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ABSTRACT: In this paper we document the techniques which we used to
participate in the PASCAL NoE VOC Challenge 2007 image analysis per-
formance evaluation campaign. We took part in three of the image analysis
competitions: image classification, object detection and object segmenta-
tion. In the classification task of the evaluation our method produced com-
paratively good performance, the 4th best of 19 submissions. In contrast,
our detection results were quite modest. Our method’s segmentation ac-
curacy was the best of all submissions. Our approach for the classification
task is based on fused classifications by numerous global image features, in-
cluding histograms of local features. The object detection combines similar
classification of automatically extracted image segments and the previously
obtained scene type classifications. The object segmentations are obtained
in a straightforward fashion from the detection results.

KEYWORDS: image classification, object detection, object segmentation,
benchmarking
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1 INTRODUCTION

Huge masses of digital visual information are produced nowadays, both au-
tomatically and also by the ever increasing numbers of ordinary people with
access to easily usable tools for creating personal digital content. Automatic
image analysis techniques are called for to analyse and organise these over-
whelming sea of information. Especially useful would be methods that could
automatically analyse the semantic contents of images and videos as it is just
the content that determines the relevance in most of the potential uses. One
important aspect of image content is the object composition: the identities
and positions of the objects the images contain. This paper discusses tech-
niques for recognising and locating objects of some particular semantic class
in images when example images of that semantic class are given.

Quite often data analysis researchers work with data sets of their own. The
problems the individual researchers try to solve may be very similar and there
could be significant synergy in the solutions. However, due to different data
sets the relative effectiveness of various approaches may be difficult to com-
pare. Standardised benchmark tasks and performance evaluation campaigns
are partial solutions to this problem.

In the remaining parts of this paper we first briefly describe the tasks of
PASCAL NoE VOC Challenge 2007 image analysis performance evaluation
campaign that focuses on the object composition of photorealistic images.
This is done in Section 2. We then document the image content analysis
techniques that we used to participate the campaign. The techniques are to
a large part collected from our earlier papers [12, 13]. However, many im-
provements and adaptations to the current tasks are also described. Section 3
outlines our generic software framework for image similarity assessment. In
the subsequent Sections 4, 5 and 6 we concretise how the framework is ap-
plied to image classification, object detection and object segmentation tasks,
respectively, of the VOC Challenge 2007. The results of the challenge are
summarised in Section 7. Finally in Section 8 we present some conclusions
and discussion.

2 IMAGE CONTENT ANALYSIS TASKS OF VOC CHALLENGE 2007

The image content analysis techniques addressed in this paper have been
used to participate the Pascal Visual Object Classes Challenge 2007 [3]. In
the challenge—organised also in 2005 and 2006— machine learning systems
are compared by their ability to recognise objects from a number of visual
object classes in realistic scenes. The problem is formulated as a supervised
learning problem in which a training set of labelled images is provided. The
2007 challenge defines four competitions: two main competitions in image
classification and object detection, and two smaller-scale taster competitions
in object segmentation and person layout detection. We participated only
the first three competitions, not the person layout taster. The following de-
scription of data and the tasks thus excludes aspects relevant for that task
only.
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Table 1: The 20 object classes of VOC Challenge 2007

Category object classes
Person person
Animal bird, cat, cow, dog, horse, sheep
Vehicle aeroplane, bicycle, boat, bus, car, motorbike, train
Indoor bottle, chair, dining table, potted plant, sofa, tv/monitor

2.1 Image Data

The image collection for the 2007 challenge consists of 9963 photographic
images of natural scenes. Each of the images contains at least one occurrence
of the 20 object classes detailed in Table 1. In many images there are objects
of several classes present. Altogether the images contain 24640 objects. The
most common object class (“person”) is present in 40% of the images, the
rarest (sheep) in 1.9%. Often there are several objects of the same kind in an
image, e.g. 2.3 persons and 2.7 sheep on average among the images where
the named objects are present at all. Figure 1 shows some examples of the
images and objects.

Figure 1: Examples of VOC Challenge 2007 images and their annotations

For the main competitions, the image collection is partitioned equally
into training (denoted “trainval”) and test sets. The training half of the data
is further divided evenly into two sets (“train” and “val”) that the organisers
of the challenge suggest to be used for development and validation of tech-
niques. The images of the training set have been manually annotated with
the bounding boxes of all the occurrences of the 20 object classes. Further-
more, some of the bounding boxes include information about the pose of the
object and some have been tagged as “truncated” and/or “difficult” by the
human annotators. The “difficult” objects were left out when evaluating the
results, and we excluded them also from the training of our methods. We did
not use the pose or truncation information at all. Similar annotation of the
test data has been released after the challenge by its organisers.

Manually annotated pixel-wise segmentation masks of approximately 8%
of the training images were additionally provided as training material for the
segmentation taster competition. Apparently a somewhat smaller proportion
of the test images were manually segmented in a similar fashion. All the 20
object classes are present in the segmented images. In our approach to the
segmentation task we did not use the pixel mask information for training, but
relied on the bounding box annotations only.
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2.2 Learning Tasks and Performance Measures

We consider here three different types of tasks on the image sets. In the
classification task 20 rankings of the test set images are produced, each one
corresponding to one of the object classes. In each ranking the goal is to
order the test images according to descending likelihood of presence of the
corresponding object in the images. In the detection task similar rankings are
produced for the bounding boxes of the object classes. There is no limitation
on the number of bounding boxes that can be reported. In the segmentation
task the goal is to label each pixel of the test images to one of the 20 object
classes or to the background class.

The rankings produced in the main competitions are compared using
precision-recall (PR) curves. To generate the curves, the boolean valued cor-
rectness of each entry in the ranking has to be determined. In the classifica-
tion task this is a matter of straightforward comparison with the ground truth
annotations. In the detection task the predicted bounding boxes are consid-
ered as true or false positives based on the relative area of overlap with ground
truth bounding boxes. To be regarded as a correct detection, the area of over-
lap ao between the predicted bounding box Bp and ground truth bounding
box Bgt must exceed 50% by the formula

ao =
area(Bp ∩Bgt)

area(Bp ∪Bgt)
. (1)

Subsequent detections after the first one overlapping the same ground truth
bounding box are considered false detections. For the rankings, interpolated
average precision (AP) is used as the quantitative evaluation measure.

The segmentation accuracy is calculated for each object class by deter-
mining the percentage of actual pixels of the class that have received the
correct label. Overall accuracy is evaluated as the mean of the accuracies
over the 20 object classes and the background class.

3 FRAMEWORK FOR OBJECT CLASSIFICATION

In the following description of our software framework we use the term target
object to denote training and test set images in the case of the classification
task and automatically extracted image segments in the case of the object
detection task. Our method for tackling the VOC Challenge tasks is based
on assessing the similarity of the visual properties of the test set target objects
to the properties of the training set target objects. Figure 2 schematically
outlines the general system architecture used for supervised similarity assess-
ment. As the input, the framework takes a binary partitioning of the target
objects of the training set into two classes. As the output a real number is
produced for each of the target objects in the test set reflecting the estimated
likelihood of the target object to belong to the first one of the classes of the
binary partitioning. This list of real numbers can be sorted in descending
order to produce a similarity ranking of the test set target objects.

In the first stage of the architecture the visual properties of each target
object are described simultaneously with several elementary feature vectors,
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Figure 2: The general architecture of the supervised similarity ranking frame-
work

each one reflecting a different aspect of the appearance, such as colour or
texture. The same set of fixed-length feature vectors is extracted from the
target objects in both training and test sets. More feature extraction details
are found in the subsequent Sections 4 and 5.2.

The next stage of the system is early fusion of the elementary feature vec-
tors to produce composite features. For the system used in VOC 2007 this
is realised by forming combinations of the original features by concatenating
the corresponding feature vectors.

The resulting sets of composite feature vectors are fed into supervised
probabilistic classifiers. There is a separate classifier for each feature combi-
nation. Based on the partitioning of the training set, each classifier estimates
the partial likelihood of the test set object in light of the corresponding com-
posite feature. As the feature-wise classifiers we used weighted C-SVC vari-
ants of the SVM algorithm, implemented in the version 2.84 of the software
package LIBSVM [2]. The outputs of the SVMs are normalised to probabil-
ity estimates by using the method of [15]. As the kernel function we used
the χ2-kernel for histogram type features and the RBF kernel for all other
features. The free parameters of the C-SVC cost function and the kernel
function are chosen on basis of a search procedure that aims at maximising
the six-fold cross validated area under the receiver operating characteristic
curve (AUC) measure in the training set. The search procedure performs
importance sampling in the parameter space by a suitably scaled increasing
function of AUC. In the cost function of C-SVC the weight parameter w
compensates for the unbalanced class distribution in the training set. For
this parameter, we use a heuristically chosen value w = 2. To limit the com-
putational cost of the classifiers, we perform random sampling of the training
set, in which we suppress the more frequent class. Some more details of the
classification stage can be found in [13].

Finally, in the last stage the outputs of separate classifiers are fused to-
gether. This is achieved by concatenating the smoothed logarithms of the
probability estimates for each target object into a single vector and training
an additional SVM layer with RBF kernel to perform the classification using
these concatenations as feature vectors. Probability estimates for the training
set target objects are obtained with six-fold cross-validation. The output of
the SVM is once again converted to a probability estimate [15].

4 3 FRAMEWORK FOR OBJECT CLASSIFICATION



Table 2: Some of the elementary features extracted from the images
Feature Tiling Dim.
DCT coefficients of average colour in rectangular grid global 12
CIE L*a*b* colour of two dominant colour clusters global 6
Histogram of local edge statistics 4× 4 80
Haar transform of quantised HSV colour histogram global 256
Average CIE L*a*b* colour 5 15
Three central moments of CIE L*a*b* colour distribution 5 45
Co-occurence matrix of four Sobel edge directions 5 80
Magnitude of the 16× 16 FFT of Sobel edge image global 128
Histogram of four Sobel edge directions 5 20
Histogram of relative brightness of neighbouring pixels 5 40

4 APPROACH TO THE CLASSIFICATION TASK

In this section we describe how the framework described in the previous sec-
tion was applied to the classification task described in Section 2.2. The target
objects in the case of the classification task are images. The partitionings of
the training images were produced in one-against-all fashion, thus resulting
in one ranking per each object class.

As a basis for the classification, a set of elementary visual features was
extracted from the images. Ten of the extracted feature types are listed in
Table 2. Dimensionalities of the feature vectors are given in the rightmost
column of the table. The first four rows correspond to features that more or
less closely resemble the ColorLayout, DominantColor, EdgeHistogram and
ScalableColor features of the MPEG-7 standard [5]. The column “Tiling” of
the table shows that some of the features are calculated truly globally, such as
the global colour histogram feature of the fourth row, others, such as the edge
histogram feature of the third row, encode some spatial information by using
a fixed image grid. These feature vectors are formed by concatenating the
descriptors of individual tiles. The features calculated for five tiles employ
a center-surround tiling mask where the image area is divided into four tiles
by the two diagonals of the image, on top of which a circular center tile is
overlaid.

In addition to the tabulated features, the set of elementary visual features
was extended with histograms of interest point features. The interest points
were detected using a Harris-Laplace detector [9]. The SIFT feature [8],
based on local gradient orientation, was calculated for each interest point.
Histograms of interest point features have proven to be efficient in image
content analysis and are gaining popularity in various image analysis tasks [4,
10]. We form histograms of the SIFT features according to codebook vectors
selected using the self-organising map (SOM) algorithm [6]. We include
several sets of histogram features in the feature set.

As basic versions of the histogram features we quantise the interest point
features with SOM codebooks of five different sizes: 16×16, 25×20, 40×25,
50 × 40 and 80 × 50. We employ also codebooks that use knowledge of the
object classes. We create these codebooks by first forming separate codebooks
for each object class with the SOM algorithm and then concatenating the 20
class-wise codebooks. Features resulting from the use of two such codebooks
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with sizes of 20×16×16 and 20×25×20 units were included in the feature
set.

Further additions to the feature set were obtained by spatially subdivid-
ing the images into fixed tiles and forming histograms for each tile. We
used rectangular grids of sizes 2 × 2, 3 × 3 and 4 × 4 as well as the pre-
viously described five-part center-surround tiling. Number of histograms of
this kind was multiplied by the use of codebooks of different sizes and differ-
ent histogram normalisation methods. Following the idea presented in [7],
the spatially subdivided histograms were additionally concatenated to form
spatial pyramids. Altogether five different pyramids both with and without
the proposed exponentially diminishing weighting of finer resolutions.

The set of elementary features is rather large. It would probably not be
expedient to extract such many features in order to just classify images in a
database, although fusing large set of features seems to be a safe route towards
comparatively good accuracy. When doing classifier fusion, the accuracy
gain from adding new features to the feature set tends to saturate at some
point whereas the computational costs of feature extraction naturally keep
growing linearly. However, as we already had extracted the features anyway
to experiment with different alternatives, fusing them all did not incur very
significant additional costs.

The feature combinations that were formed in the early fusion stage were
chosen rather ad hoc. We formed some pairs, triples and quadruples of the
global and semi-global features listed in Table 2. The histogram features
were passed through the early fusion stage as such. Additionally the global
histogram with 40 × 25-sized codebook was paired with all the tabulated
features. All in all, the classifiers were formed for 141 composite features.

Based on 6-fold cross-validated classification performance in the “train”
half of the “trainval” set, we performed some feature selection. We employed
greedy sequential forward/backward search, starting from empty feature set
and performing feature additions and removals until the performance no
longer improved. Inside the search loop we used product-based fusion in-
stead of SVM fusion as the former is computationally essentially lighter, but
performs not much worse according to our observations. The feature selec-
tion procedure is not fully satisfactory but still somewhat successful: com-
pared to the fusion of all the formed classifiers the classification performance
in the validation set remains approximately the same, but the required num-
ber of variables is greatly diminished to only 3–28 variables for a single object
class. To perform the final classification of the test data, we fused together
the union of the variable sets selected for each of the 20 classes, 93 variables
altogether.

5 APPROACH TO THE DETECTION TASK

The detection task was addressed by first segmenting the images as will be
detailed in Section 5.1 and then assessing the likelihood of each segment to
correspond to the targeted object class. This problem is factored into product
of two parts: 1) the likelihood of the image containing the segment to contain
the object somewhere, and 2) the conditional probability of just the consid-
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ered segment to correspond to the targeted object, given that the object is
known to appear in the image. The former likelihood was readily available
from the solution to the classification task. The latter one was obtained by
applying the framework outlined in Section 3 with image segments as target
objects.

More formally, let r be an image segment, Is and Ii binary indicator vari-
ables for the segment r and the corresponding image, respectively, belonging
to certain object class. The trained classifier outputs two confidence values:
ci for the segment r being a true detection, and cs for r being contained in
an image belonging to the class. Now we write for the probability of r being
a true detection

p(Is = 1|ci, cs) = p(Is = 1|Ii = 1, ci, cs)p(Ii = 1|ci, cs). (2)

With rather plausible independence assumptions this can be approximated
as

p(Is = 1|ci, cs) ≈ p(Is = 1|Ii = 1, cs)p(Ii = 1|ci). (3)

To estimate the first probability of the product, the framework was used with
just the training image segments belonging to images of the targeted object
class, thus balancing the rather high computational requirements of the de-
tection task with numerous segments of a single image.

Partitioning the training segments to two classes according to their overlap
with the ground truth classes is not all that straightforward. We investigated
the matter earlier [12], with the finding that the best strategy varies with the
targeted object class. The same applies to the selection of the way to segment
the images. Unfortunately, within the time limits of the 2007 challenge we
were not able to implement all the alternative techniques for segmentation
and segment selection. Therefore we tried to select one set of techniques
that would work rather well for most of the classes. The selected segmenta-
tion technique is detailed in the next section. The binary partitioning of the
training sets was done so that segments meeting the 50% overlap criterion
were used to form the first of the two classes.

Due to lack of time also the heuristic propagation of segment probabilities
along segmentation hierarchies—found to be very beneficial in [12]—was
left unimplemented. The heuristic to discourage multiple detections of the
same object was implemented, however. We exponentially discounted sub-
sequent detections when an object had already been detected in the same
image. This is relevant to our segmentation strategy that produces spatially
overlapping segments. To produce final rankings of bounding boxes—in con-
trast to irregularly shaped image segments—we simply listed the bounding
boxes of the segments in the rankings.

5.1 Image Segmentation

The images were segmented with a generic image segmentation method
which is simple and somewhat rudimentary. The method employs an area-
based region merging algorithm to construct segments that are homogeneous
in terms of colour and texture. The images in the database were segmented
in two steps. In the first step the K-means algorithm was used to compute
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an oversegmentation of the images. In the second step the segments were
merged. The merging algorithm had been selected to give visually feasible
results for photographs and other images in earlier applications. The merging
was continued until 25 segments were left. In addition to the basic segments,
we also recorded the hierarchical segmentation that resulted from continu-
ing the region-merging algorithm until only one region remained. All the
intermediate segments were considered as potential bounding box locations.

5.2 Features

Due to limitations in real and computer time we were able to dedicate to the
detection task, the feature set that was used to describe the visual properties
had to be kept quite small as the combined number of the segments of all
the database images is rather large—in the order of half a million. Table 3
lists the elementary features extracted from the segments. The features are a
subset of the global image features mentioned in Section 4 with the excep-
tion of two features describing the shape of the segments: Zernike moments
of the segment area and Fourier descriptors of the segment contour. One
of the SIFT feature histograms is formed from the interest points residing
within the segment borders, the other one includes all the interest points in-
side the bounding box of the segment. For both of the histogram features we
used the 25 × 20 SOM codebook determined from all the training images.
In the early fusion stage the set of features was enriched by forming twelve
additional combinations of the elementary features.

Table 3: Elementary features extracted from image segments
DCT coefficients of average colour in rectangular grid
CIE L*a*b* colour of two dominant colour clusters
Average CIE L*a*b* colour
Moments of CIE L*a*b* distribution
Co-occurence matrix of four Sobel edge directions
Histogram of four Sobel edge directions
Histogram of relative brightness of neighbouring pixels
Fourier descriptors of the segment contour
Zernike moments of the segment shape
Histogram of SIFT features within the segment
Histogram of SIFT features within bounding box of the segment

6 APPROACH TO THE SEGMENTATION TASK

The submitted results for the segmentation taster task were synthesised in a
straightforward manner from the bounding boxes detected in the detection
task. For each pixel we checked all the detected bounding boxes contain-
ing the pixel. We set the label of the pixel to be that of the bounding box
with the largest estimated probability if the probability exceeded a threshold.
Otherwise the pixel was labelled as background. We also noticed that our
estimated probabilities of detected “person” bounding boxes were scaled in-
correctly. As a quick fix we excluded the class “person” completely from the
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labelling process. In unsubmitted experiments we also tried using the actual
bit masks of the segments instead of their bounding boxes for labelling, but
in the validation set this made the performance slightly worse.

7 VOC CHALLENGE 2007 RESULTS

In this section we briefly report the results of those VOC Challenge 2007
competitions we participated. For more detailed results see [3]. In the re-
sult graphs and tables the participants are identified by abbreviations. The
abbreviation for the methods described here is “TKK”.

Figure 3 shows the median APs of the classification competition partic-
ipants over all the 20 object classes. In Figure 4a the submissions to the
object detection competition are ranked according to number of top rank-
ings they achieved in detecting objects of the 20 classes. Figure 4b displays
the mean accuracies achieved in the segmentation taster competition. This
performance measure used in the segmentation task is quite rudimentary in
our opinion. However, we consider this acceptable considering the initial
and interest-probing nature of this taster competition.

Figure 3: Results of the VOC Challenge 2007 classification competition: the
median AP of all the 20 object classes. The figure is from [3].

8 CONCLUSIONS AND DISCUSSION

In this paper we have documented the image content analysis system that
we have used to participate the VOC Challenge 2007 image analysis perfor-
mance evaluation campaign. In the classification task the performance of
our method was relatively competitive, the 4th best of 19 participants. It ap-
pears to be that the other top participants have used more effective variants
of the histogram features and their classification, such as dense sampling of
the images instead of interest points and colour information in addition to
the monochromatic local shape feature. In the future we are planning to
investigate the different possibilities for improving our histogram features. In
contrast, the feature fusion aspects of our architecture are not as extensive in

8 CONCLUSIONS AND DISCUSSION 9



(a) (b)

Figure 4: a) The overall ranking of the participants of the VOC Challenge
2007 object detection competition according to number top three rankings in
detecting of individual classes. The table is from [3], b) Mean segmentation
accuracies in the segmentation taster competition. Asterisk (*) denotes the
entry being automatically generated from detection task results.

the competing systems. It deserves to be mentioned, however, that also the
best performing classification system derives its power from combining sev-
eral histogram features cleverly with a genetic algorithm. The use of feature
fusion seems to be better developed in other kinds of information retrieval sys-
tems, for example the video retrieval systems that have recently participated
the TRECVID campaign [10].

The performance of our method in the detection task was quite modest.
This was partially expected as we were not able to dedicate enough of our
time to develop methods for this task. Our impression is that the segmen-
tation method we employed is not very good at finding objects or relevant
object parts. This is supported by the finding that the use of actual bit masks
of the segments instead of their rectangular bounding boxes degrades the per-
formance in the segmentation task. After the challenge, it has been demon-
strated [11] that the segmentation accuracy could be markedly improved by
re-segmenting the bounding boxes of our detections. Hierarchical segmen-
tation methods have been studied quite much lately [1, 14] and it might be
beneficial to update our segmentation method according to recent findings.

In the light of modest the detection performance of our system the best
overall segmentation accuracy among the challenge participants we obtained
is rather surprising. Partly this may be due to the segmentation competition
having been presented as a “taster” and the researchers thus devoting less
attention on it. It still remains somewhat mysterious why the segmentations
derived automatically from our less accurate detections were better than sim-
ilarly derived segmentations from more accurate detections. One explaining
factor might be that our detection results consist of sets of overlapping bound-
ing boxes that fully cover every image.
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