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ABSTRACT: Noise in everyday acoustic environments such as cars, traffic en-
vironments, and cafeterias remains one of the main challenges in automatic
speech recognition (ASR). As a reserch theme, it has received wide attention
in conferences and scientific journals focused on speech technology. This
article collection reviews both the classic and novel approaches suggested for
noise robust ASR. The articles are literature reviews written for the spring
2009 seminar course on noise robust automatic speech recognition (course
code T-61.6060) held at TKK.

KEYWORDS: noise robustness, automatic speech recognition (ASR)
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Preface 
 
The research conducted on automatic speech recognition in the Adaptive Informatics 
Research Centre and the Department of Information and Computer Science in the 
Helsinki University of Technology has traditionally focused on large vocabulary 
continuous speech recognition (LVCSR) in morphologically rich and highly 
agglutinative languages such as Finnish, Estonian, and Turkish.  Other issues like noise 
robustness began to receive more attention when the LVCSR system developed in the 
HUT speech group became accurate enough to be considered for practical applications. 
The first projects on noise robust speech recognition were launched in spring 2007. 
These projects as well as the new course on automatic speech recognition Mikko 
Kurimo lectured for the first time in autumn 2008 inspired the spring 2009 seminar 
course on noise robust automatic speech recognition. 

Noise robustness has received much attention as a research theme in automatic 
speech recognition for in most realistic application environments, the speech signal is 
contaminated with background noise, reverberation, or both. The techniques proposed 
for improving noise robustness range from robust parametrisations to model-based 
compensation methods and microphone arrays. The methods operate on varied 
assumptions about the environment and noise type, and while some highly efficient 
methods like parallel model compensation or model-based feature enhancement 
methods are more sensitive to noise or background model estimation, some methods 
like robust feature extraction or missing data methods promise moderate improvements 
in all environments. Therefore, it is not sensible to compare or rank the methods in 
general, and even choosing a suitable method for a problem or an application requires 
recognising and understanding the basic assumptions and limitations in the method. 

For the spring 2009 seminar on noise robust automatic speech recognition, we 
selected topics that would cover the different approaches and provide students with a 
complete view of the existing research work. In addition to the topics covered in the 
literature reviews collected here, the seminar hosted two guest lectures: Tuomas 
Virtanen from Tampere University of Technology presented his research on sound 
separation methods and Stevan Keraudy from Helsinki University of Technology 
presented his master's thesis topic histogram equalisation.  

We would like to thank all the presenters and course participants for the 
interesting discussions we enjoyed during the seminar. 
 
Otaniemi 22.9.2009 
 
 
Kalle Palomäki, Ulpu Remes and Mikko Kurimo 
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Microphone Arrays and Techniques in Automatic Speech Recognition

Sakari Tervo

Helsinki University of Technology

Department of Media Technology

email: sakari.tervo@hut.fi

Abstract

It is possible to achieve better speech recognition performance by using multiple

microphones than with a single microphone. In this article, an overview of microphone

array techniques for improving speech recognition systems is given. In addition, some

typical microphone arrays that are used in speech recognition are shown. From the

speech recognition point of view, traditional steered beamformers are reviewed as well

as a recently developed pattern recognition approach. Moreover, an example of a

multiple speakers speech enhancement algorithm is given.

1 INTRODUCTION

The main goal in using microphone arrays in automatic speech recognition systems is to

achieve better speech recognition performance than with single microphone systems. Dur-

ing decades, several microphone techniques have been developed for this issue. Tradition-

ally, steered beamformers are used to enhance the speech signals and then the automatic

speech recognition is done to the enhanced signals [1]. Beamforming, originally devel-

oped for antenna arrays, is a class of methods where one aims to amplify signal or signals

with more than one receiver. Basically, the steering can be done be physically steering

the antenna, or by delaying the signals computationally. Also, adaptive versions of the

steered beamformers have been developed. These methods use signal processing for speech

enhancement without modifying the pattern recognition algorithms used in speech recog-

nition. More recently, better results have been achieved by approaching the problem with

pattern recognition approaches such as the likelihood maximizing beamforming methods,

in which beamforming is adjusted based on top-down information from the recogniser [1].

In addition to these methods a multiple speaker scenario speech recognition system is

introduced here.

In real situations there are several kinds of disturbance in the received speech signal.

Firstly, there is additive noise that is considered to be caused by the recording system.

Secondly, the enclosure or the environment causes distortion to the original signal. Finally,

if there are more than one source in the enclosure, the sources that are not of interest are

considered as disturbance signals.

The above explanation can be formulated as follows. In a room environment the sounds

sk(t) traveling from the sound sources k to the receiver i are affected by the path hi,k(t)

and the measurement noise wi(t):

pi(t) =
K

∑

k=1

[hi,k(t) ∗ sk(t)] + wi(t), (1)

1
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Figure 1: Typical small room environment recording setup.

where ∗ denotes convolution, p is sound pressure in the microphone, and K is the number

of sources. Typically the complexity of the room environment is described by the well-

known parameter T60, i.e. the reverberation time, which can be estimated if hi,k(t) is

known. The relation between pi(t) − wi(t) and wi(t) is referred as signal-to-noise ratio.

Depending on the complexity of pi(t) one has to use different approaches to achieve

robust speech recognition. For example if there is no reverberation, i.e. hi,k(t) = δ(t − τ)

for all i, where τ is some constant and number of sources is one, K = 1, the task would

be to find the most robust approach against additive noise. Ideally one would like to have

a speech recognition system that is able to deal with all the difficult situations separately

and at one time, i.e. when say K > 1, T60 > 0.5 s, or SNR < 5 dB. In this review the

interest is more on the robustness against reverberation and other sources than on the

robustness against noise.

2 MICROPHONE ARRAYS AND SETUPS FOR SPEECH PROCESSING

2.1 Placement of the microphones

The placement of the microphones plays an important role in array processing. The

placement of the microphones depends mostly on the application. For example if the

application is hands free communication with mobile devices the microphones cannot be

placed very far apart from each other due to the size of the devices. On the other hand, if

the environment is fixed to a, say, meeting room then the microphones can be positioned

smartly.

In a small room environment a generally accepted rule of thumb is to use a single

microphone array per wall. One example where the microphone array is a microphone

pair is shown in Fig. 1. This kind of setups were used for example in the Classification of

2
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Events, Activities, and Relationships (CLEAR) evaluation [2] throughout many years.

However, the most popular arrays for speech recognition are probably linear arrays.

Linear arrays have been used in the recording of several speech corpuses [1]. The reason

for the use of linear arrays is probably the highly directive directivity pattern. Thus, the

side slopes of the directivity pattern are small. In the case of a single linear array one

achieves more information on the direction of the sound source than on the distance.

2.2 B-format

B-format microphones are useful in mobile devices or devices that are not tied to any

specific environment, i.e. computers. B-format microphones are introduced here due to

their popularity in recent research. Compared to linear arrays they more compact and

can therefore be installed to smaller devices. It is also very easy to cope with acoustic

echo when using B-format signals, since the sound coming from certain direction can be

easily cancelled.

First order B-format signals can be recorded with for example Soundfield microphones

or with microphone pair measurements. The recording with Soundfield microphones is

straightforward. Therefore, only the first order B-format signal recording with microphone

pairs is formulated here. A square grid with four microphones is used. The microphones

are located in the corners and the diagonal of the square is assumed length d. More

precisely, in Cartesian coordinate system, microphones 1 and 2 are located along the x-

axis at (x1, y) and (x2, y) with x1 − x2 = d and microphones 3 and 4 along the y-axis at

(x, y1) and (x, y2) with y1 − y2 = d. The corresponding polar coordinate presentation of

the Cartesian coordinates is denoted with azimuth angle θ and radius r.

On a certain axis a, the sound intensity is given in the frequency domain as

Ia(ω) = ℜ{P ∗
W(ω)Ua(ω)}, (2)

where P (ω) and Ua(ω) are the frequency presentations of the sound pressure and of the

particle velocity with angular frequency ω. In addition, ℜ{·} and is the real part of a

complex number and ∗ denotes the complex conjugate [3].

The average sound pressure between the microphones in square grid can be calculated

as [3]:

PW(ω) ≈
1

4

4
∑

i=1

Pi(ω). (3)

In addition, the particle velocity on the x-axis is estimated as

Ux(ω) ≈
−j

ωρ0d
[P1(ω) − P2(ω)], (4)

where d is the distance between the two receivers and ρ0 = 1.2 kg/m3 is the median

density of the air and j is the imaginary unit. Now, the sound intensity can be estimated

with Eq. (2) and the approximations in Eqs. (3) and (4). For obtaining the y-component

of the sound intensity, the microphones 1 and 2 are replaced in Eq. (4) with microphones

3 and 4.

3
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Kallinger et al. showed that the square grid microphone setup suffers from a systematic

bias caused by the approximation in Eq. (4). The unbiased direction estimate can be

obtained by compensating the direction with the inverse function of:

θbiased =
sin(ω d

2c
sin(θ))

sin(ω d
2c

cos(θ))
, (5)

where c = 343 m/s is the speed of sound. The inverse function does not have any closed

form solution so it has to be approximated e.g. with linear interpolation [3].

3 MICROPHONE ARRAY TECHNIQUES FOR SPEECH RECOGNITION

In this section two microphone array techniques that aim to improve speech recognition

are introduced. First one treats the automatic speech recognition as a signal processing

task and second one as a pattern recognition task.

3.1 Beamforming Techniques

One of the most researched acoustical source localization approaches is steered beamform-

ing (see e.g. [4] and references within). In the concept of steered beamformers (SBF) in

speech recognition the speech recognition algorithms are usually applied to the enhanced

output signal of the SBF. This improves the recognition performance [1].

The simplest implementation of the steered beamformer is the delay and sum beam-

former, where the received signals are simply delayed with a steering delay and added [5]:

P (r) =
M
∑

i=1

aipi(t − τi(r)) (6)

where τn is the steering delay for each microphone, M is the number of microphones

an = 1/M is a weighting factor, and r is the steered location. The SBF output, P is the

sound pressure in location r. The steering delays are calculated as a function of location:

τi(r) =
|r− ri|

c
, (7)

where ri is the location for microphone i.

Steered beamformer can be presented in the frequency domain as a filter and sum

beamformer [4]:

P (r) =

∫
∣

∣

∣

∣

M
∑

i=1

Wi(ω)Hi(r, ω)Xi(ω)

∣

∣

∣

∣

2

dω, (8)

where M is the number of microphones, W (ω) is frequency weighting function, and Xi(ω)

is the ith signal xi(t) in frequency domain. The weighting can for example be the so-called

phase transform weighting [5]:

Wi(ω) = |Xi(ω)|−1. (9)

Hi(r, ω), the beamformer filter for each signal at each location r in frequency domain is

4
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b) Wi(ω) = |Xi(ω)|−1
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Figure 2: The steered beamformer output with two different filters. Red color indicates
that there is more power or evidence in that area. The speaker is located at [2.4 2.6] m.

given as [4]:

Hi(r, ω) = αie
−jωc−1(|r−ri|−dref), (10)

where the gain for each received signal, may have uniform values αi = 1/M , and dref is

chosen to be the center point of each microphone pair or array.

When SBF is used for single source location estimation the the maximum argument

of the SBF function [5]:

r̂s = arg max
r

P (r), (11)

is the location estimate. In Fig. 2 an example of the output for the steered beamformer

with no filter (a) and phase transform filter is shown (b). The microphone setup was same

as in Fig. 1. The room environment is simulated with the image source method [6] with

0.2 seconds of reverberation time. In addition, the source signal was male speech, the

signal-to-noise ratio was set to 25 dB, and the used frequency band was from 100 Hz to 5

kHz.

In addition to the SBF above, many proposals to do the beamforming as an adaptive

process has been made [1]. However, the SBF based methods have not been used widely

in the speaker recognition systems due to their bad performance [1].

3.2 Likelihood Maximizing Beamforming

Likelihood maximizing beamforming is a class of methods that aim to find an optimal set

of some parameters that maximizes the correct hypothesis, i.e. the correct word string.

Here the general idea of this pattern recognition approach is reviewed. This section is

based on [1].

Denote the observed feature vectors with Z = [z1, z2, ...zT ], which is dependent on

speech and is a function of array processing parameters ξ, i.e. Z(ξ). The array processing

parameters are actually the coefficients of a FIR filter that corresponds to the impulse

responses hi. Automatic speech recognition aims to find the most likely word string

5
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c = [c1, c2, ..., cT ] that generates the observed feature vectors, i.e.

ĉ = arg max
c

P (Z(ξ)|c)P (c) (12)

P (Z(ξ)|c) is the acoustic likelihood and P (c) is the language likelihood. The goal is to

find the set of parameters ξ that maximize the likelihood.

If the correct word string cc is known, the likelihood function can be maximized with

respect to the parameters:

ξ̂ = arg max
ξ

P (Z(ξ)|cc)P (cc) (13)

from where P (cc) can be omitted.

In a hidden Markov model based speech recognition system, after some assumptions

and simplifications (see [1] for details) the finding of the optimal parameter set formulates

as:

ξ̂ = arg max
ξ,s∈Sc

{

∑

i

log(P (Z(ξ)|si)) +
∑

i

log(P (Z(si|si−1, cc))

}

(14)

where, si is a state in a state sequence s, and all of the possible state sequences are

denoted with Sc in a hidden Markov model for the sequence of words in the transcription

cc. Optimization of the state sequence
∑

i log(P (Z(si|si−1)) and the array parameters
∑

i log(P (Z(si|si−1, cc)) is not considered here more. In [1] one solution for finding the

state sequence and the array parameters is given. However, in this kind of non-linear

optimization problem any global optimization tool can be used.

The likelihood maximizing beamforming achieves better performance than the tradi-

tional delay and sum beamformer, introduced in the previous section [1]. Seltzer reports

that with unsupervised likelihood maximizing beamforming can achieve 27 % word error

rate, when the delay and sum beamformer achieves 38.7 % word error rate with CMU-8

corpus.

4 BLIND SOURCE SEPARATION

Blind source separation is one type of speech enhancement process where two or more

sources are separated from each other using information that is often achieved from spatial

or time and frequency domain. Next a blind source separation system is reviewed [7].

4.1 Blind Source Separation Using Convolutive Mixtures

After calculating the sound intensity vectors the source separation process proceeds as

follows. The direction of the sound intensity is estimated:

θ(ω) = arctan 2

{

Iy(ω)

Ix(ω)

}

(15)

6
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where arctan 2 is the four quadrant arctangent, and Iy(ω), Ix(ω) are the x and y compo-

nents of the sound intensity vectors.

Next, the most likely source positions are searched using the histogram of θ(ω) and a

mixture model which is formulated as the sum of distributions f :

p(θ|µ, κ) = ao/2π +
M

∑

m = 1

amf(θ|µm, κm), (16)

where, m indicates the index of a mixture, am is assumed to be constant for all m, and

a0/2π corresponds to the noise floor. The distributions in [7] were of von Mises probability

density functions:

f(θ|µm, κm) =
eκm cos(x−µm)

2πI(0, κm)
, (17)

where κm is the concentration, µm is the mean, and I(0, κm) is the modified Bessel function

of order 0. The distributions can be fitted to the histogram of θ(ω) with any global

optimization methods. In [7] the fitting was done with maximum likelihood estimation by

giving discrete values to κ and µ. It should be noted that this algorithm does not estimate

the number of sources.

The enhanced signal is then formed by beamforming to the maximum likelihood solu-

tions µm and κm. The beamforming function is defined as:

ŝm(ω, t) = PW(ω, t)Jm(θ(ω, t); ω, t), (18)

where t is index for frame and

Jm(θ; ω, t) = amf(θ|µm, κm) (19)

is the directivity function.

Gunel et al report that with their method it is possible to achieve good separation in

small rooms [7]. For example in a room with 0.32 seconds of reverberation time the method

achieves about 21 dB signal-to-interference ratio, with 90 degree separation between three

sources. Despite the good separation capabilities that these kind of blind source separation

methods provide, they cannot provide good dereverberation [1]. Thus, some other methods

have to be used in addition to get good speech recognition performance.

5 CONCLUSIONS

Three microphone array techniques for improving the speech recognition performance were

reviewed. Traditional sum and delay, maximum likelihood beamforming as well as blind

source separation algorithms were introduced. Some typical microphone array setups for

speech recognition were shown.

7
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Abstract 
Current state-of-the art speech recognizers are based on Hidden Markov Model 

(HMM) architectures. Although their performance is sufficient for many applications 
in clean signal conditions, the recognition accuracy deteriorates badly when a 
mismatch exists between the training data and the speech being recognized. In almost 
all real world applications this mismatch is notable and the major source of this is the 
environmental background noise. Therefore a large amount of effort is being 
channeled to the development of methods that can increase noise robustness of the 
HMM recognizers, and hundreds of algorithms have already been developed. The so-
called missing-feature approaches form one family of such methods. Missing-feature 
methods attempt to recognize unreliable spectral components from the input in a 
process called spectrographic masking and then use the reliability information to 
reconstruct original speech related spectral vectors or to modify the classifier in order 
to deal with the noisy data. This type of processing can significantly enhance speech 
recognition accuracy in difficult signal conditions. This work reviews the most 
essential missing-feature approaches reported in automatic speech recognition 
literature.  

 

1 INTRODUCTION 

Automatic speech recognition (ASR) has been a central engineering research topic for 
decades. Despite the continuous technological advances, especially the emergence of 
HMM-based speech recognition systems and the countless number of improvements to 
the HMM-methodology (Gales & Young, 2008; Juang & Rabiner, 2005; Makhoul & 
Schwartz, 1994), the state-of-the-art speech recognition systems fall still far behind 
human performance in recognition capabilities (Lippman, 1997; Moore, 2005). This is 
especially true for noisy conditions, that is, conditions with both semi-stationary and 
transient background sounds mixed with the input speech that is being recognized. 
Humans can perform source separation with relative ease, and they can increase their 

9
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recognition performance by utilizing multimodal- and contextual cues to fill gaps in 
input stream with most suitable explanation for missing data when the linguistic 
content of the input itself is ambiguous. HMM-based recognizers, on the other hand, 
require a match between the features extracted from the training data (state models) 
and the features obtained from the input signals in the recognition. Because this ideal 
match is rarely a reasonable assumption in real world applications, different types of 
methods have been developed to deal with noise in speech recognition processing. This 
paper reviews one family of such noise robust speech recognition approaches, namely 
missing-feature methods, that attempt to deal with partially corrupted spectral input. 
Since the HMM recognizers are the current state-of-the art in speech recognition, the 
missing feature approaches in this review all rely on HMM-based recognition systems 
unless mentioned otherwise. 

Missing-feature method framework 

The fundamental common assumption underlying approaches that are referred to as 
missing-feature approaches is that the spectral properties of input to a speech 
recognition system are partially corrupted due to environmental factors, and this 
impairment affects unequally different spectral elements in both discrete time and 
discrete frequency domain. The missing feature methods attempt to determine whether 
these different spectral components of the input are reliable representations of the 
speech being recognized (called spectrographic masking; section 2), and then take this 
reliability into account either by attempting ignoring the unreliable parts or by 
attempting to fill in the missing information using optimal estimation (section 3).  

The assumption of partial corruption of the signals in time- and spectral 
domains often holds in real-world situations. At any moment of time, the majority of 
energy of clean speech is often concentrated into a very limited bandwidth compared to 
the entire bandwidth of human auditory perception. Moreover, the bandwidth required 
for intelligible speech communication is much smaller than the entire bandwidth of 
human hearing. Therefore the relevance of different spectral components of speech 
during different phonetic articulations differs greatly. On the other hand, loud 
environmental noise sources are often distributed differently than speech over auditory 
frequency range and most broadband sounds are temporally very limited in nature 
(e.g., loud impulse sounds) or low in intensity. When this noise is added to the speech 
signal, it is likely that the high-energetic spectral components of speech are relatively 
unaffected by lower intensity ambient noise, whereas the noise has greater impact on 
the parts of the spectrum that are low in speech intensity, causing unwanted spectral 
components to appear in feature vectors used for recognition (e.g., FFT or Mel 

10
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representations1). Due to redundancy of normal speech spectrum, it is also possible to 
some degree to obtain knowledge about high-energetic spectral structures (e.g., 
formants) even if their frequency bands are entirely masked with interfering high-
intensity noise. Band-specific processing and reconstruction of the input are also related 
to human listeners, since it is well known that humans process auditory input at 
several parallel bands (Moore, 1997), and this band separation plays important role in 
both segregation of different audio streams (Bregman, 1990) and, e.g., learning of novel 
sound patterns (Newport & Aslin, 2004).  

We will start with a description of how reliability of input data components can 
be estimated.  Then more detailed descriptions of the two main missing-feature 
approaches in recognition, feature-vector imputation and classifier modification, will 
follow. A number of additional approaches are also reviewed that differ from the needs 
of mainstream continuous density HMM recognition. The description of the 
methodology will be strongly based on the work of Raj & Stern (2005) and follow the 
lines of their research, although some methods are described in more detail while others 
receive less attention. 

2 ESTIMATING THE RELIABILITY: SPECTROGRAPHIC MASKS 

First and possibly the most difficult aspect of the missing feature methods is the 
identification of the reliable and unreliable spectral components. The process of labeling 
spectral components in signal magnitude representation, or spectrogram, Y(ω,t) in 
terms of their reliability is called spectrographic masking, since in most simple case it 
divides the spectrogram of speech into a reliable and an unreliable parts. Naturally, this 
binary decision (“hard masking”) does not have to be the case and scalar reliability 
measures (“soft masking”) can be given to each spectral component in more 
sophisticated techniques if the next levels of processing can utilize this information 
efficiently in their decisions. A theoretical upper quality limit, and therefore a reference 
in evaluation of the proposed methods, is often considered to be the exact value of SNR 
in each component, which can be then used to construct an oracle mask (Cerisara et 
al., 2007). Naturally, this knowledge about actual SNR in each component is not 
available to the system in real world applications and the goal of a masking algorithm 
is to estimate prevailing signal conditions.  

Spectrographic masking is a very important step in recognition process since it 
determines entirely how spectral frames are processed after mask estimation in missing 
data methods. Different approaches to masking can be divided to a handful of classes 
depending on the used criteria. Raj & Stern (2005) divide spectrographic masking 

                                                 
1 Note that dealing with band specific corruption does not work directly for cepstral analysis. See, e.g., 
van Hamme (2004) for missing data techniques in cepstral domain.   
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methodology to SNR-based estimation and to methods that use some other criteria 
than SNR. Another division, proposed by Cerisara et al. (2007), is to have methods 
that mimic, or are inspired by the processing in human ear, and methods that are 
based on signal processing and stochastic modeling. Several major approaches to 
spectrographic masking will be discussed in the following sub-sections. In addition to 
the reviewed techniques, a number of other approaches have been proposed, including 
the use of neural networks (Potamitis et al., 2000), independent component analysis 
(Potamitis et al., 2001), and feature vector segmentation based on topological 
relationships in the spectrum for a set of features (Bach & Jordan, 2005), but are not 
included in this review due to lack of space. 
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       (a)                                     (b)                                     (c) 
Fig. 1: A clean speech sample (a) is corrupted by pink noise to an SNR of 10dB (b). 
An SNR-based spectrographic mask (c).  

2.1 SNR based estimation of spectrographic masks 

The SNR based estimation of reliability of spectral components requires knowledge of 
energy of both speech signal and the corrupting noise. One possibility is to estimate the 
background noise level from sections of input that do not contain speech, non-speech 
sections determined by, e.g., voice activity detection or by assuming that first frames of 
any utterance are silence (Vizinho et al., 1999). However, it is shown that voice activity 
detection is often difficult to tune correctly for varying signal conditions and becomes 
unreliable at low SNR levels (Meyer et al., 1997; Sohn et al., 1999; McKinley & 
Whipple, 1997; see Cohen, 2003). These methods also rely on the assumption that the 
background noise signal is relatively stationary during the processed utterance so that 
the estimates of noise made during non-speech are valid for entire length of speech too. 
 To account for possible small changes in noise level during speech, a simple 
recursion can be utilized that initializes noise spectrum to the values obtained from 
first few frames of the utterance and then updates the band specific values if the 
change in energy between frames is sufficiently slow (fast changes are assumed to occur 
due to onsets of speech; Raj & Stern, 2005):  
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ˆ N p (m,k) =
(1− λ) ˆ N p (m −1,k) + λYp (m,k) if Yp (m,k) < β ˆ N p (m −1,k)
ˆ N p (m −1,k) otherwise

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
 (1) 

 
where ˆ N p  is the estimated noise power, Yp is the signal power, m is the time frame, 

and k is the number of spectral coefficient. Typical values are λ = 0.95 and β = 2, 
where λ determines how quickly the noise variation is being tracked (Raj & Stern, 
2005). Also improved (and more complicated) recursive averaging algorithms have been 
developed that utilize adaptive spectral and temporal smoothing, enabling soft 
transitions in noise level estimate between speech activity and non-activity. These have 
been shown to lead to improved performance in non-stationary and low SNR conditions 
(Cohen, 2003). 
 After the background noise level is determined, reliable and unreliable spectral 
components have to be determined according to some rule. A so-called negative energy 
criterion (El-Maliki & Drygajlo, 1999) assigns a spectral component as unreliable if its 
energy is less than the estimated noise energy in the corresponding frame: 
 

 Yp (m,k) ≤ ˆ N p (m,k)        (2) 

 
According to Raj & Stern (2005), best mask estimates are obtained if negative energy 
criterion is combined with a SNR criterion that assigns all components having SNR 
greater than 0 dB as reliable. SNR of each spectral component can be estimated by 
using spectral subtraction (Boll, 1979), where noise estimate is subtracted from the 
power spectrum of the noisy speech to obtain clean speech power estimate: 
 

 ˆ X p (m,k) =
Yp (m,k) − ˆ N p (m,k) if Yp (m,k) − ˆ N p (m,k) > γYp (m,k)
γYp (m,k) otherwise

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
  (3) 

 
Parameter γ has a small value and is used to prevent clean speech power from going to 
negative values. 
 In addition to these basic SNR-based approaches, measures of harmonical 
properties of (voiced) speech signals are often combined to the SNR analysis 
techniques. For example, measuring the similarity of shape of adjacent pitch periods 
and the use of Spectral Autocorrelation Peak Valley Ratio-Residual (SAPVR), which 
examines the autocorrelation of the FFT of LPC residual, have been utilized (Chandra 
& Yantorno, 2002). The assumption is that harmonic overtones of a sound in a signal 
can be considered as originating from the same source (de Cheiveigne et al., 1995), and 
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therefore these bands have lower probability to become masked due to their higher 
energy. When this type of harmonicity information is utilized, a final spectrographic 
mask is computed as a weighted sum of harmonicity mask and SNR mask.  

2.2 Bayesian estimation of spectrographic masks 

Instead of determining reliable components of speech by estimation of SNR level at 
each time frame for each separate frequency band, it is possible to use Bayesian 
decision-making approach to model clean speech and noisy speech features as 
probabilistic models and then match new input against these models.  

One straightforward approach is to estimate probability density distributions 
for noise and clean speech in order to have a probability value for each spectral 
component that estimates whether noise energy level exceeds clean speech. This 
approach has clear improvement over normal spectral subtraction (e.g., 20 % 
recognition rate improvement in non-stationary helicopter noise; Renevey and Drygajlo, 
1999; see also Renevey & Drygajlo, 2001). However, this approach relies on the 
assumption that the noise can be modeled with Gaussian or uniform distributions in 
beforehand.  

Another approach has been introduced by Seltzer et al. (2004) that does not 
make any assumptions regarding the corrupting noise signal. It relies on classification 
based on a set of features that represent characteristic properties of speech. The feature 
set is divided to represent voiced and unvoiced speech separately since the production 
mechanisms are very different, and also because estimation of masks for unvoiced 
speech is more difficult due to relatively lower energies of the speech segments. Voiced 
speech features include 1) comb filter ratio that measures energy at the harmonics 
compared to the energy outside harmonics, 2) autocorrelation peak ratio describing the 
ratio of the largest and the second largest peak of the autocorrelation function, 3) 
subband energy to fullband energy ratio, 4) kurtosis of the spectrum, 5) variance of the 
spectral subbands (or flatness), 6) subband energy to subband noise floor ratio 
estimated from histogram of frame energies over entire utterance, and 7) the classical 
spectral subtraction based SNR estimate. Since unvoiced segments are non-periodic, 
they are described without the pitch dependent features 1) and 2).  
The algorithm utilizes two separate two-class Bayesian classifiers, one for voiced and 
one for unvoiced speech, classes being reliable and unreliable speech represented by a 
mixture of Gaussians with a single full-covariance matrix tied across all densities in the 
mixture. Moreover, a separate classifier was constructed for each spectral subband. 
Prior probabilities for the two-classes can be estimated from training data as a fraction 
of frames that have SNR above and below a given threshold. It is noteworthy that this 
probabilistic framework enables the use of probabilistic spectrographic masks instead of 
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binary decisions, providing information which can be utilized later in HMM recognition 
processing. Seltzer et al. (2004) show that this methodology obtains clear improvement 
over SNR-based masking where binary masks are mapped to probability values using a 
sigmoid function of SNR (see Barker et al., 2001, for sigmoid mapping).  

2.3 Computational auditory scene analysis-based techniques 

It is well known that humans can utilize differences in auditory information arriving to 
two different channels (left and right ear) in order to enhance sound source segregation 
and to spatially localize sound sources in their surroundings (also called auditory scene 
analysis, or ASA; see, e.g., Bregman, 1990). Two main components in sound 
localization are interaural time difference (ITD) and interaural level difference (ILD). 
They are partially complementary, ITD being more suitable for localization at low 
sound frequencies whereas ILD works better on high frequencies due to masking 
properties of human head and phase locking accuracy of nerve cells in the cochlea 
(Moore, 1997). However, also other grouping cues exist that humans are able to exploit 
in auditory stream segregation. These cues include simultaneous fusion and sequential 
organization (Bregman, 1990) that come close to original Gestalt psychology. The first 
one relates to harmonical relations of a sound, periodicity, and especially the 
simultaneous onset of the stimuli. The latter includes rules how sequentially perceived 
sounds are grouped depending on, e.g., their frequency structure and interstimulus 
delay. These cues are also available in single channel signals, a situation normally faced 
in ASR (Cerisara et al., 2007).  

Computational auditory scene analysis (CASA) literally attempts to simulate 
ASA with computational modeling. It is very closely related to missing data techniques 
in speech recognition, since human like auditory scene analysis and sound source 
segregation, if successful, would naturally solve the mask estimation problem since 
sound components originating noise sources and speech sources would become 
determined in the process. Therefore CASA models are of great interest in this context.  

Most monaural CASA algorithms exploit harmonicity of the speech signals as 
the main cue in sound source segregation, a topic that was already discussed briefly in 
section 2.1, and more examples of methods utilizing this type of information in relation 
to CASA can be found in Brown & Wang (2005). Some algorithms have also utilized 
other cues like frequency modulation (Mellinger, 1991) and common onset of sounds 
(e.g., Brown, 1992; Denbigh & Zhao, 1992), although harmonicity is still often strongly 
embedded also in these approaches. 

For multi-channel CASA processing, Palomäki et al. (2004; see also Palomäki et 
al., 2001) have proposed a perceptually motivated model in the framework of missing 
feature recognition using two sound channels, especially designed for reverberant 
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listening conditions. The model, briefly introduced here, consists of two parallel 
pathways: a monaural and binaural pathway (fig. 2). The monaural pathway is 
dedicated for peripheral auditory processing that provides feature vectors for a 
conventional missing data speech recognizer. It performs frequency band separation to 
32 bands using ERB scale for determining the center frequencies of a gammatone 
filterbank. Outputs of the filters are half-wave rectified and Hilbert envelopes are 
computed, smoothed, compressed (power of 0.3), and sampled every 10 ms to have 
channel energies for feature vectors.  
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Fig. 2: Schematic diagram of the computational ASA model by Palomäki et al. (2004). 

 
 
The binaural pathway is responsible for sound localization. Experimental data suggests 
that in reverberating conditions humans localize sound source according to the 
direction of the first wave front arriving to the ears, while reverberations only affect 
qualitative properties of the sound. This is called precedence effect (e.g., Blauert, 1997). 
In order to emphasize the onsets of arriving sounds and to de-emphasize later arriving 
echoes, Palomäki et al.’s model computes ITD from binaural signals that are first 
inhibited after sound onset using low-pass filtered Hilbert envelopes computed in the 
monaural channel (precedence model block in fig. 2). The ITD computation is 
performed using cross-correlation between the two channels arriving from the 
precedence model, leading to correlation values as a function of delay and frequency 
band. From delays, a straightforward warping to azimuth angle can be performed. 
Interaural level difference is computed separately for each frequency band starting from 
frequency of 2800 Hz.  

In order to form a spectrographic mask, the azimuth information from ITD is 
pooled across channels, resulting in peaks corresponding to separate sound sources at 
different angles. An assumption is made regarding which of the peaks corresponds to 
speech, and information originating from corresponding angle is considered as reliable 
in the mask. The high frequency part of mask is then determined using ILD cue. 
Regions with ILDs that are consistent with ITD based azimuth estimate at specific 
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time instants are marked as reliable (one mask value). Additional energy threshold is 
included that sets reliability of a channel to zero if the ratio of instantaneous energy to 
the mean energy of the channel in a time window of 200 ms is lower than a predefined 
threshold. This improves mask quality in low SNR conditions.  

When evaluated with TIDIGITS corpus (Leonard, 1984) using a model of small 
room acoustics (Allen & Berkley, 1979) and head-related impulse response to simulate 
spatial sound properties, significant improvements in speech recognition accuracy were 
obtained over normal MFCC features in different noise conditions including 
reverberation and interfering speech, interfering speech only, and rock music. For 
example, for interfering male speech in reverberant conditions (reverberation time T60 = 
0.3 s) and SNR of 10 dB, the word recognition rate with binaural mask was 83.4 % 
whereas only 47.6 % was obtained without noise compensation. Use of an oracle mask 
resulted in recognition rate of 94.6 %.  

However, later research has pointed out that there is evidence regarding human 
hearing that grouping based on consistent ITD across frequency is weak (Edmonds & 
Culling, 2005), which is in contrast to use of ITD as an across frequency cue in this 
model.  
 

2.4 Conclusions for mask estimation 

Three different approaches for mask estimation were reviewed in this section. The 
estimation of spectral component reliability using knowledge of signal-to-noise ratio is 
effective if the SNR is known a priori (oracle masks) or (in practical applications) 
estimated reliably. However, good estimates for channel specific SNRs are extremely 
difficult to obtain in presence of non-stationary noise sources, since a priori 
assumptions about noise structure cannot be made. Bayesian decision theory can 
overcome noise-modeling problem by modeling the characteristics of the speech signal 
itself, combining information from spectral and temporal neighborhood to give a 
probabilistic estimate for reliability of each spectral component. Since this approach 
produces an actual probability value for each element (in terms of Bayesian thinking) 
instead of a binary classification, it can further enhance recognition performance in 
recognizers that are able to extend their search to this probabilistic space. Finally, it 
was shown that a psychoacoustically motivated approach to computational auditory 
scene analysis utilizing binaural processing can be used for sound source segregation, 
leading to highly increased recognition rates in difficult noise conditions if multi-
channel auditory input is available.  
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3 DEALING WITH THE MISSING FEATURES IN RECOGNITION 

After spectrographic masks are estimated, the reliability information has to be 
somehow utilized in the recognition process. According to Raj and Stern (2005), there 
are two major classes of methods for dealing with the unreliable data: feature-vector 
imputation methods that estimate most likely speech-related feature vectors from 
reliable spectral components, and classifier modification methods that modify the 
recognizer to deal with partially corrupted data. Both of these approaches will be 
discussed separately in the following two subsections. 

3.1 Feature-vector imputation with cluster-based reconstruction 

The aim of feature-vector imputation is to reconstruct original feature vectors 
representing the speech input from input vectors that contain spectral components 
corrupted by additive noise. An underlying assumption is that spectrographic masks 
identify the corrupted components and the remaining components can be treated as 
reliable descriptions of the speech signal.  
 One possibility for vector reconstruction is to use so-called cluster-based 
reconstruction. Spectrogram of the input signal power can be noted as Y = Yu+Yr 

where Yu are the unreliable spectral components and Yr are the reliable components, 
defined by the spectrographic mask. Now speech signal X that is being recognized can 
be divided to reliable and unreliable part X = Xu+Xr, where Xr ≈ Yr and Xu is 
unknown due to corrupting noise. However, since noisy (unreliable) components are 
assumed to have higher noise power than underlying speech power by definition, the 
unreliable components set an upper limit Xu ≤ Yu to unknown speech components.  

The distribution of clean speech vectors can be modeled with a Gaussian 
mixture  
 

P(X) = cv
v

∑ (2π Θv )−d / 2e−0.5(X −μv )T Θ v
−1 (X −μv )      (4) 

 
where d is dimension of the vector, cv is the priori probability, μv is the mean vector, 
and   Θv is the diagonal covariance matrix of the vth Gaussian. Now if a spectral vector  
Y = Yr+Yu is observed, the underlying speech component Xu can be estimated with 
bounded Maximum A-Posteriori (MAP) estimation: 
 
 ˆ X u = argX u

max P(Xu Xr,Xu ≤ Yu){ }      (5) 

 
For practical reasons, this is usually done by approximating the MAP estimate as a 
linear combination of conditional bounded MAP estimates   
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ˆ X u = P(v

v
∑ Xr,Xu ≤ Yu)argX u

max P(Xu Xr,Xu ≤ Yu;μv,Θv ){ }  (6) 

 
where  

P(v Xr,Xu ≤ Yu) =
cvP(Xr,Xu ≤ Yu v)

c jP(Xr,Xu ≤ Yu j)
j

∑
     (7) 

Now obtained estimate for Xu and known Xr can be combined to a feature vector that 
is used normally in the further recognition processing (Raj & Stern, 2005). 
 Another possibility is to use covariance-based method for reconstructing the 
feature vectors. Expected values for speech vectors and corresponding covariance 
matrices can be trained using a clean speech corpus. Then all unreliable components in 
each spectral vector can be estimated with the bounded MAP procedure using the 
reliable components in the neighboring spectral vectors (see Raj & Stern, 2004, for a 
more detailed description of both approaches).  

3.2 Classifier modification 

Instead of recovering the structure of the feature vectors, it is possible to modify the 
classifier to deal with unreliable or incomplete data. This is called classifier-
modification. Raj and Stern (2005) mention two popular approaches: class-conditional 
imputation (Josifovski et al., 1999) and marginalization (Cooke et al., 1999). 
 In clean speech conditions, HMM state emission distributions are of form f(x|S). 
However, in noisy conditions, the feature vector x consists of reliable and unreliable 
components x = xr + xu according to previous discussions. Since unreliable part is 
bounding the speech related values of xu from above at xhigh, the likelihood of data can 
be computed as 
   

f (xr S) = f (xr, xu S)dxu
xlow

xhigh

∫        (8) 

 
that is, by marginalizing the unknown elements, hence the name bounded 
marginalization. For continuous density HMM systems, state distributions can be 
modeled with Gaussians with diagonal covariance matrices: 
  

f (x S) = P(k
k=1

M

∑ S) f (xr,xu k,S)       (9) 
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where P(k|S) are the mixing coefficients, so the bounded marginalization can be 
formulated as: 
 

f (xr S) = P(k
k=1

M

∑ S) f (xr k,S) f (xu
xlow

xhigh

∫ k,S)dxu      (10) 

 
In state based imputation, also called class-conditional imputation, the missing 
components are estimated separately for each state, that is, the state specific density 
distributions are used to fill in the most likely missing information in case of that 
specific state and then these imputed state-specific feature vectors are used for normal 
likelihood computation. If densities of state distributions are assumed to be Gaussian 
like in (9), it can be shown that: 
 

f (xu xr,S) = P(k
k=1

M

∑ xr,S) f (xu k,S)        (11) 

 
Josifovski et al. (1999) measure recognition accuracy as a function of SNR with 
TIDIGITS continuous speech material. The effects of several different noise 
compensation were methods tested.  

3.3 Other approaches 

As an interesting another viewpoint to missing data recognition, the use of recurrent 
neural networks (RNN) has been studied in this framework and the first results seem 
promising. Parveen and Green (2001) modified a RNN architecture first introduced by 
Gingras and Bengio (1998) in order to enable it to perform simultaneous speech 
recognition and missing data imputation by having full recurrent links also from hidden 
layer to input layer (so called Elman network; see Elman, 1990). The feedback from 
hidden layer to the input-layer imputes unreliable spectral vector components based on 
missing components in previous input frames. Since imputation and recognition are 
embedded into the same process, this approach is a sort of hybrid of vector imputation 
and classifier modification.  

Preliminary tests of Green and Parveen using this architecture with noisy 
TIDIGITS recognition indicate that the use of recurrent links for imputation of missing 
features improves recognition rates when compared to standard Elman RNN or 
imputation of features using unconditional mean values for missing components 
(Parveen & Green, 2001). Parveen and Green have also applied this similar type of 
Elman network for speech enhancement where noisy features are passed through the 
network to impute and/or correct corrupted data (Parveen & Green, 2004). 
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 In addition to neural networks, another central issue is the noise compensation 
in systems with low computational capability where many sophisticated but 
computationally expensive methods are not possible (e.g., many hand-held devices). For 
this type of purpose, Renevey et al. (2001) have developed a weighting method that 
determines the reliability of each dimension in a feature vector in vector quantization. 
This reliability measure, or component weight, is utilized in distance computation when 
incoming feature vectors are compared to the centroids in VQ codebook. In their paper, 
they use normal Mahalanobis distance as the distance measure, but the weighting can 
be performed in principle to any other distance measure.  

In their method, Renevey et al. set background noise threshold Θ(ω) to the 
maximum magnitude value outside speech recognitions determined by voice activity 
detector: 

 
Θ(ω) = maxt ∉speech Y (ω,t)       (12) 

   
Using this threshold, they make normal division to reliable (signal energy higher than 
noise energy) and unreliable (signal energy lower than noise energy) subspaces. In 
addition, they make the following general assumptions: 1) Speech and noise are 
additive in the magnitude spectral domain. 2) The highest the magnitude of the noisy 
signal, the smallest is the relative influence of the noise. 3) Under the assumption of 
additivity, features with a small magnitude are more representative of the speech signal 
than of the noise signal. According to these, they formulate that in noisy speech 
subspace, the features with lowest magnitude are more representative of the clean 
speech signal than that with a highest magnitude, and in clean speech subspace 
features with the highest magnitude are more representative of the clean speech signal 
than features with value near threshold Θ(ω). From these assumptions, a formula for 
weighting of feature vector components in noisy speech subspace can be written as: 
 

 Ψu(ω, t) =1−
Y (ω, t)

maxω ∈unreliable (Y (ω, t) )
      (13) 

 
and for the clean speech subspace: 
 

 Ψr(ω,t) =
Y (ω,t)

maxω ∈reliable (Y (ω, t) )
      (14) 

  
When tested with discrete density HMM and TIDIGITS corpus corrupted with noises 
from NOISEX noise database, the recognition rates were comparable, and sometimes 
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better, than results obtained standard codebook compensation methods using noise 
models and greatly improved from baseline quantization without noise compensation  
(Renevey et al., 2001).  

3.4 Conclusions for dealing with missing data in recognition 

The two predominant approaches for dealing with missing data in recognition were 
briefly introduced: feature-vector imputation and classifier modification. The former 
attempts to use reliable components of spectral vectors to estimate the remaining 
components corrupted by noise, whereas the latter either integrates over the possible 
values of missing component probability densities in the recognition phase or imputes 
the missing features separately for each state using the available state specific 
component distributions.  

Not a single algorithm can be considered as a superior to others and some 
methods are more suitable for some specific type of noise situations and recognition 
tasks than some others. For example, experiments by Raj and Stern (2005) indicate 
that in the case of white noise, marginalization leads to significantly higher recognition 
rates than state-based imputation, and they both are significantly better than using 
only the basic spectral subtraction in the front end. On the other hand, spectral 
subtraction performs relatively well in car noise and GSM transmitted factory noise 
(Renevey, 2001). An interested reader is suggested to see Renevey (2001) for a 
comprehensive comparison of different missing-feature methods for several different 
noise conditions.  

It was also pointed out that the computational complexity of continuous density 
HMM recognizers combined with computationally heavy mask estimation algorithms 
are not suitable for all ASR applications, and therefore computationally straightforward 
methods are needed and have been proposed.  

 4 SUMMARY 

Missing-feature approaches in speech recognition attempt to improve speech recognition 
performance in noisy conditions, that is, in conditions that are nearly always faced in 
practical ASR applications. Higher noise robustness is achieved by first estimating 
reliability of each spectral component in the input frames in a process called 
spectrographic masking, and then utilizing this reliability information in order to fill in 
the missing spectral data or to modify the recognition process to be able to deal with 
the missing information.  
 Three major families of spectrographic masking were discussed. Signal-to-noise 
ratio (SNR) based estimation assumes a fixed or adaptive noise model for the noise 
corrupting the input signal and then uses this model to estimate SNR in each spectral 
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component. Components with insufficient SNR are considered as unreliable, or 
reliability is indicated as a scalar value mapped from the SNR itself. Bayesian 
estimation of spectrographic masks makes use of Bayesian probability theory. 
Classifiers are constructed and trained using clean speech and noisy speech in order to 
have probability distributions for each component. Additional features, e.g., ones that 
take into account the temporal neighborhood of the studied signal frame, can be 
included in the Bayesian decision process. Finally, Computational Auditory Scene 
Analysis (CASA) attempts to segregate sound sources using monaural and binaural 
grouping cues. Once a model for each sound source is obtained, the effects of noise on 
the studied speech signal are readily available.  

Cluster-based reconstruction was introduced as a feature-vector imputation 
method, i.e., for filling in the corrupted components of each spectral vector. The 
approach uses either diagonal or full covariance Gaussian densities to estimate most 
likely values for unreliable components using the available reliable components and 
limits for the unreliable values. Feature vector imputation can be also done separately 
for each possible state in the recognizer using the probability densities tied to each 
state. This method is called state-based imputation.  

Instead of attempting to recover corrupted features, classifier modification 
approaches change the recognition process itself according to the information provided 
in spectrographic masks. One possibility is to ignore the unreliable part by integrating 
over unreliable dimensions in probability distributions (marginalization) or to limit this 
integration to the values that are possible for the dimensions given the energy of 
unreliable noisy components (bounded marginalization).  
 All reviewed methods improve recognition accuracy in noisy conditions, 
although they may actually hinder recognition rates slightly on clean speech. Some 
methods (e.g., many SNR based methods) also make explicit assumptions regarding the 
properties of the noise, making them vulnerable to many non-stationary noise sources 
in real environments that are hard to model and predict, whereas others do not 
attempt to model noise itself at all and are more robust in varying conditions (e.g., 
Bayesian classification and CASA). Finally, it is important to note that some missing-
feature approaches reviewed here are designed to work in frequency domain using 
logarithmic FFT densities, although the best speech recognition performances with 
clean speech have been obtained with continuous density HMMs using cepstral features 
that are incompatible with frequency band-specific processing. Therefore these methods 
are not directly applicable to recognizers that make the most of decorrelating properties 
of the cepstrum. However, this is not true for all methods and some, e.g., cluster based 
reconstruction methods (Raj et al., 2004), are capable to perform noise compensation 
also for cepstral features. 
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Abstract

Feature extraction is a crucial step in an automated speech recognition system,

but conventional feature representations are not designed to be especially robust to

noise. Better recognition rates, particularly in noisy conditions, can be achieved by

using spectral estimation methods that are relatively invariant to noise. This article

reviews alternative audio spectrum estimation methods based on linear predictive

(LP) and minimum variance distortionless response (MVDR) modeling, in particular

their suitability for speech recognition tasks. In addition, a different proposed feature

representation based on time-domain filtering of the spectral frequency channels is

presented.

1 INTRODUCTION

The extraction of an efficient set of features from a speech audio signal is an important

step in an automated speech recognition system. The initial audio data contains a large

amount of speaker- and situation-dependent variation that does not affect the meaning of

what was said, and an ideal feature extraction system would discard as much as possible

of this undesirable information. For example, a prominent feature present in a speech

audio signal is the harmonic structure, which is mostly associated with the tone of voice

used, and therefore is of no importance in a pure speech recognition scenario where only

the textual content of speech needs to be recovered. Additionally, the selected features

should ideally be relatively invariant to any noise present in the recording environment.

A very widely used feature set in speech recognition is the mel-frequency cepstral

coefficient (MFCC) representation [1]. The MFCC representation is based on the cep-

stral coefficients of a short-term spectrum estimate of the speech signal, smoothed with

a perceptually motivated filterbank. This perceptual smoothing does remove the speech

harmonic structure to some extent, but the effect is limited. The resulting features are

also not considered to be particularly robust in the presence of noise [2].

In this article, several methods of achieving more noise robust feature representations

are reviewed. Generally the methods are variations of the MFCC method, utilizing more

involved spectrum estimation than the simple periodogram used in the traditional MFCC.

Section 2 gives a short overview of the commonly used MFCC features, as well as the major

points of the linear predictive (LP) analysis, as background knowledge for the different

methods described in section 3. Methods presented in 3.1 are based on LP modeling,

while those in section 3.2 rely on the alternative minimum variance distortionless response

(MVDR) modeling technique. Finally, section 3.3 describes the RASTA method, which

involves time-domain filtering of the spectral channels.
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2 BACKGROUND

2.1 Mel-frequency Cepstral Coefficients (MFCCs)

Mel-frequency cepstral coefficients are a very widely used feature representation for speech.

An overview of a MFCC-based feature extraction algorithm is given below: [3]

1. An estimate for the power spectrum of the analyzed signal is computed, typically

simply as the squared magnitude of the result of the FFT transformation.

2. The power spectrum estimate is smoothed with a perceptually motivated filterbank.

In case of mel-cepstral analysis, the filters have a triangular shape, are spaced loga-

rithmically, and applied to the logarithmic magnitude of the spectrum.

3. The discrete cosine transformation (DCT) is applied to the mel filterbank output,

to get the cepstral coefficients. Typically only part of the cepstral coefficients are

kept for analysis.

The logarithmic spacing of the filters in step 2 approximates the variable spectral res-

olution of the human hearing, while the logarithmic compression applied to the spectrum

both resembles the intensity-loudness relationship of the human ear and reduces amplitude

variations. The truncation of cepstral coefficients in step 3 further smoothes the spectrum,

as it throws away higher-frequency components in the spectral domain.

2.2 Linear Prediction

Linear predictive analysis is a widely used tool for spectral modeling. In the linear pre-

diction model, a sample xn is estimated as: [4]

x̂n = −

p
∑

i=1

aixn−i, (1)

where p is the model order, and ai ∈ R are the linear prediction coefficients. The coefficient

vector a is found by minimizing the cost function:

E(a) =

N+p
∑

n=1

ε2
n(a), where εn(a) = xn − x̂n (2)

The plain LP spectrum is capable of removing some of the harmonic structure, but es-

pecially for middle- and high-pitched speech, it has a tendency of modeling the sharp

contours of the harmonic structure as the model order is increased. The LP spectrum is

also not especially robust in noisy environments. [5]
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3 NOISE ROBUST FEATURE EXTRACTION METHODS

3.1 Linear Predictive Spectral Estimates

The plain LP estimate of the power spectrum models the original spectrum equally closely

over all frequencies. However, the human auditory system is far from being so uniform.

Notably, the spectral resolution is lower for high frequencies, and the sound power leading

to equal perceived loudness is lower in the middle of the audible spectral range. Conse-

quently, [6] proposes a perceptual linear predictive (PLP) approach to LP modeling in

speech analysis.

In the PLP model, the signal autocorrelation estimates are computed from the output

of a perceptually motivated filterbank, resembling the mel filters used in MFCC compu-

tation, although in addition to the change in spectral resolution, the PLP filterbank also

emphasizes the spectrum samples using an equal-loudness curve representing the vary-

ing sensitivity of human hearing at different frequencies. A cubic-root compression step,

analogous to the logarithmic scale used in the MFCC method, is also applied to the PLP

filterbank output. After these steps, a conventional all-pole linear predictive model is

constructed using the modified spectrum. In isolated word recognition experiments of [6],

recognition accuracy rate of over 50 % was achieved with a PLP model of order 5, while

the highest accuracy rate of any plain LP model never exceeded 40 %. Some results of

PLP compared against the MVDR-based PMCC method are also given in section 3.2.

While the PLP features are somewhat more robust to noise, they are not especially

designed for that purpose. There are also other approaches for improving the perfor-

mance of linear prediction in speech recognition. The weighted linear prediction (WLP)

method allows for providing a temporal weighting function which can be used to direct

the LP model to emphasize particular temporal regions of the analyzed signal. Stabilized

weighted linear prediction (SWLP) adds a transformation that guarantees the stability of

the resulting all-pole model, and was recently used in the spectral estimation step of an

MFCC-based system [7] as a candidate for noise robust speech features. The short-time

energy function of the signal was used for the temporal weighting, as this causes the LP

modeling step to focus on the high-energy sections of the speech signal that are relatively

less affected by additive noise. The STE window also emphasizes the part of speech signal

immediately after the glottal pulse, during which formants for voiced sounds are the most

prominent.

3.2 Minimum Variance Distortionless Response (MVDR) Spectrum

Minimum Variance Distortionless Response (MVDR) modeling is an alternative method

for estimating the upper spectral envelope, addressing several of the shortcomings of the

conventional LP method. Notably, the MVDR spectral envelope estimate is much less

prone to modeling the sharp contours of the harmonic structure of speech, even for higher-

pitched speech where the harmonics are located more sparsely. Another useful property

of the MVDR spectrum is that it can be efficiently computed from conventional LP coef-

ficients. [5]
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Conceptually, in the MVDR estimation method, the signal power at a given frequency

ωl is defined as the output power of a specific Mth order FIR filter hl(n). This filter is

designed separately for the particular frequency ωl and the particular input data being

analyzed, to produce the least possible output power, with the constraint that it has a

unit frequency response at frequency ωl: [5]

Hl(e
jωl) =

M
∑

k=0

hl(k)e−jωlk = 1 (3)

However, it is not necessary to actually use a separate filter hl(n) for each frequency band.

Using the Mth order LP model coefficients ak and prediction error Pe, the Mth order

MVDR spectrum P
(M)
MV can be written as: [5]

P
(M)
MV (ω) =

1
∑M

k=−M µke−jωk
, where : (4)

µk =

{

1
Pe

∑M−k
i=0 (M + 1− k − 2i)aia

∗
i+k, for k = 0, . . . , M,

µ∗−k, for k = −M, . . . ,−1.
(5)

There are various ways the MVDR spectral envelope estimate can be used in feature

extraction. [8] compares a straight-forward replacement of the periodogram in conven-

tional MFCC computation with the MVDR estimate (MVDR-MFCC) against a more

involved method, where the MVDR model coefficients are obtained from a perceptually

smoothed spectrum (PMCC). [2] additionally presents experiments comparing the PMCC

method with an alternative PMVDR method, where the perceptually scaled spectrum is

computed with a warping function instead of a traditional mel filterbank.

The conventional LP coefficients used for deriving the MVDR coefficients are based

on autocorrelation estimates, typically computed with the inverse FFT from the power

spectrum estimate of the signal. In the PMCC method [8], the perceptual smoothing with

the mel filterbank is done before the MVDR analysis, and the autocorrelation estimates are

calculated from the smoothed spectrum, similarly to the PLP method. The smoothing

leads to more reliable estimates, as the variance of the spectrum is diminished. The

computational complexity of the method is also lower, due to the lower dimensionality of

the mel filterbank output compared to the original FFT-based power spectrum estimate.

Results for a set of experiments, including both isolated word and continuous speech

settings, comparing conventional MFCC with PLP, MVDR-MFCC and PMCC are pre-

sented in [8]. In an isolated digit recognition task using data recorded in a real car

environment with a velocity of 60 mph, the achieved word error rates were 6.65 %, 6.22

%, 5.93 % and 4.92 % for MFCC, MVDR-MFCC, PLP and the PMCC methods, respec-

tively. In the less noisy case of a velocity of 30 mph the results were similar, with smaller

differences, while in the clean speech case recorded in a stationary car the differences were

not significant. The continuous speech recognition experiments were limited to clean data,

and did not include the MVDR-MFCC or PLP features, but the PMCC feature extraction

achieved the best results, with an overall relative improvement of 12.8 % of the word error

rate in tests using the Wall Street Journal data.
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As an alternative to perceptual smoothing using mel-scaled filters, [2] presents the

PMVDR method where the perceptually modified autocorrelation values are obtained

from a directly warped FFT power spectrum, avoiding the loss of information inherent in

the mel filterbank operation. Normally, in addition to the perceptual considerations, the

filtering is also desirable for its ability to remove to some extent the prominence of the

harmonic structure and other undesired speaker-dependent variation in the signal. Since

the MVDR spectral estimate is capable of more accurately tracking the upper spectral

envelope, and therefore less affected by the harmonic structure, the filtering step is not

really necessary, and the MVDR modeling can be done on a directly warped spectrum.

In a digit recognition task using the CU-Move database containing noisy speech from real

car environments, overall word error rates of 11.12 %, 9.87 % and 7.74 % were achieved

by the MFCC, PMCC and PMVDR methods, respectively. PMVDR, with a perceptual

warping factor optimized specifically for the CU-Move task, achieved a lower word error

rate of 7.11 %. Similar results were reached in another isolated word test using the SUSAS

database of speech produced under stress.

3.3 RASTA Processing

The primary aim of the RASTA feature representation is to ignore slowly varying com-

ponents of the speech signal directly in the spectral estimate. The concept is partially

motivated by human auditory perception of speech, which seems to depend more on the

spectral difference between consecutive sounds than on the absolute shape of the power

spectrum itself. Another basis for the model is that in many situations the environmental

background noise is constant or only slowly varying, and therefore a feature representation

that discounts slowly varying factors will be more robust to it. [9]

In [9], the RASTA approach has been applied to perceptual linear prediction (PLP)

based feature extraction scheme. The RASTA-specific processing starts with the PLP

critical-band power spectrum, which resembles the mel filterbank output in conventional

MFCC computation. The separate power spectrum samples are then transformed using

a fixed compressing nonlinear transformation. After compression, each spectral channel

is filtered in the time domain, together with corresponding power spectrum samples from

preceding frames, using a suitable band-pass filter. The aim of the band-pass filter is

twofold. The high-pass portion is expected to reduce the effect of convolutional noise,

as it filters out the constant and slowly varying components on the particular frequency

band. In contrast, the purpose of the low-pass filtering is to discard excessively fast

changes between successive frames, under the assumption that they are merely artifacts

caused by the spectral analysis. Finally, the filtered power spectrum is transformed using

an expanding transformation matching the earlier compression stage, and the result is

processed following the basic PLP method.

The RASTA processing can be compared to the common cepstral mean subtraction

(CMS) operation often used in continuous speech recognition systems, since they both

affect the spectral domain in roughly the same way. The primary difference between

RASTA and CMS is that the typical length of a CMS window is long enough for the

operation to only effectively remove a constant bias, while the filters used in RASTA
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processing have a larger effect on the spectrum values. According to [9], the CMS does

not diminish the effect of additive noise, and in some cases a combination of the CMS

operation and RASTA processing can achieve better results than each of the methods

separately.

First set of experiments presented in [9] focus on convolutive distortions such as those

caused by the use of different microphones. In the logarithmic power spectrum these

distortions have an additive constant effect, so the compressive transformation used was

logarithmic. The band-pass filter was an IIR filter with the following transfer function:

H(z) = 0.1z4 ·
2 + z−1 − z−3 − 2z−4

1− 0.98z−1
. (6)

This setup was used in an isolated digit recognition task, as well as in large vocabulary

continuous speech experiments. In the continuous speech experiments, recognition per-

formance of the PLP and RASTA-PLP methods were compared for clean speech as well

as speech artificially filtered with a low-pass filter to simulate muffled speech. While the

RASTA processing caused a slightly higher word error rate of 18.6 % when compared to

the original 17.9 % in the clean speech case, for muffled speech the method achieved a

word error rate of 33.0 %, less than half of the 67.5 % error rate of the unprocessed PLP

features.

The second set of experiments described in [9] evaluated the speech recognition per-

formance of the RASTA feature extraction method in an environment which had additive

noise components. As additive noise manifests as a signal-dependent component in the

logarithmic power spectrum, these experiments use an alternative compression function

that has nearly linear behaviour for small spectral values, while still being logarithmic for

large values. The compression and expansion functions used were:

y = ln(1 + Jx) x =
ey

J
(7)

Here J is a signal-specific constant, and the expanding transformation is not the exact

inverse, x = ey−1
J

, of the compressive transformation, as it would not be guaranteed to be

always positive, and would therefore necessitate some additional processing.

In these experiments, the optimal J value was found to be rather clearly dependant on

the SNR value of the test data. Analysis of histograms of spectral energies suggest that the

optimal choice for the J value is such that most of the noise falls into the linear part of the

nonlinear compression function used, while most of the signal stays in the logarithmic part.

With a suitable J value, RASTA processing was found to improve recognition rates at all

noise levels. In isolated digit experiments, an automatically adaptive method of selecting J

values achieved significantly improved results over the plain PLP method in environments

with additive noise, convolutional distortions, or both, and also improvements over the

purely logarithmic RASTA processing in the case of speech corrupted with additive noise.
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4 CONCLUSIONS

The common mel-cepstral speech feature representation can be improved by using any

of the more robust techniques for spectrum estimation. In the simplest case, the FFT

based power spectrum estimate can be replaced with another estimate, as was done with

a weighted linear prediction based spectrum in the SWLP-MFCC [7] method in section

3.1, and with a MVDR modeling based spectrum in the MVDR-MFCC [8] method in

section 3.2.

A closely related alternative to MFCC features is the perceptual linear prediction

(PLP) feature extraction process [6] outlined in section 3.1. PLP itself achieves some

improvements on noise robustness over conventional MFCC features, but is not designed

especially for noisy conditions. However, the RASTA processing introduced in section

3.3 is used in the RASTA-PLP feature extraction method [9] for the explicit purpose of

reducing the effect of convolutional and additive noise. In addition, the MVDR-based

PMCC [8] method introduced in section 3.2 closely resembles PLP processing in the way

the parametric spectral modeling step is done for a perceptually filtered spectrum.

Both MFCC and PLP features incorporate perceptual considerations by filtering the

raw spectrum estimate with a suitable filterbank, which additionally partially removes

the undesired harmonic structure of speech. Because the MVDR estimation method is

capable of tracking the upper spectral envelope and therefore also discards the harmonic

structure, the PMVDR method [2] shown in section 3.2 avoids the filtering and applies

the MVDR analysis on a directly warped spectrum.

Feature extraction methods that provide improved noise robustness can also be used

together with other techniques with the same aim. [9] mentions the use of RASTA process-

ing and CMS together, but in general changing the feature representation is a reasonably

noninvasive process, so the efficiency of the different representations can in many cases

easily be evaluated together with other tools.
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Abstract

The purpose of feature enhancement is to remove degrading components from the

speech signal and thus improve the recognition of speech in adverse conditions. In

most approaches the nature of the speech signal, transmission path, or noise is simpli-

fied. The simplest methods are based on removing the estimated noise spectra from

the signal. More complex techniques take advantage of the statistical estimates of

the noise. A single microphone is applied in such techniques. Multiple microphones

are used in advanced techniques based on more accurate noise estimation or beam-

forming. All methods apply statistical analysis on the signal at least to some extent,

and they are differentiated mainly by their ability to handle non-stationary interfering

components. This paper reviews several approaches on feature enhancement.

1 INTRODUCTION

Automatic speech recognition is principally based on identifying speech components from

a sampled signal divided in short time frames. Sounds in the frames are classified with

signal processing and statistical methods as phonemes that together in certain order form

words, again constructing sentences. The analysis is performed by converting extracted

acoustic features from the speech signal to phonemes and estimating the correct words

based on the recognition history.

However, the recognition becomes unreliable when components other than the speech

under recognition are added to the signal. This background noise can be almost anything,

such as hum from computer or air conditioning nearby, traffic noise, a compressed-air drill,

or another speaker.

The purpose of feature enhancement is to increase speech intelligibility in human-to-

human communication or to improve the accuracy of automatic speech recognition by

estimating the clean speech from the degraded signal. This makes feature enhancement

an essential part of robust speech recognition techniques. Most enhancement methods rely

heavily on statistical analysis, while more straightforward approaches exist as well.

Feature enhancement most often refers to reducing background noise from the sig-

nal. In the simplest cases the interfering components are assumed fairly stationary, since

the recovering the original signal from the degraded recording without the knowledge of

transmission path or interference is not possible.

This literature review is organized as follows. A basic model for speech recording is

explained in the following section. After that we discuss various feature enhancement

methods in two groups. First, the techniques utilizing a single microphone are presented.
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Subsequently some multi-microphone applications are introduced. Finally, conclusions on

the feature enhancement techniques are drawn. The structure follows loosely the overview

paper by Compernolle [1].

2 BASIC SPEECH RECORDING MODEL

A straightforward model for recording speech is written as following equation

y[n] = h[n] ∗ x[n] + d[n], (1)

where h is the impulse response of the transmission path, x is the signal, and d is the

additive noise at sampled moment n. Transmission path effect or channel filter h[n]

can be real-world phenomena such as room reverberation or low-quality transducers in

communication devices. The equation can be applied in multitude of adverse conditions.

A limitation of this model is that the transmission path is modeled with a linear filter.

Therefore nonlinear phenomena, such as distortions, are not considered correctly. In real-

world cases any of the variables is not known accurately.

In reality, the effect of the transmission path is also convolved with the additive noise,

resulting in expression

y[n] = h[n] ∗ (x[n] + d[n]). (2)

However, we are not interested in the d[n] in single microphone techniques, as the back-

ground noise is not available as a priori information. Thus, we can think the background

noise only as d[n]. On the other hand, the human hearing system is not particularly sen-

sitive to spectral changes or other effects resulting from the transmission path h[n]. This

reduces the importance of compensating the channel filtering [1].

The generic model in Eq. (1) can be transformed to the frequency domain for methods

utilizing the power spectrum:

Y (ω) = X(ω) |H(ω)|2 + D(ω), (3)

where D(ω) denotes the noise power spectrum. The power spectrum equation can be

further transformed into another expression in the log-spectral domain [2].

y = x + q + log(1 + ed−x−q)

≈ x + f(x, d, q),
(4)

where q represents an unknown linear channel filtering in log-spectral domain.

3 SINGLE MICROPHONE METHODS

3.1 Overlap add signal reconstruction

The overlap-add technique is not necessarily an exact feature enhancement technique, but

it is rather a method for applying manipulation to the time domain signal. Processing is

based on the assumption that the speech signal is nearly stationary in short time frames.

36



FEATURE ENHANCEMENT IN AUTOMATIC SPEECH RECOGNITION J. PÄTYNEN

The degraded time-domain signal is windowed with window function, such as Ham-

ming, having appropriate length. Each frame is transformed to frequency domain. The re-

sulting magnitude response is modified with an arbitrary function and inverse-transformed

back to time-domain. Modified window is then added to the result signal with pre-defined

window overlap. Typical values for overlap are 2:1 or even 4:1 for decreased aliasing ef-

fects. The argument in the frequency domain is usually kept intact due to the relative

hearing insensitivity to phase [1].

3.2 Spectral subtraction

Spectral subtraction is a straightforward method for suppressing stationary background

noise. This technique is based on the overlap-add algorithm described in the previous

section. The most obvious challenge in this approach is to get a good estimate of the noise

power spectrum.

This method is a generic representation for noise suppression with spectral subtraction,

which assumes an additional noise in the speech signal. However, the transmission path

is not considered. Both speech and noise are regarded as uncorrelated random processes.

Such processes imply that the power spectral densities are additive, when speech and noise

are quasi-stationary in short time frame [1].

Each frame is transformed with FFT, where the total power spectrum is seen as a sum

of clean signal and noise spectra

Py(ω) = Px(ω) + P̂d(ω) (5)

and by estimating P̂d(ω), a clean spectrum estimate is obtained:

P̂x(ω) ≈ Py(ω)− P̂d(ω). (6)

In essence, this assumption is valid only when spectral coefficients are independent and the

signal window is infinitely long. With an additional assumption of signals consisting of a

mixture of Gaussian distributions, the power spectral subtraction satisfies both maximum

likelihood as well as least squares estimate E[|P̂x(ω)− Px(ω)|2].

Two simple approaches exist to obtaining an estimate of the noise power spectra. They

both rely on averaging short-time spectra in windowed frames that are assumed to contain

only noise. Such frames can be taken either from the beginning of the degraded signal or

identified with a speech detector.

Using the beginning of the transmission as noise reference is a trivial solution and

robust for low SNR, but it does not provide any adaptive features i.e. in situation where

the noise changes along the communication.

Applying the detection of the speech activity is a more complex alternative, but has

the advantage of adaptivity. Compernolle [1] has described that for such implementation

SNR should be at least 6 dB.
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3.3 Wiener filtering

Wiener filtering is a method that in essence tries to create a filter that suppresses the

additive noise from degraded signal minimizing the mean square error between clean signal

estimate and original speech:

X̂(ω) = W (ω)Y (ω) (7)

W (ω) =
Φx(ω)

Φy(ω)
, (8)

where the optimal Wiener filter would be W (ω).

In practice the optimal filter cannot be realized due to two problems. First, the

optimal filter would usually be non-causal. Second, speech signal is not stationary in

reality. Moreover, both speech and noise spectra should be known for optimal filter.

To overcome these deficiencies the long-time noise spectra Pd(ω) is used with short-time

speech spectra, which is approximated by Py(ω) − Pd(ω). This makes the Wiener filter

somewhat comparable to the spectral subtraction approach [1].

3.4 Approach with vector Taylor series

This method is based on estimating the probability distribution function (PDF) of noisy

speech given a clean speech PDF, a segment of noisy speech and a Taylor series expansion

relating noisy speech to clean speech. Signal analysis is performed in log-spectral domain

(see Eq. (3)). The additive noise in the observed signal is assumed to be near-Gaussian by

its amplitude. Moreover, the log-spectra of the speech signal x is assumed to follow a sum of

multivariate Gaussian distributions. The main idea behind the method is to approximate

the function f(x, d, q) in Eq. (4) with a vector Taylor series, where q represents the effect

of unknown linear filtering in log-spectral domain.

The logarithmic spectrum of the speech signal is assumed to have a probability distri-

bution from a summation of multivariate Gaussian distributions.

p(x) =
M−1
∑

k=0

P [k]Nx(µx,k, Σx,k) (9)

In addition, noise is assumed to follow the statistic of a single Gaussian Nd(µd, Σd). In

order to have a suitable compensation, variables for unknown channel filtering as well as

noise mean and variance have to be determined. Moreover, probability distribution for

y has to be computed given p(x), µd and Σd. Although this is not a trivial problem,

analytical solution is possible with the vector Taylor series approach[2]. The Taylor series

expansion gives an accurate representation around the mean of a Gaussian even with few

terms from the Taylor series. The vector Taylor series approximation for f(x, d, q) is

f(x, d, q) ≈f(x0, d0, q0) +
d

dx
f(x0, d0, q0)(x− x0)+

d

dd
f(x0, d0, q0)(d− d0) +

d

dq
f(x0, d0, q0)(q − q0) + . . . .

(10)
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Moreno et al. [2] have used two variants of the Taylor series approximation where

either terms up to zeroth of first order are utilized. In the latter version the terms shown

in Eq. (10) are applied. In the zero-order vector Taylor series expansion for f(x, d, q) gives

a Gaussian distribution p(y) = Ny(µy, Σy) for noisy speech y with following mean vector

and covariance matrix:

µy = E(y) = E(x + f(x0, d0, q0)) = µx + f(x0, d0, q0) , and (11)

Σy = Σx. (12)

For the first-order Taylor series these parameters are computed analogously to Eq. (10).

With both zero- and first-order expansions, q and µd are solved iteratively, and it is

described by Moreno [2] and Dempster [3].

The actual compensation for noisy speech is estimated by minimum mean square error

(MMSE) method for obtaining clean speech given the noisy speech

x̂ = Ex(x|y) =

∫

xp(x|y)dx (13)

x̂ =

∫

(y − f(x, d, q))p(x|y)dx (14)

= y −
∑

k

p(k|y)f(µx,k, µd, q) (zeroth-order). (15)

3.4.1 Particle filter approach to vector Taylor series

The vector Taylor series approximation of the log-spectral features of the clean speech has

been improved by Faubel and Wölfel [4]. In this method particle filters (PF) are applied in

order to remove the need for Taylor series approximation. Here, this technique is discussed

only very briefly.

Previously, the effect of the environment to the speech spectrum was modeled with a

low-order Taylor series. In particle filter method, inferring the clean speech from noisy

signal is expressed as tracking the clean speech spectrum xt from a history of noisy spectra

y1:t by using the conditional probability p(xt|y1:t). A solution for such problem is to find

the conditional mean E[x1:t|y1:t]. The evolving model of the noise spectrum is sampled

with particles j = 1 . . . N having individual importance weights. In the probability dis-

tribution the modeled noise is introduced as hidden variable in the marginal distributions

p(xt, dt|y1:t). Normally the noise would not be present in the equations due to integration

over the variable [5].

E[xt|y1:t] =

∫ ∫

xt · p(xt|y1:t, dt)dxt

︸ ︷︷ ︸

=:ht(dt)

p(dt|y1:t)ddt (16)

≈

N
∑

j=1

ht(d
(j)
t )w̃

(j)
t , (17)

where w̃
(j)
t is a normalized importance weight vector for noise hypothesis ht(d

(j)
t ). Conse-
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quently, ht(dt) is expressed as sum of K separate Gaussians in the clean speech spectrum:

ht(dt) =
K

∑

k=1

p(k|y1:t, dt)

∫

p(xt|k, y1:t, dt)dxt. (18)

In the spectral domain the noise is considered to shift the means of the clean speech

distribution p(xt) for kth Gaussian:

eµ′

k = eµk + eµt ⇔ µ′
k = µk + log(1 + edt−µk)

︸ ︷︷ ︸

=:∆µ
k

,dt

. (19)

Clean speech spectrum can be obtained from spectrum yt and the estimated mean shift:

xt = yt −∆µk,dt
. (20)

This technique was been noticed to slightly improve word error rates compared to vector

Taylor series method. However, the computational load is claimed to be lower with particle

filter approach [4].

3.5 Stereo-based piecewise linear compensation for environments (SPLICE)

Basic methods for noise suppression usually assume a model for the source of distortion

or degradation to the signal. The approach used in SPLICE (stereo-based piecewise linear

compensation for environments) manages to overcome this deficiency by not making any

assumptions on how the noisy signal is produced from the clean signal. The advantage

with this technique is that noise removal is not restricted to any separate distortion.

While other methods form functions based on modeled interferences, SPLICE can model

combinations of several simultaneous distortions. In time domain, SPLICE functions on

short signal frames, and statistical analysis is performed in cepstral domain, (e.g. FFT of

FFT of signal frame).

In SPLICE, each distortion type is trained from noisy data to establish a probability

mixture model p(y) for noisy speech y against clear speech x (hence, stereo-based). Typ-

ically the mixture consists of 256 Gaussian components. A joint probability distribution

is expressed as follows:

p(x,y) = p(x|y)p(y) (21)

However, p(x|y) usually includes some parameters that are nonlinear functions of y.

Therefore an additional variable s is used to divide the probability space into regions,

where x and y are in approximately linear relation. Now, Eq. (21) has the form

p(x,y) =
∑

s

p(x|y, s)p(y|s)p(s), (22)

where x and y are approximately linear. Additionally,

p(x|y, s) = N(x;y + rs, Γs) and (23)

p(y, s) = N(y; µs, Σs). (24)
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A vector rs is generated for estimating the corrected speech on the basis of the structure

of the noisy cepstrum in the training phase with maximum likelihood criterion. Eq. (23)

indicates the probability with variance Γs for clean speech estimate on condition of the

noisy speech with parameter s and rs.

The estimated cepstrum for clean speech is conditionally obtained from basis of the

degraded speech:

x̂ = Ex[x|y]

=
∑

s

p(s|y)Ex[x|y, s]

= y +
∑

s

p(s|y)rs.

(25)

This gives the minimum mean square error estimate cepstrum vector of the clean speech

as a linearly weighted sum of the separate correction vectors and the degraded signal.

4 MULTIPLE MICROPHONE METHODS

4.1 Adaptive noise canceling

Least mean squares (LMS) algorithm is based on an adaptive filter which is automatically

adjusted to suppress interference contained in a recorded signal. Unknown background

noise is transmitted into the recorded speech signal with unknown path. The filter tries

to match itself to the impulse response of the background noise transmission path. [1]

The algorithm relies on having a noise reference without speech signal. Therefore an

additional microphone is required for capturing only the noise in the speech environment.

For this reason LMS algorithm is not directly comparable to techniques not needing any

quasi- a priori information about the recorded signal. The advantage here is that sta-

tionary as well as non-stationary interference can be suppressed with the continuously

monitored reference noise.

In theory, two signals are captured, where the first one contains speech with additive

noise convolved with unknown impulse response and the second one only noise.

y1[n] = x[n] + h1[n] ∗ d[n] (26)

y2[n] = h2[n] ∗ d[n] ≃ d[n] (27)

One should note that the notation resembles to the the recording model in Eq. (2). The

impulse response h2[n] in the second equation is omitted, as it cannot be resolved.

The adaptation in the method is performed by having a filter wn[n] based on the

knowledge on the noise y2[n] and the degraded signal y1[n]. With appropriate update

parameters the impulse response of the filter converges to the impulse response of the

unknown noise transmission path. As the result, correlated additive noise in y1[n] is

suppressed. It is noticeable that the estimate the transmission path for speech is not
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considered in these equations.

x̂[n] = y1[n]− wn[n] ∗ y2[n] (28)

wn+1[l] = wn[l] + 2µx̂[n]y2[n− l] (29)

Higher values of constant µ provide faster rate of adaptation. However, there is a

certain value that should not be exceeded with regard to the filter length L and power

spectra of recorded signals in order to ensure the stability of the filter.

µ <
1

10L
Py2

(30)

With a poor signal-to-noise ratio the adaptation constant should be evaluated against the

recorded signal having higher power. Besides the sufficiently low µ, it is vital to have y2[n]

completely separated from the speech. Otherwise the algorithm tries to suppress also the

speech, leading to distortion in the output signal. Two concepts concerning the signal

levels should be considered [1]:

1. Signal should leak less to the noise measurement than the noise to signal measure-

ment, or

2. the noise source power should be much larger than the signal source power.

These limitations makes the adaptive noise control technique applicable for conditions

where the noise level is particularly high, such as loud factories or airplanes.

4.2 Beamforming

Beamforming methods differ from the adaptive noise canceling by utilizing multiple de-

graded signal recordings instead of separate noise reference. In addition, many algorithms

rely on the known geometry of the microphone. Beamforming is particularly applicable

in situations where the signal has to be precisely captured in a specific position from a

distance in noisy conditions. Beamforming can be implemented in various ways, of which

two of the most common are briefly presented here.

4.2.1 Delay and sum beamforming

The main principle in basic beamforming is to use multiple recorded signals and, apply de-

lays to them, and finally sum the delayed signals. In the simplest case of two microphones

in plane with the speech source, the situation is backwards analogous to constructive and

destructive interference from two sound sources (e.g., microphones). By appropriately

delaying another of the source signals the receiver detects amplified or attenuated sig-

nal. In case of beamforming the delays are applied to microphones. The principle can be
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formulated as follows.

ym[n] = x[n− τm] + dm[n] (delay) (31)

x̂[n] =
1

M

M
∑

m=1

ym[n + τ̂m] (sum) (32)

The delays τ̂m for each microphone signals can be estimated with cross-correlation

combined to the microphone geometry [6]. Advantages with delay and sum beamforming

is the robustness, while errors in the estimated delays cause only little distortion. However,

the gained SNR increases slowly with higher number of microphones.

4.2.2 Constrained adaptive beamforming

The constrained adaptive beamforming is an improved method based on the basic tech-

nique. An adaptive noise canceling is applied to the beamformer structure by utilizing

difference of the delayed signals as noise reference. The noise reference is then filtered

with adaptive filter and finally subtracted from the basic beamformed speech signal. The

resulting signal adjusts the adaptive noise reference filter, such as a Wiener filter. [7]

4.3 Blind signal separation

Blind signal separation is based on assumed crosstalk mixtures between several recorded

signals. The signals are also assumed as statistically independent, e.g., separate speakers.

The recorded signals are closely related to adaptive noise canceling in Eqs. (27) and (29):

y1[n] = x1[n] + h1[h] ∗ x2[n] (33)

y2[n] = x2[n] + h2[h] ∗ x1[n], (34)

where ŝ1 and ŝ2 are obtained by estimating transfer functions hm[h] as presented in

Eq. (29).

Statistics of the mixed signals can be used to improve the source separation with blind

techniques. Such aspects are discussed more thoroughly by Cardoso [8] or Der [9].

5 CONCLUSIONS

In this paper some common approaches on speech feature enhancement have been dis-

cussed. The simplest methods apply windowing time domain signal to short time frames

and traditional filtering. More advanced techniques such as vector Taylor series are based

on signal statistical analysis.
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Abstract

Ideally we would like to have our speech recognition models trained for the envi-

ronment where they are going to be used in. However, different models are most of

the time not feasible, because recording and noise conditions are changing. Retraining

costs a lot of time and resources. Therefore, methods are developed to adjust clean

speech models to fit the current environment. One of the methods is called model

compensation.

The basic idea is to create a separate hidden Markov model (HMM) of the noise

which compensates the trained HMM of clean speech. The separate HMM of the noise

is a small model (as it has a few states) and can be estimated at a speech pause. After

the estimation, the both models are converted into the domain linear in power where

they can be easily combined together. This is performed under the assumption that

the noise and speech are additive and independent. The combined model in the linear

domain will be converted back to the cepstral domain and used instead of the pure

clean speech model in speech recognition.

Most of the composition techniques are based on Parallel Model Combination.

This technique give estimations for static parameters of models. For the estimation

of dynamic parameters Data driven PMC is discussed.

Also for convolutional noise models can be compensated. HMM decomposition is

providing an approximation of the acoustic transfer model.

1 INTRODUCTION

There has been research in speech recognition for multiple decades. Still, it is a hard

task to recognize continuous speech, especially when the recording is subject to a noisy

environment or poor recording equipment like phones.

The base of the most speech recognition methods are meant for clean speech. To make

these methods more noise robust multiple methods are developed.

In this article mainly Parallel Model Combination (PMC) [1] will be discussed. The

basic variant of this method is limited in the variation of noise, the type of noise, and in

the parameters used (only static parameters). Other methods that will be discussed are

mainly extensions to PMC to overcome some of these limitations.

2 MODEL COMPENSATION

The purpose of model compensation is to replace the HMM used in a speech recognition

with a compensated one. This compensated model is a combined model of the trained

cleaned speech HMM and a noise model.
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The basic assumption of Model Compensation is that noise is additive in the linear

power domain. However, extensions are made to also support convolutional noise. Ad-

ditive noise means that noise will not modify the signal of the speech itself, except for

adding something to it. Theoretically it would be not an ideal method to recognize de-

graded speech (for example in phone lines), but even there improvements can be seen in

comparison to the standard model.

To be able to combine a noise HMM and the clean speech HMM, the models must be

converted back to the linear domain. A HMM normally operates on the cepstral domain.

The parameters that have to be transformed back are the means and variances of the

mixture models of the HMM. The transition weights between states will stay the same.

In the linear domain the values can be added together (with a weight for different

speech/noise ratios). After that the parameters can be converted back to the cepstral

domain.

If the noise model has multiple states, the resulting HMM will be having combined

states of noise and phonemes and the transitions between them can be estimated by the

product of the transition weight between noise states and the transition weights between

phoneme states.

3 PARALLEL MODEL COMBINATION

3.1 Basic Parallel Model Combination

Parallel Model Combination (PMC) is a method developed at the university of Cambridge

by Gales and Young [1].

The base of PMC is the mismatch function describing the relation between noise and

speech. The standard mismatch function is

O(t) = gS(t) + N(t) (1)

where O is the corrupted speech signal, S is the clear speech and N is the noise. This

variables are expressed in the linear domain and are all varying over time. g is a term to

correct for different ratios between speech and noise. The mismatch function is based on

the assumptions that the noise and speech are independent, additive and that a Gaussian

mixture model can represent the vectors in the cepstral domain.

In the cepstral domain there is a noise HMM with one state and a clean speech HMM.

The clean speech HMM is already trained and the noise HMM can be trained in a speech

pause. The models can be both described by their mean and variances (µ, Σ for each

state). The target is to calculate the means and variances of a new noisy speech model

{µ̂i, Σ̂i} from the mean and variance of the noise model {µ̃, Σ̃} and the means and vari-

ances of the clean speech model {µi,Σi}. The name Parallel Model Combination comes

from the fact that the Noisy Speech Model is based on two parallel working models; the

noise and the clean speech one.

The combination of the models is not trivial. The models are trained in the cepstral

domain, while the mismatch function is defined in the linear domain. Therefore the
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parameters of the models have to be mapped back to the linear domain first where they

can be combined and after that be converted to the cepstral domain to be used in the

noisy speech model.

The means and variances are mapped back to the linear domain in two steps. First a

transformation is done to the log domain and secondly the parameters are estimated in

the linear domain.

To map the parameters to the log-spectral domain an inverse of the applied cosine

function is done. The parameters are multiplied by the inverse of matrix C.

µl = C−1µc (2)

Σl = C−1Σc
(

C−1
)T

(3)

In these equations the superscript c indicates the cepstral domain and the superscript l

the log spectrum domain. For the domain linear in power no superscript will be used.

For the mapping from the log domain to the linear domain the parameters can be

estimated by taking the expectation. This because the parameters represent (Gaussian)

probability models. When all the distributions are Gaussian and only static parameters

are used (no delta and delta-delta parameters), the formulas for the means and variances

can be derived to [1, 2]

µi = eµl

i
+Σl

ii
/2 (4)

Σij = µiµj

(

eΣl

ij − 1
)

(5)

The means and variances of the noise and clean speech model can now be added

together, with the clean speech multiplied with a gain matching term g to take in account

that the levels of speech and noise can variate. The resulting equations are

µ̂ = gµ + µ̃ (6)

Σ̂ = g2Σ + Σ̃ (7)

The gain function can vary. In a environment with stationary noise the following

function could be used

g =
Ens − En

Es
(8)

In this function Ens is the energy of the noisy speech, En the energy of the noise and Es

the energy of the clean speech.

Now the models are combined, the parameters can be mapped to the cepstral domain.

From the linear to the log domain the formulas are

µ̂l
i = log (µ̂i) −

1

2
log

(

Σ̂ii

µ̂2
i

+ 1

)

(9)

Σ̂l
ij = log

(

Σ̂ij

µ̂iµ̂j

+ 1

)

(10)
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And after that to the cepstral domain.

µ̂c = Cµ̂l (11)

Σ̂
c
= CΣ̂

l
CT (12)

The means and variances are now used for the mixture models in the states of the new

HMM.

The new noisy speech HMM does have the same amount of states as the clean speech

HMM. Every state is a combination of a state from the clean speech HMM and the state

of the noise HMM. The transition probabilities are not influenced by the noise and are

therefore the same as in the clean speech HMM.

3.2 PCM with multiple noise states

With basic PCM the assumption is made that there is only one state in the noise HMM.

However, for non stationary noise, often a multi state noise HMM will give a better

performance [1].

If the multiple noise states would be combined with the HMM this would normally

need recalculation of the model taking in consideration the joint probabilities between all

states. However, when the noise model is fully connected, the calculation is easier. In that

case the noisy speech HMM can be constructed by taking the full product of the both

HMM’s (combining each possible noise and clean speech state) and assign as transition

probabilities the product of the transitions probabilities in the noise model and in the

clean speech model.

The resulting model will contain M x N states, where M is the number of states in

the clean speech model and N the number of states in the noise model. Normally N will

be quite small (like 2 or 3) and will therefore not increase the computational load of the

recognition system too much.

3.3 PCM with Delta and Delta-Delta parameters

In basic PCM only the basic static parameters are considered. In state-of-the-art systems

however, also delta and delta-delta parameters are used. To combine a noise and clean

speech model which have these parameters is more complicated that than the standard

mapping in basic PCM. [3, 4]

The delta and delta-delta parameters are used for taking the correlation between suc-

cessive frames into account. However to find the correlation between frames, full or at

least partially full covariance matrices should be used. This is not desirable because of

increase storage requirements.

These statistics can also be expressed in the statistics already known. However to take

the expectation of the delta parameters is not possible in a closed form solution. These

equations are too extensive for this review but can be found in [2].

Because no closed form solution is available, the parameters must be approximated,
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Model Test set Word Err

Clean Feb89 38.7
Oct89 32.0
Feb91 33.4

Noisy Feb89 7.3
Oct89 8.6
Feb91 6.9

PMC Feb89 8.3
Oct89 8.1
Feb91 7.3

Table 1: Comparison of different models [3]

for example by numerical integration. Numerical integration is costing a lot of resources

and makes this method less used in practice.

3.4 Data driven PCM

As an alternative to approximating the delta and delta-delta parameters there are other

methods which take higher order statistics into account.

Data driven PCM is a method where the noise model and the clean speech model are

used to generate virtual samples of noisy speech [3]. This samples are then used to calcu-

late a Maximum likelihood estimate for the noisy speech HMM. This is a computationally

easier task because no integrals have to be computed have to be done. Still all features,

so also the dynamic parameters, are taken into account. The effectiveness depends on the

number of data samples generated.

3.5 Results

PMC is able to come close to the word error rate of a model trained on noisy speech.

In comparison to a model with no noise robust properties an improvement of 75% can

be made. In table 1 results for three different test sets and the three different models is

shown [3]. The data has 18-20dB Lynx helicopter noise.

4 CONVOLUTIONAL NOISE

In PMC only additive noise is considered. There are extensions to take in account also

convolutional noise. Convolutional noise are transformations of the clean speech like chan-

nel distortion, reverberation, or microphone characteristics. One of the methods to take

convolutional noise in account is HMM Composition for reverberant speech [5]. This

method works the same as PMC except that the instead of the standard PCM mismatch

equation (1) a new mismatch equation is used.

O(t) = H(t) · S(t) + N(t) (13)
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Where H is an acoustic transfer function. This function is can be depended on time.

A person could walk away from the microphone, for example, and therewith change the

effect of the acoustic transfer function. In practice however, often a static transformation

matrix is used.

Because the combination of the clean speech and the acoustic transfer model are a

product in the linear domain, it is a simple addition in the cepstral domain [6]. The

problem is the estimation of this acoustic transfer model.

4.1 HMM Decomposition for reverberant speech

HMM Decomposition gives a method for the estimation of the acoustic transfer model for

e.g. reverberant rooms [6]. The principle is that from an estimated complete model, which

is assumed to be estimated for speech in noisy reverberant conditions, the noise element

and the clean speech element are removed by decomposition thus leaving the transfer

model. The speech element is removed in the cepstral domain and the noise element is

removed in the linear domain.

This method needs to estimate a model for the noisy transformed speech, by adapting

the current noisy speech model. The resulting model will contain all the effects of the 3

separate models. The results of this method are depended on the adaption method and

the amount of adaption data used.

5 CONCLUSIONS

Model compensation and especially basic PMC is able to make the speech recognition

system more robust effective and resource cheap way.

To obtain also good results when dynamic parameters are used there are different

options. Numerical integration and the Monte-Carlo sampling technique DPMC. Of these

two the latter is computationally less heavy.

For convolutional noise HMM decomposition can provide in a good method to approx-

imate the acoustic transfer function model.
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Abstract

The presence of a human speaker can be detected using methods often classified

under the term of Voice Activity Detection (VAD). Ideally the detection scheme should

separate the time instances with active voice of a speaker from the ones without voice.

The activity information can be used for preprocessing of the data, separating frames of

interest from others, but more advanced algorithms integrate the activity information

to the estimation process itself. In this literature review different methods for voice

activity detection are presented. Also, an acoustic source localization application using

VAD is presented as an example of an interesting way of taking advantage of the extra

information.

1 INTRODUCTION

Human voice is a transient phenomenon in nature. Transience becomes obvious even with

a single sentence which comprises of multiple time separate parts. Spoken word is riddled

with moments of silence (or background noise) caused by syllable and word separations,

pronunciation and pauses of deliberation. The discontinuity is especially harmful when an

algorithm assumes the speech data to be continuous: for the acoustic speaker localization

this would mean association of a speaker position even to a silence. When the data does

not match the assumptions, any following steps of the algorithm are effectively processed

using noise as input and the results become erroneous.

Following sections deal with different methods of voice activity detection (VAD),

shortly presenting the relevant theory and operational issues. Section 2 presents ba-

sics behind VAD and couple of algorithms chosen for their robustness against adverse

noise conditions. In section 3 the VAD is presented as audio segmentation (sub)problem.

Section 4 deals with an application of the VAD within an acoustic source localization

framework, where voice activity information has been used to enhance the performance of

a speaker tracking algorithm.

2 VOICE ACTIVITY DETECTION

In this section a group VAD algorithms is presented with high separation rates between

speech/non-speech [1]. The VAD algorithms are based on a feature vector x extracted

from the signal x(n) and assume that the speech signal is corrupted by additive noise.

The basic problem of the VAD can be formulated as hypothesis test between scenarios
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where there is only noise and the one with both noise and speech - more formally:

H0 : x = n

H1 : x = n + s,

where H1 corresponds to the scenario with speech and H0 is the null-hypothesis ”only

noise”. The posterior probability of the hypotheses given observation of feature x should

follow

P (H1|x)
H1
>

<

H0

P (H0|x). (1)

That is, the hypothesis with larger posterior probability is selected as the winner. The

equation can be modified using the Bayes rule (P (y|x)P (x) = P (x|y)P (y)) to yield a

likelihood ratio test:

P (x|H1)

P (x|H0)

H1
>

<

H0

P (H0)

P (H1)
, (2)

which now decides between the two possible hypotheses defined before. Division of the

signal x(n) in discrete Fourier transform coefficients j = 0, · · · , J − 1 of the speech (Sj)

and noise (Nj) yields a multi-Gaussian parameterization of the signal and a solution:

p(x|H0) =
J−1
∏

j=0

1

πσ2
N (j)

exp{−
|Xj |

2

σ2
N (j)

} (3)

p(x|H1) =
J−1
∏

j=0

1

πσ2
N (j) + σ2

S(j)
exp{−

|Xj |
2

σ2
N (j) + σ2

S(j)
} (4)

where Xj is the j-th bin noisy speech DFT coefficient σ2
N (j) and σ2

S(j) stand for binwise

variances for noise and signal, respectively. Applying the Bayesian hypothesis test given

in (2) the equation is reduced to

1

J

J−1
∑

j=0

[

γjξj

1 + ξj

− log(1 + γj)

]
H1
>

<

H0

η, ξj =
σ2

S(j)

σ2
N (j)

, γj =
|Xj |

2

σ2
N (j)

, (5)

where the η defines the decision threshold and ξj and γj stand for a priori and a posteriori

SNR of the signal. These SNR-coefficients can be estimated using the Ephraim and Malah

minimum square-error (MMSE) estimator [2]. The threshold η must also be trained e.g.

using noise sequences as training data [3].

In speech production process word beginnings and endings have often reduced signal

energy. This motivates VAD decision postprocessing for removal of outliers using e.g.

smoothing. These so called hang-over algorithms extend and smooth the VAD decision in

order to better manage speech periods masked by the acoustic noise.

2.1 Long-term spectral divergence

Noisy speech signal x(n) is processed in overlapping frames and X(k, l) stands for the

amplitude spectrum for k-th band of frame l. The N-order Long-Term Spectral Envelope
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(LTSE) is defined as:

LTSEN (k, l) = max{X(k, l + j)}j=+N
j=−N . (6)

The VAD decision per each frame l is formulated as speech and noise ratio using average

noise spectrum magnitude N(k) for each band k = 0, 1, . . . , NFFT − 1 and the LTSE as

LTSDN (l) = 10 log10

(

1

NFFT

NFFT−1
∑

k=0

LTSE2(k, l)

N2(k)

)

H1
>

<

H0

η. (7)

2.2 Multiple observation likelihood ratio test

Multiple observation likelihood ratio test (MO-LRT) uses larger range of observations to

render the decision. The range of features vectors used is within m frames of the frame of

interest l and can be presented as vector: {xl−m, . . . ,xl, . . . ,xl+m}. The MO-LRT is sum

of the log likelihood ratios over the range:

ll,m =
l+m
∑

k=l−m

ln

(

p(xk|H1)

p(xk|H0)

)
H1
>

<

H0

η. (8)

The use of frames around the current one postpones the decision for m frames, but gives

a significant improvement in speech/non-speech discrimination accuracy without need of

a separate decision smoothing.

2.3 Order statistics filter

The Order Statistics Filter (OSF) is defined for l-th frame as decision in terms of the

average subband SNR using N frames around the frame of analysis. The decision for OSF

is

SNR(l) =
1

K

K−1
∑

k=0

QSNR(k, l)
H1
>

<

H0

η, (9)

where subband SNR is defined as difference

QSNR(k, l) = Qp(k, l) − EN (k), (10)

and the components:

EN (k) = αEN (k) + (1 − α)Q0.5(k, l), (11)

Qp(k, L) = (1 − f)E(s)(k, l) + fE(s+1)(k, l). (12)

The Qp(k, l) is the sampling quantile using s = ⌊2pN⌋ and f = 2pN − s and the quantile

parameter p ∈ [0, 1] (setting p = 0.5 it equals a median filter). EN (k) is the noise level

of k-th band, that is updated due to non-stationary noise assumptions using α as ratio

between old value EN (k) and the sampling quantile. E(r)(k, l) stands for r-th largest

number in algebraic order (value sorting) from a sequence of log-energy values around the
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current frame l: {E(k, l − N), . . . , E(k, l), . . . , E(k, l + N)}.

Finally the log-energies E(k, l) are computed for l-th frame and k-th subbands:

E(k, l) = log





K

NFFT

mk−1−1
∑

m=mk

|Y (m, l)|2



 , mk = ⌊
NFFT

2K
k⌋, (13)

with K subbands k = 0, 1, . . . , K − 1. The Y (m, l) stands for Wiener de-noised input

signal for m-th band at frame l. For an extensive description of the algorithm see the

work Ramirez et al [4].

3 AUDIO SEGMENTATION

Voice activity detection can also been seen as a subproblem to audio segmentation, where

each part of the audio data receives a label indicating nature of the source. When the

set of possible segments becomes a binary decision between speech and non-speech the

segmentation is effectively a VAD.

Audio segmentation has been used in automatic classification of historical speeches by

Hansen et al. [5]. The audio data is processed in two parts: a coarse segmentation is gen-

erated using a distance measure in a 45-dimensional feature space and then compensated

against false alarms using a distance measure in a feature space from Principal Component

Analysis (PCA). Besides speech activity, the CompSeg method also does classification to

music, commercials, background noise and other events. A list of features used by the

algorithm:

• PMVDR: Perceptual Minimum Variance Distortionless Response (12 static + 11

delta-PMVDR + 1 static energy) [6, 7]

• FBLC: FilterBank Log energy Coefficients (20 Mel frequency coefficients)

• SZCR: Smoothed Zero Crossing Rate (1 coefficient from 5-point mean ZCR) [8]

• PCA: Principal Component Analysis of the features (22 first components) [9]

The segmentation is done using distance measure depending on the segment length.

Shorter segments (below 5 seconds) are classified using a Hotelling T 2-statistics:

T 2 =
ab

a + b
(µ1 − µ2)

TΣ−1(µ1 − µ2), (14)

while longer segments are processed with a faster Bayesian Information Criterion (BIC).

The weighted mean distance of the block diagram is a T 2-statistics with identity matrix

as covariance.

4 APPLICATION IN ACOUSTIC SOURCE LOCALIZATION

Acoustic source localization is a problem field concentrating on finding a speaker position

under adverse conditions, such as environmental noise and reverberation. The speech
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signal is seldom continuous and the gaps caused by silence misguide the tracking algorithms

trying to pinpoint the speaker position. The Voice Activity Detection framework could be

applied as postprocessing with removal of the frames without any speaker. More advanced

method proposed by Lehmann and Johansson [10, 11, 12] integrates the VAD information

to the tracking process.

The basis of the algorithm is Steered BeamForming (SBF) which gives spatial am-

plification to a point l as a sum over delayed versions of signals of M spatially separate

microphones:

P (l) =

∫

Ω
|

M
∑

m=1

Wm(ω)Fme
jω‖l−lm‖/c|2dω, (15)

where lm denotes a m-th microphone position, c the speed of sound, Wm(·) frequency

weighting term (often phase transform) and Fm(·) = F{fm(t)} is the Fourier transform

of the signal fm(t). The frequency range of interest Ω is typically between 300Hz and

3000Hz for speech processing.

A local maximum in the field defined by the SBF function might not actually be from

a true source. This problem is tackled by defining a modified likelihood function which

accounts for speech activity with use of a uniform distribution U for non-speech segments:

p(Y|X) = q0U(lX) + γ(1 − q0)[P (lX)]
r, (16)

where q0 is the prior probability that an SBF was measured from a noise segment, γ and r

are shaping constants for the P (l) distribution ensuring good source tracking performance.

The q0 can be defined using soft-decision output (without thresholding) α(k) ∈ [0, 1] which

is direct complement of the q0 and therefore the time varying version becomes

q0(k) = 1 − α(k), (17)

where implementation of the VAD function α(k) varies by application. In work by Jo-

hansson et al. [11] it corresponds to the estimated speech signal level, derived from the

SNR and noise power estimates of the VAD.
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Abstract

Adaptation techniques can be used to alleviate the problem of mismatch between

the training and test data in automatic speech recognition. A variety of adaptation

techniques exist. Generally, most of the methods are used for speaker adaptation,

while the adaptation of the environment is a less studied issue. In this review, various

adaptation methods are described and their applications in noise robust automatic

speech recognition are discussed.

1 INTRODUCTION

The performance of an automatic speech recognition (ASR) system is highly dependent on

the good match of the training and test data. In clean speech conditions, the performance

of a speaker dependent (SD) automatic speech recognition system is generally good, but

in real-life conditions with various speakers, the performance may be greatly reduced. In

practical applications of ASR systems, there are at least two main issues that cause severe

mismatch: (a) the voice of the speaker is different from the voice of the training data, and

(b) the environment, exhibiting additive and convolutional noise, clearly differs from the

recording environment of the training corpus. The speaker and environment affect greatly

the recognition accuracy, since the models of the trained hidden Markov models (HMMs)

do not correspond to the parameters of the recorded real-life speech.

Adaptation techniques can be used to alleviate the problem of mismatch between the

training and test data. Adaptation is a method, where a small amount of speech data is

used to transform the HMM models constructed from the original training data in order

to easily build an HMM system that has the properties of the adaptation data. Speaker

adaptation is widely studied issue, and speaker adapted systems provide substantial im-

provements compared to speaker independent (SI) speech recognizers, and even close the

performance of speaker dependent (SD) systems trained with full corpus. However, in

normal speaker adaptive systems, the environmental mismatch remains a problem. The

effect of noise on the recognition accuracy have been usually compensated by using speech

enhancement or modifying the feature extraction, but lately, adaptation techniques have

also been used for compensating for the environmental mismatch. In this review1, different

adaptation methods are described along with their applications in noise robust automatic

speech recognition.

1This review is partly based on paper of P. C. Woodland: Speaker Adaptation for Continuous Density

HMMs: A Review [1].
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2 ADAPTATION

HMM-based automatic speech recognition systems use adaptation in order to easily de-

crease the difference between the training and test data. This is achieved by using a

small amount of speech data, representing the speech and environment of the test data,

for modifying the original statistical models (HMMs) to resemble the test speaker and

conditions.

Adaptation can be operated in a number of modes. It can be either supervised or

unsupervised. In supervised adaptation, the transcription of the speaker specific adapta-

tion data is known. In unsupervised adaptation, the transcription must first be estimated

(recognized). Adaptation can also be performed in static (block) mode, in which the adap-

tation is performed once at the beginning, or it can be dynamic (incremental), in which

the system continues to adapt over time.

The transformation from the original HMMs to adapted HMMs can be performed with

various methods. Usually, the transformation is applied only to the mean vectors of the

Gaussians in the mixture, but also the covariances or mixture weights can be adapted.

3 ADAPTATION METHODS

Adaptation methods fall into three main families based on (a) maximum a posteriori

(MAP) adaptation (b) linear transforms of model parameters and (c) speaker clustering

and speaker space methods. The performance of the methods vary in different applica-

tions. In the next few sections, various adaptation methods are described along with their

strengths and weaknesses.

3.1 Maximum A Posteriori (MAP) Adaptation

Most HMM-based ASR systems are trained using maximum likelihood (ML) estimation;

the parameters values, λ, are chosen so that the likelihood of the training data, p(x|λ), is

maximized. In MAP estimation, the parameters are defined from the posterior distribution

p(x|λ)p0(λ), where p0(λ) is the prior distribution of the parameters, representing the model

before adaptation. In standard MAP approach, for a particular Gaussian mean, the MAP

estimate for mean is

µ̂ =
τµ0 +

∑T
t=1 γ(t)ot

τ +
∑T

t=1 γ(t)
(1)

where τ is a meta-parameter, defining the bias between the prior mean and the ML

estimate of the mean of the adaptation data, o(t) is the adaptation vector at time t from

a T length set and γ(t) is the probability of this Gaussian at time t. Similar formula can

be used to adapt the mean and mixture weights in the system.

One key advantage of MAP approach is that it converges towards ML estimate as the

adaptation data increases towards infinity. However, the main drawback of MAP approach

is that it only adapts the parameters that are observed in the adaptation data. Therefore,

extensions to MAP adaptation have been developed.

In regression based model prediction (RMP) [2] approach, the aim is to find correlation
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between the parameters of an HMM system and use these linear regression relationships to

update poorly adapted or unobserved parameters based on the well-adapted parameters.

In this approach, first, correlation between the mean values of the Gaussians with the

speaker-dependent changes is estimated. After the estimation, standard MAP is used for

adapting the models, and the well-adapted data is then used for generating parameter

estimates for the poorly adapted data using the correlation. The final mean value is a

linear combination of the initial MAP estimate and the predicted value. In general, RMP

converges to the same word error rate (WER) than MAP, but outperforms MAP for small

amount of adaptation data.

Structural MAP (SMAP) adaptation [3] is another technique that tries to enhance the

adaptation of unobserved data. In SMAP adaptation, the Gaussians in the system are

organized into a tree structure according to acoustic similarity, and a mean offset and a

diagonal variance scaling term are recursively computed for each layer, starting from the

root node. At each level in the tree, the distribution from the node above is used as a

prior. The tree structure ensures that unobserved data are adapted in the same way with

similar speech sounds.

3.2 Linear Transformation Adaptation

Another approach to the speaker adaptation problem is to estimate a linear transformation

of the model parameters to construct a better model. This approach provides fairly rapid

and robust adaptation.

There are various schemes that use linear transformations. In maximum likelihood

linear regression (MLLR) [4], the Gaussian mean parameters are updated according to

µ̂ = Aµ + b (2)

where A is an n × n matrix and b is an n dimensional vector. The parameters A and b

are estimated so that the likelihood of the adaptation data is maximized. Expectation-

Maximization (EM) algorithm is used for searching the optimal parameters.

However, there is a tradeoff between global transform and using more precise transforms

that apply to smaller number of parameters (local). For example, a general transform for

all the Gaussians may not be accurate, since the differences in data might be phone-

specific. One solution to this problem is to use Regression Class Tree [5]. The idea is

similar to SMAP; the Gaussians are arranged so that they are close in the acoustic space,

and the same clusters undergo the same transformation.

In constrained MLLR (CMLLR) [6], the means and variances of Gaussians are trans-

formed simultaneously according to

µ̂ = Acµ− bc (3)

Σ̂ = AT
c ΣAc (4)
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This is equivalent to transforming the observation vectors such that

ôt = A−1
c ot + A−1

c bc (5)

This enables the direct transformation of the observation vectors of the incoming data,

which can be convenient in some applications.

One disadvantage of MLLR is the possibility of over-training on the adaptation data.

In practice, limits can be set to preserve the performance better than the original speaker

independent (SI) system, but methods that do not require this would be preferable. One

solution is to use MAP-like interpolation between the original mean and the MLLR esti-

mated mean [7]. In these methods, prior distributions are defined for the transformation

matrix parameters, yielding MAPLR adaptation. This can also be extended to structural

maximum a posteriori (SMAP) adaptation, yielding SMAPLR.

3.3 Speaker Clustering and Speaker Space Adaptation

Previous methods have not explicitly utilized information about the characteristics of an

HMM set for particular speakers. However, forming groups of speakers and utilizing the

information from a specific group can be very useful in speaker adaptation. Recently there

has been interest in cluster adaptive training [8] and eigenvoice techniques [9], which both

form a weighted sum of speaker HMMs, and use this to represent specific speaker.

Cluster adaptive training (CAT) represents a speaker as a weighted sum of individual

speaker cluster models. The models have common variance and mixture weights, and only

the Gaussian mean values vary. Thus, a mean of particular speaker is represented as

µ̂ =
∑

c

λcµc (6)

where the parameters of the model are the speaker-specific λc, which define the cluster

weights and µc is the corresponding mean of Gaussian in cluster c. Thus, for a particular

set of canonical speaker cluster models and some adaptation data, maximum likelihood

weights can be derived.

Eigenvoice technique also performs speaker adaptation by forming models as a weighted

sum of canonical speaker HMMs and adapts only the mean vectors, but the canonical

speakers (eigenvoices) are found using principal component analysis (PCA). The eigen-

voices of with largest eigenvalues µ̄e, e = 1, ..., E are chosen as an E-dimensional basis set.

The parameter vector of the adaptation data for particular speaker µ can be represented

as an eigendecomposition

µ =
E

∑

e=1

weµ̄e = Mw (7)

where w = [w1, ..., wE ]T are the eigenvalues that represent the speaker, and M = [µ̄T
1 , ..., µ̄T

E ]T

is the eigenspace. Using EM algorithm, the maximum likelihood weights of the eigenvoices

ŵ are computed for the particular speaker (observation o) by

ŵ = arg max
w

log L(o|µ = Mw). (8)
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CAT and eigenvoice technique yield good performance for a very small amount of

adaptation data, but the problem is that the performance does not converge to speaker

dependent system. One solution to this is to use prior distribution for MAP adaptation

based on eigenvoices [10], which yields both rapid adaptation and convergence to the MAP

solution.

4 ADAPTATION FOR NOISE ROBUST ASR

In general, the adaptation methods described above all modify the acoustic models to bet-

ter match with some adaptation data. Although adaptation methods are usually utilized

for decreasing the mismatch due to the speaker, the methods can be used for decreasing

the mismatch from the environment as well. Since general MAP and MLLR type tech-

niques do not include any kind of in-built speaker model, these techniques can be directly

used for cases of acoustic environment mismatch, or a combination of speaker and envi-

ronment mismatch. However, in an ideal case the environmental adaptation and speaker

adaptation should be different processes. This would be useful in order to build a speaker

adapted system that was independent of the acoustic environment, providing fast and easy

speaker adaptation in real-life conditions.

In [11] it was suggested to use the eigenvoice method to model speaker changes and

then use MLLR adaptation to compensate for the environmental mismatch. The pro-

posed method comprises the following steps. First, an eigenspace is trained on a large

clean speech database D0, and a small amount of data D1 is recorded in real-life con-

ditions. The speech to be recognized in the same real-life conditions is denoted by D2.

Second, for each speaker in D1, maximum-likelihood eigenspace decomposition (MLED)

is computed, which projects the speakers in the reference space. Then, MLLR is used to

compute the transformation between the noisy and clean data for all speakers, making the

transformation to focus on environmental variation only. This step yields environment-

dependent speaker independent (SI) system. Finally, in real-life speech recognition, for

each speaker in D2, MLED is computed in the reference space in order to adapt with the

speaker, and then the estimate is rescaled with the effect of the environment using MLLR.

This yields both speaker and environment adapted ASR system.

In another approach, acoustic factorization is proposed [12], where each unwanted fac-

tor affecting the acoustic signal is separately modeled, which allows the appropriate factors

to be factored-in for a particular target domain. In the proposed method, eigenspace/CAT

was used to project the transformation between noisy and clean speech data, and MLLR

was used to perform the speaker adaptation. The acoustic factorization approach may lead

to rapid combined speaker and environment adaptation, and allow the speaker transform

parameters to be retained across noise conditions.

5 SUMMARY

Adaptation is an effective method for decreasing the mismatch between training and test

data in automatic speech recognition. There is a variety of different adaptation methods,

which fall into three main categories. MAP-based adaptation has the advantage that it
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converges to ML estimate as the adaptation data increases. However, the major drawback

of MAP-adaptation is the speed of adaptation in large HMM systems. This can be allevi-

ated by using e.g. regression based model prediction (RMP) or structural MAP (SMAP).

The transformation based approaches are effective with very small amounts of adaptation

data, but over-training is a problem. This can be prevented by using combined adap-

tation with MLLR and MAP or SMAP. Speaker clustering and speaker space methods

form models as a weighted sum of speaker HMMs. In cluster adaptive training (CAT),

the model is formed as a weighted sum of individual speaker cluster models, whereas in

eigenvoice based method, PCA is used to find a set of supervectors that define the speech

space, and a speaker model is formed as a weighted sum of these supervectors. CAT and

eigenvoice techniques are efficient with a very small amount of data, but do not converge

to the MLLR or MAP solutions.

In general, all of these adaptation methods can be used for decreasing the mismatch

from speaker, environment, or both. However, in an ideal case, the environmental adap-

tation and speaker adaptation should be different processes. This would be useful in

constructing speaker adapted system that was independent of the acoustic environment,

enabling fast speaker adaptation in new real environments. A few such methods have

been already described, using CAT/eigenvoices and MLLR for speaker and environment

adaptation (and vice versa). However, there is still not much research on environment

adaptation.
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Abstract 
Automatic Speech Recognition (ASR) has always been a difficult and 

interdisciplinary subject, involving at least Computer Science (algorithms, pattern 
recognition), Electrical Engineering (speech modeling, signal processing), Linguistics 
(phonetics, phonology, speech structure) and Physics (acoustics). Today, with the 
advancement of technology such as the increase in computational power, storage 
capacity etc and more importantly the increase in research in the field of ASR we are 
close to replicating human performance in Speech Recognition. However, it has to be 
noted that even with the current state-of-the-art ASR systems; general belief is that 
the human are the better recognizers of speech than the machines. Both human and 
machines have some advantages and disadvantages of their own when it comes to 
speech recognition. For example, human are more robust and efficient but they are 
also lazy, get tired or bored. Humans are also only good recognizers for few specific 
languages. So it is not surprising that that we already have few ASR systems that 
perform better than human for some special cases. This paper discusses the reasons 
for human performing better than the machines. Comparison between human and 
machine speech recognition is carried out. This paper also discusses the how human 
perception of the speech can be exploited to improve the performance of ASR systems 
as well as other techniques that could be useful to replicate human performance in 
ASR systems.  

1 INTRODUCTION 

In recent years, technological development has left a positive impact on the speech 
recognition technologies. There has been significant advancement in computing power 
of the hardware which allows real-time solution to the computationally complex speech 
recognition algorithms based on machine learning aspects and involving complex 
mathematical and statistical calculations. Increase in storage capacity has allowed the 
storage and retrieval of huge amount of speech data and corpora with large vocabulary 
sizes. With ever growing research in the field of speech recognition the sizes of speech 
corpora has also dramatically increased. Increasing research also means that several 
computationally fast algorithms have been developed.  

Large vocabulary talker independent recognizers provide error rates that are less 
than 10% for reading sentences recorded in quiet environment [1]. However, these 
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advances are not enough for real time commercial speech recognition system. Although 
few simple commercial applications have been developed, for example digit recognition 
system (vocabulary size only 10), there is no denying the fact that ASR systems can be 
widely deployed only when its performance is closer to the performance of the human. 
Significant gap exists between human and machine in terms of speech recognition 
capabilities. This gap is because of some of the inherent capabilities of the human and 
various problems still confronting the speech recognition society at present.  

Studying human speech recognition is a difficult task. The observations are not 
direct. Components of the human speech recognition system cannot be separated and 
tested independently. Although many studies have been carried out, working of the 
brain which plays an important in human speech recognition system is a mystery not 
yet fully solved. Experiment on human speech recognition (HSR) is very expensive and 
difficult to carry out [1]. 

The aim of this paper is to present the current situation in the research of the 
speech recognition system, compare it with the human speech recognition system. 
Performance of the current state of the art ASR system is also evaluated. The aim is 
not only to compare machine speech recognition system with human speech recognition 
system but also to present some ideas how study of human speech recognition can be 
useful for implementation in machine.  

2 WHY HUMANS ARE BETTER AT SPEECH RECOGNITION? 

Human speech recognition system is built by nature. With centuries of evolution and 
improvement, long hours of training human speech recognition system are extremely 
efficient, robust to noise (or signal distortions) and flexible. As a general belief it is 
difficult (sometimes even impossible) to beat nature. Presence of various natural 
features, some implementable in machines and some usually not, make humans superior 
in speech recognition. There is no motivation in plain duplication human speech 
recognition system. This is not possible and would never be useful. Human still has 
some problems in speech recognition and machines have some advantage in some 
regards. So, we can study few specific features of human speech recognition and human 
perception of speech which could be useful for future research in speech recognition 
technology. 

2.1 Adaptation and Normalization: 

Human adapts to difference in speakers, speaking styles and pace of speech (eg. Finnish 
speaking slow English and Australian speaking fast English hardly seems to be a 
problem for human). Even if ASR systems are used to handle these differences, they 
require significant amount of training data and time to adapt. On the contrary, if the 
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ASR systems are not adapted to the new environment, the results can be poor. In ASR, 
new models developed to adapt to a changing environment (noise, speaker, speaking 
styles, pace of speech etc) should not require new training but simple changes in the 
parameter of the models. 

2.2 Prediction Capability and OOV handling 

Number of experiments have been carried out to prove that human are better than 
machines (for example: statistical methods such n-grams) to estimate the upcoming 
word in the speech stream. Although the perplexity of the human can be poor 
compared with the machines, machines find it difficult to process from left to right. 

Errors can occur when the given input is not in the vocabulary, pushing the 
system to erroneously recognize the word. This problem is often referred as an Out of 
Vocabulary (OOV) issue. The source of OOV words are linked to limited size of the 
training data and to increasing vocabulary in certain domains, e.g.; scientific terms or 
slang. Humans are better at handling OOV words.  

2.3 Word perception models: 

Various researchers from various fields have suggested numerous speech perception and 
word recognition models such as analysis by synthesis (Stevans, 1960), first order 
context sensitive coding(ERIS)(Marcus, 1981). However, several experiments have 
proved that HMM (Hidden Markov Model) based word recognition model is efficient. 
However, incorporating specific information about the speech that can be easily 
extracted (eg. Environmental characteristics, speaking style, characteristics related to 
the speaker, the local speaking rate and word characteristics such as word stress, 
reduction and co-articulation) will permit quick adaptation of model parameters [2]. 

2.4 Scale Spacing: 

Scale spacing in human speech recognition is a process of defining the level of precision 
for speech understanding either global or detailed. Human are very good at scaling. 
They can focus their attention exactly according to their current requirement of speech 
perception. If the requirement is detailed (for example: direction to some place) we can 
easily focus our attention and remember the speech for a long time. If the details aren’t 
necessary we can just take in the required knowledge and forget about the nitty-gritty 
details. However, it is difficult for the machine to adapt to such scale spacing. The 
precision of knowledge of speech recognition is one level only.  
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2.5 Pronunciation Variations:  

People pronounce words differently and pronunciation of same word differs with respect 
to the context. For example, pronunciation of words such as character, pi (π) is 
different in different places. However, ASR systems are often implemented as speaker 
independent and simply take into consideration only the standard pronunciation 
without considering the context and the speaker.  

Human on the other hand have a good knowledge about word boundary, syllabus 
etc. which makes it easier for the human to understand the speech.  

2.6 Noise and Reverberation Robust:  

Experiments carried out by Lippmann [1] have shown that human performance is not 
affected by noise and reverberation when the level of noise is above 0 dB. Only two 
aspects that affect the human performance are native language of both the speaker as 
well as the speaker and the size of the vocabulary. 

2.7 Robust to spectral and temporal distortions: 

ASR systems are trained on phoneme, morpheme, tri-phone word templates. Now when 
ASR has to recognize a word, it selects the word with shortest distance or greatest 
similarity to the word in its vocabulary. So when the signals are distorted measures of 
similarity and shortest distance will also be effected thus effecting the result of 
recognition. Similar to machines, humans also learn from examples. However, the 
experiments (Grossberg, 1986) have found that human are more flexible and adaptable.  

2.8 Additional Contextual Information:  

Speech is an acoustic signal. However, when people communicate various features such 
as facial expression, movement of the hands, blinking of the eye etc. give additional 
information about the speech. “Information is in the audio, video is for entertainment” 
R. Schwartz. However, video plays an important role in human speech perception as 
well. Human use these additional information efficiently in speech recognition to 
understand the speaker. Popularity of audio visual synthesis, automatic generation of 
voice and facial animation from text (also known as multimodal speech synthesis), is 
increasing day by day.  

Human auditory system divides the acoustic signal into frequency bands, called 
critical bands, which are used as independent inputs to human recognition mechanisms. 
In experiments carried out by Fletcher et. al. [10] it was discovered that biological 
combination scheme obeys the following regularity.  
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Where X is the input from several non-overlapping bands centered around frequency fi. 
The )(XQx  is the minimal context. This means that error is committed only if none of 

the channels yields correct classification. Human always take into account the 
contextual information along with acoustic information. Often contextual constraints 
can be implemented in ASR as the probability of various utterances thus limiting the 
number of possible words.  

2.9 Auditory Modeling: 

Neuro-mechanical signal processing in the human peripheral auditory system is very 
complex. It has functionalities that we need not consider for speech recognition. So, 
instead of plain duplication of human system, the speech recognition methods using 
HMM and other techniques already have a better performance. However, careful 
feature extraction can improve the performance of the machine recognizers.  

2.10 Prosody-driven recognition: 

The acoustic parameters responsible for prosody are generally considered to be 
fundamental frequency, duration, energy, and spectral slope as a function of time [2]. 
Prosody is important in human speech recognition for determining the word boundaries 
etc. Stress and syllables in words if detected as the humans do, the performance of ASR 
systems are bound to improve.  

Some of the consistent speech characteristics such as pitch information, 
durational variability, spectral reduction and co-articulation, quick adaptation to 
speaker, style and communication channel, communicative expectation, multi-modality, 
binaural hearing etc are often rejected in speech recognition [2]. If we could use these 
features in ASR, the performance should improve.   

3 SPEECH SYNTHESIS (MACHINE GENERATED SPEECH) 

Machines have already been used to produce speech for various purposes. Small 
vocabulary systems such as flight announcement systems, speaking clock etc produce 
sound close to that produced by human. Unlimited vocabulary speech synthesis is also 
possible using rules but with increase in vocabulary there will be decrease in quality 
and interchangeability. Current hardware and storage systems are not yet capable of 
handling such large amount of data and rules for real time speech production.  

Performance of speech synthesis systems also depends on the context. For 
example, the read aloud Wall Street Journal (WSJ), later extended to many more 
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newspapers in the North American Business (NAB) news has good performance with 
error rate of about 10%. However, producing speech synthesizer for uttering the names 
and addresses of people is difficult because context in the case of WSJ is simple but 
context in case of names and addresses is complex with each names and addresses being 
different.  

4 COMPARISONS HUMAN AND MACHINE SPEECH RECOGNITION 

Lippmann [1] pioneered the comparison of human and machine speech recognition 
techniques.  

4.1 The Comparison 

Experiments were carried out on six different evaluation corpora: Digit and digit 
strings, 26 alphabet letters, North American Business News, Resource Management, 
Switchboard Spontaneous Conversation (Telephone) and Switchboard word spotting 
(Telephone). The four basic objectives of carrying out the comparisons were: to focus 
the research activities to narrow the gap between human speech recognition and 
machine speech recognition, to study the human behavior with regard to speech 
recognition like how human adapt to changes and also bridge the gap between human 
and machine speech recognition research. 

Lippmann [1] used six different evaluation corpora used which were designed for 
speaker independent speech recognizers. The corpora were designed for different 
applications of speech recognition technology. Word error rate constitutes substitutions, 
insertions, deletions, and word insertions. Small numbers of OOV words are included as 
test words. 

All the speech corpora focus on dictation task where the objective is to identify 
the spoken word except for the switchboard corpus which was used both for dictation 
and word spotting i.e. to detect 20 common words in conventional telephone speech. 

Table below gives the characteristics of the six evaluation corpora used for 
comparison of human and machine speech recognition. 
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Table 1: Characteristics of 6 speaker independent speech recognition corpora by 
Lippmann [1]. 

Corpus Description Number of 
Talkers 

Vocabulary 
Size 

Number of 
Utterances 

Total 
duration 

Recognition 
Perplexity 

TI Digits Read digits 326 10 25,102 4 hrs 10 
Alphabet 
Letters 

Read 
alphabets 

150 26 7,800 1 hr 26 

Resource 
Management 

Read 
sentences 

109 1000 4,000 4 hrs 60-1000 

North 
American 
Business 
News(NAB) 

Read 
sentences 

84-284 5000-
unlimited 

7,200-37,200 12-62 hrs 45-160 

Switchboard 
continuous 
speech 
recognition 

Spontaneous 
telephone 
conversations 

70-543 2000-
unlimited 

35-2400 
conversations 

2-240 hrs 80-150 

Switchboard 
word 
spotting 

Spontaneous 
telephone 
conversations 

70 20 keywords 2000 keyword 
occurances 

2 hrs - 

Experimental Design:  

Before the experiments were carried out transcription of the corpus is carried out by 
highly motivated listeners. The metric used for the comparison is word error rate. 
Other difficult metrics such as recognition time, training time, vocabulary size, type of 
noise etc were not considered. Same corpus was used for both human and machine 
except for the resource management corpus with a null grammar and for the Alphabet 
letter corpus. Experiments use the results from six different ASR systems that perform 
best on specific corpora.  

For humans also committee majority vote among multiple humans was used 
instead of average error rate. Spellings were also corrected to eliminate OOV responses. 
They were motivated for better performance as they would receive extra pay if they 
made fewer errors.  

Table 2 below shows the comparison of the best performing ASR and majority of 
the committee vote for the speech corpora given in the table 1 above. 
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Table 2: Summary of the error rates for Human and best performing ASR by 
Lippmann[1]. 

Corpus Machine 
Percentage 
WER 

Human 
Percentage 
WER 

TI Digits 0.72 0.009 
Alphabets 5 1.6 
Resource Management 17 2 
North American Business News 6.6 0.4 
Switchboard continuous speech 
recognition 

43 4 

Switchboard word spotting 31.1 7.4 
 
For example in the case of TI digits corpora, 25 listeners typed their responses in 
keyboard. The average digit string or pre-utterance rate for vocoded speech was 
0.105%. It further reduces to 0.01% when the majority vote from a committee of three 
listeners was used. When wide band speech was used the string error rate for the 
individual listeners dropped to 0.009%. On the other hand machine error rate is 0.72%.  

4.2 Benchmarking Human performance for continuous speech recognition  

Deshmukh, N et. al. [8,9] used LVCSR and low SNRs to compare human and machine 
speech recognition. They use two evaluation corpora: ARPA’s CSR’94 Spoke 10 and 
CSR’95 Hub 3. This study was primarily carried out to set a benchmark for machine 
error rates. The aim was also to study the effect of various factors such as amount of 
noise, speaker characteristics, artifacts introduced by the placement and type of 
microphone, properties of spoken material on the human speech recognition.  

Experimental Design: 

Both native and non-native speakers of English were used as subjects. Test data was 
systematically distributed so that ultimate human performance could be closely 
approximated. Different microphone conditions were also used to study the effects of 
type of microphone on the speech recognition. 
Evaluation Corpora: Two evaluation corpora used had the following features.  

94 Spoke 10: The transcripts of 113 sentences were recorded from 10 speakers with 
about 11 sentences per speaker.  SNR of levels (22dB, 16dB and 10dB) were added to 
create a total of 452 utterances.  
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95 Hub 3: The corpus of 20 paragraphs with 15 sentences in each paragraph which 
were drawn from broadcast news. Each utterance was recorded using two microphones 
and hence there were 600 utterances.  

Listeners were not motivated as they were not given any extra benefits for correct 
answers. Each listener listened to a different speaker with different condition each time. 
Committee transcription was used from the transcription by a group of 3 listeners for 
each utterance under each condition. Spelling errors and other attention span errors 
were corrected as a post processing step.   
The results of the experiment are described in the table below. 
 
Table 3: Evalation of Human Recognition Performance on 94 Spoke 10 Corpus on noise 

condition. Adapted from Neeraj Deshmukh et. al. [8] 

Percentage WER on Noise Condition(94 Spoke 10 
Corpus) 

Vocabulary 
Evaluation 

Listener 

None 22dB 16dB 10dB All 
Overall 2.0 2.1 2.1 2.1 2.1 Open 

Vocabulary Committee 1.0 1.4 1.2 1.2 1.2 
Overall 1.0 0.8 0.8 1.1 0.9 Augmented 

Vocabulary Committee 0.6 0.3 0.4 0.7 0.5 
    

Table 4: Evalution of Human Recognition Performance on 95-Hub 3 Corpus on 
Microphone Condition by Deshmukh et al. [8,9]. 

Percentage WER on Microphone Condition(95 
Hub 3 Corpus) 

Vocabulary 
Evaluation 

Listener 

Mic s Mic b Mic f Mic g All 
Overall 2.0 1.9 1.9 3.3 2.2 Open 

Vocabulary Committee 0.8 1.0 0.2 1.5 2.2 
Overall 1.5 1.4 1.6 2.2 1.6 Augmented 

Vocabulary Committee 0.3 0.6 0.1 0.8 0.4 
Best Performing ASR(Machine) 6.6 8.1 10.3 23.9 10.0
   
Mic s:  Sennheiser HMD-410 close-talking;  
Mic b:  Shure SM-58 boom-mounted;   
Mic f: Audio Technica AT851a Micro Cardioid Condenser  
Mic g:  Radio Shack 33-1060 Omni Electret  
 
As can be seen from above that human error rate are statistically insignificant as it is 
less than 1%. It can also been seen that error rates are similar for all the noise levels. 
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Hence the effect of noise on human recognition is negligible. Experiments also found 
that most of the error was on the recognizing the proper nouns.  

5 WHY MACHINES CAN BE BETTER? 

Comparison with human shows that ASR systems have severe pitfalls in speech 
recognition. It has to be mentioned that some modern and advanced ASR systems have 
excellent performance in noise free condition. However, the performance degrades 
drastically when the noise and other anomalies degrade the quality of speech signal. 
For machines error rates increase roughly to 40% for spontaneous speech and to 23% 
with channel variability and noise [1]. On the other hand human error never exceeds 
5% in quiet as well as degraded conditions. Therefore, it is evident that human speech 
recognition thrives in noise and difficult task such as continuous speech.  

Despite several superiorities of human speech recognition system, there are certain 
aspects where machine has advantage over human.  

5.1 Inherent Advantages of Machines over humans 

Human can get tired easily, can’t be asked to work more than 8 hours a day. Human 
can also be distracted by other interesting stimuli (e.g. visual stimuli) and they tend to 
get bored working on the similar tasks time and again. They can get uninterested on a 
topic and subject. The human nature the feeling of emotions (happiness and sadness) 
also plays an important role in degrading human performance. Another significant flaw 
in human can be of language. Normally, human are better at listening of few languages 
(mostly 1 or 2, in almost all the cases less than 5). It would be difficult and would take 
significant time to train and adapt a person who is good listener in English to listen 
with same performance in Finnish. On the other hand, with some simple and minor 
changes in the model parameters, speech corpora and with few hours of training 
machine can adapt and replicate its performance in an entirely new language.  

5.2 Advancement 

Human evolution is pretty slow process. It takes centuries for humans to develop 
something new. For example we have not been able to get rid of the vestibule organs 
for such a long period of time. On the other hand, the development of the ASR 
methods is dramatic as has been shown in the last decade. Numerous researches are 
being carried out in various fields of ASR in several leading universities and 
laboratories around the world. If the rate of advancement carries on at the current rate 
than it will not be long before we can see ASR systems that outperform human in all 
the circumstances.  
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6 HOW CAN MACHINES BE IMPROVED? 

6.1 Use of glimpsing model 

Glimpses are the regions in the spectro-temporal regions in which target signal is least 
effected by background [3]. Humans recognize speech in glimpses of speech (reliable 
evidence) and treat other spectro-temporal parts as missing evidence. It is similar to 
computer vision. If a car is seen passing by, which is partially covered by some object, 
mind can fill things that can’t be seen at the moment thus realizing the car as a whole 
object based on the glimpse. Experiments carried out by Cooke [3] found that 
information in glimpses could be useful for consonant identification and suitable to be 
used for computation as well.  

6.2 Bridging Communities of ASR and HSR 

Although the aim of both ASR and HSR is to extract linguistic information from 
acoustic signal, there exist two distinctly separate communities for research on the 
respective fields. In spite of some differences in their objectives and features, there is a 
overwhelming possibility of establishing contact points between the two research 
communities. Sadly, there hasn’t been much effort from both the research communities 
to consider bridging the gap between them. Both research communities can reap the 
benefits if the research communities can establish more contacts between themselves.  

6.3 Human Factor Cepstral Coefficients (HFCC) 

HMM and MFCC has some severe limitations. First is foremost is HMMs neither claim 
nor model biology. Secondly, HMMs are piecewise-stationary, while speech is 
continuous and nonstationary. Thirdly, HMM assumes that frames of speech are 
independent and identically distributed. Finally, state pdf(probability distribution 
function) are data driven. So, these limitations mean we must come up with a new 
model. Psychoacoustic experiments have found several properties human auditory 
system that could be used in feature extraction algorithm. Mel frequency scale, band 
pass sensitivity, and temporal and instantaneous masking have already been 
implemented in current ASR system. HFCC has been purposed as a new model to 
overcome the above problems in HMM and MFCC. HFCC includes critical bandwidth 
information into the filter bank design of MFCC. Independent optimization of filter 
bandwidth possible through HFCC is even better than the biologically inspired. HFCC-
E (HFCC with linear E-factor) is an advancement of HFCC where the ERB 
(Equivalent rectangular bandwidth) used is linearly scaled. 
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6.4 Energy Redistribution algorithms 

Speech signal in the time domain contains several features like gender, age, emotional 
state of the speaker. Thus speech stream has variable concentration of speech over 
time. Energy redistribution algorithms conserve signal energy and preserve naturalness 
while intelligibility of the linguistic information is increased (as determined through 
human listening tests)[7] exploiting the variable concentration of information over time.  

6.5 Creation of Novel Classifier 

Recent researches have been successful in studying sensory processing in biology.  New 
theories on information processing are being formulated based on the chaotic properties 
observed in the biological systems. Already some systems such as Freeman’s KIII 
network has been developed which is yet not a replacement for the HMMs although it 
better models the non-convergent signals detected in biology. 

6 CONCLUSIONS 

In spite of the recent developments in the various fields of speech recognition, the 
current ASR systems fall short of human in performance. Relentless research in the 
field of speech recognition should in the near future produce a generic speech 
recognition system that can perform at the capacity of human beings. Studying the 
details of human speech recognition could be beneficial for developing ASR that could 
match the performance of human recognition system. Some features of human speech 
recognition system such as contextual information and lower level phonetic modeling 
could be used to enhance the performance of ASR. There is a need to bridge the gap 
between research in ASR and HSR community.  
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On Two-Way Grouping by One-Way Topic Models. May 2009.

TKK-ICS-R16 Antti E. J. Hyvärinen

Approaches to Grid-Based SAT Solving. June 2009.

TKK-ICS-R17 Tuomas Launiainen

Model checking PSL safety properties. August 2009.

TKK-ICS-R18 Roland Kindermann
Testing a Java Card applet using the LIME Interface Test Bench: A case study.
September 2009.

ISBN 978-952-248-087-3 (Print)

ISBN 978-952-248-088-0 (Online)

ISSN 1797-5034 (Print)

ISSN 1797-5042 (Online)


