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ABSTRACT: The problem of multiple hypothesis testing arises when there
are more than one hypothesis to be tested simultaneously for statistical sig-
nificance. This is a very common situation in many data mining applica-
tions. For instance, assessing simultaneously the significance of all frequent
itemsets of a single dataset entails a host of hypothesis, one for each item-
set. A multiple hypothesis testing method is needed to control the number of
false positives (Type I error). Our contribution in this paper is to extend the
multiple hypothesis framework to be used with a generic data mining algo-
rithm. We provide a method that provably controls the family-wise error rate
(FWER, the probability of at least one false positive) in the strong sense. We
evaluate the performance of our solution on both real and generated data.
The results show that our method controls the FWER while maintaining the
power of the test.

KEYWORDS: multiple hypothesis testing, randomization, empirical p-values,
frequent itemsets, pattern mining
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1 INTRODUCTION

This paper addresses the problem of assessing the statistical significance of
the patterns produced by data mining algorithms. In traditional statistics
the issue of significance testing has been thoroughly studied for many years.
Given observed data and a structural measure (namely, test statistic) cal-
culated from the data, a hypothesis testing method can be used to decide
whether the observed data was drawn from a given null hypothesis. Under
this framework, randomization approaches help in producing multiple ran-
dom datasets sampled from a specified null hypothesis. If the test statistic
of the original data deviates significantly from the test statistics of the ran-
dom datasets, then the null hypothesis can be discarded and the result can
be considered significant.

Recently, there has been an increasing interest in randomization tech-
niques for data mining. For example, [5] introduced a method to sample 0–1
matrices uniformly at random such that the row and column margins of a
matrix are preserved. The method is extended by [16] for real-valued matri-
ces. As in the traditional framework from statistics, the randomized samples
can be interpreted to be drawn from a null distribution and they are used
to test the statistical significance of discovered patterns. In the case of 0–1
matrices, for example, the p-value of a frequent set could be defined as the
fraction of randomized datasets that have a higher frequency for the set than
with the original data.

The statistical significance testing problem is well understood when the
hypotheses to be tested are known in advance and the number of hypotheses
is fixed (see [4, 12, 20]). In the simplest case, there is only one hypothesis
(such as a frequency of a given frequent set) and the statistical hypothesis test
controls the probability of false positives, also called Type I error. A proper
statistical significance test of level α (typical choices being α ∈ {0.01, 0.05})
falsely declares a pattern that follows the null distribution as significant (false
positive) with a probability of at most α.

The problem of multiple hypothesis testing arises when there are more
than one hypothesis to test simultaneously. This is a very common situation
in data mining: for instance, an algorithm for frequent set mining typically
outputs a collection of itemsets whose frequency is above a user-specified
threshold in the data. As a simple example, assume that we have 1000 in-
dependent patterns that all follow the null hypothesis (are random effects in
the data). A naively applied statistical significance test of level α = 0.05
is likely to falsely declare about 50 of these 1000 patterns as significant, even
though all of the measurements obey the null distribution. To remedy the in-
dependent evaluation of hypothesis, the theory of multiple hypothesis testing
assesses a multiple comparison problem, that is, considers simultaneously
a family of statistical inferences. [8] discuss this problem in the context of
induction algorithms.

There exists traditional methods in statistics to tackle the problem of mul-
tiple hypothesis testing, of which the Bonferroni correction is the simplest
and probably the best known. These methods vary with respect to the power,
type of error they control and the assumptions they make of the dependency
structure within the data. A common property for all of these methods is that
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as the number of hypothesis to be tested increases, the methods lose power,
that is, they are less likely to find the hypothesis that are not from the null
distribution.

A data mining algorithm can consider a host of patterns. For example, in
the frequent set mining, the number of possible frequent sets is exponential
in the number of attributes. If each possible frequent set is considered as a
separate hypothesis, then a direct application of multiple hypothesis testing
would be too naive: the method would not declare any pattern as significant
due to the large number of patterns to be tested. Nor can one asses the
significance of frequent itemsets that have a frequency above some threshold,
without taking the thresholding somehow into account in the significance
testing.

A possible solution to overcome this problem consists of limiting the hy-
pothesis space. For example, in frequent set mining one could only consider
itemsets of at most the given length. Another limiting approach was proposed
by [18] for the specific application of association rule mining, where the data
is first split into two folds. The first half of the data is used to run the data
mining algorithm to define the hypothesis (association rules), and the second
half of the data is then used to test for the significance of those patterns using
some of the known multiple hypothesis testing methods. Such an approach
works when the data can be split into two halves that are independent one of
the other, and also, when the algorithm can be run on partial data. However,
these conditions are not feasible for all applications: consider for example
finding patterns such as frequent subgraphs from a network, which cannot be
trivially split into two independent components.

A completely different approach for multiple hypothesis testing in associ-
ation rule mining was proposed by [10]. Their idea is to use bootstrap to find
an upper bound for the deviation of the test statistic between random and
original data, such that it controls the probability of falsely declaring a pat-
tern significant. All association rules mined from the original data that have
a larger test statistic deviation from its mean than the chosen threshold, will
be declared significant. This method has the same limitations as [18] in that
it can only be used for association rule mining. Furthermore, bootstrapping
transactions does not break the dependency between antecedent and conse-
quent. This is of course a choice of a null hypothesis, but it may not make
sense in all association rule mining contexts.

Our contribution in this paper is to provide a proper definition of p-value
for patterns using the randomized samples, and show that with this p-value
the known multiple hypothesis testing methods can be used directly on the
patterns output by a generic data mining algorithm, regardless of the poten-
tially large number of possible patterns. We make no assumption on the data.
The main contributions of this paper are: the definition of a p-value suitable
for data mining applications; a general method to assess significant patterns
using a valid statistical testing methodology; and experimental verification of
the validity and power of the presented method.

The paper is organized as follows. In Section 2 we provide the problem
statement and essential definitions and in Section 3 we state our contribu-
tion without any formal proof. In Section, 4 we give a summary of multiple
hypothesis testing and prove the validity of our method; this section can be
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skipped in the first reading. Section 5 reviews the related methods, Section
6 contains experiments and the paper ends with the discussion in Section 7.

2 FORMAL PROBLEM STATEMENT

We consider the general case where we have a data mining algorithm A that,
given an input dataset D, outputs a set of patterns P , or A(D) = P . The set P
is a subset of a universe of all patternsP . For different input datasets, the algo-
rithm may output a different set of patterns, still from P . We further assume
defined a test statistic f(x, D) ∈ R, associated to an input pattern x ∈ P for
the dataset D; large values of the statistic are assumed to be more interesting
for the user. We assume that we have at our disposal a randomization algo-
rithm with which one can sample n datasets i.i.d. from the null distribution
Π0 corresponding to the null hypothesis H0

1. Our intuition is that if the test
statistic for a given pattern x is an extreme value in the null distribution, then
we can declare the pattern significant. We denote the datasets sampled from
the null distribution by Di, where i ∈ [n], and [n] = {1, . . . , n}.

Using the above definitions, we can define our problem as follows.

Problem 1 Given a data mining algorithm A, a dataset D, a test statistic f
and a null distribution Π0, which of the patterns output by A(D) are statisti-
cally significant?

In this work we apply our method to frequent itemset mining and associ-
ation rule mining from 0–1 data, and also, frequent subgraph mining from
networks. However, our formulation is general and, unlike much of the pre-
vious work, we do not restrict ourselves to any particular types of data nor
patterns.

Example 1 In frequent itemset mining the dataset D could be a 0–1 data
matrix, the set of all possible patterns P could be all subsets of attributes
(itemsets), the algorithm A could be a level-wise algorithm with a given fre-
quency threshold and the test statistic f(x, D) could be the frequency of the
itemset x in data matrix D. The null distribution Π0 could be the uniform dis-
tribution over all binary matrices of the same size with fixed row and column
margins. Datasets from this null distribution can be sampled using the swap
randomization presented by [5]. Our objective would be to decide which of
the frequent itemsets output by the algorithm A are statistically significant.

The methods of statistical significance testing often make assumptions
about the shape of the null distribution (e.g., that the statistics follow a nor-
mal distribution). We do not make such assumptions, but we require that
the algorithm A satisfies the minP-property, which will be defined later in
Section 4.2.

1Usually a null distribution would be defined for the test statistic when the null hypoth-
esis holds. In our case, the distribution of the datasets, together with A and f , defines the
null distribution for the test statistic.
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3 MAIN CONTRIBUTION: A SIGNIFICANCE TESTING METHOD

In this section we state succinctly the main contribution of this paper, that is,
a method to test the significance of patterns within the framework discussed
in Section 2. The detailed discussion with derivations and references are pre-
sented in Section 4, and the experimental results are presented in Section 6.

We first define two empirical p-values: the first one is the sample-based
empirical p-value in Definition 1, which weights each randomized dataset
equally; the second is the pool-based p-value in Definition 2, where the pat-
terns obtained from the randomized datasets are weighted equally.

Definition 1 (Sample based empirical p-value) Let D be our original data-
set, Di for i ≤ n be the n datasets sampled from the null distribution and
Dn+1 = D. Let also f(x, D) be the test statistic associated to an input pattern
x ∈ P returned by algorithm A. We define the sample-based p-value as
follows:

psample
D (x) =

∑n+1
i=1 h(x, D, Di)

n + 1
, (1)

where,

h(x, D, D′) =

{
|{x′∈A(D′)|f(x,D)≤f(x′,D′)}|

|A(D′)| , |A(D′)| > 0

0 , |A(D)′| = 0
. (2)

Definition 2 (Pool based empirical p-value) Let D be our original dataset,
Di for i ≤ n be the n datasets sampled from the null distribution and Dn+1 =
D. Let also f(x, D) be the test statistic associated to an input pattern x ∈ P
returned by algorithm A. We define the pool-based p-value as follows:

ppool
D (x) =

∑n+1
i=1 |{x′ ∈ A(Di)|f(x′, Di) ≥ f(x, D)}|∑n+1

i=1 |A(Di)|
. (3)

The p-values of the sample-based method represent the probability that,
given a random dataset from the null distribution of datasets, a test statis-
tic has at least as extreme value. The difference between the two methods
becomes from the weighting of the patterns. In the pool-based method,
each pattern of the output of any dataset is weighted equally. Therefore, the
datasets that result in more patterns have more control over the p-value cal-
culation. Conversely, the sample-based method treats each dataset equally
and the patterns in a single dataset share the weight of the dataset uniformly.

We denote by pi, i ∈ [m], where [m] = {1, . . . ,m}, and m = |A(D)|, the
sorted empirical p-values for the patterns A(D) given by Equation (1) or (3),
i.e., p1 ≤ · · · ≤ pm.

The family-wise error rate (FWER) is defined as the probability of falsely
declaring at least one patten in A(D) as significant, where A(D) represents
the set of patterns output by algorithm A using dataset D. A more formal def-
inition will be provided in the next section. We will later show that to control
the FWER at the level α, we can apply the Holm-Bonferroni method ([7]), to
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obtain the so-called adjusted p-values. The equation to compute the adjusted
p-value of a pattern xi under Holm-Bonferroni method is,

p̃H
i =

{
min(1, mp1) , i = 1
min

(
1, max(p̃H

i−1, (m− i + 1)pi)
)

, i > 1
. (4)

Then, we declare the pattern x significant if its adjusted p-value satisfies
p̃H

i ≤ α. Note that the Holm-Bonferroni method is general and can be used
with any definition of p-value when the number of hypothesis is fixed. The
standard Holm-Bonferroni method assumes that the number of hypothesis
to be tested m is fixed — our contribution is to extend the Holm-Bonferroni
framework to our setting, where m may vary.

From here, our main result reads as follows.

Theorem 1 Given that the minP-property holds, we can declare the pattern
xi significant (reject the null hypothesis) if the adjusted p-value satisfies p̃H

i ≤
α with the guarantee that the FWER is controlled at the level α.

The proof of Theorem 1 is given later in Section 4.3. The proper defini-
tion of minP-property and a test for checking whether the calculated p-values
on the data satisfy this property will be discussed before in Section 4.2. In
practice, we will show in the experiments that in many practical cases this
minP-property is satisfied.

4 THEORY OF MULTIPLE TESTING OF DATA MINING RESULTS

This section validates the result presented in Theorem 1. First, we provide
the preliminaries for the multiple hypothesis testing framework, and next dis-
cuss the two empirical p-value calculation methods and the minP-property.
Finally, we show the correctness of the main result of this paper.

In the remainder of the paper we ignore the sampling error due to the
finite number of samples from the null distribution, that is, we assume that
n is large enough. We also assume that the data mining algorithm always
outputs at least one pattern.

4.1 Multiple hypothesis testing

In this section we provide a short summary of the theory and methods of
multiple hypothesis testing (see [4, 20] for a review and further references).

Consider the problem of testing simultaneously m null hypothesis H0i,
i ∈ [m]. It is assumed that the number of hypothesis to be tested, m, is
known in advance, while the numbers m0 and m1 = m−m0 of true and false
null hypothesis, respectively, are unknown parameters. With each hypothesis
we have associated a test statistic value Ti and a corresponding p-value pi,
i ∈ [m]. A p-value pi is defined as the probability that the test statistic value
is at least Ti under the null hypothesis H0i. The pis are sometimes called
unadjusted p-values.

In the simplest case, there is only one hypothesis (m = 1). A valid level α
statistical test is such that the hypothesis is declared significant, i.e., the null
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Not declared Declared
significant significant

True null hypothesis U V m0

Non-true null hypothesis T S m1

m−R R m

Table 1: Multiple hypothesis testing. R and m are observed counts, while
S, T , U , V , m0 and m1 are unknown. V is the number of Type I errors and
T the number of Type II errors.

hypothesis is rejected, if p1 ≤ α. This happens with a probability of at most
α if the data is sampled from the null distribution. Falsely declaring a pattern
significant (false positive) is called a Type I error, while falsely declaring a
pattern non-significant (false negative) is called a Type II error. A standard
approach is to specify an acceptable level α for the Type I error rate and
construct a test, i.e., choose a test statistic, that minimizes the Type II error
rate, that is, maximizes the power of the test.

For multiple hypothesis testing m > 1, the situation is no longer as straight-
forward. Following [4], we denote by R the number of hypothesis declared
significant, by S and U the numbers of hypothesis correctly declared sig-
nificant and non-significant, respectively, and by V and T the number of
hypothesis declared incorrectly significant and non-significant, respectively.
The count V corresponds to the number of Type I errors (false positives),
while T corresponds to the number of Type II errors (false negatives). See
Table 1 for a summary.

There are many ways to define the acceptable Type I error rate. We use
the family-wise error rate (FWER). A statistical test that controls the FWER
at level α is such that the probability of even one Type I error is at most α,
that is, Pr(V > 0) ≤ α. Another control of Type I error is given by the false
discovery rate (FDR), introduced by [2]. A statistical test that controls the
FDR at level α is such that the expected fraction of Type I errors among the
rejected hypothesis is at most α, that is, E(Q) ≤ α, where Q = V/R if R > 0
and 0 if R = 0.

The choice of control depends on the application. If even one false pos-
itive would be disastrous, for example, the hypothesis would be about if the
various drugs are safe to use, then it is appropriate to choose FWER. How-
ever, the FDR may be more appropriate choice, for example, if the objective
is to identify hypothesis for further study.

The multiple hypothesis testing methods are often defined in terms of ad-
justed p-values. In the following, we review two tests, Bonferroni and Holm-
Bonferroni, that can be used to compute the adjusted p-values while control-
ling the FWER.

The simplest and probably the best known multiple testing method that
controls the FWER is the Bonferroni test. The adjusted p-values are given by

p̃B
i = min (1, mpi). (5)

A hypothesis i ∈ [m] is declared significant if p̃B
i ≤ α.

Advantages of the Bonferroni test are that it is simple and easy to under-
stand and implement, and that an adjusted p-value of a hypothesis depends

12 4 THEORY OF MULTIPLE TESTING OF DATA MINING RESULTS



only on the unadjusted p-value of the same hypothesis.
We do not use the Bonferroni test, because a more powerful and slightly

more complicated test that controls the FWER was introduced by [7]: the
Holm-Bonferroni test given in Equation (4). Neither Bonferroni nor Holm-
Bonferroni tests make any assumptions on the dependency structure of the
hypothesis. In our application this is an important property, as the hypothesis
(patterns output by the data mining algorithm) can have strong correlations.

In the presence of n samples from the null distribution we can use empir-
ical p-values (see [15] for discussion).

4.2 The minP-property assumption

Before showing the validity of our method, we present first the minP-property
that we require the algorithm to satisfy. This property guarantees weak con-
trol over the FWER with the absence of false null hypotheses, in other words,
under the complete null hypothesis.

Definition 3 (minP-property) Assume a dataset D′ is sampled from the null
distribution Π0. Then it holds ∀t ∈ [0, 1] that

Pr(|A(D′)| min
x∈A(D′)

pD′(x) ≤ t|HC
0 ) ≤ t,

where pD′(x) is the empirical p-value of the pattern x output by the algorithm
with dataset D′, and HC

0 signifies the complete null hypothesis.

The minP-property enforces constraint to the way the test statistics can
vary for different number of outputs. If larger test statistics are encountered
only for a small number of output patterns, there is an elevated risk of false
positives. If a pattern has an extreme test statistic value, it will have a small
p-value. For a small number of patterns, the Holm-Bonferroni adjustment
will be small. If both cases are true, the adjusted p-value will also be small,
possibly causing a false positive.

As shown later in Lemma 1, the minP property is always satisfied if the
data mining algorithm always outputs a constant number of patterns. Our
defined empirical p-values might not satisfy the minP-property in all cases
when the number of patterns output by the algorithm varies. We define the
following to test if the property holds.

Definition 4 (minP-test) Let p̂i = |A(Di)|minx∈A(Di) pDi
(x). The minP-

property is satisfied if for all t ∈ [0, 1],

|{i|p̂i ≤ t}|
n

≤ t.

Notice that the minP-test can be carried out visually by plotting |{i|p̂i≤t}|
n

against t and checking if the plotted line never exceeds the diagonal line.
Actually, our two defined p-values admit the minP-property in a variety of

situations. We make the following observation concerning both methods.
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Lemma 1 The minP-property is always satisfied for both the sample and
pool-based methods if the data mining algorithm A outputs a constant num-
ber of patterns, that is, m = |A(D′)| for any D′. In this case, the two p-values
behave in the same way.

For proving Lemma 1 we need first the following property.

Proposition 1 For real valued y and x, that are distributed identically, and
for any α ∈ [0, 1], Pr(Pr(x ≤ y) ≤ α) = α.

Proof of Lemma 1. The sample-based p-values can be written as:

psample
D′ (x) =

∑n+1
i=1 h(x, D′, Di)

n + 1
n→∞−→

∑
D̂

Pr(D̂)h(x, D′, D̂).

Using this and the fact that m is constant, it holds that

= m min
x∈A(D′)

psample
D′ (x)

= min
x∈A(D′)

∑
D̂

Pr(D̂)
∣∣∣{y ∈ A(D̂) | f(x, D′) ≤ f(y, D̂)}

∣∣∣


≤
∑
D̂

Pr(D̂)I
(

max
x∈A(D′)

f(x, D′) ≤ max
y∈A(D̂)

f(y, D̂)

)

The minP-property is then

Pr(m min
x∈A(D′)

psample
D′ (x) ≤ α|HC

0 )

=
∑
D′

Pr(D′)I
(

m min
x∈A(D′)

psample
D′ (x) ≤ α

)

≤
∑
D′

Pr(D′)I

∑
D̂

Pr(D̂)I
(

max
x∈A(D′)

f(x, D′) ≤ max
y∈A(D̂)

f(y, D̂)

)
≤ α


= α.

The function I(·) returns 1 if the condition is true and 0 otherwise. The
last step follows from Proposition 1. To prove the equality of the methods,
consider

psample
D′ (x) =

∑n+1
i=1 h(x, D′, Di)

n + 1

=
1

(n + 1)m

n+1∑
i=1

|{y ∈ A(Di)|f(y, Di) ≥ f(x, D′)}|

= ppool
D′ (x).
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That is, in the simplest case, where the data mining algorithm is expected
to output approximately constant number of patterns, the minP-property is
expected to hold to a good accuracy.

The minP-property is in practice not too restrictive, as shown later by our
experiments. A data mining algorithm may violate the property if the distri-
bution of p-values depends strongly on the number of patterns output by the
algorithm.

Example 2 Adversarial example. Assume that we have a data mining algo-
rithm A and null distribution such that when a dataset D is sampled from
the null distribution the following is satisfied. With probability of 4

5
, the al-

gorithm A(D) outputs one pattern with a sample-based p-value psample
D (x)

sampled from uniform U( 1
10

, 1). And with probability of 1
5
, the algorithm

A(D) outputs two patterns, one having a p-value from U(0, 1
10

) and another
having a p-value from U( 1

10
, 1). Here U(a, b) is a probability distribution over

real numbers that is uniform over interval [a, b] and zero elsewhere.
The above described p-values would occur for example if the algorithm

would output with probability 4
5

a pattern with a test statistic f from U(−1, 0),
and with probability of 1

5
two patterns with test statistics from U(−1, 0) and

U(0, 1).
Choose t = 3

5
and denote p′ = minx∈A(D′) psample

D′ (x). If the algorithm
outputs one pattern (m0 = 1) we have Pr(m0p

′ ≤ 3
5
) = 5

9
— this happens

with a probability of 4
5
. On the other hand, if the algorithm outputs two

patterns (m0 = 2) we have Pr(m0p
′ ≤ 3

5
) = 1 (as the smallest p-value is

always at most 1
10

).
Summarizing, Pr(m0p

′ ≤ 3
5
) = 4

5
× 5

9
+ 1

5
× 1 = 29

45
≈ 0.644, which does

not satisfy the minP-property. Furthermore, the minP-property neither holds
for the pool-based p-values in this example.

Assessing the minP-property under the combination of algorithm, ran-
domization method, and test statistic may be prohibitively complex to do
analytically. Still Definition 4 corresponds to a test for the minP-property,
which indicates whether the minP-property is violated.

In Figure 1, the visual test for minP-property is illustrated. The plot shows
the empirical FWER under the complete null hypothesis for different accep-
tance levels for FWER. If the diagonal line is exceeded, the minP-property
does not hold. However, since the method is approximate, slight violations
may be due to sampling error and may be ignored.

4.3 Validity of our method

We prove that our method defined in Theorem 1 is a valid level α test by
an argument similar to the closed testing procedure of [13] with minP test,
which is arguably the most concise way to derive the Holm-Bonferroni test in
the traditional multiple testing scenario. We finally conclude with the proof
of Theorem 1.

Proof of Theorem 1. Assume that the data mining algorithm outputs m
patterns A(D) = P0∪P1 such that the patterns in P0 obey the null hypothesis

4 THEORY OF MULTIPLE TESTING OF DATA MINING RESULTS 15
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Figure 1: Visual minP-test. The horizontal and vertical axes represent the
acceptable and true FWER levels, respectively. The solid line represents the
measured FWER for different acceptable FWER levels, and the dash dotted
line represents the threshold that should not be exceeded. We have used
association rule mining for all methods with PALEO dataset, see Section 6.2
for a description of the data. The methods coincide in this example.

and the patterns in P1 do not, with P0∩P1 = ∅. Let m0 = |P0|. If m0 = 0 the
FWER is always trivially controlled. In the following we consider the case
m0 > 0. Denote by x′ the pattern in P0 that has the smallest p-value, that
is, x′ = arg minx∈P0 pD(x). In the Holm-Bonferroni test of Equation (4), we
violate the FWER (V > 0) if and only if we declare x′ significant. Let m′ be
the number of patterns with a p-value no smaller than pD(x′): m′ obviously
satisfies m0 ≤ m′. In the Holm-Bonferroni test we declare x′ significant if
m′pD(x′) ≤ α. Due to minP-property,

Pr{m′pD(x′) ≤ α} ≤ Pr
{
m0pD(x′) ≤ α

∣∣HC
0

}
≤ α.

The first inequality holds, since m0 ≤ m′ and P1 do not effect pD(x′). There-
fore,

Pr{x′ declared significant} ≤ α,

and in other words, V > 0 with a probability of at most α.

5 RELATED WORK

In the following section, we review the existing methods from the literature
related to the multiple hypothesis testing within the data mining framework.
Notice that none of these methods is directly comparable to our contribution.
The reason for this is that they control different error or only calculate it,
use specific randomization to derive the significance, or are defined only for
specific types of patterns.

5.1 Methods measuring Type I errors

[21] mine significant statistical quantitative rules (SQ rules). The difference
to our methods is that they only calculate FDR, where we prove strong con-
trol for FWER. Also, they restrict their approach to a specific setting in binary
data and consider only one class of null hypotheses. Our methods are not re-
stricted to a special type of pattern and allow a very broad spectrum of null
hypotheses.
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In the method of Zhang et al., the dataset is split into two sets of attributes
X and Y . The antecedent (an itemset) of a SQ rule is defined as a subset of
X . A statistic value is also attached to each rule, where the value is calculated
from the transactions that contain the antecedent in X , but only using the
attributes in Y . The significances are calculated by randomizing the dataset
so that the dependence between antecedent and consequent is broken, and
the statistic values are stored for each randomized dataset and rule. Finally, a
confidence interval for a single rule is defined as the interval to which (1−α)
statistic values fall. FDR is not shown to be statistically controlled, but it is
calculated by using randomized datasets and checking how many rules are
declared significant with a certain α. The value of FDR is then obtained
by taking the mean of the numbers and dividing it by the number of rules
discovered from the original data.

[14] mine association rules and, given a threshold α for the raw p-values,
calculate the expected number of Type I errors. Conversely, our methods
have strong control for FWER. Furthermore, they consider only association
rules, and thus the method might not be as general as our contribution in
this paper.

More specifically, [14] mine first frequent itemsets and use them later
to find association rules that have a sufficiently large minimum confidence.
The p-values are calculated for itemsets from a Gaussian distribution with
the mean set to the minimum support value used to mine the itemsets, and
the variance set to the variance of a binomial distribution with the proba-
bility (minimum support)/(nr transactions). The authors also discuss the
p-values for association rules, but unfortunately do not explicitly state how
to calculate them. The multiple testing procedure is then to construct ran-
dom datasets with the same expected column margins as the original dataset.
The p-values for all patterns in a single dataset are sorted ascending, and the
mean of the smallest p-values over all datasets is calculated as V1, then the
second smallest as V2, and so forth for Vk. These values define thresholds for
α-values. For instance, if V1 < α ≤ V2, then the expected number of Type I
errors is at most two for the level α.

5.2 Method that controls the probability of at most V0 Type I errors

A generalization of FWER is to control the probability that the number of
Type I errors exceeds a specified number, V0. In other words, assure that
Pr(V > V0) ≤ α. Standard FWER is controlled when V0 = 0.

The method presented by [11] first finds a set of association rules from
the original data, and calculates some statistic for each rule. Then it samples
random datasets by using bootstrap over the transactions with replacement.
For each rule, the same statistics are calculated in the random dataset, and
the difference in the statistic values between the original and random data
are computed. The differences are sorted in decreasing order and stored
as ε(k, i), where i is the index of a random dataset and k is the rank of a
difference. Finally, for a certain desired number V0, a value ε(α) is calculated
that satisfies

|{i|ε(V0, i) ≥ ε(α)}|
# random datasets

≤ α.
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The rules that have a statistic value higher than ε(α) are selected.
As we can see, this method in [11] is similar to ours in that it draws ran-

dom samples of datasets and defines control over FWER (or similar) Type I
error measure. The difference is that it uses bootstrapping, and therefore, the
method might not be as general as our proposal here because the properties
may depend on bootstrapping. Furthermore, the correction for multiple hy-
pothesis is calculated directly, which may require assumptions (see [20]) and
strong control is not proved, which we do.

5.3 Methods that control the FWER

[1] mine contrast sets. The similarly to our methods is the control of FWER,
but they restrict themselves to contrast sets, where our methods are general.
Furthermore, using Bonferroni correction may not be reasonable, since it
is often overly conservative and provides no theoretical improvement over
Holm-Bonferroni.

Contrast sets are similar to association rules but differ in that a good rule
shows contrast between two groups of transactions. The data can be multi-
variate, but it is required that the transactions are grouped to disjoint sets. The
p-values are calculated for contrast sets from a respective contingency table
using χ2 approximation. The rules that have too small values in the con-
tingency table for the χ2 to produce an adequate approximation are pruned
away. Using the Bonferroni inequality, the authors define confidence thresh-
olds for each size of itemset mined, which is dependent upon the number of
candidates of a specific size generated when mining frequent itemsets,

αl = min(
α

2l|Cl|
, αl−1),

where l is the level, or size of itemsets, and |Cl| is the size of the candidate
set for level l.

In [18, 19], Webb presents two methods by using the contingency table of
an association rule to find out its p-value. The first method is to use normal
Bonferroni-adjustment for the original p-values, where the multiplier is the
number of all possible patterns of at most a preset maximum length set by
the user. The other method is the holdout method. The data is splitted in
two, and a part of the data, called exploratory data, is used to find the set
of itemsets to consider using normal association rule mining methods. After
that, the second part of the data, called holdout data, is used to assess the
statistical significance of the set of rules.

In all, Webb considers association rules and defines a method to overcome
the problems caused by thresholding, with, for example, minimum support.
The number of actual hypotheses may not correspond to the number of out-
put patterns. Webb’s main contribution, the holdout method, is similar to our
contribution in that it considers the problematic scenario of varying number
of outputs. The Holm-Bonferroni correction can be and is used in the paper,
as do we. However, the method by Webb is limited to scenarios where the
data can be split into two independent parts, and there is enough data to split
it. Only association rules are considered in the paper. Splitting may not be
possible for example with network data or spatial data. Furthermore, the data
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mining algorithm needs to be able to operate on partial data. Our methods
do not have such constraints.

5.4 Standard methods for FWER

The standard methods for adjusting raw p-values to control FWER include,
among others, Bonferroni, Holm-Bonferroni, and Sidak [4], as well as resam-
pling based methods of [20]. A common property of all of these methods
is that they assume that the set of hypothesis (in our case, set of all possible
patterns) are defined beforehand and there is a raw p-value for each of the
potential patterns. This poses the problems explained in the introduction.

6 EXPERIMENTS

In this section we show the tests carried out to assess the quality of the pro-
posed methods.

6.1 Synthetic data

The first experiment was with synthetic data of real numbers, with which the
performance of the methods can be measured in a controlled environment.
The synthetic data follows the multivariate Gaussian distribution

Π0(x) = N (x, µ, C),

where µ is the mean vector and C the covariance matrix. The generated real
values correspond to the test statistic values f used.

We began by using the methods under the complete null hypothesis and
measuring the empirical probability of rejecting at least one hypothesis, or
Pr(V > 0|HC

0 ). This corresponds to the minP-test.
The randomized datasets were generated by drawing a random vector of

length k = 100 from the normal distribution with zero mean µ = 0 and
covariance matrix

(C0)ij =

{
1 , i = j

σ , i 6= j
.

The values in a random vector constitute a dataset D, which is also of size
k. The parameter σ ∈ [− 1

k−1
, 1] controls the amount of covariance between

the data points. If σ < − 1
k−1

, the covariance matrix is no longer positive
semi-definite, and therefore, no longer a proper covariance matrix. We used
σ ∈ {−0.0099, 0, 0.1, 0.25, 0.5, 0.99}.

To simulate data mining methods, we used three different ad-hoc algo-
rithms. These are ge1, max10, and rnd10. Assume now that we have a dataset
D of real numbers. The first algorithm, ge1, outputs the set of values that
are greater or equal to 1 in D. The second algorithm, max10, outputs the 10
largest values in D. And the third algorithm, rnd10, selects 10 numbers from
D uniformly at random.

A single run starts by generating a dataset D from the null distribution.
This data is then mined for patterns P with a selected algorithm, which re-
sults in a set of real values. These values are the test statistics values of the
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mined patterns. Then, n = 10000 datasets are drawn from Π0, and p-values
are calculated for all P using both methods. Finally, the minimum value of
the adjusted p-values are stored, which is min(|P |miny∈P (pD(y)), 1), sepa-
rate for both methods.

We performed these runs 10000 times for each combination of algorithm
and magnitude of covariance. Figure 2 depicts the results: the solid lines cor-
respond to different magnitudes of covariance and represent for each value
of α the empirical probability of P (V > 0).
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Figure 2: MinP-test results for synthetic data. The solid lines correspond to
empirical probabilities of Type I error with a specific α level. To the right of
line is the magnitude of covariance of the respective test. The dash-dotted
line is the Pr(V > 0) = α line, which should not be exceeded.

As shown in the figure, when the correlation is negative, −0.0099, and
algorithm ge1 or rnd10 is used, Pr(V > 0) ≈ α. This means that the pro-
posed methods control the FWER very tightly in some cases. The important
observation is that the controlled threshold is not exceeded, which translates
to satisfying the minP-property.2

The power was also tested with synthetic data of the same kind. Each
dataset was constructed by randomizing samples from the multivariate Gaus-
sian distribution with mean 0 for samples from the null distribution, and
mean 4 for samples from the alternate distribution, and correlation between

2The threshold is actually slightly exceeded at some points, but this is due to the finite
number of samples n from the null distribution.
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all samples. Hence,

(µ)i =

{
0 , i ≤ m0

4 , m0 < i ≤ m
,

and

(C0)ij =

{
1 , i = j

σ , i 6= j.

The number of null hypothesis was set to m0 = 80. The same simulations
with 10000 randomizations for datasets and 10000 overall runs were per-
formed for different correlations σ ∈ {−0.0099, 0, 0.1, 0.25, 0.5, 0.99} and
the algorithm ge1. The probability of Type I error (FWER) and the mean
fraction of Type II errors were calculated for both p-value calculation meth-
ods. Figure 3 depicts ROC-curves for σ = 0.5 correlation with varying α.
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Figure 3: Power results for synthetic data. ROC-curve (varying α) of the
p-value calculation methods for σ = 0.5 correlation.

To compare the methods for all correlations, we also calculated the area
under curve (AUC) from the ROC-curves for both methods and all correla-
tions. The results are shown in Figure 4.
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Figure 4: Power results for synthetic data. Area under curves of the ROC-
curves for different p-value calculation methods and correlations. Higher
value represents better accuracy.

As a conjecture from the synthetic data experiments, the minP-property
was always satisfied and the power of both methods are very similar in these
cases.
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6.2 Association rules

The second experiment was a more practical data mining scenario, namely,
association rule mining.

We used three different datasets: PALEO, COURSES and RETAIL; all of
which were used by [5]. The property values of these datasets are presented
in Table 2.

Dataset # of rows # of cols # of 1’s density %
PALEO 124 139 1978 11.48
COURSES 2405 5021 65152 0.54
RETAIL 88162 16470 908576 0.06

Table 2: Description of the datasets

Each dataset was randomized 1000 times by maintaining the column mar-
gins constant. Association rules were then mined from each dataset using the
same minimum support thresholds used by [5]: 7, 400 and 200 for PALEO,
COURSES and RETAIL, respectively. We used as test statistic f the Fisher’s
exact test between the antecedent and the consequent of an association rule.
Holm-Bonferroni’s method was used to correct the p-values. Table 3 lists for
different datasets the minimum support, number of rules in the original data,
and the mean and standard deviation of the number of rules in the random-
ized datasets.

While randomizing, we carried out the minP-test for all combinations of
dataset and p-value calculation method. The first half, 500, of randomiza-
tions were used to gather minimum p-values from the random datasets. By
construction, the minimum p-values will necessarily correspond to the largest
test statistic values, and therefore, for the first 500 random datasets, the largest
test statistic value was stored from each. These were then calculated p-values
using the latter 500 random datasets and both methods.

In all cases, the minP-property was clearly satisfied. Figure 1 in Sec-
tion 4.2 depicts one test result; all other minP-test results are presented in
Appendix A.1.

We also calculated the number of patterns found significant for different
controlled FWER levels α. These results are depicted in Figure 5. The
results indicate, that sample is more powerful than pool in these cases. This
is mostly due to the different p-value calculation methods, but can in part
be because of the relative large number of patterns and limited number of

Dataset minimum support |P | |Pi|
PALEO 7 9004 577.2(24.0)
COURSES 400 51118 379.4(7.4)
RETAIL 200 4148 2703.9(16.1)

Table 3: Mining parameters and statistics for association rule mining. |P |
represents the number of association rules in the original data, and |Pi| is the
mean number of association rules with random data. Standard deviations are
shown in parenthesis.
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(a) PALEO
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(b) COURSES
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(c) RETAIL

Figure 5: Association rule mining results for both p-value calculation meth-
ods and datasets. The lines depict the number of patterns found significant
for different controlled FWER levels (α). In (b), no patterns were found
significant with pool-based method.

randomizations.
For sample, the results are intuitive: When α level, the accepted proba-

bility of making a Type I error, increases, the number of significant patterns
increases. To conclude, the results are reasonable.

6.3 Frequent itemsets

The third experiment is in similar context to the previous one. However, this
time we mined for frequent itemsets.

The test statistic f was a variant of the lift:

f(x) =
freq(x)∏

A∈x freq(A)
, (6)

where x is an itemset, A is a single attribute of x, and freq(x) ∈ [0, 1] is the
relative frequency of itemset x. The same datasets were used as in association
rule mining with the same minimum support thresholds. Additionally, we
set the smallest frequent itemset size to 2, not to get individual columns as
frequent itemsets. We used the same randomization method as above that
preserves the column margins. We use the name COL for this method. The
second randomization method we used was presented by [5] with the name
swap randomization which additionally maintains the row margins. We will
use the name SWAP for this method. Note that we used exactly the same
datasets, mining parameters and randomization methods as was used by [5].
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Dataset minsup |P | |P COL
i | |P SWAP

i |
PALEO 7 2828 227.4(11.6) 266.9(14.8)
COURSES 400 9678 146.6(2.8) 430.1(11.6)
RETAIL 200 1384 860.3(7.0) 1615.1(11.9)

Table 4: Mining parameters and statistics for frequent itemset mining. |P |
is the number of frequent itemsets with the original data, |P COL

i | the mean
number of frequent itemsets with random data from COL, and |P SWAP

i | the
mean number of frequent itemsets with random data from SWAP. Standard
deviations are shown in parenthesis.

Each dataset was randomized 10000 times with both methods. Table 4
lists for different datasets the minimum support, number of frequent itemsets
in the original data, and the mean and standard deviation of the number of
frequent itemsets in the randomized datasets. Note first that the expected
numbers of frequent itemsets, and their standard deviations, are close to the
numbers reported by [5]. The small differences are a result of different ran-
domizations.3

We first carried out the minP-test for all combinations of dataset, p-value
calculation and randomization method. In all cases, the minP-property was
satisfied with sufficient accuracy. Figure 6 depicts one test result. All other
minP-test results are shown in Appendix A.2.
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Figure 6: The minP-test in frequent itemset mining for both methods with
PALEO dataset and SWAP randomization method. The empirical FWER is
plotted against the controlled level. The diagonal dash-dotted line should not
be exceeded for the minP-property to be satisfied.

Figure 7 depicts the number of patterns found significant for different
α levels for both randomization and p-value calculation methods, and all
datasets. From the results it is clear the sample method is more powerful in
all but RETAIL with SWAP. The reasons for this difference are the same as
in association rule mining. Note also that the swap randomization is more
restricted and, as expected, less patterns were found significant in comparison
to the other randomization approach.

3Additionally, we perform 10000 randomizations while [5] do only 500.
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(a) PALEO with COL
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(b) PALEO with SWAP
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(c) COURSES with COL
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(d) COURSES with SWAP
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(e) RETAIL with COL
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(f) RETAIL with SWAP

Figure 7: Frequent set mining results for both p-value calculation and ran-
domization methods, and datasets. The lines depict the number of patterns
found significant for different controlled FWER levels (α).

6.4 Frequent subgraphs

As a final experiment, we show how the methods can be used in the setting
of frequent subgraph mining. The problem is very similar to finding frequent
itemsets, but now the transactions are graphs and a frequent pattern is a sub-
graph of the input graphs. We used the FSG algorithm by [9] as a graph
mining algorithm, which is a part of Pafi4 and readily available at the website
of Karypis Laboratory. As a dataset, we used a graph transaction dataset of
different compounds5, which has 340 different graphs and the largest graph
has 214 nodes. We calculated the test statistic f for each subgraph x as

f(x) = freq(x) log(# nodes in x).

4http://glaros.dtc.umn.edu/gkhome/pafi/overview
5http://www.doc.ic.ac.uk/~shm/Software/Datasets/carcinogenesis/progol/carcinogenesis.tar.Z
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minsup |P | |Pi|
40 140 191.8(13.4)

Table 5: Frequent subgraph mining. |P | is the number of frequent subgraphs
with the original data, and |Pi| the expected number of frequent graphs with
random data. Standard deviation is shown in parenthesis.
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(a) minP-test
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Figure 8: Frequent subgraph mining results with COMPOUND dataset. In
(a), the true FWER is plotted against the controlled level. The diagonal
dash-dotted line should not be exceeded for the minP-property to be satisfied.
In (b), number of patterns found significant for different controlled FWER
levels.

The logarithm term is to weight larger subgraphs slightly more, because they
are considered more interesting than small ones.

We randomized the graphs by selecting two edges and switching the end
points together, mixing the edges between nodes. If switching edges would
create overlapping edges, the swap is not performed. The method preserves
the node degrees while creating a completely different topology for the graph.
This randomization has been used before in [17] and later extended in [6].
Since our dataset is a set of graphs, we randomized each graph individually
by attempting 500 swaps, and combined the randomized graphs back to a
transactional dataset.6

We used 10000 random datasets at support level 40, and calculated the
p-values with both methods. Statistics of the randomizations are depicted in
Table 5.

The minP-test and the number of patterns found significant for different α
levels are shown in Figure 8. The minP-property is satisfied, and the power of
both methods are similar. As a conclusion, the p-value calculation methods
can also be used in frequent subgraph mining.

6Notice that the test statistic may be unjustified in the chemistry domain, and the ran-
domization method may violate some laws of physics. Despite this, we use them here to
show that the methods can be used in this setting as well.
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7 DISCUSSION AND CONCLUSIONS

As shown by the recent interest in randomization methods, there is a clear
need for new significance testing methods in data mining applications. Es-
pecially within the framework of multiple hypothesis testing, the significance
tests for data mining results have been lacking.

In this paper, we have introduced two methods to test the significance
of patterns found by a generic data mining algorithm. Unlike much of the
previous work, we do make only very general assumptions of the data min-
ing algorithm and no assumptions at all of the data nor on the dependency
structure of the patterns output by the data mining algorithm. Hence, our
approach is suitable for many, if not most, data mining scenarios.

The only assumption we need to make for the purposes of the proof is that
the algorithm satisfies the minP-property of Definition 3. It is possible to find
adversarial examples of data mining algorithms that fail to satisfy the minP-
property. However, our results with toy and real data show that our methods
behave consistently and hence we argue that this is not a serious limitation
in practice. In any case, having such an assumption is not extraordinary in
significance testing. Most of the existing significance testing methods in fact
make some simplifying assumptions of the distribution of the test statistics.
These methods are conventionally considered reliable if the assumptions are
at least approximately satisfied.

In the paper, we have studied and the scenario where the FWER is being
controlled as our proof of Theorem 1 is specific to the Holm-Bonferroni test
that controls the FWER. However, in many cases the control of FDR could
be a better choice — for example in exploratory data analysis where we are
looking for patterns that would warrant a more detailed study. Intuitively,
replacing the Holm-Bonferroni test of Equation (4) with a test that controls
the FDR, such as Benjamini-Yekutieli [3], should work. The proof of this
conjecture is however left for future work.

On real-world datasets, our experiments show that the proposed methods
are also powerful. Hence, we not only control the FWER under the desired
α level, but also the method avoids as much as possible the false negatives.
This is related to the fact that due to the nature of randomization we can
choose the null hypothesis freely.
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A EXTENDED RESULTS

A.1 MinP-tests for association rule mining

Figure 9 shows the minP-test for different p-value calculation methods and
datasets.

A.2 MinP-tests for frequent itemset mining

Figures 10–12 show the minP-test for different p-value calculation and ran-
domization methods.
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Figure 9: MinP-test in association rule mining for different p-value calcula-
tion methods and datasets. The true FWER is plotted against the controlled
level. The diagonal dash-dotted line should not be exceeded for the minP-
property to be satisfied. The two methods coincide in all cases.
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Figure 10: MinP-test in frequent itemset mining for different p-value calcu-
lation and randomization methods with PALEO. The true FWER is plotted
against the controlled level. The diagonal dash-dotted line should not be
exceeded for the minP-property to be satisfied.
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Figure 11: MinP-test in frequent itemset mining for different p-value cal-
culation and randomization methods with COURSES. The true FWER is
plotted against the controlled level. The diagonal dash-dotted line should
not be exceeded for the minP-property to be satisfied.
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Figure 12: MinP-test in frequent itemset mining for different p-value calcu-
lation and randomization methods with RETAIL. The true FWER is plotted
against the controlled level. The diagonal dash-dotted line should not be
exceeded for the minP-property to be satisfied.
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