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ABSTRACT: This work presents an interface specification language de-
veloped as a part of the LIME-project (LightweIght formal methods for
distributed component-based Embedded systems). The intention is to
provide a mechanism for specifying both external usage of a software
component, as well as the internal behavior of a one. The described
methodology is considered lightweight because there is no assumption
of a complete model of a software component or its interface. The pre-
sented approach is an incremental description of properties that are at
least expected to hold. The described approach can also be applied to a
component which is already (completely or partially) implemented.
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1 GOAL

Component-based design and verification of distributed embedded sys-
tems is a very hard task to accomplish with traditional development
methods. The work hypothesis in the LIME project is that the required
methodology should be more rigorous than the traditional approaches
which leads to the concept of lightweight formal methods. In the pre-
sented approach, the focus is on extending the interface specifications
methods of components. The reader is requested to consult [10] for a
more concise presentation of the LIME interface specification language
and the motivation behind its development. The automated Java testing
tool also developed in the LIME project is documented in [9].

In traditional strongly typed programming languages the interpreta-
tion for correct interaction of two components is limited to the agreement
on number, order and type of the parameters between the caller and the
called component [5]. This correctness requirement in the interaction can
be extended to cover protocol behavior related to it. The called compo-
nent, e.g., a library, may require a certain order for the function calls
through its interface or make requirements for not only types but also
values of its parameters. Similarly, there may be requirements for the
component to fulfill as well, for example some explicitly stated relation
between received arguments and returned values which the caller can rely
on.

It is important to detect faulty communication between components,
but it is equally necessary to point out which one of the components is
to blame for it. The basis for the model of interaction is presented in
Fig. 1. The model of communication is divided into two parts – to an call
specification (CS in Fig. 1) which specifies how a component should be
used, and to a return specification (RS in Fig. 1) which specifies how the
component should respond. Should the call specification be breached,
the calling component is incorrect, and if the called component does not
obey its specification, it will be the one to take the blame.

The specification language combines three complementary ways for
expressing the proper behavior of software objects – regular expressions,
nondeterministic finite automata (NFA) and Linear Temporal Logic with
Past (PLTL, see, e.g., [3]). The properties that are desirable to be de-
scribed here include but are not limited to correct orderings of function
calls and the relation between arguments and return values of functions.
The former is understood to depict the protocol aspect (call ordering) of
interfaces, where as the latter describes how the called component should
behave.

The interpretation of PLTL [3] for runtime monitoring can be seen
as a continuation of the work in [7] and [8]. The language employed is
extended in this work to also contain future time operators using the
SCheck tool [11].
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Figure 1: The interaction model

2 THEORETICAL BACKGROUND

The purpose of this section is to present the theoretical background
needed for understanding the rest of this work.

As the protocol behavior of a software interface or component must be
unambiguously specified, well-studied formalisms are used to express it.
This forms a rigorous theoretical foundation for the language. Syntax and
semantics of the used formalisms, regular expressions, NFAs and PLTL,
are presented in the following subsections, and their interpretation in
software is discussed in the subsequent sections. The definition of PLTL
semantics is adapted from [3].

2.1 Propositional formulas

Propositional formulas form a basis for both regular expressions and
PLTL formulas. Let AP be a finite non-empty set of atomic proposi-
tions. Intuitively, atomic propositions are statements that are either true
or false in a state of the system. The propositional connectives are defined
with their usual semantics, and their shorthand connectives adopted for
convenience of notation. We define propositional formulas over the set of
atomic propositions AP .

Definition 1 Proposition formulas over the set of atomic propositions
AP are inductively defined as:

• Each atomic proposition (p ∈ AP) is a propositional formula.

• Let p, p1 and p2 be propositional formulas, then

– ¬p (negation),

– p1 ∧ p2 (conjunction), and

– p2 ∨ p2 (disjunction) are also propositional formulas.
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• There are no other propositional formulas.

Shorthand notations for propositional formulas are defined for conve-
nience of notation as follows:

Definition 2 Let p, p1 and p2 be propositional formulas. Then the fol-
lowing equivalences hold:

• > ≡ p ∨ ¬p (true literal) for some p ∈ AP.

• ⊥ ≡ ¬> (false literal).

• p1 ⇒ p2 ≡ ¬p1 ∨ p2 (implication).

• p1 ⇔ p2 ≡ (p1 ⇒ p2) ∧ (p2 ⇒ p1) (equivalence).

Def. 3 defines the semantics of propositional formulas in a truth as-
signment a ∈ 2AP . A truth assignment a is said to model an atomic
proposition p iff p ∈ a, this is denoted by a |= p. Def. 3 gives an induc-
tive definition for semantics of propositional logic.

Definition 3 Semantics of propositional logic formulas are inductively
defined as follows:

• a |= p iff p ∈ a, for p ∈ AP .

• a |= ¬p iff p 2 a.

• a |= p1 ∧ p2 iff a |= p1 and a |= p2.

• a |= p1 ∨ p2 iff a |= p1 or a |= p2.

2.2 Regular expressions

Regular expressions are an intuitive and familiar convention for pattern
recognition widely used in the field of programming. They can also be
used as a specification language. Here, the execution of a program (w ∈
Σ∗) is viewed as a string of consecutive sets of atomic propositions that
hold in it [4], i.e., Σ = 2AP .

Definition 4 Regular expressions over propositional formulas are induc-
tively defined as follows:

• Each propositional formula (see Sect. 2.1) is a regular expression.

• Let r, r1 and r2 be regular expressions, then their

– r∗ (closure or Kleene star) are also regular expressions.

– r1 ◦ r2 (concatenation),

– r1 | r2 (union), and

• There are no other regular expressions.

Definition 5 The follow shorthand notation for regular expression r is
defined to hold:
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• r+ ≡ r ◦ r∗ (iteration).

The syntax defined in Def. 4 can be extended to cover complement
and intersection of regular expressions. In this report these constructs
are referred to as extended regular expressions.

Definition 6 Extended regular expressions over propositional formulas
are inductively defined as follows:

• Each propositional formula is an extended regular expression.

• Let er, er1, and er2 be extended regular expressions, then their

– er1 ◦ er2 (concatenation),

– er1 | er2 (union),

– er∗ (closure or Kleene star),

– er1&er2 (intersection), and

– er (complement) are also extended regular expressions.

• There are no other extended regular expressions.

Unfortunately the algorithms required for runtime monitoring with
extended regular expressions are too time and memory consuming to do
at runtime, see, e.g., [14]. Therefore the extended regular expressions are
not considered a prime candidate for a practical interface specification
language in the LIME project and left out from the scope of this report.
In this report regular expressions are supported only as defined in Def. 4.

Semantics of regular expressions in Def. 7 and Def. 8 has been adopted
from [12].

Definition 7 Let ε be the empty word. Kleene star, concatenation, and
union of a language L ⊆ Σ∗ are defined as follows:

• L∗ = { w ∈ Σ∗ | w = ε or w = w1 ◦ · · · ◦ wk for some k ≥ 1 and
some w1, . . . , wk ∈ L}.

• L1 ◦ L2 = { w1w2 ∈ Σ∗ | w1 ∈ L1 and w2 ∈ L2 }.

• L1 | L2 = { w ∈ Σ∗ | at least one of the following holds: (i) w ∈ L1,
or (ii) w ∈ L2 }.

Definition 8 Let � be the empty regular expression, ∅ be the empty
set and L(r) be the language represented by regular expression r. The
semantics of regular expressions are as follows:

• L(�) = ∅, and L(p) = {a ∈ Σ | a |= p} where p is a propositional
formula.

• Let r, r1 and r2 be regular expressions, then

– L(r∗) = L(r)∗.

– L(r1 ◦ r2) = L(r1) ◦ L(r2).
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– L(r1 | r2) = L(r1) | L(r2).

In the monitoring context focus is on the execution trace observed so
far. Intuitively, it corresponds to a prefix which is formally defined in
Def. 9.

Definition 9 If w = vy for some v, y ∈ Σ∗ then v is a prefix of w ∈ Σ∗

[12].

If a correct execution trace of a program is observed then all prefixes
of that trace must also have been correct. This property is formalized in
Def. 10 as prefix closed language.

Definition 10 Let w ∈ L ⊆ Σ∗ then the following holds. The set of
prefixes of w are prefL(w) = {v ∈ Σ∗ | w = vy for some y ∈ Σ∗} The
prefix closure of L is pref (L) =

⋃
w∈L prefL(w). The language L is prefix

closed iff pref (L) = L.

Example 1 - A prefix closed language

Let L ⊆ Σ∗ be a prefix closed language and abcd ∈ L, then ε ∈ L, a ∈ L,
ab ∈ L, and abc ∈ L.
�

2.3 PLTL

Propositional linear temporal logic (PLTL) is a commonly used specifi-
cation logic with both past and future temporal operators. The sublogic
consisting of only the future temporal operators is referred to as LTL and
the sublogic consisting of only the past temporal operator is referred as
ptLTL. The semantics of a PLTL formula is in this work defined along
finite paths π = s0s1 . . . sk−1 of states. Each state si is labelled with the
atomic propositions that hold in that state by a labelling function L such
that L(si) ∈ 2AP , where AP is a set of atomic propositions.

The temporal operators are divided to two groups: future time and
past time operators. The future time operators are Xψ (’next’), ψ1 U ψ2

(’until’) and ψ1 R ψ2 (’release’). The past time operators are Y ψ (’yes-
terday’), Zψ (’weak yesterday’), ψ1 S ψ2 (’since’) and ψ1 T ψ2 (’trigger’).
The syntactically legal PLTL formulas are given in Def. 11 and their se-
mantics in Def. 14.

Definition 11 PLTL formulas for the set of atomic propositions AP are
inductively defined as follows:

• If p ∈ AP , then p is a PLTL formula.

• Let ψ, ψ1 and ψ2 be PLTL formulas then

– ¬ψ1, ψ1 ∨ ψ2, and ψ1 ∧ ψ2,

– Xψ1, ψ1 U ψ2, and ψ1 R ψ2; and

– Y ψ, Zψ, ψ1 S ψ2, and ψ1 T ψ2 are PLTL formulas.
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• There are no other PLTL formulas.

The following operators are defined as syntactic shorthands for fu-
ture time temporal operators: Fψ (’finally’), Gψ (’globally’), ψ1 Uw ψ2

(’weak until’) and ψ1 Sw ψ2 (’weak since’). Similarly, the following tem-
poral operators are defined as shorthands for past-time operators: Hψ
(’historically’), Oψ (’once’), ↑ ψ (’start’), ↓ ψ (’end’), [ψ1, ψ2)s (’inter-
val’) and [ψ1, ψ2)w (’weak interval’).

Definition 12 The here presented derived propositional and temporal
operators are adopted as abbreviations. The monitoring operators (↑ ψ,
↓ ψ, [ψ1, ψ2)w and [ψ1, ψ2)s) have been presented in [7].

> ≡ p ∨ ¬p for some p ∈ AP
⊥ ≡ ¬>
ψ1 ⇒ ψ2 ≡ ¬ψ1 ∨ ψ2

ψ1 ⇔ ψ2 ≡ (ψ1 ⇒ ψ2) ∧ (ψ2 ⇒ ψ1)
Fψ ≡ >U ψ
Gψ ≡ ¬F¬ψ
Oψ ≡ > S ψ
Hψ ≡ ¬O¬ψ
ψ1 Uw ψ2 ≡ Gψ1 ∨ ψ1 U ψ2

ψ1 Sw ψ2 ≡ Hψ1 ∨ ψ1 S ψ2

↑ψ ≡ ψ ∧Y¬ψ
↓ψ ≡ ¬ψ ∧Y ψ
[ψ1, ψ2)s ≡ ¬ψ2 ∧ ((Y¬ψ2) S ψ1)
[ψ1, ψ2)w ≡ (H¬ψ2) ∨ [ψ1, ψ2)s

Def. 13 defines valuation as a function that maps a state into a truth
assignment of atomic propositions that hold in the state.

Definition 13 Let S be the set of states and s ∈ S. Valuation L(s) is a
function L : S → Σ with Σ = 2AP .

Definition 14 Let πi denote the path π = s0s1 . . . sk−1 with current state
indexed i. The semantics of PLTL formulas in a finite path of length k
is defined as follows [3]:

πi |=k ψ ⇔ ψ ∈ L(si), for ψ ∈ AP.
πi |=k ¬ψ ⇔ ψ /∈ L(si), for ψ ∈ AP.
πi |=k ψ1 ∨ ψ2 ⇔ πi |=k ψ1 or πi |=k ψ1.
πi |=k ψ1 ∧ ψ2 ⇔ πi |=k ψ1 and πi |=k ψ1.
πi |=k Xψ ⇔ i < k and πi+1 |=k ψ.
πi |=k ψ1 U ψ2 ⇔ ∃i ≤ j ≤ k such that πj |=k ψ2 and πn |=k ψ1

for all i ≤ n < j.
πi |=k ψ1 R ψ2 ⇔ ∃i ≤ j ≤ k such that πj |=k ψ1 and πn |=k ψ2

for all i ≤ n ≤ j.
πi |=k Y ψ ⇔ i > 0 and πi−1 |=k ψ.
πi |=k Zψ ⇔ i = 0 or πi−1 |=k ψ.
πi |=k ψ1 S ψ2 ⇔ ∃0 ≤ j ≤ i such that πj |=k ψ2 and πn |=k ψ1

for all j < n ≤ i.
πi |=k ψ1 T ψ2 ⇔ for all 0 ≤ j ≤ i : πj |=k ψ2 or πn |=k ψ1

for some j < n ≤ i.

12 2 THEORETICAL BACKGROUND



Example 2 - Semantics of PLTL formulas in a finite path

Fig. 2 presents a finite path of consecutive states. The states 0-6 are
labeled with formulas ψ1 and ψ2 iff they hold in the corresponding state.
It can be seen for example that π0 |=5 ψ1 R ψ2 since π3 |=5 ψ1 and
πn |=5 ψ2 for all 0 ≤ n ≤ 3.
�

0 1 2 3 4 5 6

ψ2 ψ2 ψ2 ψ1, ψ2

Figure 2: Semantics of ψ1 R ψ2 in a finite path

It is always possible to rewrite any formula to positive normal form,
where all negations appear only in front of atomic propositions. Note that
this is actually required to evaluate formulas with negations that are not
directly before atomic propositions. It can be accomplished by using
the dualities ¬(ψ1 ∧ ψ2) ≡ ¬ψ1 ∨ ¬ψ2, ¬(Xψ) ≡ X¬ψ, ¬ (ψ1 U ψ2) ≡
¬ψ1 R ¬ψ2 ¬(Y ψ) ≡ Z¬ψ, and ¬(ψ1 S ψ2) ≡ ¬ψ1 T ¬ψ2, see, e.g., [3].

Example 3 - Positive normal form of a PLTL formula

The formula ¬[ψ1, ψ2)w can be turned into positive normal form with the
following procedure. Def. 12 defines the interval operators as syntactic
shorthands for other PLTL operators and they can thus be replaced with
their PLTL counterparts.

[ψ1, ψ2)w ≡ (H¬ψ2) ∨ [ψ1, ψ2)s

[ψ1, ψ2)s ≡ ¬ψ2 ∧ ((Y¬ψ2) S ψ1)
[ψ1, ψ2)w ≡ (H¬ψ2) ∨ (¬ψ2 ∧ ((Y¬ψ2) S ψ1))

After this conversion the positive normal form can be derived as follows.

¬((H¬ψ2) ∨ (¬ψ2 ∧ ((Y¬ψ2) S ψ1))) ≡
¬(H¬ψ2) ∧ ¬(¬ψ2 ∧ ((Y¬ψ2) S ψ1)) ≡
(Oψ2) ∧ (ψ2 ∨ ¬((Y¬ψ2) S ψ1)) ≡
(Oψ2) ∧ (ψ2 ∨ (¬(Y¬ψ2) T ¬ψ1)) ≡
(Oψ2) ∧ (ψ2 ∨ ((Zψ2) T ¬ψ1))

Hence the positive normal form of ¬[ψ1, ψ2)w is Oψ2 ∧ (ψ2 ∨ ((Zψ2) T
¬ψ1)).
�

2.4 Nondeterministic finite automata

Nondeterministic finite automata (NFAs) are equivalent to regular ex-
pressions in their power to express all regular languages. The main
motivation for including also NFAs in the LIME interface specification
language is to ease the integration of other tools generating interface
specifications from other more high-level specification languages without
the need to go through regular expressions incurring a potential blow-up.
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Definition 15 A (nondeterministic and finite) automaton A is a tuple
(Σ, S, S0,∆, F ), where

• Σ is a finite alphabet,

• S is a finite set of states,

• S0 ⊆ S is the set of initial states,

• ∆ ⊆ S × Σ× S is the transition relation
(no ε-transitions allowed), and

• F ⊆ S is the set of accepting states.

A finite automaton A accepts a set of words L(A) ⊆ Σ∗ called the
language accepted by A, defined as follows:

• A run r of A on a finite word a0, . . . , an−1 ∈ Σ∗ is a sequence
s0, . . . , sn of (n+1) states in S, such that s0 ∈ S0, and (si, ai, si+1) ∈
∆ for all 0 ≤ i < n.

• The run r is accepting iff sn ∈ F . A word w ∈ Σ∗ is accepted by A
iff A has an accepting run on w.

3 THE SPECIFICATION LANGUAGE

The purpose of this section is to introduce the reader to how call and
return specifications can be written and to define the mechanisms and
policies used in the language. In Sect. 3.1 the specifications are explained
through running examples, and although they are about the specification
language, they are written in Java form to put them in context of a real
programming language. In Sect. 3.2 the correctness requirements that
the specifications impose are defined, and the policies and mechanisms
of the language are discussed in detail. Note that in the LIME interface
specification language all specification forms: regular expressions, PLTL
formulas, and also NFAs specify desired properties of the interface in
question instead of specifying the undesired behaviors of the interface.

3.1 Specifying interfaces and components – Running examples

Example 4 demonstrates how regular expressions can be used for defining
interface behavior.

Example 4 - Regular expression in interface specification

Consider a log file interface that expects the client first to open the file,
then use (read or write) it and finally close it. For describing this
behavior, claims about method calls are needed. The call proposition
open ::= open() declares a proposition open that is true iff the body of
method open() declared in the annotated interface is currently executing.
Notice that argument overloading is not yet considered, and that the
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write proposition therefore refers to all write methods regardless of their
argument types.

The interface defines a specification to enforce its expected use. The
specification is monitored at runtime to keep track of the call orderings
through the interface and in case the protocol is violated it signals an
exception. In this example a regular expression expresses the previously
described call order. You may notice that concatenation(◦) is denoted by
; and Kleene star(∗) is expressed with * (see Table 1 for the rest of the
annotations). It is necessary to tie the specification into events (method
calls) in the interface. This is done by annotating the desired methods to
observe the corresponding specification either when body of the method
is entered, or when it is exited depending of its type. Call specifications
will be observed on entry and return specifications on exit of the method.

@CallSpecifications(
callPropositions = {
"open ::= open()",
"close ::= close()",
"read ::= read()",
"write ::= write()"

},
regexp = {
"FileUsage ::= (open ; (read | write)* ; close)*"

}
)
public interface LogFile {
@Observe(specs = {"FileUsage"})
public void open();
@Observe(specs = {"FileUsage"})
public void close();
@Observe(specs = {"FileUsage"})
public String read();
@Observe(specs = {"FileUsage"})
public void write(String s);
public int length();

}

It is noteworthy that in the given example calls to length() do not
violate the FileUsage specification. The corresponding specification is
not observed when it is called, hence the observer of the specification is
perfectly oblivious of the method’s existence and any calls made to it.
�

Example 5 introduces default policies that conform to the natural
interpretation of the specifications making their declaration less verbose.

Example 5 - Less verbose specifications with default observers

The specification seems too verbose to describe such a simple behavior
and therefore default policies are adopted to make the language more suc-
cinct. Firstly, open() in a specification declaration means a call proposi-
tion, which true iff open() is being executed (see Def. 19). This happens
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when a specification is observed on entry or on exit depending on the
specification type of the open() procedure. Secondly, if a specification
contains a call proposition the specification is automatically observed in
the corresponding procedure (see Def. 20). These policies are enforced
for the remainder of this work.

After adopting these policies the interface specification can be ex-
pressed in the following form:

@CallSpecifications(
regexp = {
"FileUsage ::= (open() ; (read() | write())* ; close())*"
}

)
public interface LogFile {
public void open();
public void close();
public String read();
public void write(String s);
public int length();

}

�

Example 6 introduces PLTL as a specification formalism. PLTL spec-
ifications are sometimes more succinct and natural way of describing the
desired behavior than regular expressions.

Example 6 - Extending call specification with a PLTL formula

The file interface may also expect that the write method is never called
with a null argument. This can be described as another specification.
Now, the property is expressed in a PLTL specification (see annotation
details in Table 2) which states “always when write is called, it receives a
proper String”. With the adopted default enforcement policy, the speci-
fication is automatically observed on entry of the write procedure. In the
example s has a special ’#’ sign in front of it. This is the convention for
referring to argument values in the specification language. This is purely
something made necessary to simplify the implementation and could be
avoided if the Java expression could be parsed properly (requiring a full
fledged Java parser).

@CallSpecifications(
regexp = {
"FileUsage ::= (open() ; (read() | write())* ; close())*"

},
valuePropositions = {
"properData ::= (#s != null)"

},
pltl = {
"ProperData ::= G (write() -> properData)"

}
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)
public interface LogFile {
public void open();
public void close();
public String read();
public void write(String s);
public int length();

}

�

Example 7 combines call specifications with return specifications. Data
handling is introduced as a new feature in the return specification.

Example 7 - A return specification with data handling

Now that interface has established boundaries in which it operates, it
may give guarantees as well. Let us assume that the write operation is
specified to append the file with String in the s argument.

@CallSpecifications(
regexp = {
"FileUsage ::= (open() ; (read() | write())* ; close())*"

},
valuePropositions = { "properData ::= (#s != null)" },
pltl = { "ProperData ::= G (write() -> properData)" }

)
@ReturnSpecifications(
valuePropositions = {
"okLength ::= "+
"#this.length() == #pre(#this.length() + #s.length())"

},
pltl = { "ProperWrites ::= G (write() -> okLength)" }

)
public interface LogFile {
public void open();
public void close();
public String read();
public void write(String s);
public int length();

}

These kinds of specifications require data handling from the specifica-
tion language. In this approach, primitive values can be stored on method
call entry to be used in evaluation at the method exit using a special #pre
expression. The user must supply a type for this value if it is not an in-
teger which is considered to be the default type. This is done by adding
the type to the expression as follows: #pre.boolean(#this.length() >

0).
�

Example 8 shows how behavior can be specified as a finite automaton.
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Example 8 - Specifying legal behavior as a finite automaton

The syntax of automaton specifications is illustrated in this example.
For additional information on the syntax, see Appendix A. The syntax
consists of two parts. In the first part all atomic propositions have to be
declared and given names. In the second part the automaton specifica-
tions are listed. Each NFA specification is declared using the keyword
always_nfa to underline the fact that the NFA specifies the good behav-
ior of the interface in question. The NFA itself is given in a syntax closely
following the “neverclaim” syntax of the Spin model checker. The only
change is that all states are by default accepting, and you have to add a
state label prefix reject_ in order to declare a non-accepting state. The
runtime monitor will report a violation if the execution observed so far is
not in the language of the specified NFA. To do this, the tool internally
determinizes and complements the automaton specification provided by
the user.

@CallSpecifications(
callPropositions = {
"start ::= start()",
"ignite ::= ignite()"

},
nfa = {
"ProperStartsA ::= " +
" always_nfa {" +
" state1_init: " +
" if " +
" :: (start) -> goto reject_state2; " +
" :: (ignite) -> goto state3; " +
" fi; " +
" reject_state2: " +
" if " +
" :: (1) -> goto reject_state2; " +
" fi; " +
" state3: " +
" if " +
" :: (1) -> goto state3; " +
" fi; " +
" }"

}
)
public interface Car {
@Observe(
specs = {"ProperStartsA"})

public void start();

@Observe(
specs = {"ProperStartsA"})

public void ignite();
}

�
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Notice the slightly cumbersome way of dealing with multiline strings
in Java. Another thing to observe is that the NFA specified by the user
should specify a prefix closed language but this is easily achieved by, e.g.,
not using any reject states at all.

3.2 Specification language

The core idea of the specification language is to provide a declarative
mechanism for defining component interactions in a manner that their
correctness can be verified. The verification is done at runtime by ob-
serving the defined specifications (call orderings and relation between ar-
guments and return values in function calls, for example). In a nutshell,
the specification language consists of:

1. A mechanism to make claims about program execution or state.
These claims are referred to as atomic propositions and subdivided
to three classes:

• valuePropositions – Claims about program state or values
of arguments (e.g., #this.x == 0). A value proposition is
true if and only if the native language expression evaluates
true.

• callPropositions – Claims about function execution (e.g.,
the body of open() is executing). A call proposition is true if
and only if the named method is executing.

• exceptionPropositions – Claims about thrown exceptions
(e.g., RuntimeException has been thrown by a method). Specif-
ically, they are propositions available in return specifications
that are true if and only if the observed method threw a spe-
cific exception. Exception propositions are not supported in
call specifications.

2. A mechanism to combine propositions to describe expected prop-
erties of a software components. These are referred to as spec-
ifications and subdivided to classes according to the underlying
formalism.

• regexp – specifications expressed with regular expressions.

• pltl – specifications expressed with PLTL.

• nfa – specifications expressed with NFAs.

3. A mechanism to tie specification to the program flow. This is re-
ferred to as observing a specification. A specification can be ob-
served by the default enforcement policy presented in Def. 19 or by
an explicit annotation.

One of the benefits of using formal specification methods is that there
is a well defined basis for deciding is a particular property holds or not.
The concept of when a program does not obey its PLTL specification is
formalized in Def. 16.
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Definition 16 Let π = s0s1 . . . sk−1 denote the program trace observed
so far. The PLTL specification ϕ is broken after π iff π0 |=k ¬ϕ.

Recall the definition of a prefix closure of a language L in Def. 10 on
the page 11. Let pref (L) denote prefix closure of L, i.e., the union of
prefixes of all the words in L. Def. 17 formalizes the breach of regular
expression specification.

Definition 17 Let π = s0s1 . . . sk−1 denote the program trace observed so
far, r be a regular expression specified in a regular expression checker, and
L = L(r) be the language it accepts. The regular expression specification
r is broken iff π /∈ pref (L).

Definition 18 Let π = s0s1 . . . sk−1 denote the program trace observed
by the checker so far, A be the NFA specified in an nfa specification. The
nfa specification A is broken iff π /∈ L(A).

In the subsequent subsections the specification language, and its poli-
cies and mechanisms are examined in detail.

Policies and notation
The considered interaction model (see Fig. 1 on page 8) suggests that
there are two kinds, call and return, specifications to consider. From the
specification language standpoint, the two are very similar, yet not the
same. In the call specifications the return values are not under consider-
ation, but rather the call orderings and argument values. In the return
specifications, however, the typical specification does make claims about
return values. The default observing policies (Def. 19) reflect this.

Definition 19 If a method is mentioned in a specification through a call
proposition, the specification is implicitly enforced in the corresponding
method. The specification is observed on entry if the specification is an
call specification, and on exit if the specification is a return specification.

While the specification could require each proposition to be explicitly
declared, it would lead to a cumbersome and verbose notation. There-
fore, the language allows special forms to represent both call and value
propositions directly in specification definitions.

Definition 20 The call propositions can be inlined to a specification def-
inition by referring to a function or a procedure by name in a specification
and adding () to denote it is an inlined call proposition.

Definition 21 The value propositions can be inlined, i.e., host language
boolean expressions can be used in a specification by using <{ boolean
expression }> notation (for example <{ #this.x > 0 }>).

It is possible to write a specification that contains a value proposition
which is not defined in all methods in which it is observed. This may
happen, for example, when one of the methods takes an argument when
others do not. One could observe a specification that states G (write()
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expression annotation expression annotation

r ◦ s r ; s r | s r | s

r∗ r* r+ r+

Table 1: Regular expressions and their corresponding annotations

-> <{ #s != null }>) (where #s is the argument of write(String s))
in read() method which takes no arguments and therefore does not know
the value of #s. This would make sense since the left hand side of the
implication (call proposition write() would be always false when read()

method is executing thus making it true regardless of what is on the right
hand side. This observation leads to the following definition:

Definition 22 If a specification contains a value proposition which is
not defined in some method it is observed in, the undefined propositions
are defined to be false. If the value proposition is not defined in any
method it is observed in, this is considered to be an error.

Propositions, named or inlined, are combined into PLTL formulas,
NFAs or regular expressions in the specification. Regular expressions, as
defined in Def. 4 can be expressed with annotations given in Table 1.
Note that propositional formulas can appear in the regular expressions
and their corresponding annotations can be found in Table 2. Similarly,
corresponding annotations for PLTL are presented in Table 2. When
writing PLTL specifications precedence rules presented in Table 3 ap-
ply. Therefore, for example, p -> q || r is parsed p -> (q || r) and
p <-> q S r is parsed (p <-> q) S r. It is not advised to write the
specifications in manner that leaves their interpretation open regardless
of the precedence rules, e.g., p S t T u but rather use parentheses to
make the specification explicit, e.g., p S (t T u).

Past time Future time Propositional
formula annotation formula annotation formula annotation

Y p Y p X p X p p ⇔ q p <-> q

Z p Z p p⇒ q p -> q

O p O p F p F p p ∧ q p && q

H p H p G p G p ¬p ! p

p S q p S q pU q p U q p ∨ q p || q

p Sw q p Sw q pUw q p Uw q ⊥ FALSE

pR q p R q pT q p T q > TRUE

[p, q)s [p, q)s p p

[p, q)w [p, q)w

↑ p Start(p)

↓ p End(p)

Table 2: PLTL formulas and their corresponding annotations
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1. [ψ1, ψ2)s, [ψ1, ψ2)w

2. ψ1 S ψ2, ψ1 Sw ψ2, ψ1 T ψ2, ψ1 U ψ2, ψ1 Uw ψ2, ψ1 R ψ2

3. ψ1 ⇔ ψ2

4. ψ1 ⇒ ψ2

5. ψ1 ∧ ψ2

6. ψ1 ∨ ψ2

7. ¬ψ, Y ψ, Zψ, Hψ, Oψ, Xψ, Gψ, Fψ, ↑ ψ, ↓ ψ

Table 3: Precedence of logic operators

Observing specifications
As the incremental approach for interface specification suggests, all the
created specifications are independent from each other. Thus, adding a
new rule which limits the behavior of a software component will in no
way interfere with the previously declared rules.

The independence of specifications implies also one important feature
about them: they can perceive time or advance in their input string
of consecutive program states only when they themselves are observed.
This has a concrete interpretation when it comes to, e.g., the semantics
of the temporal operators next (Xψ) and yesterday (Y ψ). The previous
(or the next) moment in time is understood to be the previous (or next)
time when a particular specification is observed in a particular object
instance.

Fig. 3 illustrates how time is perceived to pass by FileUsage (a call
specification) and ProperWrites (a return specification) specifications of
the earlier examples (see Sect. 3.1) over a sequence of method invocations
through the interface. The runtime observer of FileUsage is ran before
executing the bodies of open(), read(), write() or close() where as
ProperWrites observer executes after the body of write().

Data handling
Return specifications, and the observers that enforce them, are included
into the specification language to establish the correct responses for the
method invocations. The responses are not known until the method has
been executed, hence the enforcement must happen at the method exit.
The relation between input parameters and return values is not trivial
to establish as the method body may have altered the arguments given
to it.

We employ a history variable mechanism to store values as they were
when execution of a method started to enable the comparison of these
pre values to the post values at exit. This was used already in the
LogFile interface example presented in Sect. 3.1. There we specified
a proposition okLength to be equivalent to expression #this.length()
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Figure 3: Time, as observed by two different specifications
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== #pre(#this.length() + #s.length()). This proposition was used
in return specification ProperWrites which stated G (write() -> ok-

Length). One could read this “for writing to a log file to be successful,
its length should be incremented by length of the new log entry”. To
make this comparison, the sum of lengths for the appended file and the
new entry are stored to a new history variable which is guaranteed to
remain unchanged during the execution of the method. Note that as can
be seen from Fig. 3, the storing of prevalues to the history variables does
not induce a new state. Thus the previous time step for ProperWrites

specification is always the preceding invocation of write().
The specification language supports only primitive values to be stored

this way since, in the general case, it is not possible to store an object
in this way. Storing an object reference would not prevent the body of
the method from altering it. Furthermore, the type of the stored value
should be announced in the #pre statement, e.g., #pre.char(#c) or
#pre.integer(#this.length()). If type is not announced it is expected
to be integer. Note that storing the #pre history value does not induce
a time step into the specification observer.

Exceptions
Exception propositions can (and to be useful, need to) be used in PLTL,
regexp or automaton specifications. For example, the following PLTL
specification asserts that no RuntimeException is thrown:

@ReturnSpecifications(

exceptionPropositions = {

"exc ::= java.lang.RuntimeException"

},

pltl = {

"NoException ::= G(!exc)"

}

)

Now this can be used to check a method in a class:

@ReturnSpecifications(

exceptionPropositions = {

"exc ::= java.lang.RuntimeException"

},

pltl = {

"ProperWrites ::= " +

"G(<{ #pre(#s.length() + #this.length()) == " +

"#this.length() }>)",

"NoException ::= G(!exc)"

}

)

public interface LogFile {

@Observe( specs = { "ProperWrites", "NoException" } )

public void write(String s);

...

}
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When an exception is thrown, there is no return value. Thus we define
any native language proposition which refers to #result to be false in the
case an exception is thrown.

The kind of exception thrown when a violation of a call or return
specification is detected can be specified. This may help in automatically
running test code.

By default, CallSpecification violations cause an CallSpecificationEx-
ception to be thrown and ReturnSpecification violations cause a Return-
SpecificationException to be thrown. These both are subclasses of Spec-
ificationException in aspectmonitor package.

For specifying the kinds of exceptions thrown, two new fields in @Ob-
serve are defined: callException and returnException. This example de-
fines that on a violation of the call property ”ProperStartsA”, a Runtime-
Exception is thrown instead of the default CallSpecificationException:

public class Car {

@Observe(

specs = {"ProperStartsA"},

callException = RuntimeException.class)

public void start() {}

@Observe(

specs = {"ProperStartsA"},

callException = RuntimeException.class)

public void ignite() {}

}

3.3 The specification language with C

Most of the above applies as well to the C version of the specification
language. The most notable differences are the C’s lack of Java-like in-
terfaces the the workaround to that, the lack of Exceptions and thus
Exception propositions, and the addition of observer creation and dele-
tion macros.

From interfaces to headers
Maybe the most notable difference to the Java version of the specification
language from the users point of view is that there are no Interfaces to
write specifications to. To work around this feature of C, we have de-
cided the most natural place to write the interface specifications would be
header files (.h files). This was chosen because header files usually already
hold the ”structure” of the program in the form of function prototypes,
and thus is the natural place to add additional information about how
these functions should be used.

Also the syntax of the annotations has been changed a bit to make it
work with C. Instead of using just:

@CallSpecifications(

pltl = { ... }

)
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@ReturnSpecifications(

regexp = { ... }

)

the user should put all the interface specifications inside special com-
ment tags: /*@ and @*/, like in the following example:

/*@ CallSpecifications(

pltl = { ... }

) @*/

/*@ ReturnSpecifications(

regexp = { ... }

) @*/

Also, the problem with Java multiline literals (mostly apparent on nfa
specifications) doesn’t exist with C, so:

nfa = {

"ProperStartsA ::= " +

" always_nfa {" +

" state1_init: " +

" if " +

" :: (start) -> goto reject_state2; " +

" :: (ignite) -> goto state3; " +

" fi; " +

" reject_state2: " +

" if " +

" :: (1) -> goto reject_state2; " +

" fi; " +

" state3: " +

" if " +

" :: (1) -> goto state3; " +

" fi; " +

" }"

}

can be written simply as:

nfa = {

"ProperStartsA ::=

always_nfa {

state1_init:

if

:: (start) -> goto reject_state2;

:: (ignite) -> goto state3;

fi;

reject_state2:

if
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:: (1) -> goto reject_state2;

fi;

state3:

if

:: (1) -> goto state3;

fi;

}"

}

One additional thing to note is that the interface specifications should
be written at the relative beginning of the header file for implementation
related reasons. This is because the tool used to read the specifications
(Doxygen in C’s case) associates them to the following variable or func-
tion prototype, and if there isn’t one, the specification is lost in the pro-
cess. So in short, the header file where the interface specifications reside
should always end with something else than an interface specification.

Changed language features
As mentioned above, the specification language for C is pretty close to
the Java version, with only a couple of changes.

The first of these changes is the removal of Exception propositions.
This is only natural, since C doesn’t really have exceptions in the first
place, so there shouldn’t really be a need to specify anything about them.

The second change isn’t quite as straightforward. Sometimes the user
might need to have several copies of the same observer. For example,
when specifying the usage of a lock interface, it seems only natural to
have a separate observer instance for each of the locks under observation.
However, the lack of objects in C prevents us from doing this automati-
cally, and the user has to provide additional specifications when multiple
observer instances are needed. This can be done via a new annotation:
/*@ Instance( instance = { "any_c_expression"} ) @*/

This annotation should be written in the header file immediately be-
fore the function what needs to be aware of multiple observer instances.
The any_c_expression should somehow refer to the arguments of the
annotated function, and should return the same value (when casted to
unsigned long) as the identifier given when creating each observer in-
stance (explained below).

An example header file which uses the Instance annotation with a
simple lock implementation follows:

typedef struct lock {

int locked;

} lock_t;

/*@ CallSpecifications(

callPropositions = {

"lock ::= lock()",

"unlock ::= unlock()"

},

regexp = {"alternation ::= (lock ; unlock)*"}
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) @*/

/*@ Instance(instance = {"foo"}) @*/

void lock(lock_t *foo);

/*@ Instance(instance = {"bar"}) @*/

void unlock(lock_t *bar);

Observer creation and deletion
Another thing to note when using the C version of the specification lan-
guage is that observers can’t automatically be created and destroyed
along with the object under observation, since as mentioned above, C
isn’t an object oriented language. Also the creation and usage of several
instances of the same observer, like in the example above, isn’t really
possible. To work around these issues, couple of macros are provided for
the user to create observers when they are needed, and to free them later.

These macros are as follows:

_LIME_create_obs(char *observer)
_LIME_create_obs_inst(char *observer, unsigned long identifier)
_LIME_free_obs(char *observer)
_LIME_free_obs_inst(char *observer, unsigned long identifier)

The usage of the macros is pretty straightforward, the user adds the
_LIME_create_obs() macro to the source code whenever some specifi-
cation needs to be observed. The name of the specification should be
provided via the observer argument. If the user feels the observation of
the specification is no longer necessary, the observer can be freed with
the corresponding _LIME_free_obs() macro.

The remaining two macros are used to create multiple instances of
the same observer in situations like the lock example above. They are
used similarily to observer creation macros, except for the fact that user
should provide an unique identifier for each observer instance, which
are then used to identify them later. These indentifiers are internally
casted to unsigned long, so for example the memory location of a struct
is a valid candidate for identifier.

These macros are defined in a provided lime.h header file, which the
user should include whenever they need to be used. The macros do not
generate any code unless the LIME specifications are requested by the
user, to allow the compilation of the program without unnecessary errors,
when the observation of the LIME specifications isn’t a priority, without
additional changes.

The following example of the main method for the lock header above
should hopefully clarify a bit how the macros should be used. When
the Instance annotations aren’t used, there is no need to create observer
instances, only a single observer creation macro will suffice.

int main() {

_LIME_create_obs(alternation);

lock_t *lock1 = malloc(sizeof(lock_t));
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_LIME_create_obs_inst(alternation, lock1);

lock_t *lock2 = malloc(sizeof(lock_t));

_LIME_create_obs_inst(alternation, lock2);

lock(lock1);

unlock(lock1);

lock(lock2);

unlock(lock1);

_LIME_free_obs_inst(alternation, lock1);

free(lock1);

_LIME_free_obs_inst(alternation, lock2);

free(lock2);

_LIME_free_obs(alternation);

return 0;

}

4 PARTIALLY IMPLEMENTED SYSTEMS

The purpose of this section is to present how the LIME interface spec-
ifications can be used with systems that have been only partially im-
plemented. Only systems written in Java are considered in this section.
The approach taken here is to close the system by using automatically
generated stub code. In this section two different cases of partially im-
plemented systems are considered. In the first case an implementation of
an interface is available, but the part that uses the interface has not yet
been implemented. We will refer to this case as closing the system from
top. In the second case the interface implementation is missing but the
part that calls the interface has been implemented. We will call this case
as closing the system from bottom. These two cases will be discussed in
the following subsections.

4.1 Closing the system from top

The main idea in closing a system from top is to generate a stub code
implementation of the part of the system that calls a given interface.
This can be done by an automated stub code generator that creates an
implementation of an environment that nondeterministically calls one of
the interface methods with random valued arguments. In this work, only
primitive data types and strings are supported in this fashion. Other
types of input objects are simply created with their respective default
constructors and passed to the called method.

A stub implemention that nondeterministically calls the interface meth-
ods is likely to violate a call specification written with the LIME spec-
ification language. In order to the generated stub code to be useful in
testing, the stub code will override the exceptions thrown by the observers
in case of call specifications and throw a special exception instead. These

4 PARTIALLY IMPLEMENTED SYSTEMS 29



exceptions are used to indicate that the specification was violated because
the stub code implementation was too coarse (i.e., it does not satify the
specifications). The test runs that cause these overriden exception to be
thrown are reported as inconclusive. This is natural as when the system
is closed from the top, we are interesting in testing the component that
implements the interface that the stub code calls and not the actual stub
code. Naturally, if the return specification is violated, we know that the
stub code called the interface according to the specifications but the com-
ponent implementation failed to respond to the method call as specified.
In these cases the specification violations are reported as normal.

As an example of closing a system from the top, let us consider the
LogFile interface given bellow. Let us also assume that the interface has
been implemented in FileImpl class.

public interface LogFile {
public void write(String s);
public String read();
public int length();
public void open(int number);
public void close();

}

The stub code that will be automatically generated from this interface
is shown bellow. Notice that the implementation of the interface is called
nondeterministically to some user defined test depth. In this example the
testing consists of five calls to the interface.

public class GeneratedTop {
public static void main( String[] args ) {

Random r = new Random();
int testDepth = 0;
FileImpl obj = new FileImpl();

java.lang.String javalangString1;
int int1;

ExceptionOverride.setCallException(obj,
InconclusiveException.class);

while (testDepth < 5) {
testDepth++;
int i = r.nextInt(5);
switch (i) {

case 0: obj.length(); break;
case 1: javalangString1 = RandomString.getString(r);

obj.write(javalangString1); break;
case 2: obj.read(); break;
case 3: obj.close(); break;
case 4: int1 = r.nextInt(); obj.open(int1); break;

}
}

}
}
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The presented approach to close a system from the top is limited in
the sense that with many interfaces and their respective call specifica-
tions calling the interface randomly leads to many inconclusive test runs.
Therefore this approach is intented to be used together with a suitable
test generation tool that can avoid creating inconlusive tests. Such a tool
is future work and it is also being developed within the LIME project.

4.2 Closing the system from bottom

The basic idea in closing a system from bottom is the same as in the
previous case. A stub code generator is used to generate an implementa-
tion of a given interface in such a way that all the implemented methods
return only random values. Randomization of only primitive data types
and String objects are supported.

As before, these random values can lead to violating the given return
specifications and in these cases the test runs should be classified as in-
conclusive. To achieve this the stub code overrides the exceptions thrown
by the return specification observers.

As an example, a stub code implementation of the LogFile interface
discussed in the previous subsection is shown bellow.

public class GeneratedBottom implements LogFile {
private Random r;

GeneratedBottom() {
r = new Random();

}

int length() {
ExceptionOverride.setReturnException(obj,
InconclusiveException.class);

return r.nextInt();
}

void write(java.lang.String arg1) {
ExceptionOverride.setReturnException(obj,
InconclusiveException.class);

}

java.lang.String read() {
ExceptionOverride.setReturnException(obj,
InconclusiveException.class);

return new java.lang.String();
}

void close() {
ExceptionOverride.setReturnException(obj,
InconclusiveException.class);

}

void open(int arg1) {
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ExceptionOverride.setReturnException(obj,
InconclusiveException.class);

}
}

5 THE TOOL IMPLEMENTATION

In this section the tool implementation for the specification language is
described. Java has been chosen as the host language due to ease of in-
strumentation and preexisting metadata mechanism (Java annotations).
First part of this section (Sect. 5.1) describes the tool for its potential
users, whereas the second part (Sect. 5.3) discusses the architecture of
the implementation.

5.1 Programming interface

Annotations are used for specifying the desired behavior which is then
synthesized as monitors for runtime verification. This section describes
the tool interface from users’ point of view. The focus here is on the lan-
guage dependent details of the implementation such as the lexical form of
propositions and specifications, and the description of annotations used.

Propositions
The propositions have been divided into two categories, to claims about
method invocations (or calls), and to claims about object’s state. As
discussed in Sect. 3 the former is referred to as call propositions, and the
latter to as value propositions. Def. 23 defines the proper lexical form
for named propositions that the tool expects. Notice that the semicolon
(;) is left out of the set of proper characters since it serves as statement
terminator in Java. Value propositions that contain side effects should
be avoided.

Definition 23 The lexical form for atomic propositions is defined as
(where Σ is the set of proper host language characters):

• "[a-z]([a-zA-Z])∗ ::= (Σ− {;})+", where the left side gives a
name for the proposition, and the right side is name of the method
(followed by parentheses, e.g., open()) in case of a call proposition,
or a boolean expression in case of a value proposition.

The named propositions start with a lower case letter because that
makes them easily detectable in lexical analysis. The host language
independent syntax by which propositions are declared is discussed in
Sect. 3.2.

5.2 Specifications

Both call and return specifications are declared by respective annotations,
@CallSpecifications (Fig. 4) and @ReturnSpecifications (Fig. 5).
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These annotations can be targeted (attached) to a Java type (an interface
or a class). The annotations have source retention policy, i.e., they will
not be present in the compiled byte code.

The current implementation limits the way how specifications can be
declared using PLTL. It is not possible to have future time formulas as
subformulas for past time operators (this means that, e.g., O (G (p)) is
of illegal form).

Definition 24 Lexically, regular expression and PLTL specifications are
specified as (where Σ is the set of proper host language characters):

• "[a-zA-Z]+ ::= Σ+"

The host language independent syntax for declaring regular expression
specifications is given in Table 1 on page 21. The syntactic rules for
declaring PLTL specifications are given in Table 2 on page 21 and the
precedence rules for operators in Table 3 on page 22.

package fi.hut.ics.aspectmonitor.annotation;

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Retention(value = RetentionPolicy.SOURCE)
@Target(value = ElementType.TYPE)
public @interface CallSpecifications {
String[] valuePropositions() default {};
String[] callPropositions() default {};
String[] pltl() default {};
String[] regexp() default {};
String[] nfa() default {};

}

Figure 4: Annotation for declaring call specifications

Observing specifications
A property can be enforced by observing its corresponding specification
in a method. The default enforcement policy defined in Def. 19 on page
20 is employed, i.e., if a specification contains a call proposition it is auto-
matically observed in the corresponding method. However, it is possible
to explicitly observe a specification in a method. This is done with an an-
notation @Observe (see Fig. 6). Note that this annotation can be used for
changing the exception thrown when a specification observer notices an
error (default exception is fi.hut.ics.aspectmonitor.SpecificationException).
The annotation consists the following fields:

• specs – the list of specifications to be run in the annotated method.
Call specifications will be run before and return specifications after
the method invocation.
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package fi.hut.ics.aspectmonitor.annotation;

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Retention(value = RetentionPolicy.SOURCE)
@Target(value = ElementType.TYPE)
public @interface ReturnSpecifications {
String[] valuePropositions() default {};
String[] callPropositions() default {};
String[] pltl() default {};
String[] regexp() default {};
String[] nfa() default {};

}

Figure 5: Annotation for declaring return specifications

• exception – the class of the exception thrown when a property
is violated (name of the specification is given as parameter to the
exception or in case of an anonymoys specification, the number of
that specification is used).

5.3 Tool architecture

The implementation is built using the Spoon framework [13] and op-
erates by visiting the abstract syntax tree (AST) produced by the Sun
Microsystems Java-compiler. The instrumentation program is to be dis-
tributed as a Spoonlet. Spoonlets contain AST visitors which can be
used for program analysis and transformation at compile-time. They are
also attractive in the sense that they can be integrated into Maven 2
compiler (http://maven.apache.org/) and Eclipse development envi-
ronment (http://www.eclipse.org/) with respective plug-ins.

Fig. 7 describes the layered architecture of the implementation. An
upper layer module may use lower level module if they have a dashed line
between them. The implementation effort here consists of the Common
(fi.hut.ics.lime.common) and Aspect Monitor (fi.hut.ics.lime.aspectmonitor)
modules. Spoon (fr.inria.gforge.spoon), Automaton (dk.brics.automaton)
and SCheck are adopted as third-party software:

• Spoon is used for analyzing the program and interfacing to existing
tools (Maven 2 and Eclipse).

– CeCILL-C license - French equivalent to LGPL.

• dk.brics.automaton is used for internal representation and ma-
nipulation of regular expression checkers.

– BSD license.
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package fi.hut.ics.aspectmonitor.annotation;

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

import fi.hut.ics.aspectmonitor.SpecificationException;

@Retention(value = RetentionPolicy.SOURCE)
@Target(value = { ElementType.METHOD })
public @interface Observe {
String[] specs() default {};
Class<? extends Exception> exception()
default SpecificationException.class;

}

Figure 6: Annotation for observing specifications

• SCheck is used for converting temporal logic formulas into finite
state automata.

– GPL license.

SCheckdk.brics.automaton

fr.inria.gforge.spoon

Common

Aspect Monitor

Figure 7: Basic modular decomposition

Fig. 8 gives an overview of transforming an annotated type into an
aspect. The process consists of two main passes – analysis and syn-
thesis. The products of the analysis pass are specification objects that
are used as the internal representation of a specification observer. The
AbstractSpecification class is subclassed into PltlSpecification
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and RegExpSpecification classes to accommodate their structural dif-
ferences.

If a type has two specification declarations there will be two specifi-
cation objects created to represent them. The two will share namespace
in terms of named call and value propositions which are extracted from
the annotations. Specifications are enforced in the methods mentioned
in them via call propositions or explicitly annotated with @Observe (see
Fig. 6). Before aspects can be synthesized from specifications, named
propositions in formulas are replaced with their corresponding call or
value propositions. Also, the annotated methods are made to observe
the specification.

In the synthesis pass the specification objects are turned into aspects.
Code generation is discussed in more detail in Sect. 5.3.

Triggered

Methods

synthesisanalysis
AspectSpecificationAnnotated type

replace

extract

Named propositions

extract

add

Figure 8: Generating temporal safety aspect from an annotated class

Common
The common module (fi.ics.hut.common) offers library services for
representing, constructing and manipulating regular expressions, finite
state automata and temporal logic formulas. It is subdivided into three
packages each corresponding to a particular model of representation:

• fi.ics.hut.lime.common.logic

• fi.ics.hut.lime.common.regexp

• fi.ics.hut.lime.common.pltl

The logic package (fi.ics.hut.lime.common.logic) contains the function-
ality for representing and handling propositional and temporal logic for-
mulas. One of the key services that the package offers is illustrated in
Fig. 9. It contains a lexical analyzer (lexer) which identifies the lexical
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tokens of a formula from a string representation and transforms it into
a list of identified tokens, or rejects a bad input. After lexical analysis,
the structure of the formula can be derived from the list of tokens. This
is done by a syntactic analyzer (parser).

Syntactic analysis produces an unambiguous tree representation of the
formula. In this form visitor pattern [6] can be employed for analyzing
and modifying the formula. It is noteworthy that the parser is for full
PLTL, i.e., any valid PLTL can be identified by it. However the tool
can not translate past-time formulas with future time subformulas into
aspects. Therefore a semantic analysis pass is performed to identify and
reject these types of formulas. The same parser is also used to propo-
sitional formulas in regular expressions. In that context the semantic
criteria is that the formulas may not contain any temporal operators.
For more about lexical, syntactic and semantic analysis in context of
programming languages see, e.g., [1].

Example 9 - On lexical, syntactic and semantic analysis of PLTL
formulas

Consider the following examples of strings and their analysis.

• "Nonsense" is lexically incorrect (named propositions start with
small letters).

• "! -> G" is lexically correct since it can identified into a list of
tokens (¬, ⇒, G ) but syntactically incorrect since it cannot be
parsed into a formula.

• "O (G p)" is both lexically and syntactically correct (a valid PLTL
formula) but it cannot be interpreted by the tool into an aspect and
therefore it is considered semantically incorrect.

• "G (write() -> <{ #data.length() > 0 }>)" is a syntactically
and semantically valid PLTL formula.

�
The regular expression package (fi.ics.hut.lime.common.regexp) serves

as adapter package for dk.brics.automaton module (referred to as the
Automaton module from now on). It is responsible for the lexical analy-
sis of regular expressions. Propositional formulas in regular expressions
are identified as single tokens at this stage, and their further analysis is
done by the logic package as mentioned earlier. The alphabet in the Au-
tomaton module regular expressions are characters and not propositional
formulas like in the specification language. Therefore the propositional
logic formulas must be replaced with characters. The replacement is done
by using the union of characters, that each represent a truth assignment
of atomic propositions in which the propositional formula is true. The
empty language is used if the formula is not true in any truth assign-
ment. The syntactic analysis and automaton operations are done by the
Automaton module.

The PLTL package (fi.ics.hut.lime.common.pltl) serves as an adapter
package for the SCheck module. The main function for this package is
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String representation

List of lexical tokens

Syntax tree

→

G

write()all proposition
→ #data.length() > 0value proposition

G (write() -> <{ #data.length() > 0}>)

value propositionwrite()all proposition #data.length() > 0

Lexial analysis

Syntati analysis
G ( )

Figure 9: Lexical and syntactic analysis of a logic formula

to transform a tree representation of the formula produced by the logic
package into an automaton. This is done by transforming the tree rep-
resentation into the format accepted by SCheck. In SCheck the atomic
propositions are not handled as they are represented in this tool, there-
fore a mapping between the two representations must be saved over the
conversion process. After SCheck is done with the conversion to an au-
tomaton, the propositions are replaced into it. Note that the values of
past time subformulas are treated here as propositions, more about this
in Sect. 5.3.

Aspect monitor
Aspect monitor is the main module of this application which turns anno-
tations in Java types into AspectJ aspects for monitoring their behavior.
To accomplish this, the module uses the program analysis services pro-
vided by Spoon framework and the formalism services provided by the
common module. As presented in Fig. 8 this transformation is done in
two phases – analysis and synthesis. These phases have corresponding
packages in the implementation:

• fi.hut.ics.lime.aspectmonitor.specification

• fi.hut.ics.lime.aspectmonitor.aspect

The specification package implements analysis phase, whereas the aspect
package is responsible for synthesis phase.
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Semantics of value propositions
Call propositions and value propositions are easily identifiable in a for-
mula from the lexical form, see Def. 20 on page 20 and Def. 21 on page
20. This coarse distinction is done by the common module during lexical
analysis of the formula. In value propositions there are, however, re-
served words that give special semantics for the propositions. In Sect. 3
the following reserved words were introduced:

• #this for referencing an instance of the annotated interface.

• #result for referencing the return value of the method.

• #pre[.primitive type](boolean expression ) for referencing an
on entry value in return specifications after the actual method has
executed.

• #<argument> for referencing the arguments given to the annotated
method.

The semantics these reserved word are given as follows. The call target
can be passed for the advice by #this from the join point context. Note
that #this always refers to the annotated type which is the call target
and is not to be confused with the primitive pointcut designator this()
which refers to the calling component. The value returned by proceed()

instruction can referenced by using #result. If #result is not defined,
i.e., used in context of a void method the corresponding value proposi-
tion is defined to be false. If #result is not defined in any context a
specification is enforced it is interpreted to be an error. Similar policy
holds for the use of #<argument>. For the use of #pre see Sect. 3.2 on
page 22.

5.4 Implementation of the C variant

The C variant of LIME tool (LIME-C tool) does for C essentially what
Aspect-Monitor does for Java. It’s internal structure is pretty close
to that of Aspect-Monitor, and the tools mostly differ in the external
tools they rely on. On the C side, Spoon has been replaced by Doxygen
(http://www.stack.nl/~dimitri/doxygen/) and AspectJ by AspeCt-
oriented C (http://research.msrg.utoronto.ca/ACC/). Both LIME-
C and Aspect-Monitor use the Common package for dealing with the
specifications. The following chapters shall briefly go through the ma-
jor differences in the LIME tools by explaining how the external tools
used with LIME-C differ from their Java counterparts, and how these
differences have been dealt with to achieve similiar functionality in the
tools.

Doxygen
Doxygen is a documentation generator that LIME-C uses as a replace-
ment for Spoon. The differences with these two tools are actually quite
significant: as Spoon interprets the bytecode of a Java class and can be
used to analyze and alter the program at compile time, Doxygen reads
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the source code from a file and outputs it’s structure (including special
comments attached to functions) to an XML-file. Even though the prin-
ciple on how Doxygen works compared to spoon is completely different,
the same functionality (generation of an aspect from a specification to
monitor the execution of a program) can be achieved by exploiting the
mechanics of Doxygen cleverly.

LIME-C-tool uses Doxygen to read the interface specifications and
the structure of the source code. As the reader might have noticed from
Section 3.3, the syntax of the C-version of the specification language is
actually really close to the normal comment syntax of the C-language.
This is because Doxygen doesn’t read traditional comments from the
code at all (it only reads comments written in it’s own comment syntax),
so the existence of interface specifications doesn’t conflict with either
the normal compilation of the program, or the usage of Doxygen for
other purposes. When the LIME-tool is used, the specifications will
be internally changed to the Doxygen comment syntax, when Doxygen
associates them correctly with the functions they preceed in the source
file. So with this change, running Doxygen results in a series of XML-
files with all the information the LIME-C-tool needs to create a working
aspect. As a difference to the Java version it should be noted that as
Aspect-Monitor does its work in compile time (since Spoon allows it),
LIME-C-tool is ran separately against one or more source code files and
all it does is creating aspects of them. The user must then use other tools
to compile these aspects together with the original (a bit altered, more
on that in the next chapter) source code files.

AspeCt-oriented C

AspeCt-oriented C (ACC from now on) is an aspect-oriented C compiler
used as a replacement for AspectJ. As mentioned before, the user must
compile the aspects generated by LIME-C-tool together with other source
code, and this is where ACC comes in handy. However, altought LIME-
C-tool doesn’t actually run ACC by itself, the features of it must be taken
into account in the tool.

ACC is a bit more work-in-progress than AspectJ, and thus doesn’t
support all the language features yet. The one that causes most problems
is that static variables and functions can’t be used in aspects. Limiting
the interface specifications to only cover non-static functions would not
make sense, so this limitation has been worked around. After running
Doxygen and interpreting the source, LIME-C-tool takes the original code
file and copies it for the user, at the same time creating accessory non-
static functions for each static function it sees. These accessory functions
just call the original function so they don’t change the execution, but
since they are non-static they can be used from the aspect. After this,
the user can take these modified files and compile them with ACC without
producing any unnecessary errors.
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6 EXPERIMENTS WITH INTERFACE SPECIFICATIONS

The purpose of this section is to demonstrate generated safety aspects
from example specifications. Sect. 6.1 demonstrates a basic call speci-
fication written with a regular expression. A return specification that
employs history variable mechanism is considered in Sect. 6.2. Finally
Sect. 6.3 demonstrates the technique to capture past-time subformulas
in PLTL specifications.

6.1 A call specification for a lock interface

Thomas Ball et al. present the proper use of spinlocks as one of the
API usage rules for Windows XP kernel in [2]. This simple enough rule
assumes that locks are initialized as open, and then it requires a strict
alternation of lock()s and unlock()s to follow. In Fig. 10 the automaton
on the left corresponds to the complement language of the rule, i.e.,
should automaton end up in an accepting state during execution the rule
is broken.

lock()

unlock()

unlock() lock()

2

01

p0

!p0 !p1

p1

Figure 10: Proper use of a lock

Clearly in the terminology of the LIME specification language the
guards on the transitions translate into call propositions in the specifica-
tion. Therefore a Lock interface is written as follows:

package example_lock;

import fi.hut.ics.lime.aspectmonitor.annotation.
CallSpecifications;

@CallSpecifications(
regexp = {
"StrictAlternation ::= (lock() ; unlock())*"

}
)
public interface Lock {
public void lock();
public void unlock();

}

In Fig. 10 the automaton on the right illustrates the automaton synthe-
sized in generated safety aspect (parts of which are presented in Fig. 11).
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In the aspect p0 corresponds to call to unlock() and p1 corresponds to
lock(). These values are passed from the advice that capture calls to
refreshState(boolean p0, boolean p1) method performing the state
transition. The guards for transitions are represented as disjunctions of
truth assignments in which the transition is enabled, and contain some
redundancy.

Now consider the following program contains an erroneous use of the
Lock interface. Two implementations of the interface are instantiated
both having their own instance of IFCheckerLockStrictAlternation

aspect monitoring method calls to them. On the ninth line of the main

method there is a second consecutive call to unlock() which is by this
specification considered an error.

package example_lock;

public class Main {
public static void main(String[] args) {
Lock lock = new LockImpl();
Lock lock2 = new LockImpl();
lock.lock();
lock.unlock();
lock2.lock();
lock.unlock();

}
}

After the safety aspect corresponding to the call specification has been
generated by the tool. It can be woven into the program to monitor its
execution. Indeed running the resulting program yields an exception
on the line 10 which informs that StrictAlternation property has been
violated:

Exception in thread "main" fi.hut.ics.lime.aspectmonitor.

CallSpecificationException: StrictAlteration

at example_lock.CALLSpecificationLockStrictAlteration.ajc$around$

example_lock_CALLSpecificationLockStrictAlteration$2$fbbaaa31

(CALLSpecificationLockStrictAlteration.aj:86)

at example_lock.LockImpl.unlock(LockImpl.java:15)

at example_lock.Main.main(Main.java:10)

This exception violation message will automatically be altered to be
more readable by the provided tools, so the actual output the user will
see is as follows:

example_lock/LockImpl.java:15: Call specification ‘StrictAlteration’

violated at this point.

example_lock/LockImpl.java:15: Stack trace:

example_lock/LockImpl.java:15: example_lock.LockImpl.unlock <--

violation happened here

example_lock/Main.java:10: example_lock.Main.main
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void around(example_lock.Lock callTarget)
: (execution(public void example_lock.Lock+.lock(..)) &&
target(callTarget)) {

boolean p1 = true; // [CALL]: lock
boolean p0 = false; // [CALL]: unlock
refreshState(p0, p1);
if (state == 0) {

throw new fi.hut.ics.lime.aspectmonitor.
CallSpecificationException("StrictAlteration");
}
proceed(callTarget);

}

void around(example_lock.Lock callTarget)
: (execution(public void example_lock.Lock+.unlock(..)) &&
target(callTarget)) {

boolean p1 = false; // [CALL]: lock
boolean p0 = true; // [CALL]: unlock
refreshState(p0, p1);
if (state == 0) {

throw new fi.hut.ics.lime.aspectmonitor.
CallSpecificationException("StrictAlteration");
}
proceed(callTarget);

}

private void refreshState(boolean p0, boolean p1) {
int trDone=0;
switch(state) {

case 1:
if((((!p0) && (!p1)) || p0)) { state = 0; trDone++; }
if(p1) { state = 2; trDone++; }
break;

case 2:
if((((!p0) && (!p1)) || p1)) { state = 0; trDone++; }
if(p0) { state = 1; trDone++; }
break;

case 0:
break;

}
if (trDone == 0)

state = -1; // sink reject state
else if (trDone > 1)

throw new Error("Internal error");
}

Figure 11: Parts of a generated call specification aspect
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6.2 A return specification for a file interface

The following return specification experiment is based on Example 7
given on page 17 and demonstrates the history variable mechanism in
practice. In this scenario, the LogFile interface is specified to ensure
that each write increments its size. The required call specification, i.e.,
that write is not called with null argument, to ensure as well as the
redundant methods to the return specification have been left out from
this experiment.

package example_file;

import fi.hut.ics.lime.aspectmonitor.annotation.
ReturnSpecifications;

import fi.hut.ics.lime.aspectmonitor.annotation.
Observe;

@ReturnSpecifications(
pltl = {
"ProperWrites ::= "+
"G(<{ #pre(#s.length() + #this.length()) "+
"== #this.length() }>)"

}
)
public interface LogFile {
@Observe(
specs = { "ProperWrites" },
returnException = RuntimeException.class

)
public void write(String s);
public int length();

}

Fig. 12 shows parts of the safety aspect that has been generated
from the specification with the tool. The corresponding state automaton
has exactly two states – one for correct behavior and one for an error.
The call target, i.e., the LogFile instance and the string s given to the
write(String s) method as parameter are passed to the advice from
the join point’s context. The history variable pre0 will hold the sum of
argument’s length and the length of the LogFile instance prior to the
method call. Now pre0 can be referenced when making the assertion
after the actual method call.

Recall that the specification language allows only primitive data to
be stored in history variables. If mutable objects, that are stored by
reference, could be used in this the method body could alter their values
and thus make the assertion invalid.

Another observation that can be made from this experiment concerns
the default observing policy (see Def. 19 on page 20). Even though
the specification declaration references length() method in the LogFile
interface, the calls to it do not observe the specification. This is because
the reference is done through a value proposition and not through a call
proposition as the default observing policy would require.
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void around(java.lang.String s, example_file.LogFile callTarget)
: ((execution(public void example_file.LogFile+.write(..)) &&
args(s)) &&
target(callTarget)) {

int pre0 = (s.length() + callTarget.length());
try {

proceed(s, callTarget);
} finally {

// [VALUE]: #pre(#s.length()+#this.length())==#this.length()
Boolean p0 = (pre0 == callTarget.length());
refreshState(p0);
if (state == 1) {

throw new java.lang.RuntimeException("ProperWrites");
}

}
}

private void refreshState(boolean p0) {
int trDone=0;
switch(state) {

case 1:
break;

case 0:
if(p0) { state = 0; trDone++; }
if((!p0)) { state = 1; trDone++; }
break;

}
if (trDone == 0)

state = -1; // sink reject state
else if (trDone > 1)

throw new Error("Internal error");
}

Figure 12: Parts of a generated return specification aspect
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6.3 PLTL specification with a past time subformula

This experiment demonstrates how past time subformulas are handled
in PLTL specifications. The call specification has been done for a Car

interface which asserts that ignite() has been called at least once before
start() is called. What makes this experiment relevant is the past time
operator “once” in the specification.

package example_past;

import fi.hut.ics.aspectmonitor.annotation.
CallSpecifications;

import fi.hut.ics.aspectmonitor.annotation.
Observe;

@CallSpecifications(
pltl = {
"ProperStarts ::= G (start() -> O(ignite()))"
}

)

public interface Car {
@Observe(
specs = {"ProperStarts"},
callException = RuntimeException.class

)
public void start();

@Observe(
specs = {"ProperStarts"},
callException = RuntimeException.class

)
public void ignite();

}

Fig. 13 shows some parts of the aspect generated from the speci-
fication. The boolean variable p0 corresponds to the call proposition
start(), and the boolean variable p1 to the call proposition ignite()

in the aspect code. This is very much same as in the Lock interface
experiment in Sec. 6.1. In this case, however, there is an additional
array nowProperStarts corresponding the current values of past time
subformulas in the property, and preProperStarts corresponding to the
prior values of those subformulas. Since there there is only one such a
subformula O(ignite()) the arrays hold only one element each. The
initial value for preProperStarts[0] is assigned in the aspect construc-
tor according to this technique to be false. The update rules are applied
before the guards of the transitions are checked. Finally, the current
value of the O(ignite()), i.e., nowProperStarts[0] appears now as a
proposition in the transitions of the automaton generated by SCheck in
refreshState(boolean p0, boolean p1) method.
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public CALLSpecificationCarProperStarts() {
preProperStarts = new boolean[1];
nowProperStarts = new boolean[1];
state = 0;
preProperStarts[0] = false; // ONCE

}

void around(example_past.Car callTarget)
: (execution(public void example_past.Car+.ignite(..)) &&
target(callTarget)) {

boolean p1 = true; // [CALL]: ignite
boolean p0 = false; // [CALL]: start
refreshState(p0, p1);
if (state == 1) {

throw new java.lang.RuntimeException("ProperStarts");
}
proceed(callTarget);

}

void around(example_past.Car callTarget)
: (execution(public void example_past.Car+.start(..)) &&
target(callTarget)) {

boolean p1 = false; // [CALL]: ignite
boolean p0 = true; // [CALL]: start
refreshState(p0, p1);
if (state == 1) {

throw new java.lang.RuntimeException("ProperStarts");
}
proceed(callTarget);

}

private void refreshState(boolean p0, boolean p1) {
nowProperStarts[0] = p1 || preProperStarts[0]; // ONCE
preProperStarts[0] = nowProperStarts[0];
int trDone=0;
switch(state) {

case 1:
break;

case 0:
if(((!p0) || nowProperStarts[0])) { state = 0; trDone++; }
if((p0 && (!nowProperStarts[0]))) { state = 1; trDone++; }
break;

}
if (trDone == 0)

state = -1; // sink reject state
else if (trDone > 1)

throw new Error("Internal error");
}

Figure 13: Parts of a generated PLTL call specification aspect
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7 CONCLUSIONS

We have presented a specification language that can used to establish
richer correctness requirements for software components. The specifica-
tion methodology described can be seamlessly added to a software pro-
cess to complement traditional means for quality assurance. Components
specified in this manner can be completely or partially implemented, and
their correctness requirements can independently refined. The reader is
requested to consult [10] for a more concise presentation of the LIME in-
terface specification language and the motivation behind its development.
The automated Java testing tool also developed in the LIME project is
documented in [9].
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A THE SYNTAX FOR NFA CHECKERS

This is what the annotation for a Java method looks like. The
requirement that the strings be one-line and concatenated with + is
due to the Java limitation of not having multi-line strings.

@CallSpecifications(
nfa = {
"always_nfa {" +
" state1_init:" +
" if" +
" :: ((a && b) || c) -> goto state2;" +
" :: (c && d) -> goto reject_state3;" +
" :: (1) -> goto state1_init;" +
" fi;" +
" state2:" +
" if" +
" :: ((a || b) || c) -> goto state1_init;" +
" :: (c && d) -> goto state2;" +
" :: (1) -> goto reject_state3;" +
" fi;" +
" reject_state3:" +
" if" +
" :: ((!(a || b)) || c) -> goto state2;" +
" :: (c && d) -> goto reject_state3;" +
" :: (1) -> goto state1_init;" +
" fi;" +
" }" }

)

The NFA format is similar to Spin syntax for never-claims, but the
meaning is reversed. The automaton specifies good behavior for the
program. To reflect this difference, the statement is named
"always_nfa".

If the automaton ever ends up in a state where no current states are
accepting (i.e. all current states are rejecting), the specification
is considered to fail the check. States are accepting and non-initial
by default.

Initial states are named <something>_init, rejecting states
reject_<something>. If a state is both initial and rejecting, it is
named reject_<something>_init. Note that since we only consider the
prefixes of the execution, it generally only makes sense to have
automata where at least one of the initial states is also an accepting
state.

The condition for transitioning into a state must always be in
parentheses.

1. Atomic propositions (a, b, c):

1.1. Call and value propositions:

All call and value propositions, including escaped Java boolean
propositions, need to be made into named propositions. Only
named propositions can be referenced in the NFA.
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The format is the same as for regexp and pltl:

@CallSpecification(
valuePropositions = {
"properData ::= (#s != null)"

},
nfa = { " ... (properData) || a && ..." }

)

1.2. Literals

0, 1 represent false and true

2. Propositional logic combinations of atomic propositions

write || 1

a && b

open && b

open == 0

open != 1

(!error) && (consistent)

Operators: !, == (equivalence), != (non-equivalence), &&, ||
Parentheseses: ()

The precedences of the operators are the same as in the C language,
with negation having the highest precedence and logical OR having a
lower precedence than logical AND:

Operator Associativity
|

higher precedence | ! right-to-left
| ==, != left-to-right
| && left-to-right

lower precedence | || left-to-right
v

However, to ensure compatibility with Spin, use enough parentheses
to make the formulae unambiguous.

52 A THE SYNTAX FOR NFA CHECKERS





TKK REPORTS IN INFORMATION AND COMPUTER SCIENCE

TKK-ICS-R15 Eerika Savia, Kai Puolamäki, Samuel Kaski
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