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ABSTRACT: Large graph layout design by choosing locations for the vertices
on the plane, such that the drawn set of edges is understandable, is a tough
problem. The goal is ill-defined and usually both optimization and evalua-
tion criteria are only very indirectly related to the goal. We suggest a new
and surprisingly effective visualization principle: Position nodes such that
nearby nodes have similar link distributions. Since their edges are similar
by definition, the edges will become visually bundled and do not interfere.
For the definition of similarity we use latent variable models which incor-
porate the user’s assumption of what is important in the graph, and given
the similarity construct the visualization with a suitable nonlinear projection
method capable of maximizing the precision of the display. We finally show
that the method outperforms alternative graph visualization methods empiri-
cally, and that at least in the special case of clustered data the method is able
to properly abstract and visualize the links.
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1 INTRODUCTION

The graph layout problem has been studied for decades, and still dozens
of papers are written on it each year. The two traditional main algorithm
families are so-called force-based methods and spectral methods. The force-
based methods (e.g. [11]) rely on a spring analogy; each edge is assigned
a spring which tries to keep the edges at a fixed length. When the spring
contracts or extends, a force is applied at its endpoints. The energy function
to be optimized balances the forces. Spectral methods, on the other hand,
are generally based on computing the eigenvalues of a matrix related to the
graph, such as the Laplacian. They have the advantage of being extremely
fast and scaling to huge graphs. The disadvantage is that they often produce
clearly worse layouts than the more computationally demanding force-based
methods [3].

Recently, principled graph layout methods for specific tasks or assump-
tions have emerged. A method called LinLog has been shown to produce
visualizations that reveal community structures [5]. In general, however, the
principles underlying graph visualization are not clearly connected to visual-
ization or graph properties.

We introduce a principle for visualization which says that nodes nearby on
the display should have similar link distributions. Then their edges become
naturally grouped and highlight structural features. We back this surprisingly
simple principle by empirical comparisons and an analysis in the special case
of clustered nodes. Similarity needs to be defined, and in the definition it is
possible to incorporate our assumptions on what properties of the graphs are
important and should be visualized well.

In latent variable modeling we generally build our assumptions about
what is important into the modeling assumptions, such that the latent space
captures what is important in the samples. Hence, given such a latent vari-
able model, we compute the similarities using the model. After we have a
similarity measure that we believe in, the remaining problem is to reduce the
dimensionality into two such that close-by nodes on the display are similar.
This can be done with a recent method NeRV [10] which allows controlling
the tradeoff between precision and recall of the visualization. Visualizations
maximizing precision would fulfill our principle that nearby nodes on the
display should be similar in terms of their link distributions.

We will show that at least under simplifying assumptions the method suc-
cessfully reveals the link structure of the graph, in particular when the data
have cluster structure. We empirically verify the performance, and further
show that our method outperforms alternative graph visualization methods.

2 MODEL-BASED GRAPH VISUALIZATION: LDA-NERV

We claim that if we visualize a graph such that nearby nodes in the visual-
ization have similar link distributions, the visualization will be good. Next
we introduce the steps needed in practice, then discuss why the visualization
should be good, and in the next section show the performance experimen-
tally.
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2.1 Method
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Generative models for graphs

We assume that the links have been generated from a latent variable model,
where the latent variables capture what is central in the graph, and the rest
is noise. We should, as usual in modeling, build our assumptions about the
data into the model, and those assumptions will then determine what kinds
of properties of the graphs will be visualized well.

A convenient, flexible choice is SSN-LDA (Simple Social Network Latent
Dirichlet Allocation) [12], a generative topic-type model for graphs. In SSN-
LDA each node is associated with a membership vector over a set of latent
components. Each component is in turn associated with a distribution over
the nodes in the graph. Edges are generated by first drawing a component for
the starting node, and then drawing the receiving node from the component-
specific distribution. The assumption behind this generative process is that
the graph can be decomposed into overlapping latent components, that is,
groups of nodes with similar edge distributions. Hence we assume that the
components are more important for graph visualization than are details in
link patterns.

For SSN-LDA the latent space takes the form of component probabilities
given the node, and thus the distances between link distributions should be
evaluated in terms of those probabilities. We will use the quickly computable
Hellinger distance which has been proven useful for topic models earlier [1],

d(p.q) = Jiw@— V) )

i=1

where p and g are the probability distributions over the components. The dis-
tances could alternatively be computed in the link space, using information
geometric formulations.

Nonlinear dimensionality reduction

The final step is to position the nodes on the display so that nearby nodes
will have similar link distributions. In other words, we want to place similar
nodes, and only similar nodes, close to each other on the display.

There are many nonlinear dimensionality reduction methods that operate
on a distance or similarity matrix of data. As far as we know, however, there
is only one which allows choosing between the two kinds of errors: placing
dissimilar nodes close to each other, and placing similar nodes far apart. The
method called NeRV (Neighbor Retrieval Visualizer) [10] formulates visual-
ization as visual information retrieval, where the two kinds of errors translate
to precision and recall of retrieving relevant (=similar) points based on the
display. Having only similar points nearby equates high precision.

The tradeoff between precision and recall can be controlled by a single
parameter, A. Although A = 0.0 maximizes precision, we perturb it slightly
away from zero, to A = 0.1, to regularize the solution.

MODEL-BASED GRAPH VISUALIZATION: LDA-NERV



2.2 Why should this work?

2

An obvious consequence of placing nodes with similar edge distributions
near each other is that edges will tend to bundle; the density of a bundle will
increase with the number of nodes with a similar distribution (more nodes
in the same place, sending out edges in the same directions). This feature
will draw attention to interesting structures in the latent space: nodes that
are well described by a single component will form clusters with dense edge
bundles, resulting in a nice-looking and interpretable visualization.

If the graph contains a community, that is, a set of nodes with many edges
within the set and relatively few edges to the outside, the nodes in the com-
munity will be clustered together on the display. This is because the nodes in
the community will have similar edge distributions (they mainly link to each
other). The community will also most likely be clearly separated from other
nodes in the layout because the other nodes will have different edge distribu-
tions. In other words, LDA-NeRV can be expected to reveal any community
structure that a graph may contain.

More generally, if the nodes form clusters that are not communities, that
is, groups of nodes that link to other groups in the same way, then they will
be grouped together in the visualization for the same reason, and the edges
between clusters will form clearly visible bundles. Our experiments show
that this is indeed the case (see Figure. 2).

Figure 1: Interpolation between clusters. This artificial example shows three
simple graphs, where 9 nodes (gray) form three clear clusters or components,
each having links to the other two clusters. On the left, the black node be-
longs to one of the clusters based on its linking behavior. As the linking
behavior changes towards right, it is best described as an additive mixture
of the components, and the position of the node becomes correspondingly
interpolated between the clusters.

In the ideal case of well-separable clusters described above our method
intuitively works well. Next we discuss what happens if the cluster structure
is less clear, which is often the case in real-world graphs.

In topic models the link distribution of each node is explained by a mix-
ture of links from the components. Each node belongs to each component
to a degree, and given that most nodes are clustered the degrees of a node
determine interpolation between the clusters (Fig. 1). The deviation of a
node from the clusters can be measured in terms of the entropy of the node’s
component distribution: the lower the entropy, the more clearly the node
belongs to certain clusters.

As a practical remark, if there are very high-entropy nodes because their

MODEL-BASED GRAPH VISUALIZATION: LDA-NERV 9



membership to the components is very uncertain, they will have small Hellinger
distances from each other. If we have a graph where some of the nodes have
very low entropy, and the rest have very high entropy, the high entropy nodes
will by symmetry have nearly the same, large Hellinger distance to any of the
low entropy nodes. As a consequence, the high entropy nodes will tend to
cluster in the center of the display, whereas the low entropy nodes form their
clusters on the outskirts of the display (as in Fig. 1).

When visualizing graphs with a notable number of high-entropy nodes, as
we will do in Figure 3, we can clarify the visualization by making the size of
the nodes inversely proportional to the entropy. This makes sense since for
high-entropy nodes the component membership profile is very uninforma-
tive and hence the locations are as well.

3 EXPERIMENTS

We compare LDA-NeRV with two graph layout methods (see below) on three
very different graphs.

The Football graph consists of 115 nodes and 613 edges. Fach node rep-
resents a team, and an edge between two teams implies that the teams played
each other during one season [2]. Each team is known to belong to one of
12 conferences. The teams in each conference played heavily against each
other, and there is some structure in games between the conferences which
is not as obvious.

In the Cora graph, each node is a scientific publication and an edge be-
tween two nodes indicates that one of the papers cites the other [7]. There
are 2485 nodes and 5068 edges in the graph, and the papers belong to seven
predefined classes, such as Machine Learning or Artifical Intelligence. Al-
though there is definitely structure in this data, it is much more varied and
complicated than the communities of the football graph.

In the Adjective-noun graph [4] each of the 112 nodes represents a word,
and nodes are connected by an edge (424 in total) if the words have appeared
next to each other in running text. There are two kinds of words: adjectives
and nouns. As would be expected, a noun appearing next to a noun and an
adjective appearing next to an adjective are much rarer occurrences than a
noun appearing next to an adjective, so the graph is almost bipartite. We
chose this dataset as an example of data that has definite structure but no
communities.

3.1 Comparison methods

We compare LDA-NeRV against two representative graph layout methods.
The first algorithm is from the dominant method family, force-based meth-
ods, a variant of Walshaw’s multilevel force-based algorithm [11] implemented
as a Cytoscape [8] plugin [6]. Like any force-based algorithm, Walshaw’s al-
gorithm treats the edges as springs with uniform natural lengths. When a
spring extends or contracts beyond its natural length, it applies a correspond-
ing attractive or repulsive force to its endnodes. The graph layout is produced
iteratively by giving the vertices initial positions and letting the system find
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an equilibrium. Walshaw’s algorithm greatly speeds up the convergence by
creating a good initial guess for the final layout based on layouts for coarser
approximations of the actual graph.

The second method is a recent principled algoritm for revealing and visu-
alizing community structure in graphs, Andreas Noack’s edge-repulsion Lin-
Log [5]. The layouts are produced by minimizing an energy function, and
it has been shown that minimizing this energy function also minimizes the
ratio of the mean distance between connected nodes to the mean distance
between all nodes. This suggests that LinLog layouts should indeed reveal
communities.

3.2 The football graph

The layouts of the football data with the three methods, displayed in Fig-
ure 2, show that LinLog and LDA-NeRV give very similar results and both
find the structure as expected. LDA turned out to be very robust against the
choice of the number of components. The figure shows results for 24 com-
ponents, double the number of conferences, suggesting that simply choosing
a large number is a feasible strategy; alternatively of course standard model
complexity criteria could be applied, or Dirichlet Processes. Walshaw’s algo-
rithm has also placed the conferences in almost disjoint areas of the display,
but the structure in the linking between them is completely hidden.

Figure 2: Football data set visualized with LDA-NeRV (left), LinLog (center)
and Walshaw’s algorithm (right).

3.3 The Cora graph

In layouts of both LDA-NeRV and LinLog (Figure 3), the content classes of
the documents are clearly visible. Walshaw resulted in a large cloud without
apparent structure (not shown). What is striking in the LinLog visualization
is that it places a significant proportion of the nodes in very tight clusters,
which are not really visible in the image since the nodes are so overlapping.
As a result the visualization seems to have far fewer nodes. In the LDA-
NeRV visualization there is a large bundle of nodes in the center of display;
the nodes have a high cluster membership entropy and their salience has
been decreased by making the size of the nodes proportional to the entropy
of cluster membership as discussed in Section 2.2.
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Here the resolution of the LDA-NeRV result can be selected by selecting
the number of components; the quantitative quality of the results has turned
out to be robust to the number, given that it is not very low of course. This
visualization has 70 components; with 35 components the quantitative mea-
sures (introduced below) were still clearly better than with LinLog.

3.4 The Adjective-noun graph

On the Adjective-noun graph (Fig. 4) both Walshaw and LinLog failed mis-
erably to find structure, whereas LDA-NeRV separated adjectives and nouns,
and visualizes the predominantly bipartite structure. It is not surprising that
LinLog fails, since the data does not contain communities, mutually con-
nected clusters.

We further tested what would happen if the LDA in LDA-NeRV was re-
placed by another generative model, a model that assumes community struc-
ture as LinLog does. The Interaction Component Model (ICM) [9] a topic
model and very similar to LDA, the main difference being that it assumes
communities. The resulting ICM-NeRV visualizer fails as badly as LinLog

(Fig. 4), emphasizing the importance of correct modeling assumptions.

3.5 Quantitative measures

12

In summary, it is clear from the visualizations that LDA-NeRV is able to
visualize linking between clusters and components. LinLog does that as well
given that the links are between clear and strong communities, as in the
Football graph of Figure 2. In the Cora graph there apparently is no such
connection; LinLog only finds communities, and cannot find link bundles
(Fig. 3). Walshaw, on the other hand, does not assume communities but does
not emphasize bundles either, which is visible in all images.

Next we will quantify this visual finding. We will not use the traditional
measure of graph layout quality, number of edge crossings, because we claim
that it is a very misleading figure. For instance, in the graph layouts of the
Football data set (Fig. 2) there are lots of edge crossings but since the edges
have become bundled, the crossings hardly disturb the interpretation of the
graph at all.

Instead, we measure the compromise the display makes in visualizations,
but computing precision and recall. The NeRV paper [10] recommends
smoothed precision and smoothed recall, which are more sensitive variants
of standard precision and recall. The measures may bias the result towards
NeRYV, but since they are the best available measures for our task, we simply
use them to quantify the visual impression.

The measures for each method and graph, collected in Table 1, verify that
the visual impression of visibility of the bundles seems to hold quantitatively,

since LDA-NeRV has the highest precision and recall.
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Figure 3: Cora data set visualized with LDA-NeRV (top) and LinLog (bot-
tom). Colors indicate topic classes of the documents.

SmP SmR
Football  Cora  adjnoun Football ~Cora  adjnoun
Walshaw 370 140,000 1300 580 180,000 1000
LinLog 370 140,000 1300 600 180,000 1100
LDA-NeRV 61 23,000 170 77 34,000 80

Table 1: Quantitative quality of the different layouts. The best result for
cach graph—-measure-pair has been bolded. SmP: smoothed precision; SmR:
smoothed recall.
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Figure 4: The Adjective—noun dataset visualized with Walshaw’s algorithm
(top left), LinLog (top right), LDA-NeRV (bottom left) and ICM-NeRV (bot-

tom right). Blue: adjectives, red: nouns.

4 DISCUSSION

We have introduced a new simple principle for graph visualization, and
shown how it can be taken into use in a method which outperforms exist-
ing graph visualization algorithms, in the hard task of visualizing large (and
small) graphs. What is particularly attractive is that the method is model-
based. A generative model of the graph is assumed, and the visualization
focuses on those properties in the link distribution the generative model mod-
els well, that is, considers important. The visualization can be made to focus
on different properties of the graph by changing the model. In effect, the
principle turns graph visualization, for which only mostly heuristic solutions
have existed so far, into a generative modeling problem.

The obvious disadvantage is longer running time, but the computation of
the graphs in this paper only took some tens of minutes on a standard PC for
all of the algorithms.

REFERENCES

14

[1] David Blei and John Lafferty. A correlated topic model of Science. The
Annals of Applied Statistics, 1(1):17-35, 2007.

[2] M. Girvan and M. E. J. Newman. Community structure in social and
biological networks. Proceedings of the National Academy of Sciences

USA, 99(12):7821-7826, 2002.

[3] Stefan Hachul and Michael Juenger. Large-graph layout algorithms at
work: An experimental study. Journal of Graph Algorithms and Appli-
cations, 11(2):345-369, 2007.

REFERENCES



REFERENCES

[4] M. E. J. Newman. Finding community structure in networks using the
eigenvectors of matrices. Physical Review E, 74(3):036104, 2006.

[5] Andreas Noack. Energy models for graph clustering. Journal of Graph
Algorithms and Applications, 11(2):453-480, 2007.

[6] P.Salmela, O. S. Nevalainen, and T. Aittokallio. A multilevel graph lay-
out algorithm for cytoscape bioinformatics software platform. Technical
Report 861, Turku Centre for Computer Science, 2008.

[7] Prithviraj Sen and Lise Getoor. Link-based classification. Technical
Report CS-TR-4858, University of Maryland, College Park, USA, 2007.

[8] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage,
N. Amin, B. Schwikowski, and T. Ideker. Cytoscape: a software envi-
ronment for integrated models of biomolecular interaction networks.

Genome Research, 13(11):2498-2504, November 2003.

[9] Janne Sinkkonen, Janne Aukia, and Samuel Kaski. Inferring vertex
properties from topology in large networks. In Working Notes of the
5th International Workshop on Mining and Learning with Graphs
(MLG’07), Florence, Italy, 2007. Universita degli Studi di Firenze.

[10] Jarkko Venna and Samuel Kaski. Nonlinear dimensionality reduction as
information retrieval. In Proceedings of the 11th International Confer-
ence on Artificial Intelligence and Statistics (AISTATS*07), San Juan,
Puerto Rico, March 21-24, 2007.

[11] Chris Walshaw. A multilevel algorithm for force-directed graph draw-
ing. Journal of Graph Algorithms and Applications, 7(3):253-285,
2003.

[12] Haizheng Zhang, Baojun Qiu, C. Lee Giles, Henry C. Foley, and John
Yen. An LDA-based community structure discovery approach for large-

scale social networks. In Intelligence and Security Informatics (ISI)
2007, pages 200-207. IEEE, 2007.

15









TKK REPORTS IN INFORMATION AND COMPUTER SCIENCE

TKK-ICS-R10

TKK-ICS-R11

TKK-ICS-R12

TKK-ICS-R13

TKK-ICS-R14

TKK-ICS-R15

TKK-ICS-R16

TKK-ICS-R17

TKK-ICS-R18

TKK-ICS-R19

He Zhang, Markus Koskela, Jorma Laaksonen

Report on forms of enriched relevance feedback. November 2008.

Ville Viitaniemi, Jorma Laaksonen

Evaluation of pointer click relevance feedback in PicSOM. November 2008.
Markus Koskela, Jorma Laaksonen

Specification of information interfaces in PinView. November 2008.

Jorma Laaksonen

Definition of enriched relevance feedback in PicSOM. November 2008.

Jori Dubrovin

Checking Bounded Reachability in Asynchronous Systems by Symbolic Event Tracing.
April 2009.

Eerika Savia, Kai Puolamaki, Samuel Kaski

On Two-Way Grouping by One-Way Topic Models. May 2009.

Antti E. J. Hyvarinen

Approaches to Grid-Based SAT Solving. June 2009.

Tuomas Launiainen

Model checking PSL safety properties. August 2009.

Roland Kindermann
Testing a Java Card applet using the LIME Interface Test Bench: A case study.
September 2009.

Kalle J. Palomaki, Ulpu Remes, Mikko Kurimo (Eds.)
Studies on Noise Robust Automatic Speech Recognition. September 2009.

ISBN 978-952-248-095-8 (Print)
ISBN 978-952-248-095-5 (Online)
ISSN 1797-5034 (Print)
ISSN 1797-5042 (Online)



