
TKK Reports in Information and Computer Science

Espoo 2009 TKK-ICS-R22

PARTITIONING SEARCH SPACES OF A RANDOMIZED SEARCH

Antti E. J. Hyvärinen, Tommi Junttila and Ilkka Niemelä

AB TEKNILLINEN KORKEAKOULU
TEKNISKA HÖGSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI
UNIVERSITE DE TECHNOLOGIE D’HELSINKI

TKK Reports in Information and Computer Science

Espoo 2009 TKK-ICS-R22

PARTITIONING SEARCH SPACES OF A RANDOMIZED SEARCH

Antti E. J. Hyvärinen, Tommi Junttila and Ilkka Niemelä

Helsinki University of Technology

Faculty of Information and Natural Sciences

Department of Information and Computer Science

Teknillinen korkeakoulu

Informaatio- ja luonnontieteiden tiedekunta

Tietojenkäsittelytieteen laitos

Distribution:

Helsinki University of Technology

Faculty of Information and Natural Sciences

Department of Information and Computer Science

P.O.Box 5400

FI-02015 TKK

FINLAND

URL: http://ics.tkk.fi

Tel. +358 9 470 01

Fax +358 9 470 23369

E-mail: series@ics.tkk.fi

©c Antti E. J. Hyvärinen, Tommi Junttila and Ilkka Niemelä

ISBN 978-952-248-230-3 (Print)

ISBN 978-952-248-231-0 (Online)

ISSN 1797-5034 (Print)

ISSN 1797-5042 (Online)

URL: http://lib.tkk.fi/Reports/2009/isbn9789522482310.pdf

TKK ICS

Espoo 2009

ABSTRACT: This work studies the following question: given an instance
of the propositional satisfiability problem, a randomized satisfiability solver,
and a cluster of n computers, what is the best way to use the computers to
solve the instance? Two approaches, simple distribution and search space
partitioning as well as their combinations are investigated both analytically
and empirically. It is shown that the results depend heavily on the type of
the problem (unsatisfiable, satisfiable with few solutions, and satisfiable with
many solutions) as well as on how good the search space partitioning func-
tion is. In addition, the behavior of a real search space partitioning function
is evaluated in the same framework. The results suggest that in practice one
should combine the simple distribution and search space partitioning ap-
proaches.

KEYWORDS: Constraint-based Search, Distributed Search, Randomized Search,
Search-Space Partitioning, SAT Solvers

Contents

1 Introduction 7

2 Randomization and Simple Distribution 8

3 Partitioning 9
3.1 Unsatisfiable Instances . 10
3.2 Satisfiable Instances with Many Solutions 11
3.3 Satisfiable Instances with One Solution 11

4 Composite Approaches 12

5 Implementing a Randomized Partitioning Function 13

6 Experimental Results on Partitioning 13

7 Conclusions 16

References 16

A Proofs 18

B Experimental Results 21

CONTENTS 5

1 INTRODUCTION

In this work1 we develop distributed techniques for solving challenging in-
stances of the propositional satisfiability problem (SAT). We are interested
in using the best available SAT solvers as black-box subroutines or with little
modification and in this way take advantage of the rapid development of SAT
solver technology.

One of the interesting features in current state-of-the-art SAT solvers is that
they use randomization and that their run times can vary significantly for a
given instance. This opens up new opportunities for developing distributed
solving techniques. The most straightforward idea is to employ a simple dis-
tribution approach where one just performs a number of independent runs
using a randomized solver. This leads to surprising good speed-ups even
when used in a grid environment with substantial communication and other
delays [9]. The approach could be extended by applying particular restart
strategies [13, 12] or using an algorithm portfolio scheme [5, 3]. Another key
feature in modern SAT solvers is the use of conflict driven clause learning
techniques. This feature can be exploited in the simple distribution approach
and it has been shown that combining parallel learning schemes with a sim-
ple restart strategy leads to a powerful distributed SAT solving technique [10].

Another approach to developing parallel SAT solving techniques is based
on partitioning the search space to multiple parts which can be handled in
parallel. This can be achieved by constraint-based partitioning where the
search space for a SAT instance F is split to n derived instances F1, . . . ,Fn

by including additional constraints toF . Typical implementation techniques
include guiding paths [1, 14, 11] and scattering [8].

Both simple distribution and partitioning have their strengths. The former
has led to surprisingly good performance but for really challenging SAT in-
stances it provides no mechanism for splitting the search to more manageable
portions to be treated in parallel. Search space partitioning techniques offer
an approach to achieving this. However, the interaction between partitioning
and randomized SAT solvers is poorly understood and the work aims to shed
new light on this problem. It studies in detail combination of constraint-
based partitioning and randomized SAT solvers, and provides an analysis on
how an efficient and robust implementation can be achieved.

The rest of the work is structured as follows. Section 2 reviews briefly rel-
evant key characteristics of modern randomized SAT solvers and the simple
distribution approach. Section 3 studies analytically the expected run time of
a plain partitioning approach where a SAT instance is partitioned and then
a randomized SAT solver is used to solve the resulting instances. The sec-
tion provides fundamental results for two limiting cases, for ideal and void
partitioning functions. Section 4 extends the study to a setting where simple
distribution and partitioning are mixed. Section 5 provides an implementa-
tion of a randomized partitioning function and Section 6 verifies the results
briefly using experiments, and conclusions are given in Section 7.

1This is an extended version of the paper to appear in the 11th Conference of the Italian
Association for Artificial Intelligence (AI*IA 2009) [6] with two new appendices containing
proofs for the propositions and additional experimental results.

1 INTRODUCTION 7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100 1000 10000

p
ro

b
a
b
il
it
y

t(s)

q(t)
q8(t)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100 1000 10000

p
ro

b
a
b
il
it
y

t(s)

q(t)
q8(t)

Figure 1: The run time distributions of two instances for single (the q(t)
plots) and eight (the q8(t) plots) randomized SAT solvers.

2 RANDOMIZATION AND SIMPLE DISTRIBUTION

Most modern SAT solvers apply search restarts and some form of random-
ization to avoid getting stuck at hard subproblems [4]. For instance, Min-
iSat [2] version 1.14 restarts the search periodically and makes two percent
of its branching decisions pseudo-randomly. Despite restarts and random-
ness, the run times of a SAT solver on an instance F can vary significantly
between some minimum tmin and maximum tmax (we assume that tmin > 0
and tmax is finite). Thus, we treat the run time of the solver on the instance
as a random variable T and study the associated cumulative run-time distri-
bution qT (t) = Pr(T ≤ t) (i.e. qT (t) is the probability that the instance is
solved within t seconds) and its expected value E(T) =

∫ tmax

tmin
tq′(t)dt. As an

example, observe the run-time distribution q(t) (approximated by one hun-
dred sample runs) of an instance given in the left hand side plot of Fig. 1.
Depending on the seed given to the pseudo-random number generator of
MiniSat v1.14, the run time varies from less than a second to thousands of
seconds.

This non-constant run time phenomenon can be exploited in a paral-
lel environment by simply running n SAT solvers on the same instance
F in parallel and terminating the search when one of the solvers reports
the solution. We call this approach Simple Distributed SAT solving (SD-
SAT) and denote its run time by the random variable T n

sdsat. The cumulative
run time distribution is now improved from qT (t) of the sequential case to
qT n

sdsat
(t) = 1 − (1 − qT (t))n. This approach can be surprisingly efficient.

As an example, for the instance in the left hand side plot of Fig. 1 the ex-
pected run-time in the sequential case is E(T) ≈ 623s while for eight solvers
E(T 8

sdsat) ≈ 31s (that is, around 20 times less). For a more detailed analysis of
running SDSAT in a parallel, distributed environment involving communi-
cation and other delays, see [9].

Although the SDSAT approach can reduce the expected time to solve an
instance, it cannot reduce it below the minimum run time tmin. For an ex-
ample, observe the sequential run time distribution q(t) of another instance
given in the right hand side plot of Fig. 1; the variation of the run time
is significantly smaller and the instance seems to have no short run times.
Consequently, running eight SAT solvers in parallel does not reduce the ex-
pected run time significantly; in numbers, E(T) ≈ 2, 065s while for eight

8 2 RANDOMIZATION AND SIMPLE DISTRIBUTION

solvers E(T 8
sdsat) ≈ 1, 334s (i.e., only less than two times faster). Even more

importantly, the minimum run time stays the same irrespective of how many
parallel solvers are employed. As a summary, we can establish the following
properties for the expected run time of the SDSAT approach2:

Proposition 1 tmin ≤ E(T n
sdsat) ≤ E(T) for each n ≥ 1. Furthermore,

E(T n
sdsat) → tmin when n →∞.

As we have seen, SDSAT can allow super-linear speedup (meaning E(T n
sdsat) <

E(T)/n) for instances with strongly varying run time. However, as the max-
imum speedup obtainable with SDSAT is E(T)/tmin, this can only happen
for “smallish” values of n and for more than E(T)/tmin solvers the speedup is
guaranteed to be sub-linear.

3 PARTITIONING

The basic idea in the form of partitioning we use in this paper is quite simple:
given a SAT instance F and a positive integer n, use a partitioning function
to compute a set F1, . . . ,Fn of derived SAT instances such that

F ≡ F1 ∨ · · · ∨ Fn. (1)

Now, in order to find whether F is satisfiable or not, we solve, in parallel, all
F1, . . . ,Fn and deduce that F is satisfiable if at least one of F1, . . . ,Fn is.
This method is called the plain partitioning approach in order to distinguish
it from the composite approaches in Sect. 4. One way to implement partition-
ing functions is described in [8] (also see Sect. 5), where each Fi is obtained
from F by conjoining it with a set of additional partitioning constraints.3 In
addition to the requirement (1), partitioning functions often ensure that the
models of F1, . . . ,Fn are mutually disjoint.

Intuitively, the ideal case is that the partitioning function can partition the
instance F into n new instances F1, . . . ,Fn so that each new instance Fi is
n times easier to solve than the original. That is, if the original instance F
has the cumulative run time distribution qT (t), then the distribution of each
Fi is qTi

(t) = qT (nt). In this case we say that the partition function is ideal
for the instance. As obtaining ideal partitioning functions can be difficult, we
also consider the case of a void partitioning function where the partitioning
fails totally, resulting in new instances which are as hard to solve as the origi-
nal, i.e. have the same distribution qTi

(t) = qT (t). This is a realistic scenario
because modern, clause-learning SAT solvers, such as MiniSat, use sophisti-
cated heuristics in the search: it is possible that values of certain variables are
practically never considered. If the partition function constrains only these
irrelevant variables, the difficulty of the instance does not decrease, and thus
such a function is void.

In this section, we give an analytic study of the efficiency of the plain par-
titioning approach, under both ideal and void functions, when the fact that

2For proofs, see Appendix A.
3As explained in [7], guiding paths [1, 14] can also be interpreted as partitioning con-

straints.

3 PARTITIONING 9

the SAT solver is randomized is taken into account. As the efficiency de-
pends heavily on the satisfiability of the instance, we consider three cases:
unsatisfiable instance, a satisfiable instance with many solutions, and a sat-
isfiable instance with a unique solution. We have also simulated the plain
partitioning approach on run time distributions of some real SAT instances;
some results are given later in Sect. 4 after some composite approaches mix-
ing simple distribution and plain partitioning have been described. A real
partitioning function is considered in Sect. 5.

3.1 Unsatisfiable Instances

Assume that an unsatisfiable instance F is partitioned into n new instances
F1, . . . ,Fn fulfilling Eq. (1). All new instances need to be shown unsatis-
fiable to deduce that F is unsatisfiable. When performed in parallel, this
corresponds to waiting for the termination of the “unluckiest” run.

In the case of ideal partitioning function, each new instance Fi is n times
easier to solve than the original F , having run time distributions qTi

(t) =
qT (nt). We denote the random variable capturing the run time of the re-
sulting plain partitioning approach under an ideal partitioning function by
T n

part(ideal). As all the new instances have to be solved (in parallel), the cor-
responding run time distribution is qT n

part(ideal)
(t) = q(nt)n. Based on this, we

have the following interesting results4. First, ideal partitioning functions can
provide at most linear expected speed-up on unsatisfiable instances:

Proposition 2 E(T n
part(ideal)) ≥ E(T)/n for each n ≥ 1.

In fact, it can be shown that linear speed-up can only be obtained on in-
stances that have a constant run time distribution, i.e. when tmin = tmax.
However, the expected run time is never worse than that of solving the origi-
nal instance with one solver:

Proposition 3 E(T n
part(ideal)) ≤ E(T) for each n ≥ 1.

When the number n of SAT solvers run in parallel is increased, the expected
run time E(T n

part(ideal)) approaches tmax/n, i.e., linear speed-up w.r.t. the max-
imum run time. Plain partitioning with ideal partitioning functions and sim-
ple distribution cannot be totally ordered; there are distributions for which
E(T n

sdsat) < E(T n
part(ideal)) and others for which E(T n

part(ideal)) < E(T n
sdsat) when

n is smallish5. However, as E(T n
part(ideal)) ≤ tmax/n and E(T n

sdsat) ≥ tmin, we
have that E(T n

part(ideal)) < E(T n
sdsat) for sufficiently large n.

Let us next consider the case of a void partitioning function, i.e. the case
when the partitioning fails so that the run time distribution qTi

(t) of each
new instance Fi is equal to qT (t) of the original instance F . We denote
by T n

part(void) the run time of the resulting plain partitioning approach. As all
Fi have to be solved, the run time distribution of T n

part(void) is qT n
part(void)

(t) =

qTi
(t)n = qT (t)n. From this it follows that for unsatisfiable instances it is not

possible to obtain any speedup with void functions:
4For proofs, see Appendix A.
5For the case E(Tn

part(ideal)) < E(Tn
sdsat), see Fig. 2. For the case E(Tn

sdsat) < E(Tn
part(ideal))

see Appendix B.

10 3 PARTITIONING

Proposition 4 E(T n
part(void)) ≥ E(T) for each n ≥ 1.

In fact, the more resources one uses, the closer to the maximum run time
one gets: E(T n

part(void)) → tmax when n →∞.

3.2 Satisfiable Instances with Many Solutions

We next consider the case when a satisfiable SAT instance F is partitioned
into n new instances F1, . . . ,Fn fulfilling Eq. (1). In order to deduce that F
is satisfiable, it is enough to show that any of the new instances is satisfiable.
In this section we assume that each new instance Fi is satisfiable, postponing
the case where only one is satisfiable to the next section.

Let us consider the case of ideal partitioning function first. Again, we de-
note the random variable describing the run time of the resulting plain par-
titioning approach by T n

part(ideal). As the probability that none of the n solvers
has solved the associated new instance within time t is (1 − qT (nt))n, run
time distribution of T n

part(ideal) is qT n
part(ideal)

(t) = 1 − (1 − qT (nt))n. Several
interesting properties follow from this. First, with n parallel solvers, the ex-
pected run time is n times smaller than that of the Simple Distributed SAT :
E(T n

part(ideal)) = E(T n
sdsat)/n. Therefore, when compared to solving the origi-

nal instance, we notice that on satisfiable instances with many solutions we
may expect at least linear speed-up:

Proposition 5 E(T n
part(ideal)) ≤ E(T)/n for each n ≥ 1.

When the number n of parallel SAT solvers is increased, E(T n
part(ideal)) ap-

proaches tmin/n. Thus, one can in principle obtain almost linear speed-up
w.r.t. the minimum run time.

In the case of a void partitioning function the run time of each new in-
stance is the same as that of the original. As each new instance is assumed to
be satisfiable, solving any of them is enough to deduce the satisfiability of the
original instance. Therefore, for satisfiable instances with many solutions,
the plain partitioning approach with a void partitioning function effectively
reduces to Simple Distributed SAT:

Proposition 6 E(T n
part(void)) = E(T n

sdsat).

3.3 Satisfiable Instances with One Solution

When a satisfiable instance F with only one satisfying truth assignment is
partitioned into n new instances F1, . . . ,Fn, it is likely that only one of the
new instances is satisfiable while the others are unsatisfiable. Therefore, the
satisfiable new instance has to be solved to deduce that F is satisfiable. The
problem is that it is not known which of the new instances this is.

In the case of ideal partitioning function, the run time of the satisfiable
new instance is n times smaller than that of the original instance. Therefore,
if all the n new instances are solved in parallel and the solving is terminated
as soon as the satisfiable new instance is solved, linear speed-up is obtained
with an ideal partitioning function:

3 PARTITIONING 11

Proposition 7 E(T n
part(ideal)) = E(T)/n.

In the case of a void partitioning function, the run time of the satisfiable
new instance is the same as that of the original instance. Thus, using a void
partitioning function results neither in speed-up nor in loss of efficiency:

Proposition 8 E(T n
part(void)) = E(T).

4 COMPOSITE APPROACHES

The analysis of the previous section shows that the plain partitioning ap-
proach can potentially obtain even super-linear speed-ups, whereas an im-
proper, void implementation can by Prop. 4 result in worse expected run
time than that of one solver. The two approaches presented here aim at be-
ing at least as efficient as solving the instance with one solver. Assume that
we have resources to run n SAT solvers in parallel and consider the following
approaches that mix simple distribution and plain partitioning.

• Repeated Partitioning. In this approach, we run in parallel k = b
√

nc
copies of the plain partitioning approach, each copy splitting the in-
stance F into k new instances Fi,1, . . . ,Fi,k and solving each Fi,j

once. We denote the random variable describing the run time of this
approach by T n

rep-part.

• Safe Partitioning. This approach reverses the order of SDSAT and par-
titioning compared to repeated partitioning: the instance F is parti-
tioned into k = b

√
nc new instances F1, . . . ,Fk and each new in-

stances Fi is solved with k SAT solvers in parallel. The run time of this
is denoted by the random variable T n

safe-part.

Unfortunately, when using repeated partitioning on an unsatisfiable instance
and the partitioning function is void, the experiments suggest that E(T) ≤
E(T n

rep-part) and that E(T n
rep-part) → tmax when n → ∞. However, safe parti-

tioning (i) is as good as repeated partitioning (i.e. E(T n
safe-part) = E(T n

rep-part))
on satisfiable instances6 and we conjecture that safe partitioning is at least
as good (i.e. E(T n

safe-part) ≤ E(T n
rep-part)) on unsatisfiable ones when the same

partition function is applied; (ii) is equal to SDSAT on satisfiable instances
with many solutions when the partition function is void7; and (iii) seems ex-
perimentally at least as fast as solving the original instance with one solver,
i.e., E(T n

safe-part) ≤ E(T) even when the instance is unsatisfiable and the
partitioning function is void.

To illustrate the approaches and results presented in Sects. 2, 3, and 4,
Fig. 2 shows the expected run times of different approaches when applied to
the same instances as in Fig. 1. As the left hand side instance is satisfiable
with many solutions, the “sdsat+others” line depicts the behavior of the SD-
SAT approach as well as all the considered partitioning approaches when a
void partitioning function is applied. The instance at the right hand side is
unsatisfiable.

6See Proposition 9 in Appendix A.
7See Proposition 10 in Appendix A; also compare to Proposition 11 in Appendix A con-

cerning instances with one solution.

12 4 COMPOSITE APPROACHES

 0.01

 0.1

 1

 10

 100

 1000

 10 20 30 40 50 60

safe/rep-part(ideal)

part(ideal)

sdsat+others

orig/n

orig

n

 100

 1000

 10 20 30 40 50 60

rep-part(void)

rep-part(ideal)

safe-part(void)

safe-part(ideal)

part(void)

part(ideal)

sdsat

orig/n

orig

n

Figure 2: Expected run times (in seconds) of different approaches on the
instances in Fig. 1 when the number n of SAT solvers run in parallel is varied.

5 IMPLEMENTING A RANDOMIZED PARTITIONING FUNCTION

This section briefly describes how we implemented a partitioning function
called scattering [8]. The implementation is based on MiniSat 1.14, con-
structs partitions having pairwise disjoint models, and is randomized so that
the partitions differ depending on the random seed given as input to the func-
tion.

The function works in two phases. First, the function simply runs MiniSat
as is to obtain heuristic values for the Boolean variables in the instance. The
first phase ends when the instance is solved or a fixed time limit (currently
300 seconds) is reached. If the instance was not solved, the function enters
the second phase, where the derived instances F1, . . . ,Fn are constructed
from F by adding constraints. For each 1 ≤ i ≤ n − 1, the scattering func-
tion uses the obtained heuristic values to select a conjunction of di literals,
Ci = li,1 ∧ . . . ∧ li,di

, and conjoins it to the derived instance Fi. The func-
tion ensures that no derived instances share models by inserting the negation
(¬li,1 ∨ . . . ∨ ¬li,di

) of the conjunction Ci in Fi to each derived instance Fj

with i < j ≤ n. Scattering is a partition function, since the last instance
contains only the negations of the conjunctions corresponding to the “re-
maining” search space. Finally, the randomization of the scattering function
follows naturally from that of MiniSat: the derived instances depend on the
random seed passed to MiniSat.

6 EXPERIMENTAL RESULTS ON PARTITIONING

The following experiments study the behavior of the presented approaches
both under ideal and real (scattering) partitioning functions on some real-
world SAT instances. A summary of the results is presented in Table 1. The
instances represent hard SAT formulas in the sense that their randomized run
times often exceed one hour. Furthermore, cube-11-h14-sat is a satisfiable
instance where the scattering function always resulted in a unique satisfiable
derived instance, dated-10-13-s is a satisfiable instance where the scatter-
ing function always resulted in several satisfiable derived instances (unless
solved by the function), and AProVE07-09 is an unsatisfiable instance. The
first column, labeled T , reports the sequential run-time distribution of the

6 EXPERIMENTAL RESULTS ON PARTITIONING 13

instances. The next two columns, labeled "simple distribution" in the table,
report the results for Simple Distributed SAT solving for eight and 64 re-
sources. The next four columns, labeled “ideal partitioning”, report run-time
distributions when an ideal partitioning function is used: first for the plain
partitioning approach with eight and 64 resources, and then for safe and re-
peated partitioning approaches. The last four columns, labeled “scattering”,
report the run time distributions obtained when scattering (recall Sect. 5) is
used as the partitioning function; first for plain partitioning with eight and
64 resources, and then for safe and repeated partitioning approaches with 64
resources. The rows of the table report the expected, minimum, median and
maximum run times together with the first and third quartile (the values of t
such that q(t) ≤ 0.25 and q(t) ≤ 0.75).

The run-time distributions for SDSAT and “ideal partitioning” approaches
were obtained by solving the instance one hundred times with MiniSat 1.14.
The resulting distributions were then used to compute the results analytically.
None of the results include delays associated with parallel environments.

The distributions in columns T 8
scatter and T 64

scatter are obtained by running
the plain partitioning approach with the scattering function fifty times us-
ing different random seeds. The resulting distribution was directly used to
compute the values for the repeated partitioning approach (T 64

rep-part) under
“scattering”. To compute the results for the column T 64

safe-part under “scatter-
ing”, each derived instance was solved seven more times, thereby directly
simulating an implementation of safe partitioning with scattering. The run
times do not include the time required to run the scattering function. If the
instance was solved while scattering, the run time is reported as zero.

The results in “simple distribution” columns show good scalability for
dated-10-13-s and moderate scalability for other instances, as predicted by
analytical results when tmin is close to E(T). The columns under “ideal parti-
tioning” show that partitioning can in theory result in even better speed-up for
these instances. Surprisingly, in the actual implementation (T 8

scatter, T
64
scatter)

we see that plain scattering results in higher expected run-times than simple
distribution for these instances. This reflects the difficulty of obtaining ideal
partitioning functions.

Comparison of the “ideal partitioning” approaches confirms the discus-
sion in Sect. 4. In particular, safe partitioning results in lower expected
run time than repeated partitioning for unsatisfiable instances. However,
the results under “scattering” show the opposite; repeated partitioning has
consistently lower expected run time than safe partitioning. For example,
observe the expected run times for safe and repeated partitioning approaches
for the instance cube-11-h14-sat with unique satisfiable derived instance:
in “ideal partitioning” they are equal, whereas the scattering-based safe parti-
tioning is significantly worse than the scattering-based repeated partitioning
approach. To study this, we computed run-time distributions for some of
the satisfiable derived instances (not shown in the table), and it turns out
that their expected run times varied between 109.1 and 4,773 seconds. Thus
the hardness (expected run time) of a derived instance produced by scatter-
ing is also a random variable with possibly a very large range, and running
the scattering function independently several times increases the probabil-
ity of finding derived instances with low expected run times. This explains

14 6 EXPERIMENTAL RESULTS ON PARTITIONING

Ta
bl

e
1:

C
om

pa
rin

g
ap

pr
oa

ch
es

fo
rp

ar
al

le
ls

ea
rc

h
sim

pl
e

di
str

ib
.

id
ea

lp
ar

tit
io

ni
ng

sc
at

te
rin

g

T
T

8 sd
sa

t
T

6
4

sd
sa

t
T

8 pa
rt(

id
ea

l)
T

6
4

pa
rt(

id
ea

l)
T

6
4

sa
fe

-p
ar

t
T

6
4

re
p-

pa
rt

T
8 sc

at
te

r
T

6
4

sc
at

te
r

T
6
4

sa
fe

-p
ar

t
T

6
4

re
p-

pa
rt

c
u
b
e
-
1
1
-
h
1
4
-
s
a
t

E
xp

4,
83

2
3,

11
0

2,
68

5
60

4,
0

75
.5

0
38

8.
7

38
8.

7
3,

53
7

3,
37

8
2,

26
5

83
9.

6
M

in
2,

62
9

2,
62

9
2,

62
9

32
8.

6
41

.0
7

32
8.

6
32

8.
6

11
7.

5
69

.4
9

13
.9

3
11

7.
5

Q
1

3,
64

1
2,

74
8

2,
62

9
45

5.
1

56
.8

9
34

3.
5

34
3.

5
2,

29
1

1,
19

3
1,

66
5

14
1.

7
M

ed
4,

66
1

3,
00

9
2,

64
0

57
2.

7
72

.8
3

37
6.

1
37

6.
1

3,
45

9
3,

47
3

2,
38

1
33

8.
2

Q
3

5,
73

0
3,

36
2

2,
74

1
71

6.
3

89
.5

3
42

0.
2

42
0.

2
4,

66
2

5,
28

8
3,

18
2

1,
71

9
M

ax
10

,0
50

10
,0

50
10

,0
50

1,
25

6
15

7.
0

1,
25

6
1,

25
6

11
,5

00
7,

19
9

4,
40

5
11

,5
00

d
a
t
e
d
-
1
0
-
1
3
-
s

E
xp

2,
26

6
12

8.
2

16
.4

5
16

.0
2

0.
25

70
2.

05
6

2.
05

6
26

1.
2

31
7.

3
21

.2
2

0.
25

66
M

in
10

.0
9

10
.0

9
10

.0
9

1.
26

2
0.

15
77

1.
26

2
1.

26
2

0
0

0
0

Q
1

28
3.

2
28

.0
0

10
.0

9
3.

49
9

0.
15

77
1.

26
2

1.
26

2
0

0
0

0
M

ed
78

4.
7

10
9.

4
10

.5
8

13
.6

7
0.

16
53

1.
32

2
1.

32
2

19
.8

6
9.

85
8

7.
03

7
0

Q
3

2,
09

3
18

1.
4

17
.6

3
22

.6
8

0.
27

55
2.

20
4

2.
20

4
22

7.
7

84
.7

0
17

.7
7

0
M

ax
37

,9
30

37
,9

30
37

,9
30

4,
74

1
52

9.
6

4,
74

1
4,

74
1

6,
44

9
10

,0
95

17
2.

0
6,

44
9

A
P
r
o
V
E
0
7
-
0
9

E
xp

4,
01

6
2,

36
1

1,
68

5
75

9.
7

11
7.

7
39

2.
5

58
6.

7
2,

59
8

1,
71

9
1,

63
2

1,
55

9
M

in
1,

55
2

1,
55

2
1,

55
2

19
4.

1
24

.2
6

19
4.

1
19

4.
1

1,
26

1
48

6.
3

72
3.

9
1,

26
1

Q
1

3,
08

6
2,

03
3

1,
55

2
66

8.
0

10
6.

2
35

2.
3

55
4.

2
1,

75
7

1,
12

2
1,

27
1

1,
46

6
M

ed
3,

90
5

2,
38

9
1,

56
3

77
0.

6
11

0.
3

39
6.

4
58

1.
4

2,
26

7
1,

43
7

1,
63

7
1,

56
7

Q
3

4,
73

2
2,

66
6

1,
73

6
84

3.
7

12
9.

8
41

4.
3

60
6.

4
3,

55
0

1,
89

4
1,

91
2

1,
69

4
M

ax
9,

30
2

9,
30

2
9,

30
2

1,
16

3
14

5.
3

1,
16

3
1,

16
3

4,
53

9
6,

61
7

2,
96

8
4,

53
9

6 EXPERIMENTAL RESULTS ON PARTITIONING 15

the good speed-up obtained by repeated partitioning when compared to safe
partitioning.

7 CONCLUSIONS

The paper investigates distributed techniques for solving challenging SAT in-
stances and focuses on combining constraint-based search space partitioning
with randomized SAT solving techniques. The paper studies first analytically
the expected run time of a plain partitioning approach where a SAT instance
is partitioned and then a randomized SAT solver is used to solve the resulting
instances. Analytical results are derived for two limiting cases, for ideal and
void partitioning functions. The investigation is then extended to a setting
where simple distribution and partitioning are mixed. Finally the paper pro-
poses a randomized partitioning function and compares the function against
the ideal case.

The analytical results show that partitioning can potentially lead to catas-
trophic failures where an increase in computing resources leads to a decrease
in solving efficiency for unsatisfiable instances. The empirical results show in
part that a good implementation is usually able to avoid this failure, but plain
partitioning can nevertheless be worse than an approach based on simple dis-
tributed SAT solving (SDSAT). Both problems are avoided in practice with
safe and repeated partitioning. The experimental and analytical comparisons
show an interesting relationship between the safe and repeated partitioning
approaches, suggesting that an ideal partitioning function would profit from
safe partitioning whereas randomness in the partitioning function can be bet-
ter exploited with repeated partitioning.

ACKNOWLEDGMENTS

The authors are grateful for the financial support of the Academy of Finland
(projects 122399 and 112016), Helsinki Graduate School in Computer Sci-
ence and Engineering, Jenny and Antti Wihuri Foundation, Emil Aaltosen
Säätiö, Finnish Foundation for Technology Promotion, and Technology In-
dustries of Finland Centennial Foundation.

REFERENCES

[1] Max Böhm and Ewald Speckenmeyer. A fast parallel SAT-solver: Effi-
cient workload balancing. Annals of Mathematics and Artificial Intelli-
gence, 17(4–3):381–400, 1996.

[2] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Proc.
SAT’03, volume 2919 of LNCS, pages 502–518. Springer, 2004.

[3] Carla P. Gomes and Bart Selman. Algorithm portfolios. Artificial Intel-
ligence, 126(1–2):43–62, 2001.

16 REFERENCES

[4] Carla P. Gomes, Bart Selman, Nuno Crato, and Henry A. Kautz.
Heavy-tailed phenomena in satisfiability and constraint satisfaction
problems. Journal of Automated Reasoning, 24(1/2):67–100, 2000.

[5] Bernardo A. Huberman, Rajan M. Lukose, and Tad Hogg. An
economics approach to hard computational problems. Science,
275(5296):51–54, 1997.

[6] Antti Hyvärinen, Tommi Junttila, and Ilkka Niemelä. Partitioning
search spaces of a randomized search. In Proc. AI*IA, LNCS. Springer,
2009. To appear.

[7] Antti E. J. Hyvärinen. Approaches to grid-based SAT solving. Research
Report TKK-ICS-R16, Helsinki University of Technology, June 2009.

[8] Antti E. J. Hyvärinen, Tommi Junttila, and Ilkka Niemelä. A distribu-
tion method for solving SAT in grids. In Proc. SAT’06, volume 4121 of
LNCS, pages 430–435. Springer, 2006.

[9] Antti E. J. Hyvärinen, Tommi Junttila, and Ilkka Niemelä. Strategies for
solving SAT in grids by randomized search. In Proc. AISC’08, volume
5144 of LNAI, pages 125–140. Springer, 2008.

[10] Antti E. J. Hyvärinen, Tommi Junttila, and Ilkka Niemelä. Incorporat-
ing clause learning in grid-based randomized SAT solving. Journal on
Satisfiability, Boolean Modeling and Computation, 6:223–244, 2009.

[11] B. Jurkowiak, C. Li, and G. Utard. A parallelization scheme based on
work stealing for a class of SAT solvers. Journal of Automated Reason-
ing, 34(1):73–101, 2005.

[12] Michael Luby and Wolfgang Ertel. Optimal parallelization of Las Vegas
algorithms. In Proc. STACS’94, volume 775 of LNCS, pages 463–474.
Springer, 1994.

[13] Michael Luby, Alistair Sinclair, and David Zuckerman. Optimal
speedup of Las Vegas algorithms. Information Processing Letters,
47(4):173–180, 1993.

[14] H. Zhang, M. Bonacina, and J. Hsiang. PSATO: A distributed propo-
sitional prover and its application to quasigroup problems. Journal of
Symbolic Computation, 21(4):543–560, 1996.

REFERENCES 17

A PROOFS

Proposition 1 tmin ≤ E(T n
sdsat) ≤ E(T) for each n ≥ 1. Furthermore,

E(T n
sdsat) → tmin when n →∞.

Proof Recall that by definition qT (t) = 0 for all t < tmin and qT (t) = 1 for
all t ≥ tmax. By applying integration by parts, i.e.

∫ b

a
f(t)g′(t)dt = f(b)g(b)−

f(a)g(a)−
∫ b

a
f ′(t)g(t)dt, the expected value given by E(T) =

∫ tmax

0
tq′T (t)dt

can be rewritten as

E(T) = tmax −
∫ tmax

0

qT (t)dt. (2)

Recall that qT n
sdsat

(t) = 1 − (1 − qT (t))n and thus qT n
sdsat

(t) = 0 if t < tmin,
0 < qT n

sdsat
(t) ≤ 1 if tmin ≤ t < tmax, and qT n

sdsat
(t) = 1 if t ≥ tmax. Now∫ tmax

0
qT n

sdsat
(t)dt ≤ tmax − tmin and therefore E(T n

sdsat) = tmax−
∫ tmax

0
qT n

sdsat
(t)dt ≥

tmin.
As 0 ≤ qT (t) ≤ 1 and (1 − qT (t))n ≤ (1 − qT (t)) for all n ≥ 1, we have

that qT n
sdsat

(t) = 1− (1− qT (t))n ≥ qT (t). This implies that
∫ tmax

0
qT n

sdsat
(t)dt ≥∫ tmax

0
qT (t)dt and thus E(T n

sdsat) ≤ E(T).
When n →∞, we have that 1− (1− qT (t))n → 1 for all tmin ≤ t ≤ tmax.

Thus
∫ tmax

0
qT n

sdsat
(t)dt → tmax − tmin and E(T n

sdsat) = tmax −
∫ tmax

0
qT n

sdsat
(t)dt →

tmin.

Proposition 2 E(T n
part(ideal)) ≥ E(T)/n for each n ≥ 1.

Proof By definition, the probability that an ideally partitioned instance is
solved in time t or less is q(t) = qT (nt). Since the instance is unsatisfiable,
all n instances need to be solved by the partitioning approach. Therefore, for
unsatisfiable instances, the probability that the plain partitioning approach
has solved the instance is qT n

part(ideal)
(t) = qT (nt)n. By (2), the expected run

time of the ideal partitioning approach is

E(T n
part(ideal)) =

tmax

n
−

∫ tmax/n

0

qT (nt)ndt =
tmax

n
−

∫ tmax

0

1

n
qT (τ)ndτ,

where the last equality is obtained by substituting t = τ/n and dt = dτ
n

in
the middle equation.

Since qT (t) ≤ 1 for all t ≥ 0, we have qT (t)n ≤ qT (t) when n ≥ 1. Thus

E(T) = tmax −
∫ tmax

0

qT (t)dt ≤ tmax −
∫ tmax

0

qT (t)ndt = nE(T n
part(ideal)).

Note that the probability that one of the parallel solvers ends up running an
execution corresponding to the highest run time tmax/n approaches 1 as n →
∞. Therefore, E(T n

part(ideal)) →
tmax
n

when n → ∞, that is, speed-up of the
expected run time of the ideal partitioning approach tends to tmax/n. Hence,
linear speed-up of the expected run time is only obtained when tmax = tmin.

18 A PROOFS

Proposition 3 E(T n
part(ideal)) ≤ E(T) for each n ≥ 1

Proof The proposition can be proved by induction on n. When n = 1,
E(T n

part(ideal)) = E(T). Assume that the claim holds for some n ≥ 1. To
prove that the claim holds for n + 1, we express the expected run time us-
ing the derivative of the cumulative run time distribution. As before, qT (t)
denotes the probability that the original instance is solved at or before time
t. Then qT (nt) denotes the probability that a partition produced by the ideal
partitioning function from the original instance is solved at or before time t.
By definition, the expected run time of the plain partitioning approach for
unsatisfiable instances with ideal partitioning function is

E(T n
part(ideal)) =

∫ tmax

0

tq′T n
part(ideal)

(t)dt,

where q′T n
part(ideal)

(t) = d
dt

qT (nt)n = n2qT (nt)n−1q′T (nt). Using this and noting
that q′T (nt) = 0 when t ≥ tmax/n, we get

E(T n
part(ideal)) =

∫ tmax/n

0

tn2qT (nt)n−1q′T (nt)dt.

By substituting nt = τ above, we get

E(T n
part(ideal)) =

∫ tmax

0

τ

n
n2qT (τ)n−1q′T (τ)

1

n
dτ =

∫ tmax

0

τqT (τ)n−1q′T (τ)dτ

≥
∫ tmax

0

τqT (τ)nq′T (τ)dτ = E(T n+1
part(ideal)),

where the inequality follows from qT (τ) ≤ 1 for all 0 ≤ τ ≤ tmax.

Proposition 9 E(T n
safe-part) = E(T n

rep-part) for satisfiable instances and ideal
partitioning function.

Proof Recall that when given n computing resources and letting k = b
√

nc,

• the safe partitioning approach partitions the original instance into k
instances and solves each resulting instance with k solvers in parallel,
and

• the repeated partitioning approach performs, in parallel, k indepen-
dent plain partitioning approaches over k resources.

To clarify the proofs, we introduce two operators, Dk
sdsat and Dk

part, which
describe respectively the effects of the SDSAT and plain partitioning ap-
proaches to a run time distribution q(t). Note that the definition covering
the partitioning approach is more general than what is strictly required for the
proofs, since it includes a function ε(k) capturing the effect of the partition-
ing to the run time: ε(k) = k for ideal partitioning function, and ε(k) = 1 for
void partitioning function. The operators Dk

sdsat and Dk
part map a distribution

function to another distribution function so that

Dk
sdsat(q(t)) = 1− (1− q(t))k

A PROOFS 19

is the run time distribution resulting from applying the SDSAT approach to
a solving process with run time distribution q(t), and

Dk
part(q(t)) =

{
q(ε(k)t)k if all partitions are unsatisfiable, and
1− (1− q(ε(k)t))r if r of the partitions are satisfiable

is the run time distribution resulting from applying the ideal partitioning
approach to a solving process with run time distribution q(t).

We are now ready to give the proofs. In safe partitioning, an instance
is partitioned once and all resulting partitions are solved with the SDSAT
approach. Therefore the distribution for the unsatisfiable case is

Dk
part(D

k
sdsat(q(t)))) = (1− (1− q(ε(k)t))k)k,

and for the case where r of the k partitions are satisfiable

Dk
part(D

k
sdsat(q(t))) = 1− (1− (1− (1− q(ε(k)t))k))r.

When the satisfiable case is simplified, we have

Dk
part(D

k
sdsat(q(t))) =

{
(1− (1− q(ε(k)t))k)k if unsatisfiable, and
1− (1− q(ε(k)t))kr if satisfiable, (3)

where r is the number of satisfiable partitions resulting from the partitioning
(1 ≤ r ≤ k). In repeated partitioning an instance is partitioned k times and
each instance is solved with a single solver. Therefore the distribution for
unsatisfiable instances is

Dk
sdsat(D

k
part(q(t))) = 1− (1− q(ε(k)t)k)k

and for satisfiable instances with r satisfiable partitions

Dk
sdsat(D

k
part(q(t))) = 1− (1− (1− (1− q(ε(k)t))r))k.

When the satisfiable case is simplified, we have as a summary

Dk
sdsat(D

k
part(q(t))) =

{
1− (1− q(ε(k)t)k)k if unsatisfiable, and
1− (1− q(ε(k)t))rk if satisfiable, (4)

where again 1 ≤ r ≤ k. Therefore, if the instance is satisfiable, we see
directly from (3) and (4) that Dk

sdsat(D
k
part(q(t))) = Dk

part(D
k
sdsat(q(t))), which

also means that E(T n
safe-part) = E(T n

rep-part) follows.

Proposition 10 E(T n
safe-part) = E(T n

rep-part) for satisfiable instances, when all
partitions are satisfiable and the partition function is void. Furthermore, if
n = k2 for some k ∈ N, E(T n

safe-part) = E(T n
rep-part) = E(T n

sdsat).

Proof This follows immediately from (3) and (4) by setting ε(k) = 1 and
r = k, and noting that qT n

sdsat
(t) = 1− (1− q(t))n.

Proposition 11 E(T n
rep-part) = E(T n

safe-part) for satisfiable instances, when ex-
actly one partition is satisfiable and partitioning function is void. Further-
more, E(T n

rep-part) = E(T n
safe-part) = E(T k

sdsat), where k = b
√

nc.

Proof This follows directly from (3) and (4) by setting r = 1 and ε(k) = 1,
and noting that qT k

sdsat
(t) = 1− (1− q(t))k.

20 A PROOFS

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60 70

n

part(ideal)

part(void)

sdsat

orig

orig/n

rep-part(ideal)

rep-part(void)

safe-part(ideal)

safe-part(void)

Figure 3: An (artificial) distribution of an unsatisfiable instance, described by
Eq. (5), where SDSAT outperforms partitioning for quite large n.

B EXPERIMENTAL RESULTS

Table 2 lists statistics similar to those presented in Table 1 for four additional
instances from the SAT 2007 competition. All four instances are unsatis-
fiable. The results support the conclusions made based on the smaller set:
especially the variance in separate invocations of the randomized partitioning
function results in better performance of the repeated partitioning approach
compared to that of the safe partitioning approach.

Figure 3 demonstrates an artificial unsatisfiable instance with a distribu-
tion where the SDSAT approach (the sdsat graph) performs better than the
partitioning approach (the part(ideal) graph) for large n. The distribution is
artificially generated, having

qT (t) =


0 for 0 ≤ t < 1,
0.8 for 1 ≤ t < 1000000, and
1 for t ≥ 1000000.

(5)

The distribution is also useful in demonstrating some anomalies that can
be observed with repeated partitioning. For example, repeated partitioning
with void partitioning function (the rep-part(void) graph) may result in an
expected run time which is higher than the sequential expected run time
(the orig graph) for large n, and its performance may be decreasing for some
range of n even with ideal partitioning function (the rep-part(ideal) graph).
For this particular function, a “local minimum” for the expected run time
of repeated partitioning with an ideal partitioning function is reached when
n ≈ 35, and is only reached again when n ≈ 1600.

B EXPERIMENTAL RESULTS 21

Table
2:C

om
paring

approachesforparallelsearch
sim

ple
distrib.

idealpartitioning
scattering

T
T

8sdsat
T

6
4

sdsat
T

8part(ideal)
T

6
4

part(ideal)
T

6
4

safe-part
T

6
4

rep-part
T

8scatter
T

6
4

scatter
T

6
4

safe-part
T

6
4

rep-part

l
i
n
v
r
i
n
v
5

E
xp

2829
2440

2207
417.3

60.11
331.9

367.1
1354

1311
1107

986.4
M

in
2168

2168
2168

271.1
33.88

271.1
271.1

895.9
815.5

738.5
895.9

Q
1

2644
2297

2168
377.7

56.33
323.4

359.2
1068

1088
873.8

904.6
M

ed
2799

2481
2172

414.2
62.11

331
366.9

1232
1229

1018
1000

Q
3

2943
2548

2225
443.8

62.93
339.2

372.3
1707

1604
1359

1033
M

ax
4046

4046
4046

505.7
63.22

505.7
505.7

2682
1896

2301
2682

c
o
n
t
e
s
t
0
3
-
S
G
I
_
3
0
_
5
0
_
3
0
_
2
0
_
3
-
d
i
r

E
xp

1433
1221

1116
210.6

29.24
165.4

191.3
1324

1107
1111

1060
M

in
1076

1076
1076

134.6
16.82

134.6
134.6

925.8
650.9

889.3
925.8

Q
1

1309
1186

1076
200.8

28.36
161.4

185.4
1174

944.7
1027

955.1
M

ed
1421

1222
1083

206.6
29.23

164.5
192.2

1332
1115

1124
1071

Q
3

1550
1273

1169
220.4

30.32
169.1

196.2
1461

1272
1197

1142
M

ax
1993

1993
1993

249.2
31.14

249.2
249.2

1698
1588

1284
1698

h
w
b
-
n
2
8
-
0
2
-
S
8
1
8
9
6
2
5
4
1

E
xp

4654
4031

3624
667.5

93.19
561.3

597.3
2247

2303
1881

1807
M

in
3596

3596
3596

449.6
56.19

449.6
449.6

1285
1867

1279
1285

Q
1

4506
3685

3596
610.7

92.36
556.9

588.2
2065

2087
1881

1601
M

ed
4660

4062
3598

665
93.22

563.8
595.4

2227
2413

1921
1949

Q
3

4767
4299

3615
718.3

95.19
572.5

601.6
2495

2509
1952

1986
M

ax
6191

6191
6191

773.9
96.74

773.9
773.9

2634
2973

2107
2634

u
n
s
a
t
-
s
e
t
-
b
-
f
c
l
q
c
o
l
o
r
-
1
0
-
0
7
-
0
9

E
xp

2027
1446

1133
333.7

51.19
212.7

285.8
1656

1487
1149

1108
M

in
1012

1012
1012

126.5
15.81

126.5
126.5

913.4
387

558.9
913.4

Q
1

1630
1346

1012
303.7

48.43
196.5

277.9
1362

1024
941.2

945.7
M

ed
2090

1481
1033

316.5
51.59

205.3
286.7

1536
1460

1259
1056

Q
3

2304
1553

1284
364.8

54.72
218.4

294.5
2050

1670
1385

1235
M

ax
3652

3652
3652

456.5
57.06

456.5
456.5

3347
4626

1631
3347

22 B EXPERIMENTAL RESULTS

TKK REPORTS IN INFORMATION AND COMPUTER SCIENCE

TKK-ICS-R12 Markus Koskela, Jorma Laaksonen

Specification of information interfaces in PinView. November 2008.

TKK-ICS-R13 Jorma Laaksonen

Definition of enriched relevance feedback in PicSOM. November 2008.

TKK-ICS-R14 Jori Dubrovin
Checking Bounded Reachability in Asynchronous Systems by Symbolic Event Tracing.
April 2009.

TKK-ICS-R15 Eerika Savia, Kai Puolamäki, Samuel Kaski

On Two-Way Grouping by One-Way Topic Models. May 2009.

TKK-ICS-R16 Antti E. J. Hyvärinen

Approaches to Grid-Based SAT Solving. June 2009.

TKK-ICS-R17 Tuomas Launiainen

Model checking PSL safety properties. August 2009.

TKK-ICS-R18 Roland Kindermann
Testing a Java Card applet using the LIME Interface Test Bench: A case study.
September 2009.

TKK-ICS-R19 Kalle J. Palomäki, Ulpu Remes, Mikko Kurimo (Eds.)

Studies on Noise Robust Automatic Speech Recognition. September 2009.

TKK-ICS-R20 Kristian Nybo, Juuso Parkkinen, Samuel Kaski

Graph Visualization With Latent Variable Models. September 2009.

TKK-ICS-R21 Sami Hanhijärvi, Kai Puolamäki, Gemma C. Garriga

Multiple Hypothesis Testing in Pattern Discovery. November 2009.

ISBN 978-952-248-230-3 (Print)

ISBN 978-952-248-231-0 (Online)

ISSN 1797-5034 (Print)

ISSN 1797-5042 (Online)

