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ABSTRACT: This report presents the results of a series of experiments where knowl-
edge of the most relevant part of images is given as additional information to a
content-based image retrieval system. The most relevant parts have been identified
by search-task-dependent pointer clicks on the images. As such they provide a rudi-
mentary form of explicit enriched relevance feedback and to some extent mimic
genuine implicit eye movement measurements which are essential ingredients of
the PinView project.

KEYWORDS: content-based image retrieval, enriched relevance feedback, auto-
matic image segmentation
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1 OVERVIEW

This Deliverable of the Personal Information Navigator Adapting Through Viewing,
PinView, project, funded by the European Community’s Seventh Framework Pro-
gramme under Grant Agreement n◦ 216529, constitutes the output of Task 1.2 Eval-
uation of click location feedback. Pointer clicks are examples of enriched relevance
feedback that can be used to improve the performance of content-based informa-
tion retrieval (CBIR). With them the user of a CBIR system is able to identify in an
image the area that he or she considers to be the most relevant one for the current
search task. The pointer clicks are also to some extent able to mimic the implicit
eye movements and gaze fixations the test subjects make while evaluating the fitness
of a seen image to a particular search topic. The eye movement recordings and the
information that can be extracted from them are essential ingredients of the PinView
project. In this regard, the current study paves the way for later research where actual
eye movements are being employed for discovering relevance inside image collages
and single images.

The research was implemented by using the existing CBIR system, PicSOM,
developed at TKK. The PicSOM system contains a subsystem for automatic image
segmentation and presentation of segment hierarchies. The extracted segments and
features calculated from them were in the experiments used together with the click
locations to model the most relevant or discriminative areas of the images. Overall,
the retrieval performance obtained in the simulations was worse than hypothesised.
Most likely, this result can be explained by difficulties related to accurate automatic
image segmentation. As an alternative approach, we also used quadtrees for the
regional presentation of images, and this approach gave better results than the use
of the genuine image segments.

One part of the described work has been the setting up the evaluation database
and the collection of the pointer click data together with eye movement recordings.
Later these recordings have been post-processed to be included in the eye movement
recording database created in Task 8.3 Eye movement data collection campaign.

The work will be continued further in TKK’s participation in PinView’s Tasks
6.1 Local features for sub-categorisation and 6.2 Information fusion and confidence.
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2 INTRODUCTION

The research reported in this deliverable is part of the the Personal Information
Navigator Adapting Through Viewing, PinView, project1. A central issue in the
PinView project is to study how enriched relevance feedback can be used to improve
content-based information retrieval (CBIR). In this work, we have collected pointer
click locations on images shown to test users and studied if that kind of additional
information can be used to improve the accuracy in interactive CBIR.

The click locations can identify in an image the area that the user considers
to be the most relevant one for the current search task. This can be seen as an
improvement over the traditional Boolean-valued relevance feedback where entire
images are marked either as relevant or non-relevant. However, a single point in
the image is seldom sufficient to reveal the true extent of the relevant object. This
shortcoming can be partially relieved by combining the click location with results
of image partitioning or automatic image segmentation. Then the image part or
segment where the click location resides can be used to model the relevant object.

The explicit pointer click locations are also to some extent able to mimic the
implicit eye movements and gaze fixations the test subjects make while evaluating
the fitness of a seen image to a particular search topic. The eye movement recordings
and the information that can be extracted from them are essential ingredients of the
PinView project. In this regard, the current study paves the way for later research
where actual eye movements are being employed for discovering relevance inside
image collages and single images.

The PicSOM CBIR system, developed at Helsinki University of Technology, con-
tains mechanisms for simulating interactive content-based image retrieval. We have
also implemented an automatic image segmentation subsystem and techniques for
matching click locations or other kinds of reference positions with the obtained im-
age segments. Visual feature extraction and object indexing have consequently been
possible not only for entire images, but also for their content-based segments and
other geometrical regions.

In the current experiments, we have first recorded on-line pointer clicks with real
subjects. The data collection setting has been such that also the eye movements and
fixations of the subjects have been recorded simultaneously. In off-line simulations
we have then evaluated the degree of change in the accuracy of content-based image
retrieval when the pointer click locations have been utilised as additional source of
information.

The rest of this report is organised as follows. In Section 3, we briefly describe
the PicSOM content-based image retrieval system used in the experiments. This
section includes the descriptions of the implementation of the relevance feedback
mechanism, image segmentation and feature extraction. Section 4 introduces the
image database used in the experiments and describes how the click location data
was collected. In Section 5, the setting for the empirical evaluation is presented
and the results of the experiments are presented. Finally in Section 6, we present
conclusions and a discussion on the related future work in the PinView project.

3 PICSOM CBIR SYSTEM

PicSOM2 [7, 8] is a content-based information retrieval system developed at Helsinki
University of Technology since 1998, first in the Laboratory of Computer and Infor-

1http://www.pinview.eu/
2http://www.cis.hut.fi/picsom
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mation Science and later in the Department of Information and Computer Sci-
ence. The unique approach used in PicSOM is to have several Self-Organizing
Maps (SOMs) [4] in parallel to index and determine the similarity of data objects.
These parallel SOMs have been trained with separate data sets obtained by using
different feature extraction algorithms on the same objects. So each SOM arranges
the same objects differently, according to the particular multi-dimensional feature
vectors used in its training.

PicSOM uses the principles of query by example [1] and relevance feedback [13,
12] in implementing iterative and interactive image retrieval. This means that the
system shows the user a set of database objects, which the user then indicates as
relevant or non-relevant to the current query, i.e. close to or far from what he is
looking for. Based on this relevance feedback information, PicSOM modifies its
internal parameters so that in the next round it will display objects that resemble
those that had been marked as relevant. This is done by increasing the influence
of those SOMs that give the most valuable similarity evaluation according to the
current relevance feedback information. The user thus becomes an integral part
of the query process, which can be seen as a form of supervised learning, where
the user steers the system by providing feedback. A CBIR system implementing
relevance feedback essentially tries to learn the optimal correspondence between the
high-level human concepts and the low-level internal features used by the system.

The PicSOM CBIR system was initially designed to index and retrieve images
only. Segmentation was introduced into PicSOM [18], and later we have used im-
age segments in parallel with entire images to improve retrieval results [15]. This
algorithm was then generalised to be used with multi-part objects such as web-pages
containing images and links [14] and video retrieval [5, 16, 6].

3.1 Self-Organizing Map

The Self-Organizing Map [4] is a neurally-motivated unsupervised learning tech-
nique which has been used in many data-analysis tasks. A genuine feature of the
Self-Organizing Map is its ability to form a nonlinear mapping of a high-dimensional
input space to a typically two-dimensional grid of artificial neural units. During the
training phase of a SOM, the model vectors in its neurons get values which form
a topographic or topology-preserving mapping. Through this mapping, vectors that
reside near each other in the input space are mapped into nearby map units in the
SOM grid. Patterns that are mutually similar in respect to the given feature extrac-
tion scheme are thus most often located near each other on the SOM surface.

The training of a Self-Organizing Map starts from the situation where the model
vectors mi of each map unit i are initialised with random values. For each input
feature vector or sample x(t), the “winner” or best-matching map unit (BMU) c(x)
is identified on the map by the condition

∀i : ‖x(t)−mc(x)(t)‖ ≤ ‖x(t)−mi(t)‖ , (1)

where ‖·‖ is commonly the Euclidean norm. After finding the BMU, a subset of the
model vectors constituting a neighbourhood centred around node c(x) are updated
as

mi(t + 1) = mi(t) + h(t; c(x), i)(x(t)−mi(t)) . (2)

Here h(t; c(x), i) is the “neighbourhood function”, a decreasing function of the dis-
tance between the i-th and c(x)-th nodes on the map grid. The training is reiterated
over the available samples, and the value of h(t; c(x), i) is allowed to decrease in
time to guarantee the convergence of the prototype vectors mi. Large values of the
neighbourhood function h(t; c(x), i) in the beginning of the training initialise the

3 PICSOM CBIR SYSTEM 9



network, and small values on later iterations are needed in fine-tuning. The out-
come of training a SOM is essentially the topographic ordering of the training data
samples on the surface of the map grid.

3.2 Relevance feedback and image scoring

In iterative CBIR, the system presents in a visual interface some images or other ob-
jects to the user, who then marks a subset of them as relevant to the present query.
This relevance information is fed back to the system, which then tries to find more
similar objects and returns them in the next query round. In PicSOM, multiple
SOMs are used in parallel, each created with different low-level visual features. Each
image is therefore used multiple times as input to different feature extraction tech-
niques and the resulting feature vectors are used in training different SOMs. When
an image SOM has been trained, all the feature vectors x are once more mapped
to it, each one in its best-matching unit. Every SOM unit and its model vector m is
then assigned a visual label from the image whose feature vector was the nearest to
the model vector.

The different feature extraction schemes and the SOMs that result from the train-
ing impose different similarity functions on the images. As a consequence, two im-
ages whose contents are similar to each other with respect to some feature will be
mapped to nearby units on that SOM’s surface, whereas they will be located far apart
on another feature’s SOM if that feature regards them as dissimilar. Every interactive
image query is unique and each user of a CBIR system has his or her own transient
view of images’ similarity and relevance to the specific query. Therefore, a system
structure capable of holding many simultaneous similarity representations can adapt
to different kinds of retrieval tasks.

Relevance feedback has been implemented in PicSOM by using the parallel Self-
Organizing Maps. Each image presented in the interactive on-line use of the system
is graded by the user as either relevant or non-relevant. All these relevance grades
are then projected to the best-matching SOM units of the graded images on all the
different SOM surfaces. Maps where many relevant images are mapped in same
or nearby SOM units agree well with the user’s conception on the relevance and
semantic similarity of the images. When we assume that similar images are located
near each other on the SOM surfaces, we are motivated to spread the relevance
information placed in the SOM units also to neighbouring units.

This relevance spreading is implemented in PicSOM as follows. All images
marked as relevant are first given an equal positive value inversely proportional to
their number. Likewise, non-relevant images receive negative values that are in-
versely proportional to the number of non-relevant images. The overall sum of these
relevance values is thus zero. The values are then summed in the BMUs of the
images, and the resulting sparse value fields are low-pass filtered to produce the fi-
nal relevance score or qualification value for each SOM unit. With a SOM size of
64×64 map units, as used in the current experiments, a typical size for the radius of
the low-pass filter is four map units. Figure 1 illustrates how the positive and nega-
tive responses are first mapped on a SOM surface, displayed there with red and blue
map units, respectively, and how the responses are expanded in the convolution in
order to spread the relevance assignments to the most similar images.

As the final step, each image is given a total qualification value obtained as a
sum of the qualification values from its best-matching or index units from the SOM
surfaces of the different features. Those yet unseen images which have the highest
qualification values will then be shown to the user on the next query round. In
PicSOM, features that fail to coincide with the user’s conceptions always produce
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lower qualification values than those that match the user’s expectations. As a con-
sequence, the different features do not need to be explicitly weighted as the system
automatically takes care of weighting their opinions.

⇒

Figure 1: An example of how a SOM surface, on which the images selected and
rejected by the user are shown with red and blue marks, respectively, are convolved
with a low-pass filter.

3.3 Image segmentation

The images are segmented with a generic image segmentation method that employs
an area-based region merging algorithm to construct segments that are homoge-
neous in terms of colour and texture. The segmentation procedure consists of two
steps. In the first step the K-means algorithm with a K value 13 is used to compute
an oversegmentation of the images based on RGB colour values. This step typically
results in a few thousand separate segments. In the second step pairs of most suitable
neighbouring segments are iteratively merged until only 25 segments are left. The
suitability-for-merge criterion C1

C1(r1, r2) = −s1 (r1, r2) d1 (r1, r2) (3)

takes into account the visual similarity d1 of the segments in combined feature space
of CIE L*a*b* colour moments and neighbourhood brightness histogram (see Sec-
tion 3.4), as well as the sizes |ri| of the to-be-merged regions ri. Here

s1(r1, r2) = min(|r1|/|I|, |r2|/|I|, a1) + b1 (4)

is the size-weighting function where |I| is the number of pixels in the image. a1

and b1 are free parameters of the method. The merging algorithm and parameter
values have been selected to give visually feasible results for photographs and other
images in earlier applications. The resulting 25 segments are subsequently denoted
leaf segments.

Besides the leaf segments, we also record the hierarchy tree of composite seg-
ments that results from continuing the pairwise region-merging algorithm until only
one region remains. Here we use a slightly different merging criterion

C2(r1, r2) = −s2 (r1, r2) d2 (r1, r2) . (5)

Here d2 is distance in the combined visual feature space of CIE L*a*b* colour,
neighbourhood brightness histogram and HSV colour histogram, and s2 is the size-
weighting function

s2(r1, r2) =
√

min(|r1|/|I|, |r2|/|I|, a2) + b2. (6)

3 PICSOM CBIR SYSTEM 11



Figure 2 shows an image of a dog along with the hierarchy of the segments the
segmentation algorithm finds. The segment hierarchy divides into subtrees for the
dog (left) and the background. For clarity, the figure shows only the part of the
hierarchy that is recorded after the merging process has already reduced the number
of segments to just eight.

Figure 2: An image of a dog on top left corner and the segment hierarchy the seg-
mentation algorithm discovers.

In addition to the above outlined content-driven segmentation algorithm, we also
subdivide the images purely geometrically regardless of the image content. These
two approaches will then be compared in the experiments. For geometrical parti-
tioning, we employ a quadtree structure with three levels. The levels partition the
image area with regular rectangular grids. Each upper level patch divides into a
2 × 2 subgrid on the next lower level. This results in levels dividing the image into
1 × 1, 2 × 2 and 4 × 4 rectangular patches. The patches form a three-level seg-
ment hierarchy in a natural fashion. Figure 3 illustrates the geometrical quadtree
partitioning.

3.4 Features

Several different types of features are extracted from the database images as well as
from the automatically obtained image segments in order to characterise their visual

12 3 PICSOM CBIR SYSTEM
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Figure 3: Left: quadtree division of a dog image into rectangular patches, right: the
corresponding hierarchy tree of the patches.

properties. In our experiments we have observed (e.g.[19]) that rather extensive sets
of features often are beneficial in image content analysis.

Image features
The extracted image feature types are listed in Table 1. Dimensionalities of the
feature vectors are given in the rightmost column of the table. The first four rows
correspond to features that more or less closely resemble the ColorLayout, Domi-
nantColor, EdgeHistogram and ScalableColor features of the MPEG-7 standard [3].
Of the non-standard descriptors, the colour moment feature encodes the first three
central moments of the colour distribution in the CIE L*a*b* colour space. The
low-order colour moments have been found [17] to be an efficient and robust way
to characterise colour distributions.

Local shapes are described with several features. Three features are based on de-
tecting local edge segments of four orientations with Sobel masks. The edge statistics
are summarised with histograms, co-occurrence matrices and magnitude of a fixed-
size Fourier transform of the edge image. In addition, local texture is described with
a statistics of pixels’ brightness (Y) values in the YIQ colour representation relative
to the values of their 8-neighbours.

For the interest point SIFT histogram feature of the last row, the interest points
are detected with a Harris-Laplace detector [11]. A histogram was formed of the
SIFT descriptions [10]—based on local gradient orientation—of the interest points.
The histogram bins were chosen by clustering the SIFT descriptors of all the interest

3 PICSOM CBIR SYSTEM 13



Feature Tiling Dim.
DCT coefficients of average colour in rectangular grid global 12
CIE L*a*b* colour of two dominant colour clusters global 6
Histogram of local edge statistics 4× 4 80
Haar transform of quantised HSV colour histogram global 256
Average CIE L*a*b* colour 5 15
Three central moments of CIE L*a*b* colour distribution 5 45
Histogram of four Sobel edge directions 5 20
Co-occurrence matrix of four Sobel edge directions 5 80
Magnitude of the 16× 16 FFT of Sobel edge image global 128
Histogram of relative brightness of neighbouring pixels 5 40
Histogram of interest point SIFT features global 256

Table 1: Visual features extracted from images.

points in the training images with the Linde-Buzo-Gray (LBG) algorithm [9]. In our
experiments [20] we have found that rather large codebooks with several thousand
bins can be beneficial. For these experiments, however, we trade some accuracy of
the representation for reduced computing time and storage requirements, and use a
smaller histogram with 256 bins.

The column “Tiling” of the table shows that some of the features are calculated
truly globally, such as the global colour histogram feature of the fourth row, others,
such as the edge histogram feature of the third row, encode some spatial information
by using a fixed image grid. These feature vectors are formed by concatenating the
descriptors of individual tiles. The features calculated for five tiles employ a centre-
surround tiling mask (Figure 4) where the image area is divided into four tiles by the
two diagonals of the image, on top of which a circular centre tile is overlaid.

4

0

1 32

Figure 4: The five-part tiling mask employed in calculation of some of the features.

Segment features
The segment features have been obtained similarly to the image-wide features with
the exception that only those pixels that reside inside that particular segment have
been taken into account in the calculation. The features have been extracted for all
the leaf as well as composite segments of each image. In contrast to whole image
features, the segment features do not spatially subdivide the segments into tiles but
describe the segments as whole. The extracted segment features, listed in Table 2,
are a subset of the global image features of Table 1.

3.5 Utilisation of pointer click locations

The current implementation of pointer click utilisation in PicSOM is quite straight-
forward. When the user of the on-line CBIR system clicks a pointer button on an
image, the image is considered to relevant for the ongoing retrieval task. In addition,

14 3 PICSOM CBIR SYSTEM



Feature Dimensionality
DCT coefficients of average colour in rectangular grid 12
CIE L*a*b* colour of two dominant colour clusters 6
Haar transform of quantised HSV colour histogram 256
Moments of CIE L*a*b* distribution 9
Co-occurrence matrix of four Sobel edge directions 16

Table 2: Visual features extracted from image segments.

the location of the click is assumed to be the most informative or discriminative area
of the object for the positive relevance judgement. If the image is not relevant, then
the user hits a keyboard key to indicate his or her negative relevance judgement for
it. After a fixed number of images, typically 20 in our experiments, have been so
processed, the PicSOM system uses the collected relevance feedback information to
select the next set of images to be shown to the user, one by one.

The on-line relevance assessment procedure can be simulated in off-line exper-
iments if all necessary information is available for the PicSOM system’s interactive
query simulation subsystem. For the described setting one first needs ground truth
relevance data for each image in the used database. In practice this means that a
number of search tasks have been identified and for each task all relevant images
have been identified. Such sets of relevant images for particular search tasks will in
the subsequent sections be called also as object classes. For studying the possible ad-
vantage brought by the use of click locations, one will naturally also need to record
the pointer click xy-coordinates for each relevant image. This information can be
stored in files together with the object class definitions and then used in off-line
simulations.

When automatic image segmentation is being used in PicSOM, the system will
have two different kinds of SOMs, first those created from feature vectors extracted
from entire images and then those created from features calculated from image seg-
ments. In our current implementation we have extracted segment-wise features from
all leaf segment and all composite segments of the segment hierarchy tree. This
means that from an image with 25 leaf segments, there have been a total of 49 seg-
ments for which the features have been extracted. In the notation of the PicSOM
system, each one of these segments is an object of the image database in its own
right. Consequently, all leaf and composite segments are able to carry user-specified
relevance assessments. In addition, they will obtain their own relevance scores in
similarity-based retrieval, as described above in Section 3.2 for entire image objects.

On the CBIR algorithm level the pointer click information is used as follows.
When an image has been indicated as relevant, the leaf segment where the click lo-
cation resides is resolved from the stored segmentation pixmap of the image. From
the stored segment hierarchy information we can then resolve also all composite
segments along the path from the leaf to the root of the tree. One can then associate
the positive relevance judgement not only to the clicked leaf segment, but also to
any subset of segments along that path. Once those segments of all relevant-marked
images have been identified, their BMUs on the segment-wise SOMs are credited
with positive relevance values and the SOM surfaces are then low-pass filtered. With
256×256-sized segment-wise feature SOMs used in the current experiments, a typ-
ical size for the radius of the low-pass filter is 14 map units. One may note that the
image-level SOMs will combine both positive and negative relevance assessments
given to the images, whereas the segment-level SOMs will contain only positive rel-
evance values. As the final step, the resulting relevance scores of all image segment
objects are summed to those of the corresponding image objects for determining the

3 PICSOM CBIR SYSTEM 15



Category Object classes
Person person
Animal bird, cat, cow, dog, horse, sheep
Vehicle aeroplane, bicycle, boat, bus, car, motorbike, train
Indoor bottle, chair, dining table, potted plant, sofa, tv/monitor

Table 3: The 20 object classes of VOC Challenge 2007.

best image candidates to be presented to the user (or the simulation subsystem) as
the next set of images.

4 DATA

4.1 Visual Object Classes Challenge 2007 data set

For the experiments we used a part of publicly available image collection that was
compiled for the PASCAL NoE Visual Object Classes (VOC) Challenge 2007 im-
age analysis performance evaluation campaign [2]. This image collection consists
of 9963 photographic images of natural scenes. Each of the images contains at least
one occurrence of the 20 object classes detailed in Table 3. The object classes are di-
vided into categories to merely structure the table. In many images there are objects
of several classes present. Altogether the images contain 24640 objects. The most
common object class (“person”) is present in 40% of the images, the rarest (sheep) in
1.9%. Often there are several objects of the same kind in an image, e.g. 2.3 persons
and 2.7 sheep on average among the images where the named objects are present at
all. Figure 5 shows some examples of the images and objects.

The VOC Challenge organisers have defined partitioning of the image collection
equally into training (denoted “trainval”) and test sets. Furthermore, they define the
partitioning of the training half of the data evenly into two sets (“train” and “val”) in
order to encourage proper validation of supervised image processing methods within
the training set. The experiments reported in this work, however, do not employ the
supervised setting with separate training and test sets, but gradually search through a
single set of images. As such image set, the “train” half of the original training set—
i.e. 2501 images—will be used in the experiments. The images have been manually
annotated by the VOC Challenge 2007 organisers with the bounding boxes of all
the occurrences of the 20 object classes.

Figure 5: Examples of VOC Challenge 2007 images and their annotations

4.2 Click location data collection

For the click location data collection we have selected eight of the VOC Challenge
2007 object classes. For each class, we have identified images that display exactly
one object from the class. Objects from other classes may or may not be present in

16 4 DATA



Object class Single occurrences Probability
bicycle 80 0.03198
bus 76 0.03038
car 217 0.08676
cat 145 0.05797
cow 30 0.01199
dog 169 0.06757
horse 106 0.04238
motorbike 88 0.03518

Table 4: Object classes selected for click location data collection along with the
number of “train” set images containing exactly one class object. The rightmost
column shows the a priori probability of the single-object images of the class.

the images. Table 4 lists the selected object classes along with numbers of the images
with exactly one class object. The identified images are shown to a user and the user
clicks with mouse the image location that is the most characteristic or discriminative
for the class. This location information is recorded in a file.

In our setting of click location data collection, one image by time was shown to
the test subject on the computer screen. Simultaneously with the pointer clicks, the
user’s eye movements, gaze fixation information and speech were also recorded with
a Tobii eye tracker. The eight object classes were processed in four experiments,
in each of which images of two separate object classes were presented. For exam-
ple in the “cat versus dog” click experiment either a cat or a dog was shown. The
user was asked to first explicitly shout “dog” or “cat” as soon as the content of the
image was observed. Then he or she was supposed to click on the most discrimina-
tive point of the object by pressing the left mouse button once. The corresponding
xy-coordinates of the click location were recorded and saved into Tobii event data
(EVD) file. Similar class pairs were formed from cows versus horses, cars versus
buses, and bicycles versus motorbikes. This paring of classes was not present in the
off-line CBIR experiments where each of the eight object classes was studied sepa-
rately.

Table 5 lists the columns created by the Tobii eye tracker in the EVD file. The
eye movement, gaze fixation and click location data were later extracted from the
EVD files and stored in XML-based COGAIN eye movement recording format3

as shown in Figure 6. In addition, the click locations are stored for the PicSOM
experiments in class definition files, an example which can be seen in Figure 7.

Data column Description
Time The timestamp in ms indicating when the click event oc-

curred from the start of the recording

Event LmouseButton, i.e.the left mouse button has been pressed

Event key 1, the unique number identifier for LmouseButton event

Data 1 X mouse coordinate

Data 2 Y mouse coordinate

Table 5: The columns that Tobii created in the raw event data (EVD) file.

3http://www.cogain.org
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<?xml version="1.0"?>
<start>

<!-- ident data -->
<!-- setup data -->
<image>

<!-- gaze data -->
<pointer>

<clicks>
<click>

<timestamp>128</timestamp><number>1</number>
<x>190</x><y>133</y>
<buttons>left</buttons>

</click>
</clicks>

</pointer>
</image>
<!-- keyboard data -->
<!-- audio data -->

</start>

Figure 6: An example of click location data stored in COGAIN XML format.

# All cats found in the database with click locations.
01020304 xy=(99,56)
05060708 xy=(45,98)
22446688 xy=(100,123),(300,237)

Figure 7: An example of click location data stored in a PicSOM class definition file.

5 EXPERIMENTS

5.1 Simulation setup

Each of the eight object classes specified in Table 4 were analysed in a separate
experiment. The task was to find images that portray exactly one object of the spec-
ified class. Consequently, for example an image with two cats in it was regarded as
non-relevant or false positive in the “cat” experiment.

Each of the true positive images of the studied object class was used in its turn as
an example image to initiate the content-based retrieval for finding more similar im-
ages. After the initial example had been presented to the CBIR system, the similarity-
based scoring mechanism was able to select the 20 most similar ones among the 2500
remaining images of the used database as described in Sections 3.2 and 3.5. The
simulation subsystem then judged the relevance of those 20 images and provided
ground-truth-based relevance feedback and possibly also the stored pointer click lo-
cation to the CBIR system for selecting the next set of image candidates. This simu-
lated retrieval process thus resulted in total of 125 iterations between image selection
and relevance assessment.

A set of evaluation measures was calculated for each retrieval simulation with a
specific initial example image. These measures were then averaged to obtain object-
class-wide performance measures. The same procedure was applied to all the eight
object classes.
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5.2 Evaluation measures

The results of the search experiments are evaluated with several related performance
metrics. For a certain search task, each of the images is binarily judged as relevant or
non-relevant. Here the search tasks are finding images with objects of certain object
classes, making the relevance of individual images straightforward to judge.

For the calculation of the metrics, the images returned in the course of the search
are incrementally appended to a set of result images. The result image sets form a
sequence of telescoping image sets. A pair of statistics is calculated for each set
in the sequence: Recall (R) and Precision (P). Recall is defined as the number of
the relevant images in the set divided by the overall number of relevant images.
Precision is defined as the number of relevant images in the set divided by the set
size. These statistics can be interpreted as coordinates of points in two-dimensional
space. By connecting the points, one can produce a Recall–Precision (RP) curve.
The accuracy and time course of the search can be visually observed from the curve.
The higher the curve goes the better the accuracy of the search.

Alternatively, one can generate the curve by taking another pair of statistics as
coordinates. Often used are the False Positive (FP) and True Positive (TP) rates,
leading to the Receiver Operating Characteristic (ROC) curve. True (false) positive
rate is the number of relevant (non-relevant) images in the result set divided by total
number of relevant (non-relevant) images. Higher sweeping ROC curves correspond
to better search accuracy. If the total numbers of relevant and non-relevant images
are known, the conversion between (R,P) and (FP,TP) statistics is straightforward.

Besides visual inspection, the RP and ROC curves can be summarised with a
number of scalar statistics. Alternatively, the statistics can naturally be derived di-
rectly from the result image set statistics without a graphical interpretation. The
Area Under Curve (AUC) and Equal Error Rate (EER) measures describe the ROC
curve. AUC measures the area under the ROC curve. EER indicates the point of
search where equal fractions of type 1 and type 2 errors have been made, i.e. the
search has returned the same fraction of false alarms (of all possible ones) as it has
still left true positives unrevealed. Graphically this corresponds to the point where
the ROC curve intersects the diagonal TP=1-FP. We follow the practice of reporting
the error rate at the EER point. Thus higher numerical values of AUC and lower
values of EER correspond to a more accurate search. For a purely random search,
expected value of both EER and AUC is 0.5.

The RP curve is summarised by the Average Precision (AP) statistic that corre-
sponds to the area under the RP curve. The Mean Average Precision (MAP) mea-
sures the average AP performance over multiple search tasks. Higher numerical AP
and MAP values indicate more accurate search. For completely random search, the
expected value of AP would equal the a priori probability of a randomly selected
image to be relevant for the task.

5.3 Results

We performed three sets of experiments. The first one formed the baseline for the
evaluation by using only image-level relevance feedback. This setting matches that
of traditional Boolean-valued relevance feedback where the user expresses that the
image is either relevant or non-relevant without further specification of the most rel-
evant position of the image. No click location data, automatic image segmentation
nor segment-wise features and SOMs were thus required. Table 6 shows the results
of the baseline retrieval experiment.

In the second set of experiments we used the results of automatic content-based
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Class AP EER AUC
bicycle 0.0701 0.3524 0.6886
bus 0.1019 0.2593 0.8118
car 0.1605 0.3268 0.7226
cat 0.1263 0.2954 0.7490
cow 0.0226 0.3863 0.6462
dog 0.1181 0.3674 0.6834
horse 0.1393 0.3489 0.7285
motorbike 0.0587 0.3837 0.6481
Mean 0.0996 0.3400 0.7097

Table 6: Baseline results with image-level relevance feedback.

image segmentation and segment-wise similarity scoring as described in Sections 3.3
and 3.5, respectively. Table 7 shows the retrieval results when the click-location-
based relevance feedback has been used together with the image-level relevance
feedback. The shown results correspond to the setting where the positive segment
relevance has been associated with the leaf segment only, not propagating it to any
composite segment along the path towards the root of the segment tree, as this policy
was found to produce the best retrieval accuracy.

Class AP EER AUC
bicycle 0.0570 0.3728 0.6652
bus 0.0569 0.3012 0.7608
car 0.1573 0.3102 0.7382
cat 0.1311 0.2949 0.7525
cow 0.0195 0.5020 0.5253
dog 0.1182 0.3509 0.6804
horse 0.1030 0.3328 0.7123
motorbike 0.0696 0.3741 0.6749
Mean 0.0931 0.3529 0.6912

Table 7: Retrieval results when click location relevance feedback and automatic
image segmentation have been used together with image-level relevance feedback.

In the last experiments we used the quadtree division of the images, as described
in the end of Section 3.3, instead of true content-based segmentation. Table 8 shows
the retrieval results when the click location relevance feedback has been used to-
gether with the image-level relevance feedback. With the quadtree segments it was
found that the best retrieval performance was attained when the positive relevance
was associated not to the leaf segments, but to the composite or parent segment above
the leaf. In practice this means that the content of the image quadrant of the click
location is used together with the content of the entire image in the content-based
retrieval.

When comparing the results obtained with true content-based image segmenta-
tion and click location relevance feedback in Table 7 with the baseline results in
Table 6, one can clearly see that the segmentation-based results are worse with some
object classes, especially with the cow class. This could be expected as in our earlier
experiments with the same data we had already found out that the recognition of
the cow class is more dependent on the context i.e. the surrounding image than the
object itself. This phenomenon results from the fact that the colouring and shape of
the cows vary more than those of the typically green grass environment where they
appear. On the other hand, there exist some object classes, most notably the mo-
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Class AP EER AUC
bicycle 0.0675 0.3555 0.6903
bus 0.0761 0.2513 0.8153
car 0.1600 0.3152 0.7306
cat 0.1188 0.3013 0.7409
cow 0.0237 0.4083 0.6069
dog 0.1104 0.3618 0.6711
horse 0.1355 0.3144 0.7410
motorbike 0.0698 0.3468 0.6778
Mean 0.0952 0.3318 0.7092

Table 8: Retrieval results when click location relevance feedback and quadtree im-
age segments have been used together with image-level relevance feedback.

torbike class, where all the evaluation measures are better when the click location
relevance feedback is used.

On the contrary, the use of the simple quadtree image splitting method in Table 8
seems to improve the retrieval accuracy for some object classes when compared to
that of the baseline. When this outcome is combined with the worse performance
with the true image-based segmentations, a proper explanation for the failure of
the latter might be the weakness of the automatic image segmentation. Of course,
many of the versatile images of the studied object classes in the VOC Challenge
2007 collection are difficult for correct automatic segmentation.

Overall it seems to happen quite often that while some of the evaluation mea-
sures is improved another one gets worse. This makes the analysis of the results a
bit problematic and hints to the direction that the differences might not be very sig-
nificant. Nevertheless, if some method parameters would be selected by optimising
the value of one of the measures, most likely the outcome would be suboptimal with
respect to the other evaluation measures. Figure 8 displays a selection of ROC and
RP curves obtained in the experiments. It can be seen that the RP curves seem to
make somewhat larger differences between the performances of the three compared
methods than he ROC curves.

6 CONCLUSIONS

The aim of the reported study was to evaluate the usefulness of the existing scheme
for using automatic image segmentation and click location relevance feedback in
the PicSOM CBIR system with the VOC Challenge 2007 data set and the retrieval
tasks specified for the data collection in the PinView project. The used techniques
and image features were based on those implemented previously in the PicSOM
system. No substantial algorithmic development was made during this study which
we regarded merely as an initial evaluation and baseline setting for further studies in
the PinView project and our own further improvement of the PicSOM system.

Overall the results were clearly worse than hypothesised, and disappointing. To
some extent this can be explained by the difficultness of some of the images in the
VOC Challenge 2007 collection, which results in failures in automatic image seg-
mentation. In some cases the objects of interest are so small or only partially visible
that the image segmentation is unable to identify them. In these cases the context of
the object is a more valuable source of information than the object itself, but the use
of the surrounding of the click location neglects that. In addition to difficulties in
segmentation, the role of object context is also determined by the relative descriptive
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motorbike dog bicycle

ROC
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Figure 8: ROC and RP curves of the experiments with the motorbike, dog and bi-
cycle image classes. The red curves represent the baseline with only image-level
relevance feedback, the green curves experiments using also true content-based im-
age segments, and the blue curves those using also quadtree image partitionings.

powers of the segment and whole image visual features. In the reported experiments,
the set of segment features was not as powerful as the set of whole image features.
This further emphasises the importance of the context.

A factor that should be taken into account when interpreting the results is the
incompability of the queries and the simple within-image mechanism for aggregat-
ing segment-wise scores into the image-wise score. The queries required exactly one
object to be present, whereas the relevance aggregation mechanism generally would
sum together relevance scores of multiple objects, i.e. two cats would be regarded
twice as relevant as one. The exact significance of this phenomenon to the results
can only be speculated upon. In any case, this makes the results somewhat incon-
clusive and uncertain.

There exist clearly a line for further development. In future experiments we
seek to employ enriched relevance feedback that would consist of more than just
the click location. For example if a gaze pattern, rectangular bounding box or a
more freehand sketch of the object outline could be passed to the search engine, the
need for relying on the insecure outcome of automatic image segmentation could
be relieved. This approach, however would prevent one from using precalculated
features and image indices such as those based on the Self-Organizing Maps used in
the PicSOM system. Another problem of this plan is that even though one would
then have features that are more accurate in describing the relevant object, the bulk
of images in the image database could still be efficiently described and retrieved
only by their entire content. This would mean that relevant, but small objects would
most likely remain unfound. Some image collections, such as that of the VOC
Challenge 2007, do contain bounding-box information for some object classes, but
such image sets are rare and even with them it would be possible to retrieve only
objects belonging to those predefined classes.

Despite the difficulties encountered in this evaluation and those discussed above,
we will continue the development of our PicSOM CBIR system for being used to-
gether with true eye movement and gaze fixation pattern information in the PinView
project. We believe that the additional information available in the gaze measure-
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ments will help us to reveal the location and approximate area of the relevant objects
in the images. When such recordings are stored in the search engine’s database it
will become possible to compare the current gaze pattern and the visual features
extracted from its location to those of the previous retrieval sessions. This in turn
would improve the retrieval accuracy of such objects in images that some other users
have retrieved earlier, leading to a form of collaborative filtering in gaze-enhanced
content-based image retrieval.
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