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ABSTRACT: Several data analysis tools such as (kernel) canonical correlation
analysis and various multi-view learning methods require paired observations
in two data sets. We study the problem of inferring such pairing for data
sets with no known one-to-one pairing. The pairing is found by an iterative
algorithm that alternates between searching for feature representations that
reveal statistical dependencies between the data sets, and finding the best
pairs for the samples. The method is applied on pairing probe sets of two
different microarray platforms.

KEYWORDS: canonical correlation, co-occurrence data, dependency, multi-
view learning
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1 INTRODUCTION

Multi-view learning considers the task of learning from two or more data sets
with co-occurring observations. Increased performance compared to tradi-
tional single-view learning has been reported in various applications, includ-
ing semi-supervised classification [2], cross-lingual text mining and machine
translation [8], and multimodal information retrieval [3]. The improvement
comes from utilizing statistical dependencies between the data sources, ei-
ther in form of maximizing a consensus between models learned based on
each data source [1], through explicit maximization of a measure of depen-
dency between the views [6], or by building generative latent variable models
that capture the dependency [7].

The traditional multi-view learning methods require strict co-occurrence.
That is, the views must have known one-to-one pairing for the samples. In
some applications, such as machine translation or analysis of microarray data,
there are, however, cases where such pairing in principle exists but is un-
known. For example, two different microarray platforms attempt to measure
activities of the same genes, yet the exact probes on the chips are different and
hence not directly paired between platforms. Traditional multi-view learning
methods cannot be directly applied to such problems.

We would like to be able to apply multi-view learning methods also for
non-paired data, typically in cases where some kind of vague pairing informa-
tion or prior information on possible pairs is available. In this paper we study
an approach where we explicitly find one-to-one pairing between data sets,
using the actual measurements for defining the pairing. This complements
approaches that would infer the pairing based on additional data sources,
such as sequence information in the case of microarray platforms. Given the
solution of the proposed algorithm, any multi-view learning method can be
applied on the data.

The pairing is based on statistical dependency between the data sources.
We want to find such a pairing that the dependency between the two sources
becomes maximal. Given a sample we should be able to predict with the
measurement values of its true pair in the other data set, and dependency is
a justified measure for two-way prediction accuracy. Maximizing the depen-
dency should hence find the true pairs. Also note that completely random
pairing necessarily leads to independency between the sources.

In the remaining paper, we first introduce an algorithm for finding the
pairing and then demonstrate it in a practical application of finding corre-
sponding probe sets in two different microarray platforms.

2 METHOD

Given two data sets, X ∈ R
N×Dx and Y ∈ R

M×Dy ,M ≥ N , we want to
find a permutation p of the samples in Y such that the ith sample in X is
paired with the sample p(i) in Y. The pairing will be primarily based on the
actual data vectors, though prior information on pairings can be included as
explained later.

We propose a generally applicable algorithm that can be used to pair any
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two data sets that are supposed to have a one-to-one pairing between the
samples. The underlying assumption is that a pairing that reveals statistical
dependency between the two data sets is more likely to be correct. We con-
sider lower-dimensional mappings f(x) and g(y) and learn them and the
pairing to maximize the dependency

max
p,f ,g

Dep (f(X),g(Y(p)) ,

where Dep(·, ·) denotes any measure of dependency between the two argu-
ments, and Y(p) ∈ R

N×Dy is a matrix obtained by picking the rows indicated
by p.

The dependency measure and parameterization of the mappings f(·) and
g(·) can be chosen freely. Here we resort to Pearson correlation and linear
projections f(x) = xWx and g(y) = yWy. This gives a simple and compu-
tationally efficient method with sufficient accuracy, but it is worth mention-
ing that these assumptions can be relaxed if needed. With these assumptions,
the optimization problem becomes

max
p,Wx,Wy

corr (XWx,Y(p)Wy)) .

For solving the problem, we propose an iterative algorithm that alternates
between learning the pairing and learning the projections. Given fixed pro-
jections, we can write the cost with the sample estimate of correlation as

max
p

WT
x XTY(p)Wy

‖XWx‖‖Y(p)Wy‖
.

The numerator can equivalently be expressed as constant minus the sum of
Euclidean distances between the projections of paired samples. The denom-
inator, in turn, is constant with respect to p if N = M , and it can be safely
assumed constant even for M slightly larger than N .

Hence, it can be ignored in optimization and we get the task

min
p

N∑

i=1

‖xiWx − yp(i)Wy‖
2. (1)

This is a classical assignment problem where the cost of assignments is de-
fined by the distance in the projection space. The assignment problem can
be solved exactly with e.g. the Hungarian algorithm.

The projections, in turn, are solved by assuming a fixed pairing. Then the
task reduces to the canonical correlation analysis (CCA) problem, which can
be solved exactly with linear algebra (see e.g. [5]). These two steps can be
combined into a simple alternating algorithm, which finds the pairing but
can also be considered as a way to compute CCA for non-paired data. First
a random pairing is given as an initialization and CCA is used to find the
optimal projections for that pairing. Then a new pairing is solved via the
assignment problem using distances computed in the feature space. After
this, the algorithm repeats the CCA and assignment problem steps.
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Notice that if the features of X and Y are paired, the sample pairing can
alternatively be inferred by directly solving the assignment problem

min
p

N∑

i=1

d(xi,yp(i)),

where d(xi,yp(i)) is some conventional distance measure between the
samples. This approach assumes that direct comparison of samples is sen-
sible, whereas the proposed algorithm learns feature representations that can
be compared in all cases.

2.1 Details and related work

Due to scale-invariance of correlation, CCA does not fix the scales of the
dimensions. Hence, we can choose the scales of different dimensions in
the optimization problem in (1) to maximize the accuracy. In the experi-
mental section we empirically compare to choices. The first choice is to give
equal scale for each dimension. The other choice utilizes the fact that dimen-
sions with high correlation are more likely to contain useful information and
weights each dimension with the corresponding canonical correlation. The
latter choice is shown to be better in practice.

Possible prior information on pairing, typically obtained from yet another
data source, can be taken into account in numerous ways. Here we consider
a simple method that excludes sets of possible pairs from consideration if
we know they definitely are not the true pairs. We formulate this through
the concept of candidate sets. Instead of allowing any pairing, we use the
prior information to create a subset of samples in Y for each x. Samples
not belonging to the candidate set are given infinite cost in the assignment
problem. This helps in avoiding overlearning.

Recently, in [4] a similar approach was studied for learning bilingual lexi-
cons from monolingual corpora. They introduce a latent variable model for
the task, and optimize it with an EM algorithm resembling our alternating al-
gorithm. In the E-step of their algorithm they solve the assignment problem
to maximize the sum of pointwise mutual informations, but comment that
a heuristic using Euclidean distances between the projections is in practice
more accurate. In our formulation, (1) follows directly from the cost func-
tion. They also consider the paired corpus as the main result, whereas we
solve the pairing to enable the use of further multi-view learning methods.

3 MICROARRAY PLATFORM PAIRING

One application area for the method is combining microarray measurements
done on different measurement platforms. We can infer pairing between
different brands of microarrays aiming to measure the same activities, but
also for example between arrays designed for different measurement types
(RNA or DNA) or species. As a demonstration, we apply the method for
pairing the probe sets of two different versions of Affymetrix oligonucleotide
arrays, HG-U95 and HG-U133.
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Figure 1: Accuracy in finding Affymetrix best matches amongst all possi-
ble matches in the task of pairing HGU-95 probe sets with HGU-133 probe
sets. CCA-based pairing methods have the best accuracy, with correlation-
weighted distance in CCA projection space providing the best result. All
methods clearly exceed the baseline accuracy 0.31 of random pairing.

As measurement data we use gene expression profiles of pediatric acute
lymphoblastic leukemia (ALL) patients from [10, 9]. The data consists of
expression measurements of the same 131 patients on both HG-U95 and
HG-U133 platforms, providing an excellent test bed for the algorithm. Typi-
cally the probes of different array platforms would be paired primarily based
on sequence information, which is available in this special case of pairing
problems. Here we demonstrate how it is possible to improve the pairing
based on the expression measurements. Sequences are only used as prior
information to define the candidate sets.

To evaluate the accuracy, we use Affymetrix’s comparison sheet between
HGU-95 and HG-U133 as the ground truth. For each probe set in HG-
U95, the sheet lists a set of potential matches in HG-U133, defined based on
sequence information. There are generally more than one match for each
HG-U95 probe set, and the quality of each match is characterized as "match",
"good match", or "best match". We create each candidate set as the collection
of all matches for the probe set, and measure the accuracy by checking how
often the found pair corresponds with the "best match" label. It is not possible
to obtain a perfect score due to the best matches not providing a one-to-one
mapping, and hence we report pairing accuracies as normalized scores so
that 1 means the best possible score.

In total we have N = 11728 HG-U95 and M = 17857 HG-U133 probe
sets. 2171 of the HG-U95 probe sets have only one match in HG-U133, and
hence the pairing is fixed for those. Since M is here so much larger than
N , we apply a slight heuristic to remedy the fact that Y(p) is not constant
with respect to p. In all experiments with the microarray data, we normalize
the distances in (1) by ‖xiWx‖‖yiWy‖ to prioritize pairing probe sets with
higher total activity.
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4 RESULTS AND TECHNICAL VALIDATION

4.1 Pairing of Affymetrix probe sets

We study the accuracy of the algorithm with two different ways to com-
pute the distance in the projection space. The first solution finds a fixed-
dimensional CCA subspace and treats each dimension with equal weight.
The other approach finds the full CCA subspace, but weights each dimen-
sion with the corresponding canonical correlation. Since the data has paired
features, we can compare the accuracy of the proposed algorithm with the
simple method of directly solving the assignment problem in the original
data space. We use both correlation and Euclidean distance for comparison.

The pairing accuracies are shown in Figure 1. The proposed CCA-based
method outperforms the comparison methods, and the weighted dimensions
provide better accuracy compared to using lower-dimensional subspaces. As
the weighted solution also sidesteps the need to choose the dimensionality, it
is to be preferred. For the comparison method correlation seems to be clearly
better choice of distance, indicating scale differences between the data sets.

This application is a special case as the features are known to be paired,
chosen because it allowed comparison with the naive method. In practice,
however, we typically will not have data sets with paired features. Next, we
demonstrate how the results would change in scenarios where the features
are not paired, by applying the method on modified versions of the data set.
The studied scenarios are:

1. 35 paired features (patients)

2. The same, but the features in Y are randomly permuted

3. 35 different features in each data

4. 20 paired features, along with 15 noise features created by permuting
the values for genes randomly

We repeated the same experiment for 20 randomly subsampled versions
for each scenario, each having around 1000 samples, and used the better
variants of the two approaches (correlation-weighted CCA and correlation-
based method) for pairing the samples. The results are shown in Table 1.

Table 1: Pairing accuracies in different feature settings. All differences in
accuracy are statistically significant (t-test, all p-values below 10−14).
Feature setting Method Mean Accuracy Std Dev

1. Paired
CCA 0.64 0.04
Corr 0.56 0.04

2. Permuted
CCA 0.64 0.04
Corr 0.29 0.01

3. Different
CCA 0.54 0.03
Corr 0.30 0.01

4. Paired + Noise
CCA 0.60 0.03
Corr 0.34 0.02
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Figure 2: Pairing accuracy as a function of maximal correlation (ρmax) be-
tweenthe data sets. The advantage of the CCA-based method increases with
higher dependency. The bars represent one standard deviation (over 20
runs).

The main observation is that the performance of the CCA-based method is
comparable for all scenarios, whereas the comparison method works only
with the paired features, as expected. The proposed method works well even
with the noisy dimensions showing that it is able to ignore them.

4.2 Technical validation on artificial data

To study the accuracy of the method as a function of dependency between
the data sources, we created artificial data sets with varying degree of de-
pendency. The toy data is generated by drawing 1000 samples from a 10-
dimensional multivariate normal distribution with zero mean and a given co-
variance matrix. The data is split into two 5-dimensional matrices, X and Y,
so that the true canonical correlations are of the form λ×(0.3, 0.25, 0.15, 0.05, 0),
where λ ∈ [1, 3]. The candidate sets for each sample in X were created so
that each set includes the true pair and 4 random samples.

Figure 2 shows the pairing accuracy for different degrees of dependency.
With low dependency CCA is comparable to directly using Euclidean dis-
tance, but with higher dependency CCA clearly outperforms the compar-
ison methods. In the microarray application the largest correlations were
close to 0.9, so it falls into the region where CCA helps most. In this case
the Euclidean distance works better than correlation, whereas for microarray
data the order was opposite. This demonstrates how the choice of the dis-
tance measure plays an important role for the comparison method, while the
CCA-based method overperforms both choices in both problems.
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5 CONCLUSIONS

Multi-view learning tasks require co-occurring observations in the different
views. In many applications no clear one-to-one mapping is known, but we
may have some information on possible pairs. To enable running multi-view
learning algorithms in such applications, we presented a method for finding
co-occurring samples based on the actual measurements. The method uses
an alternating iterative algorithm to find such a pairing that statistical depen-
dency between the data sets is maximized. The method was demonstrated in
an application of pairing probe sets of two microarray platforms.

In addition to pairing the samples, we could directly consider the ap-
proach as a method for computing canonical correlation analysis for un-
paired data sets. Even in cases where the pairing accuracy is not perfect,
the projection vectors seem to converge towards the true projection vectors.
On the toy data the cosine similarity between the true and estimated projec-
tions was above 0.98 for all CCA components even in cases where the pairing
accuracy was only 65% (results not shown due to lack of space).

The proposed algorithm is an example of a wider family of pairing al-
gorithms. It uses linear projections to find a feature representation that al-
lows comparison of samples, and correlation for measuring the dependency.
Methods relaxing these assumptions could be devised, e.g. by maximizing a
non-parametric estimate of mutual information as in [6].
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