
TKK Reports in Information and Computer Science

Espoo 2008 TKK-ICS-R1

DECOMPOSABLE FAMILIES OF ITEMSETS

Nikolaj Tatti and Hannes Heikinheimo

AB TEKNILLINEN KORKEAKOULU
TEKNISKA HÖGSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI
UNIVERSITE DE TECHNOLOGIE D’HELSINKI

TKK Reports in Information and Computer Science

Espoo 2008 TKK-ICS-R1

DECOMPOSABLE FAMILIES OF ITEMSETS

Nikolaj Tatti and Hannes Heikinheimo

Helsinki University of Technology

Faculty of Information and Natural Sciences

Department of Information and Computer Science

Teknillinen korkeakoulu

Informaatio- ja luonnontieteiden tiedekunta

Tietojenkäsittelytieteen laitos

Distribution:

Helsinki University of Technology

Faculty of Information and Natural Sciences

Department of Information and Computer Science

P.O.Box 5400

FI-02015 TKK

FINLAND

URL: http://ics.tkk.fi

Tel. +358 9 451 1

Fax +358 9 451 3369

E-mail: series@ics.tkk.fi

©c Nikolaj Tatti and Hannes Heikinheimo

ISBN 978-951-22-9369-8 (Print)

ISBN 978-951-22-9382-7 (Online)

ISSN 1797-5034 (Print)

ISSN 1797-5042 (Online)

URL: http://www.otalib.fi/tkk/edoc/

TKK ICS

Espoo 2008

ABSTRACT: The problem of selecting a small, yet high quality subset of patterns
from a larger collection of itemsets has recently attracted a lot of research. Here
we discuss an approach to this problem using the notion of decomposable families
of itemsets. Such itemset families define a probabilistic model for the data from
which the original collection of itemsets was derived. Furthermore, they induce
a special tree structure, called a junction tree, familiar from the theory of Markov
Random Fields. The method has several advantages. The junction trees provide an
intuitive representation of the mining results. From the computational point of view,
the model provides leverage for problems that could be intractable using the entire
collection of itemsets. We provide an efficient algorithm to build decomposable
itemset families, and give an application example with frequency bound querying
using the model. An empirical study show that our algorithm yields high quality
results.

KEYWORDS: Itemsets, Decomposable models, Boolean query

CONTENTS

1 Introduction 1

2 Preliminaries and Notations 2

3 Decomposable Families of Itemsets 2

4 Finding Trees with Low Entropy 3
4.1 Definition of the Algorithm . 3
4.2 Model Selection . 6
4.3 Computing Multiple Decomposable Families 6

5 Boolean Queries with Decomposable Families 7

6 Experiments 8
6.1 Datasets . 8
6.2 Generating Decomposable Families 9
6.3 Reducing itemsets . 10
6.4 Boolean Queries . 11

7 Related Work 12

8 Conclusions and Future Work 12

A Appendix 15

CONTENTS iv

1 INTRODUCTION

Frequent itemset discovery has been a central research theme in the data mining
community ever since the idea was introduced by Agrawal et. al [1]. Over the
years, scalability of the problem has been the most studied aspect, and several very
efficient algorithms for finding all frequent itemsets have been introduced, Apriori
[2] or FP-growth [16] among others. However, it has been argued recently that
while efficiency of the mining task is no longer a bottleneck, there is still a strong
need for methods that derive compact, yet high quality results with good application
properties [17].

In this study we propose the notion of decomposable families of itemsets to ad-
dress this need. The general idea is to build a probabilistic model of a given dataset
D using a small well-chosen subset of itemsets G from a given candidate family F .
The candidate family F may be generated fromD using some frequent itemset min-
ing algorithm. A special aspect of a decomposable family is that it induces a type
of tree, called a junction tree, a well-known concept from the theory of Markov
Random Fields [9].

As a simple example, consider a dataset D with six attributes a, . . . , f , and a
family G = {bcd, bcf , ab, ce, bc, bd, cd, bf , cf , a, b, c, d, e, f }. The family G can be
represented as the junction tree shown in Figure 1 such that the nodes in the tree are
the maximal itemsets in G. Furthermore, the junction tree defines a decomposable
model of the dataset D.

ab bcd
ce

bcf

p(abcdef) =
p(ab)p(bcd)p(bcf)p(ce)

p(b)p(bc)p(c)

Figure 1: An example of a junction tree and the corresponding distribution decom-
position.

Using decomposable itemset families has several notable advantages. First of all,
the following junction tree graphs provide an extremely intuitive representation of
the mining results. This is a significant advantage over many other itemset selection
methods, as even small mining results of, say 50 itemsets, can be hard for humans
to grasp as a whole, if just plainly enumerated. Second, from the computational
point of view, decomposable families of itemsets provide leverage for accurately solv-
ing problems that could be intractable using the entire result set. Such problems
include, for instance, querying for frequency bounds of arbitrary attribute combi-
nations. Third, the statistical nature of the overall model enable to incorporated
regularization terms, like BIC, AIC, or MDL to select only itemsets that reflect true
dependencies between attributes.

In this study we provide an efficient algorithm to build decomposable itemset
families while optimizing the likelihood of the model. We also demonstrate how
to use decomposable itemset families to execute frequency bound querying, an in-
tractable problem in the general case. We provide empirical results showing that
our algorithm works well in practice.

The rest of the paper is organized as follows. Preliminaries are given in Section 2
and the concept of decomposable models are defined in Section 3. A greedy search
algorithm is given in Section 4. Section 6 is devoted to experiments. We present the
related work in Section 7 and conclude the paper with discussion in Section 8. The
proofs for the theorems in this paper are provided in Appendix.

1 INTRODUCTION 1

2 PRELIMINARIES AND NOTATIONS

In this section we describe the notation and the background definitions that are used
in the subsequent sections.

A binary dataset D is a collection of N transactions, binary vectors of length K.
The dataset can be viewed as a binary matrix of size N ×K. We denote the number
of transactions by |D| = N . The ith element of a random transaction is represented
by an attribute ai, a Bernoulli random variable. We denote the collection of all the
attributes by A = {a1, . . . , aK}. An itemset X = {x1, . . . , xL} ⊆ A is a subset of
attributes. We will often use the dense notation X = x1 · · ·xL.

Given an itemset X and a binary vector v of length L, we use the notation
p (X = v) to express the probability of p (x1 = v1, . . . , xL = vL). If v contains only
1s, then we will use the notation p (X = 1).

Given a binary dataset D we define qD to be an empirical distribution,

qD (A = v) = |{t ∈ D; t = v}|/|D|.

We define the frequency of an itemset to be fr(X) = qD (X = 1). The entropy of
an itemset X = x1 · · ·xL given D, denoted by H(X;D), is defined as

H(X;D) = −
∑

v∈{0,1}L
qD (X = v) log qD (X = v) , (1)

where the usual convention 0 log 0 = 0 is used. We often omit D.
We say that a family F of itemsets is downward closed if each subset of a member

of F is also included in F . An itemset X ∈ F is maximal if there is no Y ∈ F
such that X ⊂ Y . We define m(F) = {|X|;X ∈ F} to be the maximal number of
attributes in a single itemset.

3 DECOMPOSABLE FAMILIES OF ITEMSETS

In this section we define the concept of decomposable families. Itemsets of a decom-
posable family form a junction tree, a concept from the theory of Markov Random
Fields [9].

Let G = {G1, . . . , GM} be a downward closed family of itemsets covering the
attributes A. Let H be a graph containing M nodes where the ith node corresponds
to the itemset Gi. Nodes Gi and Gj are connected if Gi and Gj have a common
attribute. The graph H is called the clique graph and the nodes of H are called
cliques.

We are interested in spanning trees of H having a running intersection property.
To define this property let T be a spanning tree of H . Let Gi and Gj be two sets
having a common attribute, say, a. These sets are connected in T by a unique path.
Assume that a occurs in every Gk along the path from Gi to Gj . If this holds for
any Gi, Gj , and any common attribute a, then we say that the tree has a running
intersection property. Such a tree is called a junction tree.

We should point out that the clique graph can have multiple junction trees and
that not all spanning trees are junction trees. In fact, it may be the case that the
clique graph does not have junction trees at all. If, however, the clique graph has a
junction tree, we call the original family G decomposable.

We label edge (Gi, Gj) of a given junction tree T with a set of mutual attributes
Gi ∩ Gj . This label set is called a separator. We denote the set of all separators by
S(T). Furthermore, we denote the cliques of the tree by V (T).

3 DECOMPOSABLE FAMILIES OF ITEMSETS 2

Given a junction tree T and a binary vector v, we define the probability ofA = v
to be

p (A = v; T) =
∏

X∈V (T)

qD (X = vX)
/ ∏

Y ∈S(T)

qD (Y = vY) . (2)

It is a known fact that the distribution given in Eq. 2 is actually the unique maximum
entropy distribution [18, 10]. Note that p (A = v; T) can be computed from the
frequencies of the itemsets in G using the inclusion-exclusion principle.

It can be shown that the family G is decomposable if and only if the maximal
sets of G is decomposable and that Eq. 2 for the maximal sets of G and the whole G.
Hence, we usually construct the tree using only the maximal sets of G. However, in
some cases it is convenient to have non-maximal sets as the cliques. We will refer to
such cliques as redundant. For a tree T we define a family of itemsets, s(T) to be
the downward closure of its cliques, V (T). To summarize, G is decomposable if and
only if there is a junction tree T such that G = s(T).

Calculating the entropy of the tree T directly from Eq. 2 gives us

H(T) =
∑

X∈V (T)

H(X)−
∑

Y ∈S(T)

H(Y) .

A direct calculation from Eqs. 1–2 reveals that log p (D; T) = −|D|H(T). Hence,
maximizing the log-likelihood of the data given T (whose components are derived
from the same data), is equivalent to minimizing the entropy.

We can define the maximum entropy distribution for any cover F via linear con-
straints [10]. The downside of this general approach is that solving such a distribution
is a PP-hard problem [26].

The following definition will prove itself useful in subsequent sections. Given
two downward closed covers G1 and G2. We say that G1 refines G2, if G1 ⊆ G2.

Proposition 1 If G1 refines G2, then H(G1) ≥ H(G2).

4 FINDING TREES WITH LOW ENTROPY

In this section we describe the algorithm for searching decomposable families. To
be more precise, given a candidate set, a downward closed family F covering the set
of attributes A, our goal is to find a decomposable downward closed family G ⊆ F .
Hence our goal is to find a junction tree T such that s(T) ⊆ F .

4.1 Definition of the Algorithm

We search the tree in an iterative fashion. At the beginning of each iteration round
we have a junction tree Tn−1 whose cliques have at most n attributes, that ism(s(T)) =
n. The first tree is T0 containing only single attributes and no edges. During each
round the tree is modified so that in the end we will have Tn, a tree with cliques
having at most n+ 1 attributes.

In order to fully describe the algorithm we need the following definition: X and
Y are said to be n−1-connected in a junction tree T , if there is a path in T from X
to Y having at least one separator of size n−1. We say thatX and Y are 0-connected,
if X and Y are not connected.

Each round of the algorithm consists of three steps. The pseudo-code of the
algorithm is given in Algorithm 1–2.

4 FINDING TREES WITH LOW ENTROPY 3

1. Generate: We construct a graph Gn whose nodes are the cliques of size n in
Tn−1. We add all the edges toGn having the form (X,Y) such that |X ∩ Y | =
n− 1 and X ∪ Y ∈ F . We also set Tn = Tn−1. The weight of the edge is set
to

w (e) = H(X) +H(Y)−H(X ∩ Y)−H(X ∪ Y) .

2. Augment: We select the edge, say e = (X,Y), having the largest weight
and remove it from Gn. If X and Y are n − 1 -connected in Tn we add Tn
with a new clique V = X ∪ Y . Furthermore, for each v ∈ V , we consider
W = V − v. If W is not in Tn, it is added into Tn. Next, W and V are
connected in Tn. At the same time, the node W is also added into Gn and the
edges ofGn are added using the same criteria as in Step 1 (Generate). Finally,
a possible cycle is removed from Tn by finding an edge with separator of size
n− 1. Augmenting is repeated as long as Gn has no edges.

3. Purge: The tree V (Tn) contains redudant cliques after augmentation. We
remove these redudant cliques from Tn.

To illustrate the algorithm we provide a toy example.

Example 2 Consider that we have a family

F = {a, b, c, d, e, ab, ac, ad, bc, bd, cd, ce, abc, acd, bcd} .

Assume that we are at the beginning of the second round and we already have
the junction tree T1 given in Figure 2(a). We form G2 by taking the edges (ab, bc)
and (bc, cd).

Consider that we pick ab and bc for joining. This will spawn ac and abc in T2
(Figure 2(c)) and ac in G2 (Figure 2(d)). Note that we also add the edge (ac, cd)
into G2. Assume that we continue by picking (ac, cd). This will spawn acd and cd
into T2. Note that (bc, cd) is removed from T2 in order to break the cycle.

The last edge (bc, cd) is not added into T2 since bc and cd are not n−1-connected.
The final tree (Figure 2(f)) is obtained by keeping only the maximal sets, that is,
purging the cliques bc, ab, ac, ad, and cd. The corresponding decomposable family
is G = F − bcd.

ab
bc

cd

ce

(a) T2 at the beginning.

ab bc cd

ce

(b) G2 at the beginning.

ac

abc bc

ce

cdab

(c) T2, ab and bc joined.

ab

bc cd ac

ce

(d) G2 ab and bc joined.

ce
bc

abc

ac

ab

acd

ad

cd

(e) T2 after joining ac and cd.

ce abc acd

(f) Final T2

Figure 2: Example of graphs during different stages of SEARCHTREE algorithm.

The next theorem states that the Augment step does not violate the running
intersection property.

4 FINDING TREES WITH LOW ENTROPY 4

Algorithm 1 SEARCHTREE algorithm. The input is a downward closed cover F ,
the output is a junction tree T such that V (T) ⊆ F .
V (T0)← {x;x ∈ A} {T0 contains the single items.}
n← 0.
repeat
n← n+ 1.
Tn ← Tn−1.
V (Gn)← {X ∈ V (Tn) ; |X| = n}.
E(Gn)← {(X,Y) ;X,Y ∈ V (Gn) , |X ∩ Y | = n− 1, X ∪ Y ∈ F}.
repeat
e = (X,Y)← arg maxx∈E(Gn)w(x).
E(Gn)← E(Gn)− e.
if X and Y are n− 1-connected in Tn then

Call MODIFYTREE.
end if

until E(Gn) = ∅
Delete nodes marked by MODIFYTREE from Tn, connect the incident nodes.

until Gn is empty
return T

Algorithm 2 MODIFYTREE algorithm.
B ← X ∪ Y .
V (Tn)← V (Tn) ∪ {B}. {Add new clique B into Tn.}
for v ∈ B do
W ← B − v.
Mark W .
if W /∈ V (Gn) then
V (Gn)← V (Gn) ∪ {W}.
E(Gn)← E(Gn)∪{(W,Z) ;Z ∈ V (Gn) , |X ∩ Z| = n− 1, V 6= X ∪ Z ∈ F}.
V (Tn)← V (Tn) ∪ {W}.

end if
E(Tn)← E(Tn) ∪ (B,W).

end for
Remove the possible cycle in Tn by removing an edge (U, V) connecting X and
Y and having |U ∩ V | = n− 1.

Theorem 3 Let T be a junction tree with cliques of size n+1, at maximum, that is,
m(s(T)) = n+1. LetX,Y ∈ V (T) be cliques of size n such that |X ∩ Y | = n−1.
Set B = X ∪ Y . Then the family s(T) ∪ {C;C ⊆ B} is decomposable if and only
if X and Y are n− 1-connected in T .

Theorem 4 MODIFYTREE decreases the entropy of Tn by w(e).

Theorems 3–4 imply that SEARCHTREE algorithm is nothing more than a greedy
search. However, since we are adding cliques in rounds we can state that under some
conditions the algorithm returns an optimal cover for each round.

Theorem 5 Assume that the members of F of size n + 1 are added to Gn at the
beginning of the nth round. Let U be a junction tree such that s(Tn) ⊆ s(U) and
m(s(U)) = n+ 1. Then H(Tn+1) ≤ H(U).

Corollary 6 The tree T1 is optimal among the families using the sets of size 2.

Corollary 6 states that G1 is the Chow-Liu tree [8].

4 FINDING TREES WITH LOW ENTROPY 5

4.2 Model Selection

Theorem 1 reveals a drawback in the current approach. Consider that we have two
independent items a and b and that F = {a, b, ab}. Note that F is itself decom-
posable and G = F . However, a more reasonable family would be {a, b} to reflect
the fact that a and b are independent. To remedy this problem we will use model
selection techniques such as BIC [24], AIC [3], and Refined MDL [14]. All these
methods score the model by adding a penalty term to the likelihood.

We modify the algorithm by considering only the edges in Gn that improve the
score. For BIC this reduces to considering only the edges satisfying

|D|w(e) ≥ 2n−2 log |D|,

where n is the current level of SEARCHTREE algorithm. Using AIC leads to the
considering only the edges for which

|D|w(e) ≥ 2n−1.

Refined MDL is more troublesome. The penalty term in MDL is known as
stochastic complexity. In general, there is no known closed formula for the stochas-
tic complexity, but it can be computed for the multinomial distribution in linear
time [19]. However, it is numerically unstable for data with large number of trans-
actions. Hence, we will apply often-used asympotic estimate [22] and define the
penalty term

CMDL(k) =
k − 1

2
log |D| − 1

2
log π − log Γ (k/2)

for k-multinomial distribution.
There are no known exact or approximative solution in a closed form of stochastic

complexity for junction trees. Hence we propose the penalty term for the tree to be∑
X∈V (T)

CMDL

(
2|X|

)
−

∑
Y ∈S(T)

CMDL

(
2|Y |

)
.

Here we think that a single clique X is a 2|X|-multinomial distribution and we com-
pensate the possible overlaps of the cliques by subtracting the complexity of the
separators. Using this estimate leads to a selection criteria

|D|w(e) ≥ CMDL

(
2|n+1|

)
− 2CMDL

(
2|n|
)

+ CMDL

(
2|n−1|

)
.

4.3 Computing Multiple Decomposable Families

We can use SEARCHTREE algorithm for computing multiple decomposable covers
from a single candidate set F . The motivation behind this approach is that we get a
sequence of covers, each cover holding partial information of the original cover F .
We will show empirically in Section 6.4 that the by exploiting the union information
of these covers we are able to improve significantly bounds for boolean queries (see
Section 5).

The idea is as follows. Set F1 = F and let G1 be the first decomposable family
constructed from F1 using SEARCHTREE algorithm. We define

F2 = F1 − {X ∈ F1; there is Y ∈ G1, |Y | > 1, Y ⊆ X} .

We compute G2 from F2 and continue in the iterative fashion until Gk contains
nothing but individual items.

4 FINDING TREES WITH LOW ENTROPY 6

5 BOOLEAN QUERIES WITH DECOMPOSABLE FAMILIES

One of our motivations for constructing decomposable families is that some compu-
tational problems that are hard for general families of itemsets reduce to tractable if
the underlying family is decomposable. In this section we will show that the compu-
tational burden of a boolean query, a classic optimization problem [15, 6], reduces
significantly, if we are using decomposable families of itemsets.

Assume that we are given a set of known itemsets G and a query itemset Q /∈ G.
We wish to find fr(Q;G), the possible frequencies for Q given the frequencies of G.
It is easy to see that the frequencies form an interval, hence it is sufficient to find the
maximal and the minimal frequencies. We can express the problem of finding the
maximal frequency as a search for the distribution p solving

max p (Q = 1)
s.t. p (X = 1) = fr(X) , for each X ∈ G.

p is a distribution over A.
(3)

We can solve Eq. 3 using Linear Programming [15]. However, the number of
variables in the program is 2|A| and makes the program tractable only for small
datasets. In fact, solving Eq. 3 is an NP-hard problem [26].

In the rest of the section we present a method of solving Eq. 3 with a linear pro-
gram containing only 2|Q||G||A| variables, assuming that G is decomposable. This
method is an explicit construction of the technique presented in [27]. The idea be-
hind the approach is that instead of solving a joint distribution in Eq. 3, we break the
distribution into small component distributions, one for each clique in the junction
tree. These components are forced to be consistent by requiring that they are equal
at the separators. The details are given in Algorithm 3.

Algorithm 3 QUERYTREE algorithm for solving a query Q from a decomposable
cover G. The output is the interval fr(Q;G).
{T1, . . . , TM} ← connected components of a junction tree of G.
for i = 1, . . . ,M do
Qi ← Q ∩ (

⋃
V (Ti)). {Items of Q contained in Ti.}

U ← arg minS⊆Ti {|V (S)|;Qi ⊆
⋃
V (S)}. {Smallest subtree containing Qi.}

while there are changes do
Remove the items outside Qi that occur in only one clique of U .
Remove redundant cliques.

end while
Select one clique, say R from U to be the root.
R← R ∪Qi. {Augment the root with Qi}
Augment the rest cliques in U so that the running intersection property holds.
Let pC be a distribution over each clique C ∈ V (U).
αi ← the solution of a linear program

min pR (Qi = 1)
s.t. pC (X = 1) = fr(X) , for each C ∈ V (U) , X ∈ G, X ⊆ C.

pC1 (C1 ∩ C2) = pC2 (C1 ∩ C2) , for each (C1, C2) ∈ E(U) .

βi ← the solution of the maximum version of the linear program.
end for
fr(Q;G)←

[
max

(∑M
i αi − (M − 1), 0

)
,mini (βi)

]
.

To clarify the process we provide the following simple example.

5 BOOLEAN QUERIES WITH DECOMPOSABLE FAMILIES 7

Example 7 Assume that we have G whose junction tree is given in Figure 3(a). Let
query be Q = adg. We begin first by finding the smallest sub-tree containing Q.
This results in purging fh (Figure 3(b)). We further purge the tree by removing
e since it only occurs in one clique (Figure 3(c)). In the next step we pick a root,
which in this case is bc and augment the cliques with the members of Q so that the
root contains Q (Figure 3(d)). We finally remove the redundant cliques which are
ab, cd, fg. The final tree is given in 3(e). Finally, the linear program is formed
using two distributions pabcdg and pcfg. The number of variables in this program is
25 + 23 = 40 opposed to the original 28 = 256.

ab

bce

cd

cf

fhfg

(a) Original T

ab bce

cd

cf

fg

(b) U

ab bc

cd

cf

fg

(c) Purged U

ab abcdg

cd

cfg

cf

(d) Augmented U

abcdg cfg

(e) Final U

Figure 3: Junction trees during different stages of solving the query problem.

Note that we did not specify in Algorithm 3 which clique we selected to be the
root R. The linear program depends on the root R and hence we select the root
minimizing the number of variables in the linear program.

Theorem 8 QUERYTREE algorithm solves correctly the boolean query fr(q;G).
The number of variables occurring in the linear programs is 2|Q||G||A|, at maximum.

6 EXPERIMENTS

In this section we will study empirically the relationship between the decompos-
able itemset families and the candidate set, the role of the regularization, and the
performance of boolean queries using multiple decomposable families.

6.1 Datasets

For our experiments we used one synthetic generated dataset, Path, and three real-
world datasets: Paleo, Courses and Mammals. The synthetic dataset, Path, con-
tained 8 items and 100 transactions. Each item was generated from the previous item
by flipping it with a 0.3 probability. The first item was generated by a fair coin flip.
The dataset Paleo1 contains information of mammal fossils found in specific pale-
ontological sites in Europe [13]. Courses describes computer science courses taken
by students at the Department of Computer Science of the University of Helsinki.
The Mammals2 dataset consists of presence/absence records of current day Euro-
pean mammals [20]. The basic characteristics of the real-world data sets are shown
in Table 1.

1NOW public release 030717 available from [13].
2The full version of the mammal dataset is available for research purposes upon request from the

Societas Europaea Mammalogica (www.european-mammals.org)

6 EXPERIMENTS 8

Dataset # of rows # of items # of 1s # of 1s
of rows

Paleo 501 139 1980 16.0
Courses 3506 98 16086 4.6
Mammals 2183 124 54155 24.8

Table 1: The basic properties of the datasets.

6.2 Generating Decomposable Families

In our first experiment we examined the junction trees that were constructed for the
Path dataset. We calculated a sequence of trees using the technique described in
Section 4.3. As input to the algorithm we used an unconstrained candidate collec-
tion of itemsets (minimum support = 0) from Path and BIC as the regularization
method. In Figure 4(a) we see that the first tree corresponds to the model used to
generate the dataset. The second tree, given in Figure 4(b), tend to link the items
that are one gap away from each other. This is a natural result since close items are
the most informative about each other.

BIC = 522.905958, AIC = 503.367182, MDL = 522.333594

5, 6 6, 74, 50, 1 1, 2 2, 3 3, 4

(a) First junction tree of Path data.

BIC = 561.499992, AIC = 543.263801, MDL = 560.355263

7

4, 6 2, 4 3, 5 1, 30, 30, 2

(b) Second junction tree of Path data.

Figure 4: Junction trees for Path, a syntetic data in which an item is generated
from the previous item by flipping it with 0.3 probability. The junction trees are
regularized using BIC. The tree in Figure 4(b) is generated by ignoring the cliques
of the tree in Figure 4(a).

With Courses data one large junction tree of itemsets is produced with several
noticeable components. One distinct component at one end of the tree contains
introductory courses like Introduction to Programming, Introduction to Databases,
Introduction to Application design and Java Programming. Respectively, the other
end of the tree features several distinct components with itemsets on more special-
ized themes in computer science and software engineering. The central node con-
necting each of these components in the entire tree is the itemset node {Software
Engineering, Models of Programming and Computing, Concurrent systems}.

Figure 5 shows about two-thirds of the entire Courses junction tree, with the
component related to introductory courses removed because of the space constraints.
We see a concurrent and distributed systems related component in the lower left part
of the figure, a more software development oriented component in the lower right
quarter and a Robotics/AI component in the upper right corner of the tree. The
entire Courses junction tree can be found in Appendix.

We continued our experiments by studying the behavior of the model scores in
a sequence of trees induced by a corresponding sequence of decomposable families.
For the Path data the scores of the two first junction trees are shown in Figure 4,
with the first one yielding smaller values. For the real-world datasets, we computed
a sequence of trees from each dataset, again, with the unconstrained candidate col-
lection as input and using AIC, BIC, or MDL respectively as the regularization
method. Computation took about 1 minute per tree. The corresponding scores are
plotted as a function of the order of the corresponding junction tree (Figure 6). The
scores are increasing in the sequence, which is expected since the algorithm tries

6 EXPERIMENTS 9

Figure 5: A part of the junction tree constructed from the Courses dataset. The
tree was constructed using an unconstrained candidate family (min. support = 0) as
input and BIC as regularization.

to select the best model and the subsequent trees are constructed from the left-over
itemsets. The increase rate slows down towards the end since the last trees tend to
have only singleton itemsets as nodes.

1 2 3 4 5 6 7 8 9 10

1.15

1.2

1.25

1.3

1.35

BIC
AIC
MDL

(a) Paleo

1 3 5 7 9 11 13 15 17 19 21
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5
5.1
5.2

(b) Courses

1 3 5 7 9 11 13 15 17 19 21 23
6

6.5

7

7.5

8

(c) Mammals

Figure 6: Scores of covers as a function of the order of the cover. Each cover is
computed with an unconstrained candidate family (min. support = 0) as input and
the corresponding regularization. The y-axis is the model score divided by 104.

6.3 Reducing itemsets

Our next goal was to study the sizes of the generated decomposable families com-
pared to the size of the original candidate set. As input for this experiment, we used
several different candidate collections of frequent itemsets resulting from varying the
support threshold, and generated the corresponding decomposable itemset families
(Table 6.3).

From the results we see that the decomposable families are much smaller com-
pared to the original candidate set, as a large portion of itemsets are pruned due to
the running intersection property. The regularizations AIC, BIC, MDL prune the
results further. The pruning is most effective when the candidate set is large.

6 EXPERIMENTS 10

First Family, |G1| All Families, |
⋃
Gi|

Dataset σ |F| AIC BIC MDL None AIC BIC MDL None

Mammals .20 2169705 221 213 215 10663 668 625 630 11103
Mammals .25 416939 201 197 197 6820 535 507 509 7106
Paleo .01 22283 339 281 290 5260 993 834 812 6667
Paleo .02 979 254 235 239 376 463 433 429 733
Paleo .03 298 191 190 190 210 231 228 228 277
Paleo .05 157 147 147 147 151 149 149 149 156
Courses .01 16945 217 202 206 4087 565 522 524 4357
Courses .02 2493 185 177 177 625 354 342 342 751
Courses .03 773 176 170 170 276 264 261 261 359
Courses .05 230 136 132 132 158 167 164 164 186

Table 2: Sizes of decomposable families for various datasets. The second column
is the minimum support threshold, the third column is the number of the frequent
itemsets in the candidate set. The columns 4–7 contain the size of the first result
family and the columns 8–11 contain the size of the union of the result families.

1 3 5 7 9 11 13 15
0.1

0.2

0.3

0.4

0.5

0.6

n, # of covers

|{
Q

; r
(Q

, n
)

<
 1

}|

Paleo
Courses

(a) Improved queries

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

r(
Q

, n
)

n, # of covers

(b) Paleo

1 2 3 4 5 6 7 8 9101112131415
0

0.2

0.4

0.6

0.8

1

r(
Q

, n
)

n, # of covers

(c) Courses

Figure 7: Boolean query ratios from Paleo and Course datasets. Figure 7(a) contains
the percentage of queries having r(Q;n) < 1, that is, the percentage of queries
improved over the singleton model as a function of the number of decomposable
families. Figures 7(b)–7(c) are box plots of the ratios r(Q;n), where Q is a random
query and n is the number of decomposable families.

6.4 Boolean Queries

We conducted a series of boolean queries for Paleo and Courses datasets. For each
dataset we pick randomly 1000 queries of size 5. We constructed a sequence of
trees using BIC and the unconstrained (min. support = 0) candidate set as input.
The average computation time for a single query was 0.3s. A portion (abt. 10%) of
queries had to be discarded due to the numerical instability of the linear program
solver we used.

A queryQ for a decomposable family Gi produces a frequency interval fr(Q;Gi).
We also computed the frequency interval fr(Q; I), where I is a family containing
nothing but singletons. We studied the ratios r(Q;n) = |

⋂n
1 fr(Q;Gi)|/|fr(Q; I)|

as a function of n, that is, the ratio between the tightness of the bound using n
families and the singleton model.

From the results given in Figure 7 we see that the first decomposable family in the
sequence yields in about 10 % of the queries an improved bound with respect to the
singleton family. As the number of decomposable families increases, the number of
queries with tighter bounds goes from 10% up to 60%. Also, in general the absolute

6 EXPERIMENTS 11

bounds become tighter for the queries as we increase the number of decomposable
families. For Courses the median of the ratio r(Q; 15) is about 0.5.

7 RELATED WORK

One of the main uses of our algorithm is in reducing itemset mining results into a
smaller and a more manageable group of itemsets. One of the earliest approaches
on itemset reduction include close itemsets [21] and maximal frequent itemset [23].
Also more recently, a significant amount of interesting research has been produced
on the topic [7, 28, 25, 5]. Yan et al. [28] proposed a statistical model in which k
representative patterns are used to summarize the original itemset family as well as
possible. This approach has, however, a different goal to that of ours, as our model
aims to describe the data itself. From this point of view the work by Siebes et al. [25]
is perhaps the most in concordance to ours. Siebes et al. propose an MDL based
method where the reduced group of itemsets aim to compress the data as well as
possible. Yet, their approach is technically and methodologically quite different and
does not provide a probabilistic model of the data as our model does. Furthermore,
non of the above approaches provide a naturally following tree based representation
of the mining results as our model does.

Traditionally, junction trees are not used as a direct model but rather as a tech-
nique for decomposing directed acyclic graph (DAG) models [9]. However, there is
a clear difference between the DAG models and our approach. Assume that we have
4 items a, b, c, and d. Consider a DAG model p(a)p(b; a)p(c; a)p(d; bc). While we
can decompose this model using junction trees we cannot express it exactly. The
reason for this is that the DAG model contains the assumption of independence
of b and c given a. This allows us to break the clique abc into smaller parts. In
our approach the cliques are the empirical distributions with no independence as-
sumptions. DAG models and junction tree models are equivalent for Chow-Liu tree
models [8].

Our algorithm for constructing junction trees is closely related to EFS algo-
rithm [11, 4] in which new cliques are created in a similar fashion. The main dif-
ference between the approaches is that we add new cliques in a level-wise fashion.
This allows a more straightforward algorithm. Another benefit of our approach is
Theorem 5. On the other hand, Corollary 6 implies that our algorithm can be seen
also as an extension of Chow-Liu tree model [8].

8 CONCLUSIONS AND FUTURE WORK

In this study we applied the concept of junction trees to create decomposable fam-
ilies of itemsets. The approach suits well for the problem of itemset selection, and
has several advantages. The naturally following junction trees provide an intuitive
representation of the mining results. From the computational point of view, the
model provides leverage for problems that could be intractable using generic fami-
lies of itemsets. We provided an efficient algorithm to build decomposable itemset
families, and gave an application example with frequency bound querying using the
model. Empirical results showed that our algorithm yields high quality results. Be-
cause of the expressiveness and good interpretability of the model, applications such
as classification using decomposable families of itemsets could prove an interesting
avenue for future research. Even more generally, we anticipate that in the future
decomposable models could prove computationally useful with pattern mining ap-

8 CONCLUSIONS AND FUTURE WORK 12

plications that otherwise could be hard to tackle.

References

[1] R. Agrawal, T. Imielinski, and A.N. Swami. Mining association rules between
sets of items in large databases. In ACM SIGMOD international conference
on Management of data, pages 207–216, 1993.

[2] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I. Verkamo. Fast dis-
covery of association rules. Advances in knowledge discovery and data mining,
pages 307–328, 1996.

[3] Hirotugu Akaike. A new look at the statistical model identification. IEEE
Transactions on Automatic Control, 19(6):716–723, 1974.

[4] Stephan M. Altmueller and Robert M. Haralick. Practical aspects of efficient
forward selection in decomposable graphical models. In IEEE International
Conference on Tools with Artificial Intelligence, pages 710–715, Washington,
DC, USA, 2004. IEEE Computer Society.

[5] B. Bringmann and A. Zimmermann. The chosen few: On identifying valuable
patterns. In IEEE International Conference on Data Mining, 2007.

[6] Artur Bykowski, Jouni K. Seppänen, and Jaakko Hollmén. Model-independent
bounding of the supports of Boolean formulae in binary data. In Pier Luca
Lanzi and Rosa Meo, editors, Database Support for Data Mining Applications:
Discovering Knowledge with Inductive Queries, LNCS 2682, pages 234–249.
Springer Verlag, 2004.

[7] T. Calders and B. Goethals. Mining all non-derivable frequent itemsets. In
European Conference on Principles and Practice of Knowledge Discovery in
Databases, 2002.

[8] C. K. Chow and C. N. Liu. Approximating discrete probability distributions
with dependence trees. IEEE Transactions on Information Theory, 14(3):462–
467, May 1968.

[9] Robert G. Cowell, A. Philip Dawid, Steffen L. Lauritzen, and Davig J. Spiegel-
halter. Probabilistic Networks and Expert Systems. Statistics for Engineering
and Information Science. Springer-Verlag, 1999.

[10] Imre Csiszár. I-divergence geometry of probability distributions and minimiza-
tion problems. The Annals of Probability, 3(1):146–158, Feb. 1975.

[11] Amol Deshpande, Minos N. Garofalakis, and Michael I. Jordan. Efficient step-
wise selection in decomposable models. In Conference in Uncertainty in Ar-
tificial Intelligence, pages 128–135, San Francisco, CA, USA, 2001. Morgan
Kaufmann Publishers Inc.

[12] Adrian Dobra and Stephen E. Fienberg. Bounds for cell entries in contin-
gency tables given marginal totals and decomposable graphs. Proceedings of
the National Academy of Sciences of the United States of America (PNAS),
97(22):11885–11892, Oct. 2000.

[13] Mikael Fortelius. Neogene of the old world database of fossil mammals
(NOW). University of Helsinki, http://www.helsinki.fi/science/now/,
2005.

REFERENCES 13

[14] Peter D. Grünwald. The Minimum Description Length Principle (Adaptive
Computation and Machine Learning). The MIT Press, 2007.

[15] Theodore Hailperin. Best possible inequalities for the probability of a logical
function of events. The American Mathematical Monthly, 72(4):343–359, Apr.
1965.

[16] J. Han and J. Pei. Mining frequent patterns by pattern-growth: methodology
and implications. SIGKDD Explorations Newsletter, 2(2):14–20, 2000.

[17] Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan. Frequent pattern min-
ing: current status and future directions. Data Mining and Knowledge Discov-
ery, 15(1), 2007.

[18] Radim Jiroušek and Stanislav Přeušil. On the effective implementation of the
iterative proportional fitting procedure. Computational Statistics and Data
Analysis, 19:177–189, 1995.

[19] Petri Kontkanen and Petri Myllymäki. A linear-time algorithm for comput-
ing the multinomial stochastic complexity. Information Processing Letters,
103(6):227–233, 2007.

[20] A J Mitchell-Jones, G Amori, W Bogdanowicz, B Krystufek, P J H Reijnders,
F Spitzenberger, M Stubbe, J B M Thissen, V Vohralik, and J Zima. The Atlas
of European Mammals. Academic Press, 1999.

[21] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Discovering
frequent closed itemsets for association rules. Lecture Notes in Computer Sci-
ence, 1540:398–416, 1999.

[22] Jorma Rissanen. Fisher information and stochastic complexity. IEEE Transac-
tions on Information Theory, 42(1):40–47, 1996.

[23] Jr. Roberto J. Bayardo. Efficiently mining long patterns from databases. In
ACM SIGMOD international conference on Management of data, pages 85–
93, New York, NY, USA, 1998. ACM.

[24] G. Schwarz. Estimating the dimension of a model. Annals of Statistics,
6(2):461–464, 1978.

[25] A. Siebes, J. Vreeken, and M. van Leeuwen. Item sets that compress. In SIAM
Conference on Data Mining, pages 393–404, 2006.

[26] Nikolaj Tatti. Computational complexity of queries based on itemsets. Infor-
mation Processing Letters, pages 183–187, June 2006.

[27] Nikolaj Tatti. Safe projections of binary data sets. Acta Informatica, 42(8–
9):617–638, April 2006.

[28] X. Yan, H. Cheng, J. Han, and D. Xin. Summarizing itemset patterns:
A profile-based approach. In ACM SIGKDD international conference on
Knowledge Discovery and Data Mining, 2005.

REFERENCES 14

A APPENDIX

Proof of Theorem 3

The theorem is trivial for the case n = 1. Hence we assume that n > 1.
Assume thatX and Y are n−1-connected in T , and let P be the path connecting

X and Y . If (X,Y) /∈ P , then there exists f = (Z,W) ∈ P such that |Z ∩W | =
n−1. Since T is a junction tree, we must have Z∩W = X∩Y . Hence by removing
f and adding (X,Y) does not violate the running intersection property. Thus we
can assume that (X,Y) ∈ E(T). Adding V between X and Y does not violate the
running intersection property and hence V (T) + V remains decomposable.

To prove the other direction assume that X and Y are not n− 1 connected. This
implies that the path P from X to Y consists of n + 1 cliques with n separators.
Assume that V (T) +V is decomposable and hence there is a juncion tree U having
V (U) = V (T) +V . We can modify U such that the edges of the path P occur in U .
Let Ps be the first clique in P and let Pl be the last. Note that V ⊂ Ps ∪ Pl. Let Pe

be the first clique in P along the path from V to Ps. Since |Ps ∩ V | = n, we must
have Pe ∩ V = Ps ∩ V The path from V to Pl must also go through Pe, hence we
must have Ps ∩ V = Pl ∩ V . This implies that either V = Ps or V = Pl, which is a
contradiction. This completes the proof.

Proof of Theorem 4

Assume that the edge e = (X,Y) ∈ E(Tn). Let T ′n be the tree after adding X ∪ Y .
The entropy of the original tree is

H(Tn) = H(X) +H(Y)−H(X ∩ Y) +B,

where B is the impact of the rest nodes. The entropy of the new tree is

H
(
T ′n
)

= H(X ∪ Y) +B.

Hence we have H(Tn)−H(T ′n) = w(e).

Proof of Theorem 5

It is easy to see that the cliques X and Y are n − 1 -connected if and only if they
are not connected by the previous edges from Gn. Hence, the algorithm reduces to
Kruskal’s algorithm in finding the optimal spanning tree of Gn, thus returning the
optimal spanning tree.

Let U be a junction tree refined by Tn and containing the cliques of size n + 1,
at maximum. The cliques of size n + 1 occur in Gn. Let H be the corresponding
edges in Gn. To prove the theorem we need to show that H contains no cycles.

Assume othewise, and consider adding the edges in H , one at the time. When
the first cycle occurs, the corresponding family is not decomposable by Theorem 3.
The argument in the proof of Theorem 3 holds even if we keep adding cliques of
size n+ 1, hence the final family cannot be decomposable. Thus H cannot contain
cycles.

Proof of Theorem 8

Theorem 6 in [12] guarantees that breaking G into connected components and com-
puting fr(Q;G) from αi and βi produce an accurate result as long as αi and βi are

A APPENDIX 15

accurate. Theorem 7 in [27] states that taking the smallest subtree containing Qi

and removing attributes occuring in only one clique does not change αi and βi.
Finally, we need to prove that the linear program of the algorithm produce the

same αi, βi as the linear program in Eq. 3. Let p be a distribution satisfying the con-
ditions in Eq. 3. Clearly, we can break p into components satisfying the conditions
of the linear program given in the algorithm. On other hand, assume that {pC} now
satisfy the conditions of the linear program given in the algorithm. Since compo-
nents are equal at the separators we can combine this into one joint distribution p
satisfying the condition of Eq. 3. This implies that the outcome of both programs
are equivalent.

To prove the bound for the number of variables, note that for any clique C we
have 2|C| ≤ |G|. We can have |A| cliques at most. Augmenting can increase the
size of the cliques by |Q|, at maximum. This implies that the number of variables is∑

i 2|Q|+|Ci| = 2|Q|
∑

i 2|Ci| ≤ 2|Q||G||A|.

A APPENDIX 16

Figure 8: Junction tree build from the Courses dataset. The tree was constructed
using an unconstrained candidate family (min. support = 0) as input and BIC as
regularization.

A APPENDIX 17

TKK REPORTS IN INFORMATION AND COMPUTER SCIENCE

ISBN 978-951-22-9369-8 (Print)

ISBN 978-951-22-9382-7 (Online)

ISSN 1797-5034 (Print)

ISSN 1797-5042 (Online)

