there are differences 

in the spatial extent and location of the activated regions of posterior 

temporal lobe adjacent to the pSTS depending on the social features being 

analyzed. Thus, there likely are multiple overlapping subregions in the 

posterior temporal lobe processing different aspects of the incoming 

sensory streams. While the functions of the motion sensitive middle 

temporal visual area (MT), and body sensitive extrastriate visual area 

(extrastriate body area; EBA) in the inferior parts of posterior temporal 

lobe have been studied extensively using controlled experimental 
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paradigms (Downing et al., 2001; Peuskens et al., 2005; Thompson and 

Parasuraman 2012) the functions of the other areas between MT/EBA 

region and the temporoparietal junction are less clear. Several higher-order 

processes, such as intentionality (Nummenmaa and Calder 2009),

empathy, agency and theory of mind, but also attentional reorienting, have 

been attributed to the temporoparietal junction and adjoining areas of the 

posterior superior temporal sulcus (for a review, see Decety and Lamm 

2007). Recent research has also revealed that the pSTS is a central node in 

the large scale structural network of the brain (Hagmann et al., 2008) and 

posterior temporal areas have been suggested to play a role in integrating 

information over long time scales (Hasson et al., 2008). These observations 

are in line with the results of Study II that suggests that the pSTS and 

adjacent regions may play a key role in integrating social information, and

they form an important functional hub of the social brain, although the 

aforementioned studies did not test whether the structural centrality of 

pSTS and its long time-window of integration are specifically related to its 

role in social processing.

Temporarily disrupting the function of pSTS with repetitive transcranial 

magnetic stimulation may impair perception of biological motion 

(Grossman et al., 2005) and stimulation of the adjacent TPJ can trigger 

“out-of-body” experiences (Blanke et al., 2005), which was interpreted to

suggest that the TPJ is critical for conscious experience of the coherent self.

Others have suggested that pSTS may be an entry point of information to 

large scale brain network participating in action observation and 

recognition (Peuskens et al., 2005). It is clear that the pSTS region is active 

in a large variety of conditions that are relevant for social processing. 

However, it is unclear how the pSTS would categorize something to be 

socially relevant. If pSTS is a central integrating hub this could be achieved 

by the structural and functional connections of the more specialized sub-

networks participating in social perception. However, further studies are 

required to test whether the main role of the pSTS and TPJ is in integration 

of information about the self and social environment or is the region an 

entry point from where information spreads to other parts of the network, 

and whether pSTS region has a causal role in classifying something as 

social.

5.3 Shared brain activity reflects mutual understanding

Recent studies indicate that the lateral occipital and ventral temporal 

areas revealed in Study III to be modulated by perspective taking show a 

more complicated response profile to scene statistics than previously
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thought. The responses in these areas may depend on the co-occurrence of 

scene contents (Stansbury et al., 2013) rather than a single target.

Moreover, the representations of objects in these areas are modified, for 

example, by visual attention (Nishimoto et al., 2013). The results of Study 

III are in line with these observations and extend them by showing that 

while taking a similar psychological perspective with others the attention 

toward and interpretation of movie events become more similar across 

individuals, which is also reflected in the similarity of brain responses.

Other recent studies have revealed additional evidence that sharing a 

similar point of view with others is mediated, in part, by having the brains 

of those individuals function in similar ways. For example, people who

perceived the H1N1 pandemic as a great risk exhibited enhanced ISC in the 

anterior cingulate cortex compared with those who perceived the risk to be

smaller (Schmälzle et al., 2013) while they viewed TV reports on the topic. 

The synchrony of brain activity across individuals is also increased while

they view emotional episodes in movies (Nummenmaa et al., 2012) and 

thus presumably share a similar emotional state. Similarly, ISC is also 

increased while people actively mentally simulate the actions of boxers 

depicted in video clips (Nummenmaa et al., 2014).

Together with these studies, the results of Study III suggest that similar 

brain activity could underlie mutual understanding between individuals.

However, it is not obvious whether enhanced synchrony is a consequence or 

a mechanism for sharing a similar mind state (Stolk 2014). The extent to 

which the similarity of brain responses can predict the similarity of views 

between people is an interesting topic for further research. To this end, 

behavior of the subjects, as well as their thoughts during the tasks should be 

carefully probed to quantify the similarity of their states of mind. 

Importantly, perspective-taking tasks should also be directly compared 

with explicit attention tasks during the same stimulus to reveal which brain 

mechanisms are specific to higher-level perspective taking, and which are 

more generally involved in spatial attention.

5.4 Dynamic changes in functional brain networks and ISC

Traditional neuroscientific studies have mapped brain responses to 

isolated stimulus categories and features, often focusing on single brain 

areas of interest. However, as Study II demonstrates, single brain areas can 

be sensitive to multiple features during perception of naturalistic dynamic 

scenes, and as seen in Study I, individual parts of brain networks may act 

independently during some parts of the experiment and coactivate with the 

network at other time points. Many recent studies are beginning to 
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highlight the importance of considering the brain as a network where 

multiple areas participate in several tasks in different configurations 

depending on the task demands (Sporns 2011). The connectivity and co-

activation of areas with other brain regions affects their function at any 

given moment. Thus, the use of simplified and isolated stimuli may reveal 

only part of the role they play when participating in complex processing of 

the natural world.

To address the dynamically changing processing demands on brain areas 

and networks, recent studies have started to investigate time-varying inter-

subject synchrony of brain activity across subjects, and temporal dynamics 

of brain networks. For example, inter-subject correlation strength is 

modulated by subjectively evaluated emotional valence and arousal of 

movie clips (Nummenmaa et al., 2012). In a similar vein, in Study III the 

behavioral similarity (eyeISC) was used to predict the ISC of brain activity 

calculated in sliding temporal windows, but no consistent link was found 

when the analysis was performed over the entire experiment. To further 

address the temporal modulations in functional connectivity and inter-

subject synchrony with greater temporal accuracy, new methods, such as 

phase synchrony (Glerean et al., 2012), and Kalman filtering (Havlicek et 

al., 2010) can be applied to fMRI data.

Uncovering the principles of the temporal behavior of brain networks is a 

major challenge and opportunity for future work in neuroscience. The 

number of possible connections in the brain is vast and we will need 

sophisticated analysis and visualization approaches to make sense of the 

complex temporal patterns. One of the first studies to systematically

investigate how the time-to-time connectivity changes between brain 

regions (Smith et al., 2012) revealed temporally independent modes of 

functional networks that characterize the different network configurations a 

region participates in at different times. However, additional work on the 

temporal variability of functional connections is of great importance when 

trying to understand the human brain. Recent work in different fields of 

cognitive neuroscience (for examples, see reviews on emotions and 

memory, respectively: Hamann 2012; Fuster 2009) is highlighting the need 

to view the brain as a dynamically reorganizing network.

5.5 Advantages of using naturalistic stimuli

Complex cognitive processes such as perspective taking may be difficult to 

address using simplified experiments. Furthermore, the methods developed 

in Study III could be further applied to study abnormal brain functions in 

various clinical conditions. In a recent paper we showed that the inter-
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subject correlations in high-functioning autistic individuals are decreased 

compared to matched controls (Salmi et al., 2013) during viewing of the full 

version of the movie presented in Study I of the present work. The high 

classification accuracies reached in Study III suggest that with careful 

design of the stimuli, novel insight could be gained into various 

abnormalities of social cognition.

There is evidence that subtle functional abnormalities may be poorly 

detected using simplified psychological tests. Thus, they may be better 

studied, and possibly even diagnosed, using more naturalistic experiments 

and new analysis methods such as the ones described in the current work. 

For example, while some individuals with autism pass standard theory of 

mind tests, they may struggle in attributing mental states to characters 

depicted in movies designed to probe their theory of mind capacity more 

thoroughly (Heavey et al., 2000). It has also been shown that eye gaze 

patterns of individuals with autism differ from those of typically developed 

controls during natural viewing of movies (Hasson et al., 2009). Moreover, 

the fixation times on different parts of the face predict the social 

competence of individuals with autism (Klin et al., 2002) during viewing of 

naturalistic social situations. Finally, naturalistic tests have also been 

shown to yield different assessments of memory performance compared 

with laboratory experiments, although this may be related to different 

methodologies probing different aspects of memory (Koriat and Goldsmith 

1994) in the two environments. The brain correlates of these behavioral 

effects should be addressed in more detail in future experiments.

5.6 Challenges of naturalistic neuroimaging experiments

While using naturalistic stimuli and experimental conditions increase the 

ecological validity of neuroscientific experiments and may significantly 

increase their detection power, there are still obstacles that hinder their use 

in research. Despite technological advances, MRI scanners are still noisy 

and cramped, and the subjects are required to stay stationary for extended 

periods of time. Thus, it may be difficult to fully immerse oneself into the 

movies during fMRI scanning. However, similar problems are true for 

traditional experiments as well. When the stimuli are more interesting the 

subjects may in fact find it easier to maintain their attention during the 

experiment. This may be particularly beneficial in experiments that require 

subjects to attend a given target for long periods of time.

Recently, researchers have further expressed demand on moving beyond 

passive viewing conditions toward interactive experiments where two 

communicating people would be imaged at the same time (Hari and Kujala 
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2009; Hasson and Honey 2012). However, compared with passive viewing 

of naturalistic stimuli, the problems of subject motion make the study of 

naturalistic social interactions even more difficult. Although subjects have 

been imaged, for example, during story telling (Stephens et al., 2010) and 

gestural communication (Schippers et al., 2010), having natural 

conversations with others can be problematic while trying to avoid 

excessive head motion. For example, in the story-telling experiment of 

Stephens and colleagues (2010) the researchers had the story teller practice 

the story in the fMRI scanner three times prior to scanning to avoid head 

motion during scanning. Despite these challenges, to truly understand the 

brain mechanisms that enable us to participate in everyday social 

interactions we must eventually be able to measure the brains of people 

during such episodes.

The modeling of both interactive experiments as well as naturalistic videos 

is one of the major challenges in the analysis of the data gathered during 

naturalistic experiments. As mentioned earlier, several features of 

naturalistic stimuli may coincide during any given moment, and covary in 

time. In Study II, short video stimuli were selected so that the features of 

interest were relatively uncorrelated. However, this may not be appropriate 

if the brain processes to be studied evolve over longer time scales. 

Furthermore, it is not obvious which features of the stimuli are relevant to 

be modeled.

While the stimulus-model based results of Studies I and II are consistent 

with prior literature, it can be difficult to pinpoint the particular stimulus 

features that elicit the activity in a given brain area when the stimulus is 

complex. Obviously, it is not possible to exhaustively model a naturalistic 

stimulus such as a movie, although high-dimensional models have recently 

been built (Huth et al., 2012; Çukur et al., 2013) using a hierarchical corpus 

of semantic categories. However, even the selection of semantic categories 

as the class of explanatory variables may bias the conclusions of the study 

despite the size of the model. Moreover, as the size of the model increases,

the chance of overfitting increases and methods such as regularization 

become necessary. Moreover, additional work should be undertaken to 

evaluate whether the assumption of linear superposition of responses to 

different stimulus features is appropriate, as this may significantly affect 

the way the models should be fitted to the data. Despite the challenges, 

however, the conclusions based on simplified experiments should 

ultimately be validated in more naturalistic conditions. For example,

although at least the highest peaks of activity during natural stimulation in 

the fusiform face area seem to correspond to occurrences of faces (Hasson 

et al., 2004) the selectivity of the FFA responses should eventually be tested 
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against as large a set of competing hypotheses as possible.

In addition to modeling the stimuli, characterizing the subjects’ behavior 

during social interactions requires careful consideration. Ideally, the 

behavior of the participants should be probed as comprehensively as 

possible. However, the fMRI environment makes gathering data on, for 

example, subjects’ facial expressions difficult because most equipment 

cannot be brought to the high magnetic field inside the scanner, and the 

view from the outside is severely limited. Thus, it is important that the 

research questions and experimental set-ups are carefully planned, 

subjects’ behavior is thoroughly probed with appropriate questionnaires,

and technology is developed that enables additional behavioral data to be 

gathered during interactive experiments. Importantly, analyzing the 

behavior and experiences of the participants could potentially solve some of 

the bias introduced by the pre-selection of features to be analyzed by the 

researchers. Moreover, as showed in Study III, the experiences of the 

subjects are reflected in their brain activity even when the stimulus is 

exactly the same. Thus, the stimulus model alone, no matter how many 

features are included, may not explain all aspects of the recorded brain 

activity.
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6. Conclusions

The processing of naturalistic social scenes requires the interplay of 

multiple brain regions. Brain regions traditionally implicated in perception 

of specific social features participate in large-scale networks where multiple 

areas are responsible for creating a unified percept of the incoming 

information. In particular, the posterior superior temporal sulcus and the 

surrounding areas of temporoparietal junction, and posterior temporal lobe 

seem to be key structures potentially integrating multiple aspects of social 

perception together with other partly segregated subnetworks. It is thus 

likely that the functional role of a brain region at a given time is dependent

on which other brain regions it is active and communicating with. 

Additionally, the modulation of brain activity by psychological perspectives 

supports the hypothesis that viewing the world in a similar way with other 

people may cause the brain activity of the persons to be more similar. Thus, 

the similarity of brain activity may facilitate mutual understanding. The 

experimental designs and analysis methods presented in this thesis open 

new possibilities for studying how humans process multitude of social cues 

in complex naturalistic contexts, and how these processes are modulated by 

different tasks. Similar approaches can also be applied to study the neural 

basis of clinical conditions that are poorly addressed using traditional 

experimental designs.
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demonstrates the feasibility of studying 
brain responses to simple stimulus features, 
social movie content as well as high-level 
perspective-taking tasks during very rich 
naturalistic audiovisual stimulus 
conditions. 
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variety of skills needed for seamless social 
interactions with other people is one of the 
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neuroscience. However, it has remained 
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social interaction that have been studied so 
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be dynamically tracked at the same time. 
The studies presented in this dissertation 
employ movies to depict real-life-like social 
interactions and map the brain systems that 
participate in the processing of different 
aspects of the stimuli as well as higher-level 
brain processes that guide our 
interpretation of the movie events. The 
consistency of the findings presented here 
demonstrates the feasibility of studying 
brain responses to simple stimulus features, 
social movie content as well as high-level 
perspective-taking tasks during very rich 
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conditions. 
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