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Development of Geophysical
Retrieval Algorithms for the MIMR

Jouni Pulliainen, Juha-Petri Kirnd, and Martti Hallikainen, Fellow, IEEE

Abstract— Results from a study concerning the feasibility of
spaceborne microwave radiometry to retrieval of geophysical
parameters are described. The study concentrates on the de-
velopment of inversion techniques for multichannel spaceborne
radiometers, especially the statistical inversion approach. The
basic tool in this study was the developed simulation/inversion
software. Especially, the applications of the planned MIMR in-
strument (Multi-Frequency Imaging Microwave Radiometer) are
discussed. The employed inversion algorithms are 1) conventional
algorithms for different applications and 2) the statistical inver-
sion approach (maximum likelihood inverse solver). Comparisons
between results from different inversion algorithms have also
been carried out. The statistical inversion approach has been
found to give promising parameter retrieval accuracies and
is a potential tool to improve the operational use of passive
spaceborne remote sensing. Additionally, sensitivity analysis of
the radiometer apparent temperature to different geophysical
parameters and the statistical behavior of the atmospheric trans-
missivity are presented.

Keywords—Spaceborne radiometry, passive microwave remote
sensing, simulation software, inversion algorithm.

I. INTRODUCTION

HE European Space Agency (ESA) develops the Multi-

Frequency Imaging Microwave Radiometer (MIMR) for
global research of the Earth’s surface and atmosphere, sched-
uled for launch in the late 1990’s. The MIMR will operate
at six frequencies between 6.8 and 89 GHz, Table I [1]. The
swath width is 1400 km, and the incidence angle is 50° off
nadir. In order to fully employ the capabilities of the MIMR
in Earth observation, dedicated inversion algorithms have to
be developed.

The brightness temperature of a target depends on its
physical temperature, surface geometry, and dielectric and
extinction properties. Retrieval of a geophysical quantity from
spaceborne radiometer data is possible if the effects of other
parameters to the brightness temperature can be eliminated.
When frequencies above 5 GHz are used, even the atmospheric
effects have to be considered. In addition to target param-
eters, a variety of instrument parameters strongly affect the
brightness temperature. These parameters include frequency,
polarization, and angle of incidence. )
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TABLE 1
MIMR CHARACTERISTICS
Frequency Pixel size Accuracy Sensitivity Polarization
(GHz) (km x km) (K) (K)
6.8 60 x 60 1.0 0.2 vertical,
horizontal
10.65 38 x 38 1.0 0.4 vertical,
horizontal
18.7 22 x 22 1.5 0.5 vertical,
horizontal
238 20 x 20 15 0.5 vertical,
horizontal
36.5 11.6 x 15 0.5 vertical,
11.6 horizontal
89 49 x 4.9 1.5 0.7 vertical,
horizontal

The main applications discussed in this paper are retrieval
of 1) ocean surface parameters (sea surface temperature, wind
speed, sea ice concentration), and 2) land parameters (snow
extent, snow water equivalent, soil moisture). The retrieval
methods are applicable to the MIMR. The main emphasis is on
the statistical inversion approach, in which the inverse solution
of the model representing the actual measurement is searched
[2], [3]. The inverse solution is the one having the maximum
likelihood of all the possible solutions.

II. SIMULATION OF EMISSIVITY

The basic equation for calculating the apparent temperature
observed from space is

TﬂvP(ﬂ 0) = eS,P(fv G)Tst(fv 0) + Ta,atmos 1
+ Ta,atmos 1(1 - es,p(f7 0))t(f’ 9)
+2.7(t(£,0))(1 = esp(£.0)) )

where

esp = surface emissivity,

T, = temperature of the surface ,

Ta atmos 1 = up-welling atmospheric apparent temperature,

Taatmos | = down-welling atmospheric apparent tempera-

ture,

t = transmissivity of atmosphere,

p = polarization,

6 = angle of incidence, and

f = frequency.

A simulation/inversion software of a spaceborne radiometer
sensor is a system that a) calculates the apparent temperatures
according to (1) at the instrument’s frequencies of operation,
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and b) employs specific inversion algorithms for the retrieval
of geophysical parameters of interest. It can be utilized in the
development and testing of inversion algorithms and, addition-
ally, in the analysis of sensitivities of apparent temperatures for
different geophysical parameters. Thus, a simulation/inversion
software is a basic tool for the prelaunch evaluation of a
spaceborne radiometer system.

The developed software simulates the microwave emission
from the ocean, sea ice, snow-covered, and vegetation-covered
land at the frequencies of the MIMR instrument. It uses
theoretical, semi-empirical and empirical emission models.

A. Surface Emissivities

The following emission models were selected for the sim-
ulation of surface emissivity, e, ,(f,6) in (1):

- Pandey’s model [4] for ocean surface,

- HUT (Helsinki University of Technology) model [5] for
snow-covered land,
Kerr’s model [6] for vegetation-covered land,
constant emissivity values for different ice types [7).

I

The current emission models for ocean surface work rather
well in their specific validity area. The empirical Pandey’s
model was selected because of its simple mathematical for-
mulation which makes it suitable for the statistical inversion
method. The main restriction of the model, when compared,
e.g., with Wilheit’s model [8], is the frequency range of
operation, which only extends up to 37 GHz.

Most snow models lack validation, due to difficulties in
snow modeling, including 1) influence of numerous parameters
on the microwave behavior of the snow layer, and 2) rapid
changes of the values of these parameters with time and
weather. The used emission model for snow is the semi-
empirical HUT (Helsinki University of Technology) model
which relies on experimental data from ground-based ra-
diometer measurements with extensive ground truth. Kerr’s
semi-empirical model for vegetated land takes into account
the effects of all relevant surface and vegetation layer (grass
or corn) parameters. These parameters are: soil moisture,
soil roughness, soil type, soil temperature, vegetation water
content, vegetation albedo, canopy type, fractional coverage
of vegetation, and vegetation effective temperature. The main
limitation of the model is that it works well only up to 10
GHz. At higher frequencies the effect of surface roughness
is not known. The dielectric constant of soil is calculated
using the equations of Hallikainen et al. [9]. Additionally,
the effect of forest canopy cover can be simulated by using
surface emissivity correction coefficients that are based on
experimental data [10].

None of the existing models, neither theoretical nor empir-
ical, provide good accuracy for sea ice emissivity. Therefore,
constant empirical values for the emissivity of different ice
types are employed, Table II. The fundamental problem is
the complex and relatively rapidly changing medium. Addi-
tionally, some of the physical parameters that have a major
effect on the emissivity behavior, may vary considerably
within the same ice type (locally or with time). Therefore, the
behavior of parameters needed for sea ice microwave models
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TABLE 11
ICE AND OPEN WATER EMISSIVITIES AT MIMR FREQUENCIES.
DATA HAS BEEN GATHERED FROM SEVERAL SOURCES 7.

f/GHz First-year ice Multi-year ice Open water
6.8 H 0.90 0.92 0.26
6.8 H 0.95 0.98 0.52
10.65 H 0.90 0.85 0.28
10.65 v 0.97 0.92 0.54
18.7H 0.92 0.80 0.31
187V 0.96 0.87 0.59
23.8H 0.92 0.77 0.34
238V 0.97 0.84 0.62
36.5H 0.93 0.67 0.39
365V 0.96 0.71 0.69
89.0 H 0.94 0.65 0.52
89.0 V 0.97 0.68 0.83

is not well known. Especially, the statistical properties of the
surface roughness and correlation length are almost totally
uninvestigated. Presently, only the dielectric properties are
known to some extent [11], [12].

B. Atmospheric Emissivity and Transmissivity

Liebe’s MPM [13], [14] model for the atmospheric absorp-
tion and extinction coefficients has been found to be the most
suitable of the present microwave models to be used in the
radiative transfer equation of the atmosphere [15]. 1t works
well, especially at higher millimeter wave frequencies (up to
1000 GHz). The basic problem with all atmosphere models is
validation. The current extinction and absorption coefficient
models are semi-empirical, since the nature of continuum
nonresonant absorption of gases is not fully understood [2].

Atmospheric emissivities and transmissivity, Ta,atmost,
Toatmos) and t(f,0) in Equation (1), are simulated by
employing Liebe’s model. Alternatively, the atmospheric pa-
rameters can be determined by using statistical transmissivity
values. The following equations (2), (3), and (7)~(9) determine
atmospheric emissivities and transmissivity when Liebe’s
model is employed, and (4)~(6) determine these parameters
when statistical transmissivity values are used in the apparent
temperature simulation.

The apparent temperature of the atmosphere seen from space
at the altitude H is

H
T atmost (H, 0) = secﬂ/ Ka(2)T(z)ehe(zH)sec g, )
0

where £, is the absorption coefficient and T(z) is the physical
temperature of the atmosphere at height z. An analogous
notation can be written for the down-welling temperature. The
extinction term k.(z, H) is

H
Ke(z, H) :/ ke(2')dz' 3)

The up-welling apparent temperature can also be written as
Ta,atmosT = aTTs(]- - t) (4)

and an analogous notation can be written for the down-welling
temperature. o7 is the approximate atmospheric profile factor



270 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 31, NO. 1, JANUARY 1993

for determining the effective up-welling temperature ;T of
the atmosphere [16]:

ap = —0.073¢ + 0.101¢ 4 0.918. 5)

Respectively, the profile factor for the downwelling tempera-
ture o) T is [16]

a) = —0.035¢% + 0.014¢ + 0.967. (6)
The extinction coefficient &, is related to the transmissivity
t by

t= e—secefo}l Ke(z)dz

)
In order to calculate the absorption coefficients at different
heights, the temperature and pressure profiles of the atmos-
phere are needed. The pressure profile used is [17]

z/Hp

p(z) = poe” ®)

where

po = pressure at the ground level,
H,, = pressure scale height (7.7 km).

The temperature profile used in this paper is for the standard
Finnish atmosphere. It is a linear model in which the atmos-
phere is divided into three layers. In the pressure and water
vapor models the values of the scale height of the standard
Finnish atmosphere are used. Similar models for atmospheric
temperature and pressure profiles for different latitude zones
can be found in Damosso et al. [18].

The density of water vapor is assumed to decrease expo-
nentially with the scale height H,,, (2.35 km according to the
standard Finnish atmosphere), as

z/Hyy

p(z) = poe” ©)

where pg is the ground level density.

The statistical values of the atmospheric transmissivity were
retrieved from the propagation studies of Salonen et al. [15].
It gives the distribution of the atmospheric attenuation at
20, 30, 40, and 50 GHz. From these values the atmospheric
transmissivities to be achieved for certain percentages of time
have been calculated for the frequency band of 6 to 100
GHz using the Liebe’s model, Fig. 1. The weather dependent
statistical behavior of the apparent temperature is simulated
by applying these values to (1) and (4)«6).

An example of the program output of the emission calcu-
lation is in Fig. 2, which depicts a workstation screen during
a program run. Separate lines represent different atmospheric
transmissivities showing the effect of different atmospheric
conditions. The effect of lower transmissivity on the higher
frequency channels 4 (23.8 GHz), 5 (36.5 GHz), and 6 (89
GHz) can be clearly seen.

III. INVERSION ALGORITHMS

A. Algorithms from Literature

Inversion algorithms for the above-mentioned atmospheric,
ocean, snow, sea ice, and vegetation applications have been
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Fig. 1. Statistical behavior of the atmospheric transmissivity at 50° angle of
incidence. The curves show the percentages of time when the transmissivity
exceeds a certain value. The curves are calculated from data for southern
Finland [15]. The data apply relatively well for northern latitudes (50-70°).
An estimate for the water vapor content of 15% curve is 0.8 g/cm?, for 55%
curve 1.2 g/em?, and for 95% curve 3.3 g/cm?.

obtained from the literature. These algorithms are used in
the developed simulation/inversion software, and their accu-
racy and confidence level have been tested. The algorithms
are based on measurements or simulated data, using, e.g.,
the statistical multiple regression, and they are mathemat-
ically rather simple. The most usual forms are linear and
logarithmic algorithms. Linear algorithms are valid if the
atmospheric opacity is expected to be much less than one,
i.e., the transmissivity value is near one. A logarithmic algo-
rithm, in which the logarithm is taken from the subtraction
of the apparent temperature and the surface temperature,
takes the atmospheric conditions into account in a more
advanced way [17]. Thus, it can be used for larger opaci-
ties.

The inversion algorithms implemented are:

— Miller’s algorithm [19] for ocean surface wind speed,

— Wilheit’s algorithm [20] for rain rate over the ocean,

— SPD algorithm [16] and Kiinzi’s [21] algorithm for snow
water equivalent,

— Swift’s algorithm [22] for sea ice concentration,

— Lojou’s algorithms [23], [24] for ocean surface tem-
perature, and water vapor and liquid water content of
atmosphere.

For soil moisture there are presently no advanced algorithms

applicable to the MIMR. A low frequency channel (around 1.4
GHz) is desirable for soil moisture retrieval.

B. Statistical Inversion

Our development of inversion algorithms was concentrated
on the so called statistical inversion approach (applied to
the MIMR). The statistical inversion approach involves an
algorithm based on the search of an inverse solution for the
model representing the actual measurement [2], [3]. The used
maximum likelihood inverse solver uses a nonlinear least-
squares fitting method (Levenberg—Marquard) for fitting the
model into the results of multichannel measurements. The
minimizing problem is
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Fig. 2. Program screen showing emission calculation using statistical atmosphere and a subsequent inversion. Apparent temperatures are calculated for sea
ice at horizontal and vertical polarizations using the statistical atmosphere model. On both polarizations there are ten separate apparent temperature vectors
corresponding to ten separate atmosphere transmissivity conditions. The word “worst” denotes the lowest transmissivity condition.

12
o 1
Minimize g ﬁ(gi(l‘l,wz, cee al’n) - (Ta)i)z
i=1 "t

n
1 .
+ D gl - )’ (10)
j=1°""7

where

g: = model representing the apparent temperature at the ith
channel according to (1),

(T.): = apparent temperature at the ith channel, measured
from space,

T1...Zn = model parameters, which include the geophys-
ical parameters of interest,

#; = average value of the jth model parameter (a priori
information),

Aj = standard deviation of the jth model parameter value,
and

o = standard deviation of (Gaussian) measurement noise.

The initial values for the model parameters, T1,22,...,Ln,
are obtained from previously mentioned inversion algorithms
or, in case no algorithm exists, they are set to default values
(expected values according to a priori information). It is also
possible to use absolute limits for certain model parameters,
e.g., wind speed > 0 m/s, etc.

The developed technique is a unified method for retrieval
of the geophysical parameters of any surface type. The al-
gorithm solves a parameter set containing all the parameters
relevant for the apparent temperature measured from space.
The surface emissivity is defined by empirical or theoretical
emission models (see Section II). The method allows the
utilization of a priori information on any parameter related
to the radiometer measurement. The additional sum term in
(10) takes into account a priori information on a Gaussian
distributed parameter.

For the atmospheric transmissivity, a statistical principal
component model is utilized. This model was developed for
the MIMR frequencies by employing the curves of Fig. 1.
The principal component model allows the reduction of the
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TABLE III

PRINCIPAL COMPONENTS OF ATMOSPHERIC TRANSMISSIVITY
Freq. 6.8 10.65 18.7 238 36.5 89
(GHz)
19, 0.9851 0.9795 0.9390  0.8637 0.8731  0.6813
th 0.0088  0.0275 0.1582  0.3851 0.2652  0.8692
12, 0.0178  0.0124 —0.2456 —0.8753 0.0733  0.4096

statistical atmospheric transmissivity behavior in the model
representing the measurement into only one free parameter
(a six-component vector according to six frequencies of the
MIMR). Thus, (10) can be expressed (when a priori informa-
tion is excluded for convenience) as

12

Minimize Z 2—(173 (gi (J:l, ey T, aﬂl) _ (T“)i)2 (11)
i=1 77t

where

« = atmospheric profile factor that contains information

about the pressure, water content, etc. of the atmosphere;

and

A1 = scalar variable (value of the first atmospheric trans-

missivity principal component).

The factor « is assumed to be the same in both upward and
downward direction, which is a fair approximation (refer to
(5) and (6)). According to (1) the emission model g may be
written

gi(z1,- .- Ty @ YY)
=ei(r1,...,Tn) Ttk (71)
+aT,(1 - tk('yl))
+ aTs(1 — ei(z1,- .- ,xn))tk(fyl) (1 — tk('yl))
+27(1 = ei(@s -z )t ()
12)

where ¢, is the atmospheric transmissivity at the kth frequency
obtained by the statistical principal component model:

(') =1, + ' th,  k=1...6 (13)
where
t%, = average atmospheric transmissivity vector (average

values at the six MIMR frequencies),

! = a scalar variable and

th the first principal component of the atmospheric
transmissivity vector:

T
th = (thth, .. th,) - (14)

The principal components of the atmospheric transmissivity
have been retrieved by principal component regression for the
transmissivity values of Fig. 1 [25], [2]. The basic idea is
to find the orthonormal system optimally in the sense that
only the first few components are needed to approximate the
atmospheric transmissivity behavior satisfactorily in the square
mean sense (the first one is sufficient in this case). Table
III gives the obtained atmospheric transmissivity components
t%,t}, and, additionally, the second principal component t2,
for southern Finland.
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IV. SOFTWARE IMPLEMENTATION

The software was implemented in the UNIX environment
using C language and X Window System for the graphics
output. The software was also ported to MS-DOS environment.

The software includes emission simulation and inversion
modules. The emission calculation can also be entirely skipped
by reading the apparent temperature values from a file in
order to use measured data. The inversion module employs
cither conventional algorithms or the statistical inversion. In
the statistical inversion, Levenberg-Marquard method [26] is
used for solving the minimizing problem.

The software allows one to investigate the sensitivity of the
inversion algorithms to the system noise by using the Monte
Carlo noise simulation. In this method random noise is added
to the apparent temperature values, after which inversion is
performed.

Fig. 2 depicts a snapshot of the workstation screen which
has windows showing the apparent temperature values and
inversion result histograms.

The user can change both the frequencies and the number
of channels in order to use the software for simulating other
radiometers as well, keeping in mind the validity area of the
emission models and inversion algorithms.

V. SENSITIVITY OF THE APPARENT
TEMPERATURE TO GEOPHYSICAL PARAMETERS

A. Mathematical Basis for Sensitivity Analysis

Sensitivity analysis of the apparent temperature reveals
the quantitative effects of different parameters affecting the
measurement, i.e., the effects of the parameters of interest
and the disturbing parameters. Therefore, it is an essential
part of developing inversion techniques and necessary for the
selection of instrument characteristics. Sensitivity is defined as

T,
S =" 15
gy (15)
where T, is the apparent temperature and « is an affecting

parameter.

The sensitivity analysis discussed below was performed by
using (1) to (9). The microwave parameters e, and ¢ in (1)
and (4)~(6) were determined from the models and statistical
transmissivity data discussed in Section II. Additionally, the
exact radiative transfer model given in (2) and (3), and a
similar formula for the down-welling temperature, both applied
to (1), were employed.

B. Examples of Results

The sensitivity of the apparent temperature to the near
surface wind speed (at the height of 20 m above sea level,
incidence angle 50°) is illustrated in Fig. 3. The sensitivity is
obtained from

dl, _ des

dW ~ dWw
where W is the wind speed. The surface emissivity es is a
function of wind speed and is given by Pandey’s model [4].

(Tot — a To(1 — t)t — 2.7%) (16)
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Fig. 3. Sensitivity of the satellite observed apparent temperature to the ocean
surface wind speed at the wind speed of 5 m/s. The surface temperature is
15°C. The curves show the fraction of time when the sensitivity exceeds a
certain value.
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Fig. 4. The difference of the satellite observed apparent temperature between
first-year ice and multiyear ice at vertical polarization. Angle of incidence is
50°. The curves show the fraction of time when the sensitivity exceeds a
certain value. The apparent temperatures are determined by (1) using discrete
sea ice emissivity values. The emissivity values at other frequencies are
approximated by a second degree polynomial fit.

The results are shown for three transmissivities exceeded 15%,
55%, and 95% of time. The results show clearly the increasing
effect of atmospheric disturbance when the frequency exceeds
15 GHz and thus the application of the four highest MIMR
frequencies for determining the wind speed becomes question-
able. The transmissivity values, used in the analysis, apply to
northern latitudes (50~70°) [15].

A similar approach has been used in Fig. 4, which shows the
change of the apparent temperature when the observed surface
changes from multiyear ice to first-year ice. The emissivities
used for the ice types are depicted in Table II. The figure
indicates the potential capability of the 89 GHz channels
for distinguishing multiyear ice from first-year ice. However,
the graphs also demonstrate that in order to acquire reliable
results at 89 GHz the atmospheric effects should be properly
eliminated.

The sensitivity of the apparent temperature to the grain
size is presented in Fig. 5. The sensitivity (S; , [K/mm])
is calculated using the HUT snow model and the following
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Fig. 5. Sensitivity of the satellite observed apparent temperature to the snow
grain size as a function of snow water equivalent. The curves are calculated
at the MIMR frequencies relevant for snow applications, and using vertical
polarization. The behavior at horizontal polarization is similar.

equation:
To(d = 0.4mm) — T,(d = 1.2mm)

Sa.= (0.4—1.2)mm

17)

The following assumptions are used in the calculations:

* cmissivities of ground at different frequencies are those
presented in [24] for frozen ground

* temperature of ground = —1°C

* grain diameter d = 0.8 mm

* density of snow = 0.24 g/cm?

* snow surface roughness = 0.0 mm

* no vegetation is present

* the transmissivity and the brightness temperature of the
atmosphere have been calculated using Liebe’s model
for (2) and (3). The standard atmosphere measured at
Jokioinen in southern Finland in January and the follow-
ing surface parameters are used:

—  pressure = 1013 mbar
— temperature = —5°C
—  humidity = 80%.

The results for snow show the strong dependence of the
apparent temperature to the grain size at 18.7 GHz, 36.5 GHz
and also at 89 GHz (when the water equivalent is smaller
than 20 mm). The high sensitivity deteriorates the accuracy
of snow water equivalent retrieval when the grain size cannot
be estimated properly. The results also indicate the potential
of the 89 GHz channels for determining the snow extent.
Recent experimental results on SSM/I 85 GHz channel are
encouraging [27].

C. Summary of the Sensitivities

Table IV summarizes the quantitative effects of different
surface parameters to the apparent temperature observed by a
spaceborne sensor. The table shows the change of the apparent
temperature caused by a change in a single parameter value.
The other parameters remain constant (same as those used
in Figs. 3-5). The used parameter value ranges are close
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TABLE IV
OVERVIEW OF THE SENSITIVITY OF THE APPARENT TEMPERATURE TO
DIFFERENT SURFACE PARAMETERS AND THE ATMOSPHERIC TRANSMISSIVITY

Parameter
and range

Change of apparent temperature AT,

Frequency (GHz)
10.65 18.7 238 365 90.0

Polarization | 6.8

Ocean surface wind | Horizontal w w M M w -
speed Vertical w w w w w -
5-7mfs

Ocean surface tem- | Horizontal w w M M M
perature Vertical w w M M w

18-20°C

Horizontal
Vertical

Atmospheric
transmissivity

=
44
wn
X%
wwn

TABLE V
COMPARISON OF ACCURACY OF CONVENTIONAL ALGORITHMS AND THE
STATISTICAL INVERSION APPROACH. THE TEST RUN RESULTS SHOW THE ERROR
RANGES UNDER VARYING SURFACE AND ATMOSPHERIC PARAMETER CONDITIONS
(FOR ATMOSPHERIC TRANSMISSIVITY, THE VALUES PRESENTED IN FIG. 1 WERE
UTILIZED). THE NOISE LEVEL IN SIMULATIONS WAS 1 K. REPORTED TYPICAL
RETRIEVAL ACCURACIES FOR SPACEBORNE DATA ARE ALSO PRESENTED.

Application rms error

Conventional algorithm Statistical inversion

Ocean surface wind speed 1-6 (Miller) 1
[m/s] <2 (%)

2-10 (Lojou) 1-2
S1(*%)

Ocean surface
temperature [°C]

(*) Reported accuracy for the SSM/1 algorithm of Goodberlet et al. under typical conditions (achievable for
85% of time) [28].
(**) Reported accuracies for Wilheit's and Wentz's algorithms [20,29,30].

15-95%

Snow water equiv- | Hagizontal

alent Vertical

10-15mm

Atmospheric Horizontal w w M M M N
transmissivity Vertical w w w M M S
15-95%

W = weak: AT, <2K,
M = moderate: 2K <AT, <8K,
§ =strong: AT, > 8K,

to retrieval accuracies required by end users. The apparent
temperature changes are divided into three categories: weak
(change is smaller than 2K), moderate (between 2K and 8K)
and strong (more than 8K). For comparison, the magnitude of
atmospheric disturbance is presented. The disturbance level is
the change of the apparent temperature caused by the change of
the atmospheric transmissivity value from the value exceeded
95% of time to the value exceeded 15% of time (see Fig.
1). Comparison of atmospheric disturbance level with the
sensitivity to each target parameter in Table IV shows that in
several cases atmospheric effects are stronger than the effects
of the target parameters.

VI. COMPARISON OF INVERSION ALGORITHMS

The evaluated inversion algorithms include (1) the statis-
tical inversion approach and (2) the conventional algorithms
described in Section III

The apparent temperatures at MIMR channels have been
simulated by the developed simulation/inversion software. For
the surface parameter algorithm testing the simulations have
been carried out using both 1) precisely defined average
atmospheric conditions (and Liebe’s model); and 2) statistical
atmosphere parameters according to Fig. 1. Table V shows

Total ice concentra- | Horizontal M M M M M w .
tion Vertical M M w w w w Total ice concentration 2-10 (Swift)
50-52% [%]) <4 (*)
Multiyear ice frac- | Horizontal w w w w M S :‘f":‘[i;]’" ice concentra- wl;) 1{52‘55(“11)ﬁ) 3-3
tion Vertical w w w w M M o)
80-85%
(*) Typical values from Swift's algorithm according to [7].
Atmospheric Horizontal w w M/S S N S
transmissivity Vertical w w S S S

10-50 (SPD)

Snow water equivalent
[mm]

(*) With a priori information.

TABLE VI
RMS ERRORS OF THE TOTAL ICE CONCENTRATION PERCENTAGES, OBTAINED
WITH THE STATISTICAL INVERSION APPROACH APPLIED TO THE MIMR. THE
EMISSIVITIES OF THE DIFFERENT ICE TYPES HAD A =+ 0.1 RANDOM ERROR
UNIFORMLY DISTRIBUTED AROUND THE VALUES USED IN THE INVERSE SOLVER
(FY = FIRST-YEAR ICE FRACTION [%], MY = MULTIYEAR ICE FRACTION [%].)

FY 0 20 40 60 80 100
(%)

MY
(%)

20
30
60
80
100

B W
wWoWw A
w
'

"N W N = o
N W N =

the comparison of statistical inversion approach against the
conventional algorithms. The retrieval accuracies with conven-
tional algorithms are based on test runs and values reported in
the literature. The values presented in Table V were achieved
by test runs under different atmospheric and surface parameter
conditions. An example of a test run set providing values to
Table V is presented in Table VL. In the test runs of statistical
inversion no a priori information, (19), were utilized, except
in the case of snow-covered terrain.

In the conducted test runs, the wind speed and surface
temperature retrieval accuracies of statistical inversion method
have been found to be better or equal to those from conven-
tional algorithms (see Table V and the values presented in
Figs. 6 and 7 at 1 K noise level). The wind speed range in
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Fig. 6. Effect of Gaussian noise to retrieval accuracy of wind speed
(statistical inversion approach).
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Fig. 7. Inversion error distributions for wind speed retrieval (statistical
inversion approach) at different levels of Gaussian noise. The distributions
are determined by Monte Carlo noise simulation. a) Noise deviation 1 K. b)
Noise deviation 2.5 K. c) Noise deviation 4 K.

the test runs was from 0 to 20 m/s, and the temperature range
was from 0 to 20°C.

Swift’s algorithm appears to be the most suitable conven-
tional algorithm for mapping ice type concentration [7]. The
conclusion from the comparison between Swift’s algorithm
and the statistical inversion approach is that the statistical
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method seems to be more accurate for sea ice applications
(Table V). See also Table VI for total ice concentration
retrieval error distribution for statistical inversion approach
under different conditions. However, comparison and testing
of the algorithms using experimental data with proper ground
truth data is needed. These data can be obtained with airborne
or spaceborne instruments.

The two conventional algorithms, SPD and Kiinzi’s algo-
rithms [16], [21], gave relatively good retrieval results in the
conducted test runs for snow water equivalent retrieval, the
smallest rms errors being about 10 mm (Table V). However,
this accuracy is not realistic for satellite-borne measurements,
mainly due to the poor spatial resolution of a spaceborne
instrument. Test runs of the statistical inversion approach were
carried out both using and without using a priori information
on grain size (diameter mean values with 0.2 mm maximum
offset and 0.2 mm standard deviation, (19)). The following
conclusions can be drawn from the test run results of the
statistical inversion approach applied to snow cover:

1) With appropriate a priori information the statistical ap-
proach gives good accuracy (better than the conventional
algorithms).

2) If no a priori information is available or if a priori infor-
mation is not accurate enough, the statistical approach
may give poor results,

The snow water equivalent range used in test runs was from
25 to 100 mm. This corresponds to regular snow conditions
in southern Finland.

The statistical inversion approach was the only available
method to be used for vegetated land. Its basic problem is the
large number of parameters involved in the emission behavior.
Especially, the effect of the soil surface roughness tends to
handicap the determination of soil moisture. The effect of
other parameters is smaller, since errors in the vegetation
water content and vegetation cover fraction may compensate
each other, and effects of clay and sand content fractions are
minimal. Therefore, prior information on the surface roughness
should be available in order to get reliable estimates for the
soil moisture.

A. Conclusions on the Statistical Inversion Approach

The used statistical inversion method gives accurate esti-
mates when the number of parameters contributing to the
emission behavior is small (see (10)~(12)). When the pa-
rameter set is large the method may give poor results. In
practice, vegetated or snow-covered land belongs to the latter
class, whereas ocean and ice-covered sea belong to the former
category.

In ocean and sea ice applications the number of model
parameters is 2 or 3, plus one atmosphere parameter ~!
(atmospheric profile factor o of (12) has been set to a constant
value). The parameters for open sea are wind speed and
temperature (the effect of salinity is negligible) and for sea ice
they are temperature, total ice concentration, and multiyear
ice fraction. The conducted test runs show that in this case
the statistical method gives more accurate results than the
conventional methods.
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In land applications the number of important surface pa-
rameters is 6 to 8. For snow-covered terrain they include
snow water equivalent, snow density, grain size, snow temper-
ature, surface roughness, and forest cover fraction (and forest
type). For snow-free terrain they include soil moisture, soil
temperature, canopy cover fraction, vegetation water content,
vegetation temperature, and surface roughness. Most of these
parameters are variables to be determined with the algorithm,
and some of them are treated with constant default values. The
test runs indicate that a large number of affecting parameters
decreases the accuracy of the method. However, if statistical a
priori information on the parameters is available, the statistical
approach works better. Furthermore, if studies concerning the
(statistical) relations of different effective parameters were
undertaken, the number of parameters could be reduced, and
thus, the accuracy would increase.

The effect of measurement noise to the statistical inversion
algorithm is demonstrated in Figs. 6 and 7. These figures are
calculated for the case of wind speed retrieval, but the behavior
is similar also for other applications. The figures imply that the
sensitivity of statistical inversion to the Gaussian measurement
noise is not drastic with the practical measurement accuracies
of spaceborne sensors. This is an expected result, since all
the channels sensitive to different geophysical parameters are
employed.

The benefits of the used statistical inversion method, and
the aspects that make it a unified inversion technique are the
following:

* It can be used for any application area (if there is a
modeling approach for the measurements: theoretical,
empirical or statistical).

* It can be used with any set of channels (polarizations or
frequencies).

* Multiple instrument approach can be adopted easily.

* Statistical a priori information can be employed.

* Range limits for parameter values can be easily set.

* Atmospheric effects (disturbances) have been reduced
into one free parameter (by a statistical principal com-
ponent model), which increases the method’s reliability
of resolving the surface parameters of interest.

The major limitations of the used statistical inversion system

include the following viewpoints:

* The current system was not implemented for atmospheric
applications.

* In land surface applications the number of important
parameters is large and their statistical behavior is poorly
known; the same applies to the relations between the in-
dividual parameters. Thus, the applicability of the current
system for land surfaces is relatively poor.

* Misleading a priori information (wrong mean value of a
parameter assumed to be known) may cause a large error,
refer to rms error values for snow given in Table V.

VII. CONCLUSIONS

The performed sensitivity analysis of the apparent temper-
ature implies the potential of the 89 GHz channels of the
MIMR especially for improving discrimination of first-year

ice from multiyear ice. That frequency can also be beneficial
for snow applications, especially for eliminating grain size
effects and detecting shallow snow. Additionally, our sensi-
tivity analysis shows the atmospheric disturbance levels for
different applications and their statistical distributions. These
aspects have been taken into account insufficiently in most of
the present inversion algorithms. The statistical distributions
were determined using the transmissivity statistics obtained
for conditions of southern Finland.

The development and testing of inversion algorithms (all
applicable for the MIMR) was concentrated on a unified
statistical inversion approach. An advantage of this approach
is the use of all measured information at various channels. A
novel feature of our algorithm is the reduction of the number
of atmospheric parameters with a statistical model developed
for the MIMR frequencies. This improves the accuracy of the
method, since the number of affecting parameters is a critical
factor. The statistical inversion approach has been shown to be
promising particularly for ocean and sea ice applications. For
land applications the accuracies needed by the end users are
difficult to obtain with the statistical approach as well as with
the conventional algorithms. That is ‘mainly due to the large
number of parameters influencing the emission behavior.
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