
TKK Reports in Information and Computer Science

Espoo 2010 TKK-ICS-R32

EXTENDING SAT SOLVER WITH PARITY CONSTRAINTS

Tero Laitinen

TKK Reports in Information and Computer Science

Espoo 2010 TKK-ICS-R32

EXTENDING SAT SOLVER WITH PARITY CONSTRAINTS

Tero Laitinen

Aalto University School of Science and Technology

Faculty of Information and Natural Sciences

Department of Information and Computer Science

Aalto-yliopiston teknillinen korkeakoulu

Informaatio- ja luonnontieteiden tiedekunta

Tietojenkäsittelytieteen laitos

Distribution:

Aalto University School of Science and Technology

Faculty of Information and Natural Sciences

Department of Information and Computer Science

PO Box 15400

FI-00076 AALTO

FINLAND

URL: http://ics.tkk.fi

Tel. +358 9 470 01

Fax +358 9 470 23369

E-mail: series@ics.tkk.fi

©c Tero Laitinen

ISBN 978-952-60-3223-8 (Print)

ISBN 978-952-60-3224-5 (Online)

ISSN 1797-5034 (Print)

ISSN 1797-5042 (Online)

URL: http://lib.tkk.fi/Reports/2010/isbn9789526032245.pdf

AALTO ICS

Espoo 2010

ABSTRACT: Current methods for solving Boolean satisfiability problem
(SAT) are scalable enough to solve discrete nonlinear problems involving
hundreds of thousands of variables. However, modern SAT solvers scale
poorly with problems involving parity constraints (linear equations modulo
2). Gaussian elimination can be used to solve a system of linear equation ef-
fectively but it cannot be applied as such when the problem description also
contains nonlinear constraints. A SAT solver typically reads the problem de-
scription in conjunctive normal form (CNF). Representing parity constraints
in CNF results in an inefficient encoding which partly makes solving the
problem harder. Also, the deduction methods used in SAT solvers are not
efficient when solving problems involving parity constraints.

This report develops an efficient xor-reasoning module for deciding the sat-
isfiability of a conjunction of parity constraints and studies alternative ways
to integrate the xor-reasoning module into a modern conflict-driven clause
learning SAT solver. The novelty of the approach is the combination of
conflict-driven clause learning techniques (CDCL) with equivalence rea-
soning enhancing deduction capabilities of CDCL SAT solvers beyond unit
propagation on the CNF formula. The presented proof system and the ab-
stract model for computing clausal explanations for inconsistent valuations
of variables allow for different possible implementations. Key design princi-
ples along with alternative ways to compute clausal explanations and to in-
tegrate the xor-reasoning module into a SAT solver are presented, analyzed,
and compared. We have integrated the xor-reasoning module into a state-of-
the-art CDCL SAT solver, minisat. The applicability of the hybrid approach
is evaluated experimentally and compared with a number of modern SAT
solvers on three challenging benchmarks: randomly generated regular lin-
ear problems, a known keystream attack on the stream cipher Trivium, and
a known plaintext attack on the block cipher DES. The results are promis-
ing: the number of heuristics decisions needed typically decreases without
causing unbearable computational overhead. Larger problem instances may
even be solved faster by minisat with the xor-reasoning module than by the
unmodified version.

KEYWORDS: SAT, Boolean logic, parity constraint, conflict-driven

CONTENTS

1 Introduction 7
1.1 Related Work . 10
1.2 Comparison with Existing Work 11
1.3 Organization of the Report 12

2 Preliminaries 12
2.1 Basic Definitions . 12
2.2 Overview of Solving CNF-XOR SAT Problem with SAT Solver 14
2.3 Combined Approach for Solving CNF-XOR SAT Problem . . 15

3 XOR-reasoning module 16
3.1 Inference Rules . 17
3.2 Defining Reason Set for Logical Consequence 21
3.3 Computing Reason Set for Logical Consequence 26
3.4 Prioritizing Inference Rules 30
3.5 XOR-Implied Literals . 30
3.6 XOR-Internal Variables . 33
3.7 Redundancy in Reason Set 36

4 CNF/XOR Integration 40
4.1 CDCL SAT Solver . 41
4.2 CDCL/XOR SAT Solver . 43
4.3 Fully Saturated XOR-Propagation 45
4.4 Minimal XOR-Propagation 47
4.5 Postponed XOR-Propagation 48
4.6 Handling XOR-Implied Literals in SAT Solver 54

5 Experimental Results 56
5.1 Block Cipher DES . 57
5.2 Randomly Generated Linear Problems 59
5.3 Stream cipher Trivium . 62

6 Conclusions 68

References 70

CONTENTS 5

1 INTRODUCTION

The propositional satisfiability problem (SAT) is to decide whether the vari-
ables of a propositional (Boolean) formula can be assigned in such a way
that the formula evaluates to “true”. Given a propositional formula, a SAT
solver is a computer program that finds a valuation for the variables of the for-
mula making the formula evaluate to “true” or proves that none exists. SAT
solvers have been successfully applied to many problem domains including
AI planning, model checking of software systems, and package management
in software distributions [25]. A description of the history of the propositional
satisfiability problem along with techniques for solving SAT problems is pre-
sented in [8].

Propositional logic is a natural formal language for expressing computa-
tion doable by a computer. It consists of two-valued variables and Boolean
formulas that evaluate either to “true” or “false” depending on the valuation
of the variables occurring in the formula. There is a close connection be-
tween propositional logic and computer hardware. Boolean circuits can be
seen as abstract representation of computer circuits. Computer circuits con-
sist of logic gates which are physical implementations of logical connectives
such as AND and OR. From this point of view, it is intuitively reasonable
that any fixed-length computation doable by a computer can be represented
as a Boolean circuit and then converted to a Boolean formula. The gener-
ality of the SAT problem has a price, though. Results from computational
complexity theory suggest that it is likely that in the worst case, solving an
instance of the SAT problem takes an exponential number of computational
steps with respect to the number of variables occurring in the Boolean for-
mula [30]. However, real-world problems tend to have structure that can be
exploited by a SAT solver. Modern SAT solvers scale up to problem instances
involving hundreds of thousands of propositional variables. Most modern
SAT solvers such as minisat [12], picosat [7], and Chaff [27] are based on
the Davis-Putnam-Logemann-Loveland (DPLL) algorithm [11] which is an
efficient decision procedure to solve the satisfiability of a Boolean formula
expressed in conjunctive normal form (CNF). Research on solving the SAT
problem has been active and there has been a number of important improve-
ments since the 1990s which have had a drastic effect on the performance
of the SAT solvers. One of the most important techniques is called conflict-
driven clause learning [32, 38]. The idea of conflict-driven clause learning
is to store information from the explored search space in order to prune the
part of the remaining unexplored search space that is known not to contain
any solutions to the problem.

Use of the DPLL algorithm requires that a SAT problem is expressed in
conjunctive normal form in which few problems have natural representa-
tions. Thus, SAT problems are usually converted to CNF, e.g. using the
translation by Tseitin [37]. How a SAT problem is encoded in CNF has
a significant effect on how computationally demanding it is to solve the
problem, so research on efficient CNF conversions has been active (see e.g.
[18, 3, 23]).

Despite the promising improvements in SAT solving techniques, there
are problems for which it is difficult to define an encoding in conjunctive

1 INTRODUCTION 7

normal form that would not suffer from the exponential worst case solving
time. Experimental results suggest that large-scale use of certain logical con-
nectives, such as the logical equivalence ↔ or its negative counterpart, the
exclusive or (xor), results in problem descriptions in CNF that modern SAT
solvers scale poorly with [13]. A set of parity constraints (a conjunction of
xor-clauses) effectively corresponds to a system of linear equations modulo
2. Therefore, if a problem instance consists only of parity constraints, it can
be efficiently solved using Gaussian elimination [36], which is a polynomial-
time algorithm for solving systems of linear equations. However, Gaussian
elimination cannot be applied if nonlinear connectives are also used in the
problem description. In instances of problem domains such as logical crypt-
analysis [26] and circuit verification [31], a substantial amount of constraints
consists of xor-clauses and in part because of that larger problem instances
from these domains are intractable for current SAT solvers.

As SAT solvers scale poorly with parity constraints, an intuitive way to ad-
dress the limitations of CNF-based reasoning is to separate parity constraints
from the CNF part, leading to the cnf-xor SAT problem which is to decide
whether the variables of a conjunction of disjunctions (or-clauses) and xor-
clauses can be assigned in such a way that it evaluates to “true”. By separating
parity constraints from the CNF part, a separate solver module can be used to
reason about parity constraints in the most effective way. The solver module
can then be integrated to many modern SAT solvers. By using this kind of
modular approach, the cutting edge of SAT solving technology can be con-
tinuously exploited. A state-of-the-art approach for integrating such a solver
module into a conflict-driven clause learning SAT solver is the DPLL(T)
framework by Nieuwenhuis, Oliveras, and Tinelli [28], which was developed
as a general method to solve an extension of the SAT problem, so-called Sat-
isfiability Modulo Theories [5].

Research Problem This work studies how the cnf-xor SAT-problem can be
solved using the DPLL(T) framework enabling to integrate a cutting edge
(CDCL-based) SAT solver and a special xor-reasoning module handling the
xor part.

The approach boils down to two key research questions: what is a suitable
xor-reasoning module for this framework and how to integrate it to a CDCL-
based SAT solver in an effective way. The use of a CDCL-based SAT solver
as a basis leads to the following specific requirements for the xor-reasoning
module:

• Incremental operations : The SAT solver supplies deduced truth val-
ues one by one and expects intermediate results after each propagated
truth value. As the state of the SAT solver is modified incrementally,
it is important that any results produced by the xor-reasoning module
do not have to be computed from the initial state each time when the
state of the SAT solver is modified.

• Backtrackable state : DPLL-based algorithms are based on backtrack-
ing search. It must be possible to restore the state of the xor-reasoning
module to any consistent preceding state without excess computational
overhead.

8 1 INTRODUCTION

• Strong proof system : Use of the xor-reasoning should make the proofs
of the SAT solver significantly shorter in order to reduce the overall
solving time. The xor-reasoning module has to be able to infer results
that cannot be deduced by unit propagation in CNF alone.

• Explainable deductions : A conflict-driven clause learning SAT solver
needs to be able to explain how a truth value of a variable was deduced
when a conflict, an inconsistent valuation for variables, occurs.

• Minimal interface : Integrating the xor-reasoning module to a SAT
solver capable of conflict-driven clause learning should be a fairly rea-
sonable effort.

• Efficiently implementable : Data structures and algorithms used in
SAT solvers have been perfected by the research community for decades.
They are extremely well fine-tuned for speed, capable of performing
even millions of deduction steps in a second, so in order to benefit
from the xor-reasoning module also with respect to the overall solving
time, the implementation of the xor-reasoning module has to be fast.

This report develops the xor-reasoning module according to the specified
requirements comparing and analyzing various design choices and alterna-
tive strategies for integrating the xor-reasoning module to a SAT solver capa-
ble of conflict-driven clause learning. The main contributions of the work
are:

• An efficient DPLL(T) solver module for parity constraints : We have
implemented a proof-of-concept prototype of the xor-reasoning mod-
ule. The design of the xor-reasoning module is a careful compromise
between the requirements, enhancing the search by shortening proofs
without adding an unbearable computational overhead. The most im-
portant contribution of this report is the combination of conflict-driven
clause learning and equivalence reasoning. The presented proof sys-
tem and abstract model for defining clausal explanations for inferred
truth values allow for many different implementations. We present al-
ternative methods for computing clausal explanations. Also, the treat-
ment of variables that have occurrences only in xor-clauses is an inter-
esting topic having a significant effect on the lengths of proofs.

• Strategies for integrating the xor-reasoning module to a conflict-
driven clause learning SAT solver : We have integrated the proof-of-
concept implementation of the xor-reasoning module to a state-of-the-
art conflict-driven clause learning SAT solver minisat, resulting in a hy-
brid solver xor-minisat. There are many ways for using the xor-reasoning
module as a subroutine of the SAT solver, ranging from doing as much
reasoning in the xor-reasoning module as possible to postponing the
use of xor-reasoning module as long as possible. In order to examine
alternative integration strategies, an abstract model of the SAT solver is
used to analyze the proposed strategies in detail. Also, alternative ways
for using clausal explanations provided by the xor-reasoning module in
the SAT solver are studied.

1 INTRODUCTION 9

The integration strategy of the xor-reasoning module to a SAT solver
follows the DPLL(T) framework with one addition. In the context of
the DPLL(T) framework, the use of the xor-reasoning module is con-
sidered theory propagation. When the degree of eagerness of theory
propagation is low, that is, the use of xor-reasoning module is postponed
as long as possible, in addition to the normal strategy of computing an
explanation for a conflict that occurs during theory propagation, it is
possible to retrospectively apply the results of the deduction done by
the xor-reasoning module in order to shorten the remaining search.
This procedure is described in detail in Section 4.5. Although we de-
fine the procedure only in the context of parity constraints, it can be
generalized to any SAT solver-based SMT solver.

• Experimental evaluation of the proposed approach In order to il-
lustrate how well our approach scales in practice, we evaluate and
compare our solver xor-minisat experimentally on three challenging
benchmarks : known-plaintext attack on the block cipher DES, ran-
domly generated linear problems based on 3-regular bipartite graphs,
and known-keystream attack on the stream cipher Trivium. In addi-
tion to comparing how the performance of the solver minisat changes
when the xor-reasoning module is used, a number of solvers that em-
ploy techniques for dealing with parity constraints is also included in
the comparison.

1.1 Related Work

Intractability of problems involving a substantial amount of parity constraints
for SAT solvers is well acknowledged and considerable research has been di-
rected towards enhancing SAT solvers with xor (equivalence) reasoning tech-
niques [15]. In this section, we describe some approaches to solving the
research problem of the report proposed by others.

Baumgartner and Massacci [6] develop a decision procedure for conjunc-
tions of or-clauses and xor-clauses based on the original DPLL procedure
without conflict-driven clause learning.

The solver EqSatz by Li [22] recognizes binary and ternary equivalences
in a CNF formula and performs substitutions using a set of inference rules.
The equivalence reasoning is tightly integrated in the solver and is performed
after unit propagation. It does not employ conflict-driven clause learning.

The solver march_eq by Heule and van Maaren [14] extracts equivalences
from a CNF formula and produces a minimal solution for the linear part be-
fore starting the actual DPLL-based search procedure by eliminating heuris-
tically picked dependent variables in the conjunction of equivalences so that
all satisfiable truth assignments can be defined in terms of the remaining
independent variables. The equivalences extracted in the pre-processing
phase are taken into account when selecting which literal to branch on. Bi-
nary equivalences are kept in CNF due to optimized data structures. Unary
clauses are used to simplify the set of equivalences which in turn may pro-
duce more binary equivalences.

The solver moRsat by Chen [10] is a hybrid SAT solver in the sense that

10 1 INTRODUCTION

it employs both look-ahead and conflict-driven clause learning techniques.
The solver moRsat extracts xor-clauses from CNF and performs some prepro-
cessing on them. In moRsat, xor-clauses are stored as normal disjunctions but
the watched literal scheme presented in [27] requires a small modification in
order to support unit propagation effectively on xor-clauses: the negations of
the two watched literals are tracked as well. When a xor-clause becomes im-
plying, the literals in the clause are negated in such a way that the implied
literal is true and each literal in the implying part is false.

The solver cryptominisat by Soos et al. [33] accepts a mixture of CNF and
xor-clauses as its input. The xor-clauses are like ordinary disjunctions in the
solver’s data structures but change appearance according to the assigned liter-
als as in moRsat. In addition to more compact representation of xor-clauses, it
performs Gaussian elimination after a specified number of literals have been
assigned and no other propagation rules can be fired.

The solver 2clseq by Bacchus [4] enhances search by performing three
types of reasoning in addition to regular unit propagation: i) in binary res-
olution all possible pairs of binary clauses are tested in a resolution step in
order to yield more binary clauses ii) a technique called hyper-resolution is
used to shorten n-ary clauses by successive applications of binary resolution
in order to yield more binary clauses, and iii) equality reduction finds pairs
of equivalent literals and removes occurrences of the other literal.

The solver lsat by Ostrowski et al. [29]. performs preprocessing that re-
constructs structural information (including equivalences) from the CNF
formula which is exploited during the search.

1.2 Comparison with Existing Work

In this section, we point out the key differences between our work and ap-
proaches relevant to the research problem proposed by others. We compare
the solvers presented in the previous section with respect to how xor-clauses
can be encoded as an acceptable input for the solvers, whether the problem
description is preprocessed before starting the actual search procedure, the
nature of the search procedure, and the use of equivalence reasoning tech-
niques.

Input Format. The solvers EqSatz, moRsat, march_eq, 2clseq, and lsat read
the problem description in DIMACS CNF and extract parity constraints
from CNF. Like in cryptominisat, instead of pattern matching parity con-
straints from CNF where parity constraints suffer from an unoptimal encod-
ing, our solver xor-minisat accepts the linear part of the problem description
is presented as-is.

Preprocessing. Our solver xor-minisat does not perform any kind of pre-
processing on the problem instance. The solvers march_eq, 2clseq and lsat
perform extensive preprocessing in order to simplify the problem and to ex-
tract additional information that can be exploited during the search. The
solver moRsat performs some preprocessing on parity constraints, too.

1 INTRODUCTION 11

Look-ahead vs Conflict-driven. Look-ahead SAT solvers have advanced
heuristics for determining a good unassigned variable to be assigned when
truth values for variables cannot be deduced. A detailed description of look-
ahead techniques is presented in [16]. The solvers EqSatz, lsat, 2clseq, and
march_eq are purely look-ahead-based solvers. Like our solver xor-minisat,
the solver cryptominisat is purely conflict-driven. The solver moRsat performs
look-ahead branching heuristics in addition to conflict-driven clause learn-
ing.

Equivalence Reasoning. Like our solver xor-minisat, the solvers EqSatz,
march_eq, 2clseq, and lsat have separate data structures and deduction rules
for keeping track of (in)equivalences between variables. As EqSatz, our solver
xor-minisat uses binary equivalences/xors to simplify clauses by substituting
variable occurrences. The solvers moRsat and cryptominisat do not perform
equivalence reasoning using binary xor-clauses.

1.3 Organization of the Report

The report is organized as follows. First, basic notation and definitions along
with an overview of the approach are introduced in Chapter 2. Chapter 3
describes the proof system and relevant design principles of the xor-reasoning
module. Chapter 4 develops an abstract model of a SAT solver enhanced
with xor reasoning in order to explore possible alternatives for integrating the
xor-reasoning module into a SAT solver. Chapter 5 presents an experimental
evaluation of the approach and Chapter 6 concludes the report.

2 PRELIMINARIES

This chapter establishes notation and basic definitions used in the rest of the
report, and gives an overview of the problem setting.

2.1 Basic Definitions

In this section we introduce notation and definitions that are used to de-
scribe the proof system of the xor-reasoning module and the formal model of
integrating the xor-reasoning module to a SAT solver.

An atom is either a propositional variable or the symbol > which denotes
the truth value "true". A literal is an atom A (positive literal) or its negation
¬A (negative literal). We use the symbol ⊥ as a shorthand to denote the
literal ¬>. An or-clause is an expression C = L1∨· · ·∨Ln where L1, . . . , Ln

are literals and the symbol ∨ stands for the non-exclusive logical OR. The
empty or-clause is denoted by⊥. A conjunction of or-clauses is an expression
φor = C1∧· · ·∧Cn where C1, . . . , Cn are or-clauses and the symbol ∧ stands
for the logical AND. A conjunction of or-clauses is also called a formula
in conjunctive normal form or a cnf-formula. A xor-clause is an expression
X = L1⊕· · ·⊕Ln where L1, . . . , Ln are literals and the symbol⊕ stands for
the exclusive logical OR. Empty xor-clause is denoted by ⊥. A conjunction
of xor-clauses is an expression φxor = X1 ∧ · · · ∧ Xn where X1, . . . , Xn are

12 2 PRELIMINARIES

a b c ¬a ∨ b b ∨ ¬c a⊕ c b⊕ c φ
0 0 0 1 1 0 0 0
0 0 1 1 0 1 1 0
0 1 0 1 1 0 1 0
0 1 1 1 1 1 0 0
1 0 0 0 1 1 0 0
1 0 1 0 0 0 1 0
1 1 0 1 1 1 1 1
1 1 1 1 1 0 0 0

Figure 1: Truth table illustrating satisfiability of a cnf-xor-formula where “0”
stands for the truth value “false” and “1” denotes the truth value “true”

xor-clauses. A clause is either an or-clause or a xor-clause. A cnf-xor-formula
φ = φor ∧ φxor is a conjunction where φor is a conjunction of or-clauses and
φxor is a conjunction of xor-clauses.

A (complete) truth assignment M is a set of atoms containing at least the
atom >. We define that M |= A iff A ∈ M , where A is a positive literal.
The operator |= is read as “is a model for” or “satisfies”. For negative literals
of type ¬A we define that M |= ¬A iff M |= A does not hold. A literal is
satisfied by M iff M |= L. An or-clause C = L1 ∨ · · · ∨ Ln is satisfied by M
(M |= L1 ∨ · · · ∨ Ln) iff at least one of the literals in C is satisfied by M . A
cnf-formula φ = C1 ∧ · · · ∧ Cn is satisfied by M (M |= C1 ∧ · · · ∧ Cn) iff all
or-clauses of φ are satisfied by M . A xor-clause X = L1⊕· · ·⊕Ln is satisfied
by M (M |= L1 ⊕ · · · ⊕ Ln) iff an odd number of literals in X are satisfied
by M . A cnf-xor-formula φ = φor ∧ φxor is satisfied by M (M |= φor ∧ φxor)
iff φor and φxor are satisfied by M . The negated operator 6|= is read as “is not
a model for” or “is not satisfied by”. For any P for which M |= P is defined,
we define that M 6|= P holds iff M |= P does not hold. Also, P is satisfiable
iff there is a truth assignment M such that M |= P , and unsatisfiable when
it is not satisfiable.

Definition 1. Given a cnf-xor-formula φ, the cnf-xor SAT problem is to de-
cide whether there is a truth assignment M such that M |= φ.

Example 1. The expression φ = (¬a ∨ b) ∧ (¬b ∨ ¬c) ∧ (a ⊕ c) ∧ (b ⊕ c)
is a cnf-xor-formula involving three variables a, b, and c. The cnf-xor-formula
has one model which is the truth assignment { a, b } as shown in Figure 1.

A partial truth assignment M̃ is a set of literals containing at least the
literal >. A literal L and its negation ¬L cannot both be in a partial truth
assignment. Concerning partial truth assignments, we define that M̃ |= L iff
L ∈ M̃ and M̃ 6|= L iff M̃ |= ¬L. Otherwise, the operators |= and 6|= are
defined for partial truth assignments as for complete truth assignments. Note
that for the partial truth assignment M̃ = {>} and a literal L (different from
> and ⊥) neither M̃ |= L nor M̃ 6|= L hold.

Let φa and φb be cnf-xor-formulas. The cnf-xor-formula φb is a logical
consequence of the cnf-xor-formula φa, denoted by φa |= φb, iff for all truth
assignments M the following holds : if M |= φa, then M |= φb.

2 PRELIMINARIES 13

A substitution in a xor-clause Xa is denoted by Xa [A/Xb] where A is an
atom and Xb is a xor-clause. The substitution Xa [A/Xb] defines a new xor-
clause identical to Xa except that all occurrences of A are substituted with
Xb.

Translation to Normal Form. In the case of xor-clauses, negative literals
(except ⊥) can be eliminated. This simplifies the definition of the rules of
the proof system of the xor-reasoning module. Also, a xor-clause may contain
redundancy (repeated literals) which can be removed while preserving mod-
els of the xor-clause. A xor-clause is in normal form if it is either (i) ⊥ or (ii)
a xor-clause that contains only atoms and no atom appears twice.

The rewrite rules in Figure 2 for transforming xor-clauses to the normal
form are based on the rules presented in [6]. The left hand side is the premise
(rule pattern), the right hand side is the conclusion, A is an atom, and C is
a xor-clause. The rules are considered applicable for a xor-clause if its lit-
erals can be ordered in such a way the xor-clause matches the rule pattern.
Provided that xor-clauses with the same atoms regardless of the order are con-
sidered the same, each xor-clause has exactly one corresponding xor-clause
in normal form so the rules can be applied in any order. For instance, the
normal form of ¬a⊕b⊕c⊕c is a⊕b⊕>, where a, b, and c are propositional
variables. In the remainder of the report, we will assume that all xor-clauses
of the type Xa [A/Xb], where Xa and Xb are xor-clauses and A is an atom,
are implicitly transformed to normal form.

Unit propagation. Considering satisfiability of cnf-formulas, an inference
method called unit propagation can be used to simplify a cnf-formula. As a
search done by a SAT solver can be modelled as a series of modifications to
a partial truth assignment, we present the unit propagation here with that in
mind and leave the cnf-formula unmodified. As an example how unit propa-
gation can be effectively performed, the paper by Zhang and Malik contains
a description of effective SAT solving techniques in [39] (unit propagation is
referred to as Boolean constraint propagation).

Given a partial truth assignment M̃ and an or-clause C = L1 ∨ · · · ∨ Ln

such that M̃ contains the negations of (n − 1) of the literals of C and one
literal Ln of C (it is assumed here that Ln is the last literal in C) and its nega-
tion ¬Ln are not in M̃ , the partial truth assignment M̃ can be augmented
by the literal Ln because C ∧ ¬L1 ∧ · · · ∧ ¬Ln−1 |= Ln. Unit propagation
is the deduction step of inferring the augmented partial truth assignment
M̃a = M̃ ∪ {Ln } from the or-clause C and the partial truth assignment M̃ .
For instance, given the or-clause C = a∨b∨c and the partial truth assignment
M̃ = {¬a,¬b }, the partial truth assignment M̃a = M̃ ∪{ c } = {¬a,¬b, c }
can be inferred by unit propagation from C and M̃ .

2.2 Overview of Solving CNF-XOR SAT Problem with SAT Solver

A problem containing a substantial amount of linear constraints (modulo 2)
can be encoded as a cnf-xor-formula φ = φor ∧ φxor - a conjunction of the
nonlinear constraints φor expressed in CNF and the linear constraints φxor

expressed as xor-clauses. A solution to the problem is a truth assignment M

14 2 PRELIMINARIES

¬A⊕ C A⊕>⊕ C

A⊕ A⊕ C C

A⊕ A ⊥

Figure 2: Rewrite rules for transforming xor-clauses to normal form

that is a model for φ.
A typical conflict-driven SAT solver reads the problem description as a

cnf-formula φor (e.g. minisat [12]). The SAT solver tries to find a model
for the cnf-formula φor (or a proof that none exists) by extending initially
empty partial truth assignment M̃ until it includes a literal for each variable
occurring in φor. The SAT solver heuristically picks a literal not yet in M̃ ,
adds the picked decision literal to M̃ , and then checks whether it can infer
other literals by unit propagation. If M̃ contains a literal for each variable
occurring in φor and M̃ is a model for all the or-clauses in φor, the SAT solver
can terminate the search and output the model M̃ . The unit propagation
may infer a literal whose negation is already in M̃ . In this case the SAT
solver is in a conflicting state where one of the or-clauses of φor cannot be
satisfied by extending M̃ . The SAT solver analyzes reasons for the conflict
and computes an or-clause C such that M̃ |= ¬C and φor |= C. The second
condition φor |= C guarantees that the or-clause C does not eliminate any
models for φor when C is added to φor in order to prevent the SAT solver
from picking the same literals again. The SAT solver then removes literals
from M̃ in reverse order until M̃ |= ¬C holds no more. If the cnf-formula φor

contains both the unary or-clause (L) and the unary or-clause (¬L), where
L is a literal, then the SAT solver can terminate the search and deem the
cnf-formula φor unsatisfiable.

2.3 Combined Approach for Solving CNF-XOR SAT Problem

We plan to extend a conflict-driven SAT solver with a xor-reasoning module
in such a way that the cnf-part φor of the cnf-xor-formula φ = φor ∧ φxor is
given to the SAT solver and the xor-part φxor of φ is given to the xor-reasoning
module. The search is operated by the SAT solver and the xor-reasoning
module is used as a subroutine for checking whether the xor-part φxor is still
satisfiable with respect to the partial truth assignment being extended by the
SAT solver. The SAT solver, thus, needs a method to assign a truth value
to a variable in the xor-reasoning module. In addition to unit propagation,
the SAT solver enhanced with xor-reasoning performs propagation on the
xor-part and may extend the partial truth assignment by inference rules on
xor-clauses.

If a variable’s value can be determined by the SAT solver, the value can
be supplied directly to the xor-reasoning module and, thus, avoid performing
unnecessary reasoning. The xor-reasoning module applies inference rules
(unit propagation and substitution rule based on binary xor-clauses) to in-

2 PRELIMINARIES 15

fer values for unassigned variables. In order to perform xor-reasoning only
when it is likely to be beneficial, the SAT solver is provided with a method to
deduce a singular logical consequence using the xor-reasoning module.

In case of an inconsistent valuation (conflict), which happens when the
SAT solver and the xor-reasoning module disagree on a value of a variable,
the assignments that led to the conflict are tracked, and a preceding state
of the SAT solver is restored by undoing one or more of the assignments.
The SAT solver’s search procedure requires the xor-reasoning module to
do its computation in an iterative and backtrackable fashion. With this in
mind, methods for storing and restoring the state of xor-reasoning module
are needed.

In order to prevent the SAT solver from repeating the same assignments,
a clausal explanation is computed by analyzing how the values of variables
were inferred and then the explanation is stored as a part of the problem
description, so a method to explain an inconsistent valuation is included.
When the SAT solver analyzes a conflict, it needs to find out how a literal
was inferred if it was not added as a decision literal, so literals inferred by the
xor-reasoning module need clausal explanations, too.

After the SAT solver has assigned all variables of the cnf-part, the remain-
ing constraints consist only of xor-clauses and Gaussian elimination can be
applied. A method to solve the remaining xor-part by Gaussian elimination
is provided for this purpose.

The design of the combined approach consists of the following parts:

• the interface of the xor-reasoning module

• the proof system defining the inference rules

• a method for computing clausal explanations for conflicts

• a strategy for integrating the xor-reasoning module to a CDCL SAT
solver

• design principles for relevant algorithms

In the following chapters, each part of the design will be addressed in detail.

3 XOR-REASONING MODULE

In this chapter, we define the proof system of the xor-reasoning module, how
clausal explanations are computed, order of preference for applying infer-
ence rules, how variables occurring only in xor-clauses can be addressed,
how clausal explanations can contain redundant literals, and how such re-
dundant literals can be removed. The design of the xor-reasoning module
is based on the ideas presented in [21]. Based on the requirements for the
xor-reasoning module gathered in Section 2.3, we decided to implement the
interface presented in Figure 3. The purpose of the xor-reasoning module is
to encapsulate the representation of the conjunction of xor-clauses and the
operations on them. The interface provides a means for the SAT solver to
submit the problem description, to communicate assumptions about the val-
ues of variables, to cancel such assumptions, to retrieve logical consequences

16 3 XOR-REASONING MODULE

of these assumptions inferred by the xor-reasoning module, to identify which
of the current assumptions were used to infer a logical consequence, and to
consult whether the conjunction of xor-clauses is no longer satisfiable with
respect to the current assumptions.

Method Description
ADD-BACKJUMP-
POINT

adds a backjump point which records the state of the
xor-reasoning module

ADD-CLAUSE adds a new xor-clause to the conjunction of xor-clauses
ASSIGN assigns a truth value to a variable (for communicating

assumptions)
BACKJUMP restores the state recorded by a previously added back-

jump point
DEDUCE computes a logical consequence inferred by the cur-

rent assumptions if possible
EXPLAIN calculates a clausal explanation for a logical conse-

quence inferred by the xor-reasoning module
SOLVE decides the satisfiability of the xor-clauses with respect

to the current assumptions using Gaussian elimination

Figure 3: Interface of the xor-reasoning module

3.1 Inference Rules

In this section, we define how the xor-reasoning module computes logical
consequences of the conjunction of xor-clauses and the current assumptions.
This computation is based on a few inference rules which are described using
the following syntax:

Name
Xi Xj

Xk

where Xi, Xj and Xk are xor-clauses. The rule definition is interpreted as :
Given the xor-clauses Xi and Xj , the xor-clause Xk is a logical consequence
of Xi and Xj . The xor-clause Xk is always implicitly transformed to normal
form. The proof system of the xor-reasoning module consists of seven rules :
Introduce, Decide+, Decide−, ⊕-Unit+, ⊕-Unit−, ⊕-Eqv+, and ⊕-Eqv−.

The Introduce-rule is used to declare a new xor-clause X from a set of
xor-clauses φxor to be used as a premise with other rules. Its counterpart in
the implementation is the method ADD-CLAUSE defined in Figure 3. The
xor-part of the problem instance is defined using this rule.

Introduce
X

The rules Decide+ and Decide− define a unary xor-clause A or A ⊕ >
where A is an atom and they are in fact special cases of Introduce-rule. Ap-
plications of these rules correspond to invocations of the method ASSIGN
defined in Figure 3.

3 XOR-REASONING MODULE 17

Decide+

A
Decide−

A⊕>

The rules Decide+ and Decide− are defined to distinguish the assump-
tions on the truth values of variables made by the SAT solver. The xor-
clauses defined using Introduce are part of the problem description and the
xor-clauses defined using Decide+ and Decide− are assumptions which may
be revoked later. The xor-clauses defined using Decide+ and Decide− are
xor-assumptions. When the xor-reasoning module infers ⊥ as a logical con-
sequence of the xor-part of the problem being solved and the assumptions
made by the SAT solver, the SAT solver needs to undo some of its assump-
tions. For this the xor-reasoning module needs to compute a reason (a subset
of xor-clauses inferred using xor-assumptions) for a logical consequence in-
ferred by the proof system. The xor-clauses of the problem description need
not to be communicated back to the SAT solver but the xor-clauses defined
as assumptions need to be distinguished. That is why the rules Decide+ and
Decide− are defined. The rules Introduce, Decide+ and Decide− are re-
ferred as New-rules.

The Inference-rules of the proof system are listed in Figure 4 where A, A1

and A2 are atoms different from > and X is a xor-clause. The rules are a
slightly modified subset of the rules presented in the paper by Baumgartner
and Massacci [6]. We present the rules for xor-clauses in normal form instead
of xor-clauses with negative literals like in the rules⊕-Unit and⊕-Eqv in [6].
The Gaussian elimination rule presented in [6] is not included here as one
of the Inference-rules but provided separately by the method SOLVE which
performs the full Gaussian elimination. This separation is done in order have
a proof system that can be implemented efficiently. The Inference-rules are
the device for producing logical consequences of the xor-clauses defined us-
ing New-rules. The SAT solver can use the xor-reasoning module to produce
one logical consequence at a time using the method DEDUCE defined in
Figure 3.

⊕-Unit+
A X
X [A/>]

⊕-Unit−
A⊕> X

X [A/¬>]

⊕-Eqv+ A1 ⊕ A2 ⊕> X
X [A1/A2]

⊕-Eqv−
A1 ⊕ A2 X

X [A1/(A2 ⊕>)]

Figure 4: Inference rules

We will next define how the rules of the proof system can be applied to-
gether to define a xor-derivation of xor-clauses, and then state some important
properties of the proof system.

Definition 2. Let φxor be a set of xor-clauses. A xor-derivation from φxor is
a sequence of xor-clauses D = X1, . . . , Xn where each Xk, 1 ≤ k ≤ n, is
either added using one of New-rules or is derived from two xor-clauses Xi,
i < k and Xj , j < k using one of the Inference-rules. A xor-derivation is a
xor-refutation if the last xor-clause is ⊥. A xor-clause X is inferable from a

18 3 XOR-REASONING MODULE

set of xor-clauses φxor, denoted by φxor ` X , iff there is a xor-derivation from
φxor with X as the last xor-clause.

Intuitively, a xor-derivation captures a snapshot of a state of the xor-rea-
soning module. It contains the xor-clauses that define the problem instance,
the xor-clauses defined as assumptions, and the xor-clauses that have been
inferred from the preceding xor-clauses. Application of Inference-rules is re-
ferred to as xor-propagation. A xor-derivation is saturated with respect to xor-
propagation if it is not possible to add new xor-clauses in the xor-derivation.
The proof system is sound in the sense that all the xor-clauses that are inferred
from a set of xor-clauses φxor are logical consequences of the set φxor.

Lemma 1. (soundness of Inference-rules)
Let Xi, Xj and Xk be xor-clauses. Assume that Xk is derived from Xi and
Xj using one of Inference-rules. It holds that {Xi, Xj } |= Xk.

Proof. Let # (X, M) be the number of satisfied literals in the xor-clause X
given the truth assignment M . Let M be any truth assignment such that
M |= {Xi, Xj }. Let A, A1 and A2 be atoms different from >.
⊕-Unit+: Let Xi = A. It holds that A ∈ M and M |= Xj . As A ∈ M it

can be substituted with > without affecting the number of satisfied literals:
(Xj, M) = # (Xj [A/>] , M). It follows that {A, Xj } |= Xj [A/>].
⊕-Unit−: Let Xi = A⊕>. It holds that A /∈M and M |= Xj . As A /∈M

it can be substituted with ⊥ without affecting the number of satisfied literals:
(Xj, M) = # (Xj [A/⊥] , M). It follows that {Xi, Xj } |= Xj [A/⊥].
⊕-Eqv+: Let Xi = A1⊕A2⊕>. It holds that A1 ∈M iff A2 ∈M . A1 can

be substituted with A2 in Xj without affecting the number satisfied literals:
(Xj, M) = # (Xj [A1/A2] , M). It follows that {A1 ⊕ A2 ⊕>, Xj } |=
Xj [A1/A2].
⊕-Eqv−: Let Xi = A1 ⊕A2. It holds that A1 ∈M iff A2 /∈M . A1 can be

substituted with A2⊕> in Xj without affecting the number of satisfied literals
: # (Xj, M) = # (Xj [A1/(A2 ⊕>)] , M). It follows that {A1 ⊕ A2, Xj } |=
Xj [A1/(A2 ⊕>)].

Theorem 1. (soundness of xor-derivations)
Let D = X1, . . . , Xn be a xor-derivation. For each Xi ∈ D, 1 ≤ i ≤ n, it
holds that if Xi was derived using one of Inference-rules, then

{X1, . . . , Xi−1 } |= Xi

Proof. We prove the theorem by induction.
Base case 1 ≤ i ≤ 2 : X1 and X2 cannot be derived using one of

Inference-rules because each rule needs two xor-clauses as premises, so the
claim holds for i ∈ { 1, 2 }.

Suppose the claim holds for each m ∈ { 1, . . . , i− 1 }. If Xi was not
derived using one of Inference-rules, the claim holds for i by definition.
Otherwise, Xi was derived from two xor-clauses Xj , 1 ≤ j < i and Xk,
1 ≤ k < i, k 6= j. By Lemma 1, it holds that {Xj, Xk } |= Xi. Under the

3 XOR-REASONING MODULE 19

assumption that φ |= Xj and φ |= Xk, it holds that φ |= Xi. By definition of
logical consequence, the left hand set of xor-clauses {Xj, Xk } can be aug-
mented by additional clauses without compromising logical consequence. It
follows that {X1, . . . , Xi−1 } |= Xi.

Example 2. An example of a xor-refutation is shown in Figure 5. Note that
the symbol > is always moved to the end of xor-clause and any intermediate
steps for transforming xor-clauses to normal form are omitted, for instance, at
the step 9 : (b⊕ c⊕>) [b/>] >⊕ c⊕> c.

1. a⊕ b⊕ c Introduce
2. a⊕ b⊕ d⊕ e Introduce
3. c⊕ d⊕ e Introduce
4. a Decide+

5. b⊕ c⊕> ⊕-Unit+(1, 4)

6. b⊕ d⊕ e⊕> ⊕-Unit+(2, 4)

7. c⊕ d⊕ e⊕> ⊕-Eqv+(5, 6)

8. b Decide+

9. c ⊕-Unit+(5, 8)

10. d⊕ e⊕> ⊕-Unit+(3, 9)

11. d⊕ e ⊕-Unit+(7, 9)

12. ⊥ ⊕-Eqv+(10, 11)

Figure 5: Example derivation of xor-clauses

The proof system is sound. However, it is not complete, meaning that
there is a set of xor-clauses φxor and a xor-clause X such that φxor |= X but
it is not possible to construct a xor-derivation from φxor that includes X . For
instance, the empty xor-clause ⊥ is a logical consequence of the set of xor-
clauses φxor = { (a⊕ b⊕ c), (a⊕ b⊕ c⊕>) }, meaning that φxor is unsat-
isfiable. However, none of the Inference-rules can be applied to infer new
xor-clauses from the xor-clauses (a ⊕ b ⊕ c) and (a ⊕ b ⊕ c ⊕>). However,
the proof system is eventually refutationally complete meaning that if φxor

contains an unary xor-clause (A) or (A ⊕ >) for each variable A occurring
in φxor, then it is possible to construct a xor-refutation from φxor if and only if
the set of xor-clauses φxor is unsatisfiable.

Possibility of Infinite Derivations. It is worth noting that with the inference
rules ⊕-Eqv+ and ⊕-Eqv− it is possible to construct infinite xor-derivations.
For instance, consider the set of xor-clauses φxor = {(a⊕ b⊕>), (b⊕ c⊕>),
(a⊕c⊕>)} and the infinite xor-derivation from φxor in Figure 6. Infinite xor-
derivations from a set of xor-clauses φxor can be avoided when the inference
rules ⊕-Eqv+ and ⊕-Eqv− are restricted in the following way : (i) the vari-
able with fewer occurrences in φxor must be selected to be substituted with
the other, (ii) in case of a tie, the variable to be substituted is selected using

20 3 XOR-REASONING MODULE

1. a⊕ b⊕> Introduce
2. b⊕ c⊕> Introduce
3. a⊕ c⊕> Introduce
4. a⊕ b⊕> ⊕-Eqv+(2, 3)

5. b⊕ c⊕> ⊕-Eqv+(1, 3)

6. a⊕ c⊕> ⊕-Eqv+(1, 2)

7. . . .

Figure 6: Infinite xor-derivation

any fixed ordering, and (iii) once a xor-clause has been used as a premise
when applying one of the inference rules ⊕-Eqv+ and ⊕-Eqv−, the variable
to be substituted must be the same for subsequent substitutions.

3.2 Defining Reason Set for Logical Consequence

In this section, we define another representation for xor-derivation - a graph
that captures in a better way which parts of the xor-derivation from a set of
xor-clauses φxor are needed to infer a logical consequence of φxor. The aim
here is to find a way to succinctly define the reason for a logical consequence
of φxor. For this, we define how the graph can be partitioned in two parts such
that the latter contains logical consequences of the former, and then how this
partitioning can be used to define the reason for a logical consequence.

A directed graph is a pair 〈V, E 〉 where V is the set of nodes of the
graph and the relation E ⊆ V × V defines which nodes are connected
by an edge. A pair 〈s, t 〉 ∈ E is an edge from the source node s to the
target node t. A path is a sequence of nodes such that two consecutive
nodes in the path are connected by an edge. A directed graph is acyclic
(DAG) if it does not have a path from a node to the same node. Let D =
X1, . . . , Xn be a xor-derivation, the function rule(Xi) gives the rule used to
introduce or derive the xor-clause Xi in D, the function p(Xi) gives the set
{Xj, Xk } iff the xor-clause Xi is derived from Xj and Xk in D using one
of the inference rule, and the function numDecision(Xi) gives the num-
ber of xor-assumptions in D up to and including Xi, i.e., the size of the set{

Xm Xm is in D, m ≤ i, r(Xm) ∈
{

Decide+
, Decide−

} }
.

Definition 3. Given a xor-derivation D = X1, . . . , Xn, the implication graph
of D is a labeled directed acyclic graph G = 〈V, E, L, r, d 〉, where:

• V = { v1, . . . , vn } is the set of nodes

• L(vi) = Xi is the labeling function giving the xor-clause Xi of the
node vi

• E = { 〈va, vb 〉 va ∈ V, vb ∈ V, L(va) ∈ p (L(vb)) } is the set of edges

• r : V → { Introduce, Decide+, Decide−, ⊕-Unit+, ⊕-Unit−, ⊕-Eqv+,
⊕-Eqv−} is defined as follows: r(vi) = rule(L(vi))

3 XOR-REASONING MODULE 21

• d : V → N is defined as follows:

d(vi)=


0 r(vi) = Introduce
numDecision(L(vi)) r(vi) ∈ {Decide+

,Decide−}
max { d(va) 〈va, vi 〉 ∈ E } r(vi) ∈ Inference-rules

A node of an implication graph is a conflict node if it is the xor-clause ⊥.
A node with the rule label Decide+ or Decide− is a decision node. A node
that has two parent nodes is an inferred node.

The set of nodes V consists of xor-clauses of the xor-derivation D. The
graph has an edge from a xor-clause Xa to a xor-clause Xb iff Xb was derived
from Xa using one of the inference rules. The function r assigns a rule label
to each node. The rule label tells which rule was used to add the xor-clause
of the node to the xor-derivation. The function d assigns a decision level to
each node. The decision level of a node tells the number (numDecision)
of the last xor-assumption in the xor-derivation that is also an ancestor of the
node.

Example 3. The implication graph of the xor-derivation in Figure 5 is shown
in Figure 7 where the notation for the contents of a node is

[i. L(vi) r(vi) d(vi)]

where L(vi) is the ith xor-clause in the xor-derivation. The cut lines (cut 1,
cut 2, cut 3) can be ignored for now.

Implication graph presented here is slightly different from implication
graphs typically used to reason about satisfiability of Boolean formulas like
in [2] by Aspvall et al. where each literal occurring in the Boolean formula
has a unique corresponding node in the implication graph. There is an edge
from a literal to another literal if the truth value of the former is used to imply
the truth value of the latter. This kind of implication graph has been used in
the conflict analysis procedure of the SAT solver GRASP [32]. The essential
difference to the implication graph presented here is that the nodes contain
complete xor-clauses and not just literals. Also, there may be nodes with the
same xor-clause.

Each xor-clause of an implication graph that is inferred using one of
Inference-rules has two incoming edges from the xor-clauses it was inferred
from. Exploiting the adjacency relation of an implication graph, the nodes
of an implication graph can be partitioned into two sets in such a way that
the xor-clauses of the second set are logical consequences of the xor-clauses
of the first set. This is defined formally as follows.

Definition 4. Given a non-empty implication graph G = 〈V, E, L, r, d 〉, a
cut is a pair 〈Va, Vb 〉 where Va and Vb are sets of nodes such that V = Va ∪Vb

and Va ∩ Vb = ∅. The premise part of the cut Va contains at least the nodes
with no incoming edges and the consequent part Vb contains at least the
nodes with incoming edges and no outgoing edges.

When defining a reason for a logical consequence of a set of xor-clauses,
we take into consideration only the xor-clauses having outgoing edges that

22 3 XOR-REASONING MODULE

cut 1

cut 3

cut 2

Figure 7: Example implication graph

“cross the cut boundary”, that is, have direct successors in the part of the im-
plication graph defined by the consequent part of a cut. By the definition of
implication graph and the definition of cut, these are exactly the xor-clauses
needed to derive the xor-clauses of the consequent part of a cut.

The set of xor-clauses that have direct successors in the consequent part
of the cut is split into two sets : the reason set and the supporting set. The
supporting set is a subset of the xor-part of the original problem instance and
the reason set contains xor-clauses that (i) added using Decide+ or Decide−,
or (ii) are derived from other xor-clauses using one of Inference-rules. This
is defined formally as follows.

Definition 5. Let G = 〈V, E, L, r, d 〉 be an implication graph and 〈Va, Vb 〉
be a cut of G. The reason set of the cut 〈Va, Vb 〉 is a set of xor-clauses φrsn

and the supporting set of the cut 〈Va, Vb 〉 is a set of xor-clauses φsupp where:

φrsn = { s s ∈ Va, r (s) 6= Introduce,∃t ∈ Vb : 〈s, t 〉 ∈ E }
φsupp = { s s ∈ Va, r (s) = Introduce,∃t ∈ Vb : 〈s, t 〉 ∈ E }

A reason set is cnf-compatible if all xor-clauses in the reason set are of the
type (a) or (a⊕>), where a is a variable. A cut is cnf-compatible if its reason
set is cnf-compatible, and a node is cnf-compatible if its xor-clause has at
most one variable. A reason set is a conflict set if ⊥ ∈ Vb.

If the xor-reasoning module infers the empty xor-clause ⊥ as a logical
consequence of a set of xor-clauses φxor, then the xor-reasoning module is in
a conflicting state, meaning that the partial truth assignment M̃ containing
the assumptions made by the SAT solver cannot be extended to a model for

3 XOR-REASONING MODULE 23

φxor. In this case, some of the assumptions have to be revoked and different
assumptions picked for further search. This is done by restoring a previously
recorded state of the xor-reasoning module identified by a backjump point
using the method BACKJUMP. In order to prevent the SAT solver from mak-
ing the same assumptions again and entering the same conflicting state, the
assumptions that were used to infer the empty xor-clause⊥ are identified and
then the particular combination of them is marked as forbidden. This is done
by constructing an implication graph of the derived xor-clauses and then
computing a cut whose consequent part contains the empty xor-clause ⊥.
The reason set of the cut contains the assumptions needed to infer the empty
xor-clause ⊥. The reason set, which is a conflict set, too, is then converted to
an or-clause that the SAT solver stores in its database of learned clauses. For
this translation to be possible, the conflict set has to be cnf-compatible so that
its negation has a compact logically equivalent representation as an or-clause.
The SAT solver retrieves this or-clause using the method EXPLAIN.

Definition 6. Let φ be the conjunction of xor-clauses in a cnf-compatible
conflict set φconf. The conflict clause of the conflict set φconf is an or-clause
Cconf which is logically equivalent to ¬φ.

Recall that the SAT solver is searching for a model for a cnf-xor-formula
φ = φor ∧ φxor. The purpose of conflict clause is to prune the search space
of the SAT solver by transferring a portion of the xor-part φxor to the cnf-part
φor. It is important that a conflict clause Cconf never removes any models for
φxor, so the formula φxor∧Cconf must be logically equivalent to φxor. Formally
this is expressed as follows.

Theorem 2. Let D = X1, . . . ,⊥ be a xor-refutation, G = 〈V, E, L, r, d 〉 the
implication graph of D, 〈Va, Vb 〉 a cut of the implication graph G , φconf the
conflict set of the cut 〈Va, Vb 〉, φsupp the supporting set of the cut 〈Va, Vb 〉, and
Cconf the conflict clause of the conflict set φconf. It holds that φsupp |= Cconf .

Proof. As the xor-clause⊥ can be derived from the set of xor-clauses (φsupp∪
φconf) using Inference-rules which are sound (Theorem 1), it holds that (φsupp∪
φconf) |= ⊥. This implies that the formula ¬(φsupp ∧ φconf) is valid. The for-
mula can be converted into an implication : ¬(φsupp ∧ φconf) ⇔ ¬φsupp ∨
¬φconf ⇔ φsupp → ¬φconf. By definition the conflict clause Cconf is logically
equivalent to ¬φconf so ¬φconf be substituted with Cconf which results in a
valid formula φsupp → Cconf and concludes the proof.

A non-cnf-compatible conflict set φconf can be used to store the reason for
a conflict, too, but it cannot be converted to a conflict clause. A cnf-formula
φor that is logically equivalent to ¬φconf can always be constructed but in
the worst case, the cnf-formula φor can be exponentially longer than φconf.
Instead of storing the whole reason for a conflict in the SAT solver’s database
of learned clauses, another option would be to store the negation of reason
set partially in the xor-reasoning module, but studying this in detail is left for
future work.

As we are to use only cnf-compatible conflict sets, the correctness of the
decision procedure relies on their existence. The following theorem states
that a cnf-compatible conflict set can always be formed from the given xor-
assumptions.

24 3 XOR-REASONING MODULE

Theorem 3. Let D = X1, . . . ,⊥ be a xor-refutation, φpremises ⊆ D be the set
of xor-clauses introduced using Introduce-rule, φdecide ⊆ D be the set of xor-
clauses introduced using Decide+- or Decide−-rules, φderived ⊆ D be the set
of xor-clauses derived using Inference-rules, and G = 〈V, E, L, r, d 〉 be the
implication graph of D. There is a cut 〈Va, Vb 〉 of G such that the conflict
set φconflict of the cut 〈Va, Vb 〉 is a subset of the set φdecide.

Proof. For all nodes t ∈ V , it holds that if L(t) ∈ φpremises or L(t) ∈ φdecide,
then there are no incoming edges to t. All nodes t such that L(t) ∈ φderived

have incoming edges, so they can be in the second part Vb of the cut. There-
fore, it is possible to define a cut 〈Va, Vb 〉 such that (φpremises ∪ φdecide) =
{L(v) v ∈ Va } and φderived = {L(v) v ∈ Vb }. By definition, a conflict set
never contains any xor-clauses in φpremises and all xor-clauses of a conflict set
are selected from the first part Va of a cut. It follows that φconflict ⊆ φdecide.

A xor-derivation constructed in such a way that it is always saturated before
using the rules Decide+ or Decide− is said to be fully saturated. With a fully
saturated xor-derivation it can be argued that the last xor-assumption is the
triggering premise for the derivation of all the xor-clauses that follow in the
xor-derivation until the next xor-assumption. The xor-clauses that come after
a xor-assumption Xa until the next xor-assumption are xor-consequences of
Xa. Considering reasons for a xor-consequence Xc of a xor-assumption Xa,
in some cases, some of the xor-consequences of Xa are enough by itself to
infer the xor-consequence Xc if added to the xor-derivation instead of the
xor-assumption Xa. These singular xor-clauses are potentially useful when
defining succinct reason sets for a logical consequence inferred by the xor-
reasoning module. Formally they are defined as follows.

Definition 7. Let D = X1, . . . , Xn be a fully saturated xor-derivation, Xdecide

in D be a xor-clause introduced using Decide+ or Decide−, X in D be a xor-
clause defined after Xdecide, G = 〈V, E, L, r, d 〉 be the implication graph
of D, vdecide ∈ V, v ∈ V be the nodes corresponding to Xdecide and X ,
respectively. If there is a path from vdecide to v that does not include any
nodes whose rule label is Decide+ or Decide−, each node that belongs to
all paths from vdecide to v is a unique implication point (UIP) for v. The
unique implication point that has the shortest distance to v is the first unique
implication point.

Given a unique implication point vuip for some node v in an implication
graph, a number of cuts such that vuip is in the premise part of the cut and
v in the consequent part of the cut can be defined. These cuts can then be
used to define reason sets. The following definition provides a shorthand for
discussing reasons sets defined in this way.

Definition 8. Let G = 〈V, E, L, r, d 〉 be an implication graph, s ∈ V be
a unique implication point and cuts(s) denote the subset of the cuts of G
such that for each cut in cuts(s) it holds that the UIP s is in the premise part
of the cut and has a direct successor node in the consequent part of the cut.
The reason sets of the UIP s are the reason sets of the cuts cuts(s).

Example 4. Three of the cuts of the implication graph in Figure 7 have been
marked. The nodes 8 and 9 are unique implication points of the node 8. The

3 XOR-REASONING MODULE 25

cut 1 defines the conflict set { (x4 ⊕ x5 ⊕>), (x4 ⊕ x5) }. The cut 2 defines
the conflict set {x1, (x2 ⊕ x3 ⊕>), x3 } which is a conflict set of the UIP
node 9. The cut 3 defines the conflict set {x1, x2 } which is a conflict set
of the UIP node 8. The conflict clause of the cnf-compatible conflict set
{x1, x2 } is ¬x1 ∨ ¬x2.

3.3 Computing Reason Set for Logical Consequence

In this section, we define two methods for efficiently computing a reason set
for a logical consequence inferred by the xor-reasoning module. The first
method computes a cnf-compatible reason set and the second method a cnf-
compatible reason set that also contains the first unique implication point for
the logical consequence.

Recall that a xor-derivation records a state of the xor-reasoning module.
The method we present for computing a reason for a logical consequence is
based on traversing the implication graph of the xor-derivation until a suit-
able cut is found. By suitable cuts we mean cnf-compatible cuts in gen-
eral, but additional requirements will be introduced for some cases. In most
cases, there are several suitable cuts. The quality of a cut can be character-
ized by how much the corresponding or-clause speeds up the search of the
SAT solver when the or-clause is stored and/or used when deriving a conflict
clause. Due to the heuristic nature of the search method of the SAT solver,
it is highly non-trivial to estimate the quality of a cut. Another issue to con-
sider is the time spent in computing a cut. Also, branching heuristics of the
SAT solver and other implementation details may affect the effectiveness of
a strategy for defining a cut. Therefore, only the performance of a complete
search method can be evaluated.

According to the empirical study conducted to evaluate the effectiveness
of different learning schemes (strategies for defining cuts of an implication
graph) of conflict-driven SAT solvers by Zhang et al., the 1-UIP learning
scheme (first UIP) performed best in the comparison [38]. The implication
graph presented in the paper is slightly different from the one defined for
xor-derivations in this report. The implication graph of a xor-derivation con-
tains xor-clauses that are not necessarily unique while the implication graph
in [38] contains at most one node for each variable. Another importance
difference is that the conflict clause defined by a cut has to be asserting in
the SAT solver, meaning that the conflict clause has to force the truth value
of a variable to flip. The conflict clause computed by the xor-reasoning mod-
ule does not have this requirement because the SAT solver will perform its
own conflict analysis starting from the conflict clause returned by the xor-
reasoning module in order to get an asserting conflict clause. However, the
similarities of the implication graphs still justify studying the effectiveness of
the 1-UIP learning scheme adapted in the context of the xor-reasoning mod-
ule.

Let us consider first the general case of non-fully saturated xor-derivations.
Unique implication points are not defined for implication graphs of non-fully
saturated xor-derivations, so we are to settle for cnf-compatible cuts. Deter-
mining a strategy for finding a generally well-performing cnf-compatible cut
is a subject for a detailed study on its own, so we guided our design decisions

26 3 XOR-REASONING MODULE

based on an intuition: i) when computing a reason for a logical consequence,
the fewer inference steps are needed to derive the logical consequence from a
reason set, the better the reason set is, and ii) the less time is spent in comput-
ing a reason set, the more efficient the resulting search method is. Therefore,
we decided to traverse the implication graph as little as possible when com-
puting a reason set and accept the first cnf-compatible cut. Considering the
number of inference steps needed to derive the logical consequence from
possible cnf-compatible reason sets, the xor-derivation of the logical conse-
quence from the reason set of the first cnf-compatible cut is the shortest.

initial cut

1. Both decision nodes

initial cut

2. Decision node before inferred node

initial cut

3. Inferred node before decision node

initial cut

4. Both inferred nodes

Figure 8: Implication graphs demonstrating initial cuts

The cut is computed by starting with an initial cut whose consequent part
contains only the node of the implication graph corresponding to the logical
consequence that a reason set is being computed for. Figure 8 shows four
possible initial cuts whose consequent part contains a conflict node:

1. In the first case, the both parent nodes of the conflict node are deci-
sion nodes and the cut cannot be expanded further. The corresponding
conflict set contains two xor-clauses (a) and (a⊕>) where a is a vari-
able. The conflict set does not have any models so the conflict clause is
a tautology and cannot prune the search space of the SAT solver. This
case is prevented by forbidding assigning a variable with two different
truth values.

2. In the second case, the first parent node of the conflict node is a de-
cision node added before the second parent node which is an inferred
node. In this case, the cut can only be expanded through the inferred
node. In practice, if xor-propagation is applied in a chronological or-
der with respect to added decision nodes, this case does not occur. For
instance, a xor-clause b⊕> would have been inferred from the nodes
1 and 2 before inferring a⊕> from the nodes 1 and 3.

3 XOR-REASONING MODULE 27

3. In the third case, the first parent node of the conflict node is an in-
ferred node added before the second parent node which is a decision
node. The cut is again expanded through the inferred node leaving
the decision node in the conflict set. In practice, this case does not oc-
cur because the xor-reasoning module communicates the xor-implied
literal (the xor-clause in node 3) to the SAT solver before the second
decision node is added so the SAT solver will not add a conflicting xor-
assumption. Only if the xor-reasoning module is used without taking
xor-implied literals into account, this case may occur.

4. In the fourth case, both parent nodes of the conflict node are inferred
nodes. In principle, the cut could be expanded through either par-
ents. In fully saturated xor-derivations, the parent node added later is
a unique implication point so it is left in the premise part of the initial
cut. When the SAT solver takes xor-implied literals into account, this
is the only way to a conflict node can be inferred in the xor-reasoning
module.

The cut is modified by moving recursively non-cnf-compatible nodes of
the premise part at the boundary of the cut to the consequent part until a
cnf-compatible cut is obtained. This can be effectively done by performing
a depth-first search on the implication graph and stopping the recursion at
cnf-compatible nodes. Visiting the same nodes multiple times is avoided by
storing a “timestamp” counter in each node. Each time before a depth-first
search is initiated, a global counter indicating the timestamp of the search is
incremented. The search is branched to a node only if its timestamp value
is smaller than the timestamp of the current search, and then it is set to the
value of the global timestamp counter. Algorithm 1 gives a detailed expla-
nation of the process of computing a cnf-compatible reason set for a logical
consequence. Its running time is proportional to the number of nodes in the
consequent part of the resulting cut.

Algorithm 1 DFS-COMPUTE-REASON-SET(node)
1: SET-TIMESTAMP(node, current_time)
2: if IS-CNF-COMPATIBLE(node) then
3: ADD-TO-REASON-SET(node)
4: else
5: for all parent ∈ PARENT-NODES-OF(node) do
6: if TIMESTAMP-OF(parent) < current_time then
7: DFS-COMPUTE-REASON-SET(parent)

If a xor-derivation is fully saturated, unique implication points are defined,
and it is possible to define a cnf-compatible reason set that contains the first
(cnf-compatible) unique implication point for a logical consequence inferred
by the xor-reasoning module. Finding the first unique implication point for
the logical consequence makes computing a reason set slightly more compli-
cated. The depth-first search method presented above cannot be directly ap-
plied to this case because it cannot be determined whether a node is the first
unique implication point by only inspecting the node itself. The first unique
implication point is a node whose decision level is equal to the decision level

28 3 XOR-REASONING MODULE

of the node the reason set is being computed for (the node corresponding to
the logical consequence). The resulting reason set should not contain other
nodes with the same decision level except the first unique implication point.
This information can be exploited when computing the reason set. Like the
method based on depth-first search, the method we present here starts with
an initial cut that contains only the logical consequence in the consequent
part, and then expands the cut by moving nodes from the premise part to
the consequent part until the corresponding reason set is cnf-compatible and
contains the first unique implication point. The difference with the method
that computes the first cnf-compatible cut is the order in which nodes are
moved from the premise part to the consequent part of the cut. If nodes are
moved from the premise part to the consequent part in the opposite order
they are in the xor-derivation, the first unique implication point can be easily
recognized. Provided that the cut is expanded in such a way that the nodes
are checked in the opposite order their xor-clauses are in the xor-derivation,
the first unique implication point is found when the reason set of the cut has
exactly one node whose decision level is equal to the decision level of the
node corresponding to the logical consequence. The corresponding cut is
called first-uip-cut. The reason set has to be cnf-compatible, too, so actually
the algorithm gives the first cnf-compatible unique implication point, which
is not necessarily the first UIP. Algorithm 2 gives a detailed explanation of
the method. Its running time is proportional to the number of nodes in the
consequent part of the resulting cut, but the use of a priority queue adds a
computational overhead factor proportional to the logarithm of the size of
the implication graph. If the number of nodes in the implication graph is
relatively low, the nodes can be stored in a linear data structure in the order
they are added in the implication graph. Then, a linear scan can be used to
compute the cut without the use of priority queue like done in minisat [12]
by Eén and Sörensson. The method is conceptually equal to the conflict
analysis procedure in the SAT solver minisat.

Algorithm 2 COMPUTE-FIRST-UIP-REASON-SET(node)
1: set← {node }
2: to_check ← NEW-PRIORITY-QUEUE()
3: ADD-TO-QUEUE(to_check, node)
4: while (not IS-CNF-COMPATIBLE(set)

or NODES-WITH-SAME-DECISION-LEVEL(set, node) > 1) do
5: next← EXTRACT-MAX(to_check)
6: if (not IS-CNF-COMPATIBLE(next)

or (HAS-SAME-DECISION-LEVEL(next, node)
and NODES-WITH-SAME-DECISION-LEVEL(set, node) > 1))

then
7: set← set\ {next }
8: for all parent ∈ PARENT-NODES-OF(next) do
9: set← set ∪ { parent }

10: ADD-TO-QUEUE(to_check, parent)

3 XOR-REASONING MODULE 29

3.4 Prioritizing Inference Rules

The proof system does not specify in which order the inference rules are to
be applied if several rules are applicable. In this section, we show that the
order of preference for applying inference rules makes a difference when
defining cnf-compatible reason sets for logical consequences inferred by the
xor-reasoning module. If the inference rules ⊕-Unit+ and ⊕-Unit− are not
prioritized over the rules ⊕-Eqv+ and ⊕-Eqv−, the resulting implication
graphs may contain more non-cnf-compatible nodes. When computing a
cnf-compatible reason set, antecedent nodes are traversed until a cnf-compat-
ible cut is found. If the implication graph contains more non-cnf-compatible
nodes, then more nodes may be traversed resulting in a cnf-compatible rea-
son set with more xor-clauses.

Example 5. Figure 9 contains an implication graph of a non-fully saturated
xor-refutation from a set of xor-clauses (a⊕ d⊕ e), (a⊕ b⊕ e⊕>), (a⊕ b⊕
g ⊕ >), (c ⊕ f ⊕ g ⊕ >), and (c ⊕ d ⊕ f), and three xor-assumptions (a),
(b⊕>), and (c⊕>). The first cnf-compatible cut (cut 1) defines the conflict
set { (a), (c⊕>), (e), (f) }. Figure 10 contains a similar implication graph
of a non-fully saturated xor-refutation from the same set of xor-clauses and
xor-assumptions as above. The first cnf-compatible cut (cut 1) defines the
conflict set { (c⊕>), (f ⊕>), (g) }.

The first fifteen nodes in the implication graphs are identical. For the
sixteenth node, it is possible to derive the xor-clause (e ⊕ f) using the rule
⊕-Eqv− or the xor-clause (d) using the rule ⊕-Unit+. Depending on the
choice of the rule, the conflict set either contains three or four xor-clauses.
This happens because the inference rules⊕-Unit+ and⊕-Unit− always make
xor-clauses shorter and eventually produce unary xor-clauses which are cnf-
compatible. Assuming that the cnf-compatible nodes are uniformly distri-
buted in the implication graph, the more cnf-compatible nodes there are in
the implication graph, the less nodes the first cnf-compatible cut contains.
The inference rules ⊕-Eqv+ and ⊕-Eqv− may perform variable substitution
without shortening xor-clauses. This may cause the first cnf-compatible to be
further away from the (conflict) node being explained and to contain more
nodes.

While not formally proven, we suspect that it is beneficial in the sense of
acquiring smaller reason sets on average to prefer the inference rules⊕-Unit+

and ⊕-Unit− over the inference rules ⊕-Eqv+ and ⊕-Eqv− in cases where
both types of inference rules are applicable. In our preliminary empirical
tests, we noticed a significant speedup in the solving times when this kind of
order of preference was taken into use.

3.5 XOR-Implied Literals

In this section, we define an important class of logical consequences infer-
able by the xor-reasoning module : unary xor-clauses. They can be repre-
sented as literals and communicated back to the SAT solver. The unit propa-
gation routine of the SAT solver can then continue and possibly deduce new
literals. This way the constraints in the xor-part can be exploited to guide the

30 3 XOR-REASONING MODULE

cut 1

Figure 9: Implication graph without prioritizing unit propagation

cut 1

Figure 10: Implication graph when unit propagation is prioritized

3 XOR-REASONING MODULE 31

1. a⊕ b⊕ c Introduce
2. c⊕ d⊕> Introduce
3. a Decide+

4. b⊕ c⊕> ⊕-Unit+(1, 3)

5. b Decide+

6. c ⊕-Unit+(4, 5)

7. d ⊕-Unit+(2, 6)

Figure 11: Xor-derivation including xor-implied literal

search on the cnf-part. We discuss how such literals can be made logical con-
sequences of the cnf-part, too, so that when the SAT solver derives a conflict,
it can find which decision literals were used in the derivation of the conflict.

Definition 9. Let D = X1, . . . , Xn be a xor-derivation. A xor-implied literal
is a xor-clause A or A ⊕ > in D not added using New-rules, where A is an
atom.

Example 6. Consider the xor-derivation in Figure 11. Suppose the cnf-xor-
formula in question is φ = (¬a ∨ c ∨ ¬d) ∧ (¬b ∨ ¬c ∨ d) ∧ (b ∨ ¬c ∨
¬d) ∧ (a ⊕ b ⊕ c) ∧ (c ⊕ d ⊕ >). In this example, assume that the SAT
solver starts the search by picking the decision literal a which is then prop-
agated to the xor-reasoning module as a xor-assumption. At this point the
xor-reasoning module cannot infer any unary xor-clauses. After the second
decision literal b is propagated to the xor-reasoning module, two xor-implied
literals c and d are propagated back from the xor-reasoning module. The
truth assignment { a, b, c, d } is a model for the cnf-xor-formula. Without the
xor-implied literals, the SAT solver would have had to pick another decision
literal. If this would have been ¬c or ¬d, then a xor-conflict would have oc-
curred later when the third decision literal would have been propagated to
the XOR module. By propagating facts in both directions (from cnf-part to
xor-part and back) fewer decision literals are needed.

From the point of view of the SAT solver, a xor-implied literal that is propa-
gated back is not really implied because it is not a direct logical consequence
of the cnf-part and the assumptions made so far. If it were, then the SAT
solver would have already deduced it on its own without the help of the
xor-reasoning module. As the xor-implied literal cannot be justified by the
cnf-part and the decisions made so far, it would have to be added as an as-
sumption. This certainly is not optimal because by doing this the connection
between previous assumptions and the xor-implied literal would be lost. In
order to make the xor-implied literal also an implied literal in the SAT solver,
we have to supply some kind of justification along with the xor-implied lit-
eral. The most straightforward way to do this by an or-clause that enables
the SAT solver to deduce the xor-implied literal on its own given the current
decision literals.

32 3 XOR-REASONING MODULE

cut 2

cut 1

Figure 12: Implication graph with xor-implied literals

Often only a subset of the xor-assumptions is needed to deduce a xor-
implied literal. Respectively, a justifying or-clause may contain only a subset
of all xor-assumptions so far. If the SAT solver stores such a justification as a
learned clause in the cnf-part, it can use the stored clause to deduce the same
implied literal in similar situations when the search progresses. By similar
situations we mean here that all but one of the literals in the justifying or-
clause have their negations satisfied by the current partial truth assignment
so that the unit propagation can infer the implied literal.

Example 7. The implication graph of the xor-derivation in Figure 11 is
shown in Figure 12. The cut 1 defines the reason set { a, b } for the xor-
implied literal c. The cut 2 defines the reason set { c } for the xor-implied
literal d. We could also choose the cut 1 as a starting point when defining
the reason set for the implied literal d. So even though two xor-assumptions a
and b⊕> were needed to derive the implied literal d, a more succinct reason
set { c } can be given for it. The justifying or-clauses of the xor-implied literal
d are d ∨ ¬a ∨ ¬b and d ∨ ¬c.

3.6 XOR-Internal Variables

In this section, we discuss three possible strategies for solving cnf-xor-formulas
involving variables that occur only in the xor-part.

A cnf-xor-formula φ = φor ∧ φxor may contain variables that only occur in
the xor-part φxor. We call such variables xor-internal. The variables that occur
in both parts φor and φxor are referred to as xor-shared. For instance, the cnf-
xor-formula φ = (¬a∨b)∧ (¬b∨¬c)∧ (a⊕d)∧ (b⊕d)∧ (d⊕e)∧ (b⊕d⊕e)
has xor-internal variables d and e and the variables a and b are xor-shared.
When deciding the satisfiability of the cnf-xor-formula φ, the SAT solver may
find a partial truth assignment M̃ such that M̃ |= φor, and then ask the
xor-reasoning module if the same holds for the xor-part φxor as well, that
is, whether M̃ |= φxor, by communicating the literals l1, . . . , ln ∈ M̃ as
xor-assumptions to the xor-reasoning module. Due to the existence of xor-
internal variables, it may be that M̃ does not contain literals involving xor-

3 XOR-REASONING MODULE 33

internal variables. It is also possible that there is no partial truth assignment
M̃a ⊃ M̃ such that M̃a |= φxor, meaning that the formula φxor ∧ l1 ∧ · · · ∧ ln
is unsatisfiable. However, as the proof system of the xor-reasoning module
is not complete and there are no xor-assumptions concerning xor-internal
variables, the xor-reasoning module may fail to detect that the xor-part φxor is
unsatisfiable with respect to the current xor-assumptions in M̃ . The problem
can be addressed in three ways:

1. Encapsulating xor-internal variables: When the SAT solver finds a model
for the cnf-part, it performs full Gaussian elimination (the method SOLVE of
the xor-reasoning module). The satisfiability of the formula φxor∧ l1∧· · ·∧ ln
can be decided using Gaussian elimination. So by doing this the search
method is complete, but there is a drawback in this approach. When a
conflict is derived (the xor-reasoning module infers ⊥ as the logical con-
sequence of φxor ∧ l1 ∧ · · · ∧ ln), a reason set capturing the causes of the
conflict is extracted. The reason set is then converted to a conflict clause
and added as a learned or-clause in the cnf-part. At first, it seems reason-
able to avoid reason sets that include xor-internal variables because in theory
introducing a new variable in the cnf-part doubles the size of the potential
search space. The new variable would be almost unconstrained, having oc-
currence in only one or-clause. Also, translating constraints on xor-internal
variables to CNF might convert the xor-part to CNF. In that case the po-
tential benefits of operating on the xor-part as such would be lost. How-
ever, if xor-internal variables cannot be returned in or-clauses returned by
the method EXPLAIN, the definition of a suitable cut when computing the
reason set has to be slightly modified. The cut has to be expanded possi-
bly further until the corresponding reason set is cnf-compatible and con-
tains only occurrences of xor-shared variables (such reason sets always ex-
ists due to xor-assumptions). Computing reason sets in this way may yield
larger reason sets due to further expanded cuts and fail to exploit the in-
ternal structure of the xor-part. For instance, consider the cnf-xor-formula
φ = (¬a∨b∨¬d)∧(¬b∨d)∧(a∨¬b∨¬d)∧(a⊕b⊕c)∧(c⊕d⊕>) which has
a xor-internal variable c. Suppose the SAT solver submits xor-assumptions a
and b. The xor-reasoning module infers two xor-implied literals c and d. The
derivation of the two xor-implied literals is shown in Figure 12. As c is xor-
internal variable, it is not propagated to the SAT solver. A justification for c is
not needed neither. The implied literal d has occurrences in the cnf-part so
the SAT solver will benefit from this fact. If c were not a xor-internal literal,
a succinct justification for d would be d ∨ ¬c which is defined by the cut 2.
However, as c is not available, it has to be replaced with its antecedents that
justify it. The cut 1 gives a correct reason set { a, b } which when converted
to a justification gives d ∨ ¬a ∨ ¬b.

Other disadvantage is that if the Gaussian elimination deems the formula
φxor ∧ l1 ∧ · · · ∧ ln as unsatisfiable, without a method for analyzing how the
Gaussian elimination derives the xor-clause ⊥, the conflict clause can only
include xor-assumptions l1, . . . , ln. In the worst case, if the cnf-part is a tau-
tology and the xor-part is unsatisfiable and crafted in a certain way, the xor-
reasoning module has to perform the computationally intensive Gaussian
elimination routine 2n times where n is the number of xor-shared variables.

34 3 XOR-REASONING MODULE

This may hinder the effectiveness of the search method for some problem
instances. Also, according to the study by Järvisalo and Junttila in [19], if the
SAT solver is allowed to branch only on a subset of variables, the resulting
search method may produce exponentially longer proofs compared to the
unrestricted version. Thus, limiting the choice of the SAT solver to branch
only on non-xor-internal variables (make assumptions concerning only vari-
ables that occur in the cnf-part) may reduce the effectiveness of the search.

2. Exposing xor-internal variables: Treat the xor-internal variables as xor-
shared variables. The SAT solver probably assigns truth values to the vari-
ables it knows something about first, but eventually it will start assigning
xor-internal variables, as well. In this scheme, as the SAT solver can pick
decision literals that also involve xor-internal variables, the potential search
space is larger when compared to the scheme where only non-xor-internal
variables are considered for decision literals. However, this does not nec-
essarily imply that this scheme would perform worse. If xor-internal vari-
ables can occur in clauses returned by EXPLAIN, the computation can stop
at the first cnf-compatible cut when computing a reason set. Reason sets
computed in this way may be more succinct than reason sets without xor-
internal variables. Also, xor-implied literals involving xor-internal variables
may prevent the need for the SAT solver to pick decision literals concern-
ing xor-internal variables. If justifying or-clauses are stored in the cnf-part for
each xor-implied literal, this eventually translates the xor-part to CNF. This
can be avoided by not storing the justifying or-clauses for all xor-implied lit-
erals, but only for those that the SAT solver uses to derive a conflict. In fact,
not even these justifying or-clauses have to be stored after they are used in the
conflict analysis of the SAT solver, but as computing a reason set is a compu-
tationally relative expensive operation, we decided to store these important
or-clauses. Once they are not used in the search, the SAT solver’s “forgetting”
heuristics remove inactive or-clauses from the database of learned clauses.

3. Eliminating xor-internal variables: Eliminate xor-internal variables from
the xor-part before the search by applying Gaussian elimination. A xor-
internal variable x can be eliminated from the xor-part by selecting a xor-
clause X containing x and then substituting all occurrences of x in the
xor-part with the xor-clause X ⊕ x ⊕ >. For instance, consider the xor-
clauses X1 = (a ⊕ b ⊕ g), X2 = (c ⊕ d ⊕ g), X3 = (e ⊕ f ⊕ g ⊕ h), and
X4 = (c⊕ d⊕ h⊕ i) where the variable g is xor-internal and other variables
are xor-shared. We choose X3⊕g⊕> as the “definition” of g and define new
xor-clauses X ′

1 = X1 [g/(X3 ⊕ g ⊕>)] = (a⊕b⊕(e⊕f⊕g⊕h⊕g⊕>))
(a⊕b⊕e⊕f⊕h⊕>), X ′

2 = X2 [g/(X3 ⊕ g ⊕>)] = (c⊕d⊕e⊕f⊕h⊕>),
and X ′

4 = X4. The resulting xor-clauses X ′
1 and X ′

2 contain now four vari-
ables. Remaining xor-clauses grow longer when xor-internal variables are
eliminated. The inference rules of the presented proof system are defined
for xor-clauses that have at most two variable occurrences. As more xor-
assumptions are needed to infer logical consequences using the inference
rules, making xor-clauses longer may reduce the effectiveness of the proof
system. With the original xor-clauses X1, X2, X3 and X4 it is possible to infer
a xor-implied literal i from the xor-assumptions (a) and (b). This cannot be

3 XOR-REASONING MODULE 35

done if the xor-internal variable g is eliminated. Due to the obvious defi-
ciency in this approach, we decided not to test experimentally the effect of
elimination of xor-internal variables.

Encapsulating xor-internal variables may reduce the size of the search space
effectively, so it is justifiable to evaluate the approach experimentally. How-
ever, when xor-internal variables are encapsulated in the xor-reasoning mod-
ule, they are not returned in reason sets resulting potentially in more ineffi-
cient conflict clauses in the SAT solver. Therefore, the approach in which
xor-internal variables are exposed should be evaluated experimentally as well.
The inference rules of the xor-reasoning module work most effectively when
xor-clauses are short, so the approach in which xor-internal variables are
eliminated is excluded from the experimental evaluation because xor-clauses
grow longer if xor-internal variables are eliminated. Experimental evaluation
of elimination of xor-internal variables is left for future work along with a
study on how xor-clauses can be preprocessed before the actual search.

3.7 Redundancy in Reason Set

In this section, we discuss the possibility of a reason set containing xor-clauses
that are inferable from the xor-part of the problem and the other xor-clauses
in the reason set. These xor-clauses are in a way redundant and can be re-
moved from the reason set without affecting the meaning of the reason set.
The motivation for this is an intuition that the fewer literals a conflict clause
or a justifying or-clause contains, the more useful it is in reducing the amount
of computation required in the search done by the SAT solver. It is always
possible to define a cut of an implication graph whose reason set does not
have any redundant xor-clauses, so the possibility of redundant xor-clauses in
a reason set is tied to how a cut is computed. The methods for computing
a reason set we have presented may produce reason sets that contain redun-
dant xor-clauses. We will present a method for computing a reason set that
produces reason sets without redundant xor-clauses and a method for remov-
ing some redundant xor-clauses from a reason set. Redundant xor-clause is
formally defined as follows:

Definition 10. Let D = X1, . . . , Xn be a xor-derivation from φxor and φreason

be a reason set for some cut of the implication graph of D. A redundant
xor-clause in φreason is a xor-clause Xr ∈ φreason for which holds that (φxor ∪
(φreason\ {Xr })) ` Xr. A reason set is minimal if it does not have redundant
xor-clauses.

A redundant xor-clause can be removed from a reason set because it can
be inferred from the reason set and the xor-part of the cnf-xor-formula being
solved. Note that our definition of redundant xor-clause covers only inferable
xor-clauses. Even when a reason set does not contain any redundant xor-
clauses, it may contain xor-clauses that are logical consequences of the other
xor-clauses in the reason set and the xor-clauses in the xor-part.

Example 8. Consider the implication graph in Figure 13. The xor-clause
⊥ is derived from two xor-assumptions (a) and (b) and from the xor-clauses

36 3 XOR-REASONING MODULE

cut 1

Figure 13: Implication graph with a redundant literal

(a⊕ b⊕ e⊕>), (c⊕ e⊕ f ⊕>), (b⊕ d⊕ e⊕>), and (b⊕ c⊕ d⊕ f). The
cut 1 defines the reason set { a, b, d }. As the reason set includes both xor-
assumptions (a) and (b), the xor-clause (d) must be redundant. In fact, (d) is
inferred from the xor-assumption (a) and from the xor-clauses (a⊕b⊕e⊕>)
and (b ⊕ d ⊕ e ⊕ > so it can be removed from the reason set, which results
in a minimal reason set { a, b }.

In order to define a method for computing a reason set free of redundant
xor-clauses, we consider reason sets based on fully saturated xor-derivations.
A fully saturated xor-derivation from a set of xor-clauses φxor contains all xor-
clauses that are inferable from φxor and ordered in a way that xor-consequences
in the xor-derivation cannot be inferred without the preceding xor-assumption.
So, with fully saturated xor-derivations, assuming that xor-assumptions are
not added for xor-clauses already in the xor-derivation, they are not redun-
dant in any reason set for any xor-consequence. Unique implication points
are defined for fully saturated xor-derivations. As xor-assumptions (which are
unique implication points, too), they have the same important property of not
being redundant by definition so we can construct a method based on unique
implication points that guarantees reason sets free of redundant xor-clauses.

When computing a reason set for a xor-consequence, the method picks
only the unique implication points needed to infer the xor-consequence by
traversing the implication graph in the same way as the two methods we have
presented but with a different definition for a suitable cut: expanding the cut
is stopped when the corresponding reason set contains at most one xor-clause
from each decision level. We call such a cut all-uip-cut. Algorithm 3 provides
a detailed explanation of the method.

If there is a method for computing a reason set without redundant xor-
clauses, it is justified to question the use of methods for computing a reason

3 XOR-REASONING MODULE 37

Algorithm 3 COMPUTE-ALL-UIP-REASON-SET(node)
1: set← {node }
2: to_check ← NEW-PRIORITY-QUEUE()
3: ADD-TO-QUEUE(to_check, node)
4: while (not IS-CNF-COMPATIBLE(set)

or NODES-WITH-SAME-DECISION-LEVEL(set) > 1) do
5: next← EXTRACT-MAX(to_check)
6: if (not IS-CNF-COMPATIBLE(next)

or NODES-WITH-SAME-DECISION-LEVEL(set, next) > 1) then
7: set← set\ {next }
8: for all parent ∈ PARENT-NODES-OF(next) do
9: set← set ∪ { parent }

10: ADD-TO-QUEUE(to_check, parent)

set that allow redundant xor-clauses. The following example illustrates that a
reason set of an all-uip-cut may contain more xor-clauses than a reason set of
a first-uip-cut.

Example 9. In the implication graph in Figure 14 the two unary xor-clauses
(g) and (h) are on the same decision level. They are both xor-consequences
of the xor-assumptions (a), (b), and (c). The first-uip-cut (cut 1) defines the
reason set {h, d, g } which contains two xor-clauses from the decision level 3.
If at most one xor-clause is selected from each decision level, the all-uip-cut
(cut 2) defines the reason set is { a, b, c, d } which has one xor-clause more
than the other reason set.

However, the opposite is true, as well. The reason set of a first-uip-cut may
contain more xor-clauses than the reason set of an all-uip-cut. This is shown
in the following example.

Example 10. The xor-assumption (a) in the implication graph in Figure 15
is used to infer two unary xor-clauses (f) and (g). The first-uip-cut (cut 1)
defines the reason set { f, g, b } which contains one xor-clause more than the
reason set of the all-uip-cut (cut 2) { a, b }.

As it seems to be non-trivial to find the smallest cnf-compatible reason set
in the general case, the method that is computationally less expensive would
be good candidate to perform well. However, the reason sets of first-uip-cuts
may still contain redundant xor-clauses. It is even possible to construct im-
plication graphs of fully saturated xor-derivations whose first-uip-cuts contain
an arbitrarily large number of redundant xor-clauses . With this possibility
in mind, it is reasonable to explore whether it is feasible to identify which
xor-clauses in a reason set are redundant. By performing a dfs-search in the
implication graph starting from the parents of a node whose xor-clause is in
the reason set, it can be determined if the xor-clause can be inferred from
other xor-clauses of the reason set. If a xor-assumption that it is not in the
reason set can be reached from the node the search is started from, then the
xor-clause of the node is not redundant. Also, as an optimization, the search
can be terminated if a node whose index is smaller than the smallest index

38 3 XOR-REASONING MODULE

cut 1

cut 2

Figure 14: Implication graph where all-UIP-cut (cut 2) is wider than first-
UIP-cut (cut 1)

cut 1

cut 2

Figure 15: Implication graph where first-UIP-cut (cut 1) is wider than all-
UIP-cut (cut 2)

3 XOR-REASONING MODULE 39

in the reason set. The details of the method for identifying redundant xor-
clauses are described in Algorithm 4. Timestamp counters and computed
values are stored in the nodes in order to visit only once each node. As it
seems to be computationally less expensive to compute first-uip-cuts than
all-uip-cuts, and redundant xor-clauses can be eliminated if needed, we de-
cided to leave the implementation of a method that computes reason sets
based on all-uip-cuts for future work.

With non-fully saturated xor-derivations it cannot be determined directly
by the implication graph if a xor-clause in a reason set is redundant or not.
A xor-clause in the reason set could possibly be inferred from fewer xor-
assumptions if the xor-derivation were fully saturated. That is why the method
for identifying redundant xor-clauses does not work completely with non-
fully saturated xor-derivations. However, if it identifies a xor-clause as redun-
dant, then it is redundant and can be removed.

Sörensson and Biere have independently used a similar procedure to min-
imize learned clauses in their SAT solver minisat and found it effective [34].

Algorithm 4 IS-INFERABLE(set, node)
1: SET-TIMESTAMP(node, current_time)
2: SET-INFERABLE-FLAG(node, false)
3: if INDEX-OF(node) < SMALLEST-INDEX-IN(set) then
4: return false
5: else
6: if IS-IN-REASON-SET(node, set) then
7: SET-INFERABLE-FLAG(node, true)
8: return true
9: else

10: if IS-XOR-ASSUMPTION(node) then
11: return false
12: else
13: for all parent ∈ PARENT-NODES-OF(node) do
14: if TIMESTAMP-OF(parent) < current_time then
15: if IS-INFERABLE(parent) then
16: return false
17: else
18: if GET-INFERABLE-FLAG(node) = false then
19: return false
20: SET-INFERABLE-FLAG(node, true)
21: return true

4 CNF/XOR INTEGRATION

The xor-reasoning module was designed in a way that it could be easily inte-
grated to an existing SAT solver capable of clause learning. In this chapter,
we describe an abstract model of a Conflict Driven Clause Learning Sat-
isfiability Solver (CDCL SAT) and its semantics. We extend the abstract
CDCL SAT solver with rules to perform propagation in the xor-part and to

40 4 CNF/XOR INTEGRATION

communicate information between the cnf-part and the xor-part. We discuss
three possible alternatives for propagation strategies (rule application priori-
ties). The first propagation strategy is based on fully saturated xor-derivations.
When unit propagation is saturated in the SAT solver, the literals known by
the SAT solver are propagated to the xor-reasoning module one by one. After
each propagated literal, all inferable xor-clauses are computed by the xor-
reasoning module. In the second propagation strategy, unit propagation in
the SAT solver and the literals inferred and assumed by the SAT solver are
prioritized over the inference rules of the xor-reasoning module so the xor-
reasoning module is used as little as possible. In the third propagation strat-
egy, the SAT solver finds first a model for the cnf-part of the cnf-xor-formula
being solved. Only when a model for the cnf-part is found, the literals known
by the SAT solver are propagated to the xor-reasoning module. A discussion
about strategies for handling xor-implied literals concerning the use of justi-
fying or-clauses in the SAT solver concludes the chapter.

4.1 CDCL SAT Solver

In this section, we define an abstract model of CDCL SAT solver based
on the DPLL(T) model by Nieuwenhuis, Oliveras, and Tinelli [28]. The
CDCL SAT solver is modelled as a stateful system whose state can be altered
with a handful of state transition rules. The state transition rules abstract away
implementation details concerning representation of the cnf-formula and
modifications on data structures. Until now, we have described the search
of a SAT solver as modifications to a partial truth assignment. In order to
simplify the definition of the state transition rules, we increase the level of
detail of in our model of the CDCL SAT solver. The following definitions
give a more accurately description of how a partial truth assignment – the
literals known by the solver at a given moment – is represented in our model
of the CDCL SAT solver.

Definition 11. (trail). A trail π = (lR1
1 , . . . , lRn

n) is a sequence of annotated
literals where each li ∈ { l1, . . . , ln } is a literal such that there is an or-clause
in φor with an occurrence of li, and each reason Ri ∈ {R1, . . . , Rn } is an
or-clause in φor or the symbol d which denotes empty reason (the reason for
a decision literal).

Definition 12. (satisfiability relation of trail). We define that π |= C iff
there is a literal l in the or-clause C and also one of the literals of the trail π.
To indicate a situation where the trail π cannot be completed to a model for
the or-clause C, we define that π |= ¬C iff the negation ¬l of each literal l
in the or-clause C is in the trail π.

Definition 13. (invariants of trail). For each prefix of π, πpfx = lR1
1 , . . . , lRi

i ,
i < n, it must hold:

• Ri+1 = d or otherwise Ri+1 = (C ∨ li+1) and πpfx |= ¬C
(valid reasons and reasons in order).

• L =
{

l lR ∈ πpfx
}

, li+1 6∈ L, ¬li+1 6∈ L
(no same literal nor its negation twice).

4 CNF/XOR INTEGRATION 41

UnitPropagate
R = (C ∨ l) ∈ φor π |= ¬C

π ← π . lR

Decide
C ∈ φor l ∈ C l 6∈ π

π ← π . ld

Fail ¬∃l : ld ∈ π C ∈ φor π |= ¬C
Fail

Backjump π = πs.l
d.πe R=(C ∨ k)∈φor π|=¬R πs|=¬C k 6∈ πs

π ← πs . kR

Learn
φor |= C ∀ l ∈ C : ¬lR ∈ π

φor ← φor ∪ C

Figure 16: State transition rules of CDCL SAT solver

• if Ri+1 = d, then there must not be an or-clause (C∨ l) ∈ φor such that

(l1 ∧ · · · ∧ li |= ¬C) ∧ (l 6∈ { l1, . . . , li })

(unit propagation saturated-invariant)

Definition 14. (concatenating trails). A trail can be defined as a concate-
nation of two parts of trail (one or more elements), for instance π′ = π . lR

defines the trail π′ which has the trail π as a prefix and in addition the anno-
tated literal lR in the end.

The trail is like a partial truth assignment but makes the order of the lit-
erals significant and also adds information on what grounds the literals are
added to the trail (either as decision literals or literals inferred by unit propa-
gation). The state of the CDCL SAT solver is represented by a pair 〈φor, π 〉.
The rules for valid state transitions are described using following syntax:

name of the rule
applicability condition

state modification

For the following definitions of the state transition rules in Figure 16, let
C and R be or-clauses, and k, l be literals. For the sake of compactness we
use the expression lR ∈ π to indicate that the literal lR occurs in the trail π.
The expression l 6∈ π means that the literal l (with any associated reason) is
not in the trail π.

The state transition rules presented here are basically the ones presented
in [28] which also discusses the soundness and completeness of the rules and
the finiteness of state sequences. We omitted the rules Forget and Restart be-
cause they are not relevant in the context of integrating the xor-reasoning
module to the CDCL SAT solver. The rule UnitPropagate is applicable
when there is an or-clause that can be used as a premise for unit propaga-
tion. It modifies the state of the SAT solver by adding a literal and its reason
to the trail. The rule Decide is used to add decision literals in the trail. The

42 4 CNF/XOR INTEGRATION

π Justification Rule
1. ad - Decide
2. bR (1) R = ¬a ∨ b UnitPropagate

φor ← φor ∪ { (¬a) } Learn
π ← ¬aR′

R′ = C ∨ ¬a, C = () Backjump

Figure 17: CDCL SAT solver deduces a conflict

rule Fail is used to conclude a failed search for a model when a conflict can
be derived without any decision literals. The rule Backjump is applicable
when the trail cannot be completed to a model and the cnf-part contains a
backjump clause that directs the search to an unexplored part of the search
space. The trail is cut to a point where the backjump clause can be used
to infer a literal. The rule Learn is used to add backjump clauses that are
also logical consequences of the cnf-part. Note that with Decide-rule, it is
possible to get a sequence of annotated literals that is not a trail (as it violates
unit-propagation invariant).

Example 11. Assume the CDCL SAT solver is searching for a model for a
cnf-formula φor = (¬a ∨ b) ∧ (¬a ∨ ¬b). A part of the search is shown in
the trail table in Figure 17. A trail table captures a snapshot of the state of
the CDCL SAT solver. Numbering in the trail column (the column with
the label “π” records the propagation order of literals). The column labeled
“Justification” explains why it is possible to apply the state transition rule
mentioned in the column “Rule”. In the example the SAT solver picks a de-
cision literal, infers another literal using unit propagation, derives a conflict,
learns a conflict clause, and backjumps (cancels the decision).

4.2 CDCL/XOR SAT Solver

The CDCL SAT solver model can be used to model the functionality of SAT
solvers at an abstract level. In this section, we extend this model to introduce
CDCL/XOR SAT Solver, a CDCL SAT solver with the xor-reasoning mod-
ule integrated into it , in order to discuss how the interaction of the SAT
solver and the xor-reasoning module can be implemented to solve efficiently
cnf-xor-formulas of type 〈φor, φxor 〉. The SAT solver operates on the cnf-part
φor and the xor-reasoning module on the xor-part φxor. The search is driven
by the SAT solver and the xor-reasoning module is used as a subroutine. The
SAT solver propagates the literals in its trail to the xor-reasoning module ac-
cording to one of the propagation strategies which will be discussed later. A
state of the CDCL/XOR SAT solver is a tuple

〈
φor, φxor, πdpll, πxor

〉
where φor

is the cnf-part, φxor is the xor-part, πdpll is the trail of the SAT solver, and the
additional trail πxor is a prefix of πdpll which tracks the literals that have been
propagated to the xor-reasoning module.

We introduce some additional state transition rules that model the inter-
action between the SAT solver and the xor-reasoning module. As before,
we define some identifiers used in the definitions below. Let C, R be or-
clauses, X be a xor-clause, and k, l be literals. The state transition rules
specific to CDCL/XOR SAT solver are presented in Figure 18. The trail

4 CNF/XOR INTEGRATION 43

XorPropagate
πdpll = πxor . lR . πe

πxor ← πxor . lR

XorImply
(φxor∧πxor)|= l φxor |= R (φor∪R) ∧ πor |= l ¬l 6∈ πdpll

φor ← φor ∪R πdpll ← πdpll . lR

XorConflict
πxor |= ¬X X ∈ φxor φxor |= C πxor |= ¬C

φor ← φor ∪ C

XorFail ¬∃l : ld ∈ πxor X ∈ φxor πxor |= ¬X
Fail

Figure 18: State transition rules specific to CDCL/XOR SAT solver

πdpll πxor Justification Rule
1. ad Decide
2. bR R = ¬a ∨ b UnitPropagate

3. ad (1) XorPropagate
4. cR′

(a) ∧ (a⊕ c⊕>) |= c, R′ = ¬a ∨ c XorImply
5. bR (2) XorPropagate

X = a⊕ b, C ′ = ¬a ∨ ¬b XorConflict

Figure 19: CDCL/XOR SAT solver deduces a conflict

πxor = lR1
1 , . . . , lRn

n is interpreted as a conjunction (l1 ∧ · · · ∧ ln) in the ex-
pression (φxor ∧ πxor) |= l.

The rule XorPropagate is used to indicate when a literal in the trail of the
SAT solver is propagated to the xor-reasoning module (the method ASSIGN
of the xor-reasoning module). The rule XorImply adds a xor-implied literal
in the trail of the SAT solver along with a justifying or-clause for the xor-
implied literal in the cnf-part (the methods DEDUCE and EXPLAIN of the
xor-reasoning module). The rule XorImply corresponds to the rule Theo-
ryPropagate presented in [28]. The rule XorConflict is used to add a conflict
clause computed by the xor-reasoning module in the cnf-part (the method
EXPLAIN of the xor-reasoning module). The rule XorConflict is related to
the rules T-Learn and T-Backjump in [28]. The rule XorFail is used to con-
clude the failed search for a model when a xor-refutation can be constructed
from the xor-part without any decision literals. The rule Backjump is other-
wise similar to its counterpart in the model of CDCL SAT solver but the trail
of the xor-reasoning module is synchronized with the trail of the SAT solver.

The state transition rules that model the interaction of the SAT solver and
the xor-reasoning module are used to indicate when and where a particular
computation is done in the CDCL/XOR SAT solver. Therefore we can as-
sume that they do not compromise soundness, completeness, termination of
the abstract CDCL SAT solver.

Example 12. Suppose the CDCL/XOR SAT solver is solving the cnf-xor-
formula (¬a ∨ b) ∧ (¬a ∨ ¬b ∨ ¬c) ∧ (a ⊕ c ⊕ >) ∧ (a ⊕ b). A trail table

44 4 CNF/XOR INTEGRATION

of the search in Figure 19 shows how the xor-reasoning derives a conflict
after receiving two xor-assumptions (a) and (b) from the SAT solver. The
new column labeled “πxor” indicates the literals that are propagated to the
xor-reasoning module.

4.3 Fully Saturated XOR-Propagation

In this section, we will present a propagation strategy that is based on fully
saturated xor-derivations. The idea is the same as in exhaustive theory prop-
agation presented in [28]. The effectiveness of a propagation strategy is de-
termined by three factors: i) the computational cost of the operations of the
xor-reasoning module, ii) the effect the operations of the xor-reasoning mod-
ule on the length of the search, and iii) the cnf-xor-formula being solved.
When other characteristics of the SAT solver are kept unchanged, the opti-
mal propagation strategy (for a certain set of cnf-xor-formulas) is simply the
one that makes the SAT solver terminate the search in shortest time on av-
erage. Due to the heuristic nature and general applicability of SAT solvers,
only the computational cost of the operations of the xor-reasoning module
can be accurately measured so we decided to implement multiple propa-
gation strategies and perform empirical experiments in order to determine
which propagation strategy performs best.

The fully saturated xor-propagation (strategy) works as follows. Unit prop-
agation in the cnf-part is likely to be faster than propagation in the xor-
part due to the highly optimized data structures and algorithms of mod-
ern SAT solvers, so unit propagation in the cnf-part is preferred whenever
possible. When it is no longer possible to do unit propagation in the cnf-
part, the literals in the trail are propagated to the xor-reasoning module. All
xor-consequences of the xor-assumption (the literal propagated by the SAT
solver) are computed and propagated back to the SAT solver before propagat-
ing another literal to the xor-reasoning module. Conflicts may occur in three
ways: i) unit propagation in the cnf-part results in an unsatisfied or-clause, ii)
xor-implied literal makes an or-clause unsatisfied in the cnf-part, and iii) xor-
assumptions and propagation in the xor-part results in a conflicting (empty)
xor-clause. Fully saturated xor-propagation is interesting due to the possibil-
ity to compute reason sets of first-uip-cuts. While it would be possible to use
first cnf-compatible-cuts when computing a cut, we decided to leave study-
ing this option for future work in order to emphasize the use of xor-reasoning
module and xor-based reasoning in this xor-propagation strategy. The fully
saturated xor-propagation strategy can be characterized by associating the fol-
lowing order of preference to the state transition rules (the first applicable
rule is applied always): UnitPropagate, XorImply, XorPropagate, Decide.

An overview of the fully saturated xor-propagation search method is shown
in Algorithm 5. The search is driven by unit propagation in the cnf-part (line
1, UNIT-PROPAGATE). If a conflict can be derived by only doing unit prop-
agation in the cnf-part, the literals in the trail are not propagated to the xor-
reasoning module (lines 4-16 are skipped). Otherwise, the literals inferred by
unit propagation in the cnf-part are propagated to the xor-reasoning module
one by one (lines 5-6). All xor-consequences of each propagated literal are
added to the trail along with their reasons (lines 7-14). If a conflict occurs

4 CNF/XOR INTEGRATION 45

without decision literals in the cnf-part or in the xor-part, the cnf-xor-formula
has no models (lines 17-18). Otherwise, the SAT solver performs conflict
analysis (the method ANALYZE-CONFLICT), adds a conflict clause in the
cnf-part, revokes decision literals until the conflict is resolved, and restores
the state of the xor-reasoning module to a previously recorded state (lines 19-
20). If no conflict is derived and propagation is saturated both in the cnf-part
and in the xor-part, a new decision literal is picked if possible (lines 22-23).
If there are no unassigned variables and no conflict can be derived, Gaussian
elimination is performed to assign remaining unassigned xor-internal vari-
ables (the method XOR-SOLVE). If the xor-internal variables can be assigned
without conflicts, a model has been found (line 25).

Algorithm 5 FULLY-SATURATED-XOR-PROPAGATION-SEARCH(φor, φxor)
1: πdpll, πxor ← (), ()
2: loop
3: (πdpll, confl)← UNIT-PROPAGATE(φor, πdpll)
4: if not confl then
5: for each literal l in πdpll and not in πxor do
6: πxor ← XOR-ASSIGN(πxor, l)
7: (k1, . . . , kn)← XOR-DEDUCE(πxor, φxor)
8: if n > 0 then
9: for each xor-consequence k ∈ (k1, . . . , kn) do

10: C ← XOR-EXPLAIN(k)
11: if πdpll |= ¬C then
12: confl ← C
13: break
14: else
15: πdpll ← πdpll . kC if k 6∈ πdpll

16: goto 2 /* continue with unit propagation */
17: if confl then
18: if not HAS-DECISION-LITERALS(π) then
19: return unsat
20: (πdpll, φor)← ANALYZE-CONFLICT(φor, confl , πdpll)
21: πxor ← XOR-BACKJUMP(πdpll)
22: else
23: if HAS-UNASSIGNED-VARIABLES(φor, πdpll) then
24: πdpll← ADD-DECISION-LITERAL(φor, πdpll)
25: else
26: confl ← XOR-SOLVE(φxor, πxor)
27: if confl then
28: goto 17
29: return sat

Example 13. While the fully saturated xor-propagation strategy has the at-
tractive property of producing reason sets based on first-uip-cuts, letting the
xor-reasoning module to calculate all xor-consequences of each propagated
xor-assumption before propagating the next xor-assumption may cause the
xor-reasoning module to infer xor-implied literals that are already known by
the SAT solver. The trail table in Figure 20 illustrates a state of the CDCL

46 4 CNF/XOR INTEGRATION

πdpll πxor Justification Rule
1. ad - Decide
2. bR1 R1 = ¬a ∨ b UnitPropagate
3. cR2 R2 = ¬b ∨ c UnitPropagate

4. ad (1) XorPropagate
5. (bR3) (a) ∧ (a⊕ b⊕>) |= b, R3 = ¬a ∨ b XorImply
6. (cR4) (a) ∧ (a⊕ c⊕>) |= c, R4 = ¬a ∨ c XorImply

Figure 20: Xor-reasoning module infers already known xor-implied literals

SAT solver operating on the cnf-xor-formula φ = (¬a ∨ b) ∧ (¬b ∨ c) ∧ (a⊕
b⊕>)∧ (b⊕ c⊕>). The xor-implied literals bR3 and cR4 are in parentheses
to indicate that in practice the same literals are not added twice in the trail,
but this possibility has to be taken into account when implementing the fully
saturated xor-propagation in the integrated CDCL/XOR SAT solver.

4.4 Minimal XOR-Propagation

In this section, we will present the second proposed propagation strategy. As
the name minimal xor-propagation suggests, the aim is to do only the neces-
sary computation in the xor-reasoning module and resort to unit propagation
in the cnf-part whenever possible. In the minimal xor-propagation strategy
the following order of preference for the state transition rules is applied:
UnitPropagate, XorPropagate, XorImply, Decide. This means that all liter-
als known by the SAT solver are first propagated to the xor-reasoning mod-
ule before computing any xor-consequences. The minimal xor-propagation
search method is presented in Algorithm 6. The differences between min-
imal xor-propagation and fully saturated xor-propagation are in lines 5-14.
Instead of computing xor-consequences in the xor-reasoning module after
each propagated literal, all literals are propagated first to the xor-reasoning
module (lines 5-6) and after that possibly one xor-consequence is computed
(line 7) which is then added to the trail along with a reason (line 13). Only
one xor-consequence is computed at a time because a xor-implied literal may
be used to infer more literals using unit propagation. That is why unit prop-
agation is performed each time a xor-implied literal is added to the trail of
the SAT solver (line 14). As all literals known by the SAT solver are propa-
gated to the xor-reasoning module before computing xor-consequences, the
xor-reasoning module cannot return any xor-implied literals known already
by the SAT solver (no additional checks in line 13). As the xor-derivations
computed in the xor-reasoning module are not fully saturated, the justifying
or-clauses returned by XOR-EXPLAIN are not based on first-uip-cuts but on
first-cnf-compatible-cuts.

Example 14. One benefit of the minimal xor-propagation over fully saturated
xor-propagation is that less xor-consequences are computed. The trail table
in Figure 21 shows a part of the search of the CDCL/XOR SAT Solver on the
cnf-xor-formula φ = (¬a∨ b)∧ (a⊕ c)∧ (a⊕d)∧ (a⊕ e)∧ (a⊕ b⊕ f ⊕ g)∧
(a ⊕ b ⊕ f ⊕ g ⊕ >). The xor-reasoning module derives a conflict from the
two xor-assumptions (a) and (b) without computing all xor-consequences of

4 CNF/XOR INTEGRATION 47

Algorithm 6 MINIMAL-XOR-PROPAGATION-SEARCH(φor, φxor)
1: πdpll, πxor ← (), ()
2: loop
3: (πdpll, confl)← UNIT-PROPAGATE(φor, πdpll)
4: if not confl then
5: for each literal l in πdpll and not in πxor do
6: πxor ← XOR-ASSIGN(πxor, l)
7: k ← XOR-DEDUCE(πxor, φxor)
8: if k is not undefined then
9: C ← XOR-EXPLAIN(k)

10: if πdpll |= ¬C then
11: confl ← C
12: else
13: πdpll ← πdpll . kC

14: goto 2 /* continue with unit propagation */
15: if confl then
16: if not HAS-DECISION-LITERALS(π) then
17: return unsat
18: (πdpll, φor)← ANALYZE-CONFLICT(φor, confl , πdpll)
19: πxor ← XOR-BACKJUMP(πdpll)
20: else
21: if HAS-UNASSIGNED-VARIABLES(φor, πdpll) then
22: πdpll← ADD-DECISION-LITERAL(φor, πdpll)
23: else
24: confl ← XOR-SOLVE(φxor, πxor)
25: if confl then
26: goto 15
27: return sat

the xor-assumption (a) which would have to be discarded anyway due to the
conflict. For comparison, the same part of the search using fully saturated
xor-propagation is shown in Figure 22.

4.5 Postponed XOR-Propagation

If the computational cost of xor-reasoning is substantially higher than unit
propagation in the cnf-part, it may be better to consult the xor-reasoning
module only when a model for the cnf-part is found. Also, it is possible
that literals propagated to the xor-reasoning module can be used to infer a
large amount of xor-consequences that are of no use for finding a model for
the cnf-part. Computing these unused xor-consequences would just slow the
overall search slow. In this section, we will present the third proposed prop-
agation strategy, postponed xor-propagation, that postpones the use of the
xor-reasoning module until a model for the cnf-part is found.

When a truth assignment that satisfies the cnf-part is found, the trail is
propagated one literal at a time to the xor-reasoning module. If the truth
assignment is also a model for the xor-part, the search terminates after the
whole trail has been propagated to the xor-reasoning module. If the truth

48 4 CNF/XOR INTEGRATION

πdpll πxor Justification Rule
1. ad - Decide
2. bR1 R1 = ¬a ∨ b UnitPropagate

3. ad (1) XorPropagate
4. bR1 (2) XorPropagate

X = a⊕ b⊕ f ⊕ g ⊕>, C ′ = ¬a ∨ ¬b XorConflict

Figure 21: CDCL/XOR SAT solver deduces a conflict using minimal xor-
propagation

πdpll πxor Justification Rule
1. ad - Decide
2. bR1 R1 = ¬a ∨ b UnitPropagate

3. ad (1) XorPropagate
4. cR2 (a) ∧ (a⊕ c⊕>) |= c, R2 = ¬a ∨ c XorImply
5. dR3 (a) ∧ (a⊕ d⊕>) |= d, R3 = ¬a ∨ d XorImply
6. eR4 (a) ∧ (a⊕ e⊕>) |= e, R4 = ¬a ∨ e XorImply

7. bR1 (2) XorPropagate
X = a⊕ b⊕ f ⊕ g ⊕>, C ′ = ¬a ∨ ¬b XorConflict

Figure 22: CDCL/XOR SAT solver deduces a conflict using fully saturated
xor-propagation

assignment that satisfies the cnf-part is not a model for the xor-part, a con-
flict is deduced in the xor-part before the whole trail is propagated to the
xor-reasoning module. As the cnf-part is used to drive the search, a part of
the SAT solver’s trail has to be invalidated using the conflict clause provided
by the xor-reasoning module. This makes the solver backjump and try other
truth assignments. If the problem instance is not satisfiable, eventually all po-
tential truth assignments are tried and the search terminates giving a negative
result.

The xor-reasoning module can be used in this way to check whether a
truth assignment is a model for the xor-part of the problem. There is still
room for improvement in the use of the xor-reasoning module. When the
xor-reasoning module is not used during the search for a model for the cnf-
part, the SAT solver has to find a model for the cnf-part without the help
of the xor-reasoning module. If the solver had propagated literals to the
xor-reasoning module while searching for a model for the cnf-part, the xor-
reasoning module could have reduced the number of decision literals needed
by propagating xor-implied literals back to the solver. When the SAT solver
finds a model for the cnf-part, its trail is likely to contain a number of de-
cision literals. When the trail is propagated to the xor-reasoning module,
xor-implied literals can be used to rewrite the trail. Each xor-implied literal
is inserted in the trail on its own decision level. The SAT solver performs unit
propagation after each modification to the trail. Unit propagation may infer
new facts or terminate in a conflict. The purpose of rewriting the trail using
xor-implied literals is to eliminate unnecessary decision levels and to cut an

4 CNF/XOR INTEGRATION 49

πdpll πxor Justification Rule
1. ad Decide
2. bR1 R1 = ¬a ∨ b UnitPropagate
3. cd Decide
4. dR2 R2 = ¬c ∨ d UnitPropagate

Figure 23: Model for the cnf-part found

πdpll πxor πpending Justification Rule
1. ad

2. cd

3. ad (1) Decide
4. bR1 R1 = ¬a ∨ b UnitPropagate

5. ad (3) XorPropagate
6. bR1 (4) XorPropagate

7. ¬cR2
(a)∧(b)∧(a⊕b⊕c⊕>)|=¬c
R2 = ¬a ∨ ¬b ∨ ¬c

XorImply

Figure 24: Postponed xor-propagation contradicts a pending decision

unfruitful trail as early as possible.
An overview of the postponed xor-propagation search method is shown in

Algorithm 7. The search proceeds as in any conflict-driven SAT solver until
a model for the cnf-part is found (lines 3-12). When a model is found, the
decision literals new to the xor-reasoning module are copied to a temporary
storage (the “pending” trail) and the actual trail is cut in such a way that it
contains only literals that have been propagated to the xor-reasoning module
(lines 13-14). While there is a pending decision literal waiting and nothing
can be propagated in the cnf-part nor in the xor-part, it is added to the trail
(lines 16-20). Unit propagation is performed when a pending decision lit-
eral or a xor-implied literal is added to the trail (line 21). While no conflict
occurs, the literals not known by the xor-reasoning module are propagated
to the xor-reasoning module and xor-implied literals literals are added to the
trail (lines 23-32). If a conflict occurs, conflict analysis is performed and liter-
als are removed from the trail until the conflict is resolved, and a new search
for a model for the cnf-part starts (line 34-35). If the model for the cnf-part
is also a model for the xor-part, all pending decision literals are eventually
added to the trail without conflicts and the search terminates (line 17-18).
The presented method uses fully saturated xor-propagation strategy when a
model for the cnf-part is found, but minimal xor-propagation could be used
as well. Both xor-propagation strategies combined with the postponed xor-
propagation are evaluated empirically in the next chapter.

Example 15. Besides reporting that a truth assignment is not a model for the
xor-part, the xor-reasoning module can be used to enhance further search by
cutting the trail in such a way that its literals can no longer be used to deduce
a conflict in the xor-part. A part of the search on the cnf-xor-formula φ =
(¬a∨b)∧(¬c∨d)∧(d∨e)∧(¬e∨c)∧ (a⊕b⊕c)∧(d⊕e) is shown in Figure 23.

50 4 CNF/XOR INTEGRATION

Algorithm 7 POSTPONED-XOR-PROPAGATION-SEARCH(φor, φxor)
1: πdpll, πxor ← (), ()
2: loop
3: (πdpll, confl)← UNIT-PROPAGATE(φor, πdpll)
4: if confl then
5: if not HAS-DECISION-LITERALS(π) then
6: return unsat
7: (πdpll, φor)← ANALYZE-CONFLICT(φor, confl , πdpll)
8: πxor ← XOR-BACKJUMP(πdpll)
9: else

10: if HAS-UNASSIGNED-VARIABLES(φor, πdpll) then
11: πdpll← ADD-DECISION-LITERAL(φor, πdpll)
12: else
13: πpending ← decision literals in πdpll and not in πxor

14: πdpll ← πxor

15: loop
16: if cnf- and xor-propagation saturated then
17: if no unassigned variables then
18: confl ← XOR-SOLVE(φxor, πxor)
19: if confl then
20: goto 4 /* conflict analysis */
21: return sat
22: l← literal l in πpending and not in πdpll

23: πdpll ← πdpll(l
d)

24: (πdpll, confl)← UNIT-PROPAGATE(φor, πdpll)
25: if not confl then
26: for each literal p in πdpll not in πxor do
27: πxor ← XOR-ASSIGN(πxor, p)
28: (k1, . . . , kn)← XOR-DEDUCE(πxor, φxor)
29: for each xor-consequence k ∈ (k1, . . . , kn) do
30: C ← XOR-EXPLAIN(k)
31: if πdpll |= ¬C then
32: confl ← C
33: break
34: else
35: πdpll ← πdpll . kC if k 6∈ πdpll

36: if confl then
37: goto 4 /* conflict analysis */

The SAT solver picks two decision literals (a) and (c). The literals b and d
are inferred by unit propagation. The resulting truth assignment { a, b, c, d }
is a model for the CNF part { (¬a ∨ b), (¬c ∨ d) }. The horizontal lines
in the trail table delimit decision levels. Figure 24 illustrates the process of
rewriting the trail using the xor-reasoning module. The trail table is extended
with another column πpending to indicate the pending decision literals. The
literals (a) and (c) are in πpending and the inferred literals (b) and (d) are left
out as they can be inferred again from (a) and (c). The pending decision
literals are picked one by one and added to the trail. Unit propagation is

4 CNF/XOR INTEGRATION 51

πdpll πxor πpending Justification Rule
1. ad

2. cd

3. ed

4. ad (1) Decide
5. bR1 R1 = ¬a ∨ b UnitPropagate

6. ad (3) XorPropagate
7. bR1 (4) XorPropagate

8. cR2
(a) ∧ (b) ∧ (a⊕ b⊕ c) |= c
R2 = ¬a ∨ ¬b ∨ c

XorImply

9. dR3 R3 = ¬c ∨ d UnitPropagate
10. dR3 (9) XorPropagate

11. ed (3) Decide
12. ed (11) XorPropagate

X=d⊕e⊕f⊕g⊕>, C=¬d∨¬e XorConflict

Figure 25: Decision level eliminated by postponed xor-propagation

performed each time after a pending decision literal is added to ensure that
the trail is saturated with respect to unit propagation and to detect conflicts.
The literals (a) and (b) are propagated to the xor-reasoning module and the
xor-reasoning module returns the xor-implied literal (¬c). The original trail
had the decision literal (c) so the trail rewrite contradicts a pending decision.
The postponed xor-propagation ends here and a new search for a model for
the cnf-part is started.

Example 16. Xor-implied literals can also be used to eliminate decision lev-
els. When a model for the cnf-part is found, the trail is propagated to the
xor-reasoning module and it is rewritten in such a way that the justifying
or-clause of a xor-implied literal can used to infer the originally heuristi-
cally picked decision literal. After this the search can arguably continue
more effectively. Figure 25 shows how the trail is rewritten and one of
pending decision literals is eliminated. The cnf-xor-formula in question is
φ = (¬a∨ b)∧ (¬c∨d)∧ (a⊕ b⊕ c)∧ (d⊕ e⊕ f ⊕ g)∧ (d⊕ e⊕ f ⊕ g⊕>).
The pending decision literal (a) is put back to the trail and the literal (b) is
inferred by unit propagation. The literals (a) and (b) are then propagated to
the xor-reasoning module. The xor-reasoning module returns the xor-implied
literal (c). The literal (c) is added to the trail. The literal (d) is inferred by
unit propagation and propagated to the xor-reasoning module. As the literal
(c) was returned as a xor-implied literal, a decision level is eliminated from
the trail. The literal (e) causes a xor conflict when propagated to the xor-
reasoning module and the postponed xor-propagation ends there.

Example 17. Even if decision levels cannot be eliminated, trail rewrite can
still move literals to earlier decision levels in trail. Intuitively, the less as-
sumptions are needed to infer a literal, the more useful the literal is in find-
ing a model for the cnf-xor-formula. The trail table in Figure 26 shows how

52 4 CNF/XOR INTEGRATION

πdpll πxor Justification Rule
1. ad Decide
2. bR1 R1 = ¬a ∨ b UnitPropagate
3. cd Decide
4. dR2 R2 = ¬c ∨ d UnitPropagate
5. eR3 R3 = ¬c ∨ ¬d ∨ e UnitPropagate

Figure 26: Model for cnf-part found

πdpll πxor πpending Justification Rule
1. ad

2. cd

3. ad (1) Decide
4. bR1 R1 = ¬a ∨ b UnitPropagate

5. ad (3) XorPropagate
6. bR1 (4) XorPropagate

7. eR2
(a) ∧ (b) ∧ (a⊕ b⊕ e) |= e
C = ¬a ∨ ¬b ∨ e

XorImply

8. cd (2) Decide
9. dR3 R3 = ¬c ∨ d UnitPropagate

10. cd (8) XorPropagate
11. dR3 (9) XorPropagate

X = a⊕ b⊕ c⊕ d
C = ¬a ∨ ¬b ∨ ¬c ∨ ¬d

XorConflict

Figure 27: Literal moved to an earlier decision level by postponed xor-
propagation

4 CNF/XOR INTEGRATION 53

the SAT solver has found a model for the cnf part of the cnf-xor-formula
φ = (¬a∨b)∧ (¬c∨d)∧ (¬c∨¬d∨e)∧ (a⊕b⊕e)∧ (a⊕b⊕c⊕d)∧ (c⊕d)
In the trail table in Figure 27 the literals (a) and (b) are propagated to the
xor-reasoning module which propagates back the xor-implied literal (e). The
second pending decision literal (c) and the inferred literal (d) are propagated
next to the xor-reasoning module. This enables the xor-reasoning module to
deduce a conflict in the xor-part. Due to the conflict clause ¬a∨¬b∨¬c∨¬d,
the decision (c) has to be undone and the literal (e) can no longer be inferred
with the clauses ¬c∨ d and ¬c∨¬d∨ e. However, the or-clause ¬a∨¬b∨ e
that justifies the xor-implied literal (e) enables the solver to infer the literal
(e) and on an earlier decision level than before.

The postponed xor-propagation strategy is similar to lazy SMT theory prop-
agation of the DPLL(T) framework (see Section 3.2.2 in [28]) with one ad-
dition: the trail of the SAT solver is rewritten using xor-implied literals as
described in this section.

4.6 Handling XOR-Implied Literals in SAT Solver

In this section, we present alternative ways for handling the justifying or-
clauses of xor-implied literals and the conflict clauses returned by the xor-
reasoning module in the SAT solver. Upon deducing a conflict, the SAT
solver builds a conflict clause. The conflict clause is then added to the
database of learned or-clauses. In order to avoid memory congestion and
computational overhead caused by more expensive unit propagation, the
number of learned or-clauses is kept bounded by an upper limit. The max-
imum number of learned or-clauses is increased periodically to ensure that
the search terminates. When the xor-reasoning module is integrated to the
SAT solver, the justified or-clauses and the conflict clauses provided by the
xor-reasoning module can either be stored or they can be used directly in the
conflict analysis of the SAT solver. We will present three strategies for han-
dling the or-clauses returned by the xor-reasoning module in the SAT solver.

1. Storing nothing. If storing or-clauses involves a considerable cost, it may
be more efficient to use the or-clauses provided by the xor-reasoning module
directly in the conflict analysis and discard them afterwards. When analyzing
a conflict, the SAT solver needs to produce an asserting conflict clause which
causes the SAT solver to undo at least one of the decision literals. An efficient
learning scheme for computing conflict clauses is presented in the paper by
Zhang et al. [38]. In order to produce an asserting conflict clause, the SAT
solver has to track which decision literals caused the conflicting or-clause.
The conflicting clause may contain literals that are not decision literals. Rea-
sons for these non-decision literals have to be tracked by inspecting the or-
clauses that were used to infer the non-decision literals by unit propagation.
The or-clauses inferring the non-decision literals may again contain more
non-decision literals and the process of finding the decision literals involved
in the conflict continues recursively. Conflict clauses may also contain non-
decision literals, but the details of conflict analysis methods of a SAT solver
are outside the scope of this report. For our purposes, it suffices to know
that the SAT solver needs an or-clause that justifies each non-decision literal

54 4 CNF/XOR INTEGRATION

in order to perform conflict analysis. When literals of the trail of the SAT
solver are propagated to the xor-reasoning module, the xor-reasoning module
may return a number of xor-implied literals. If xor-implied literals are used
to infer a conflicting or-clause, the SAT solver needs a justifying or-clause
for each xor-implied literal involved in the conflict. The conflict analysis
method of the SAT solver can be modified in such a way that xor-implied
literals are tagged so that the SAT solver can ask the xor-reasoning module
to return a justifying or-clause when one is needed (using the method EX-
PLAIN). The SAT solver’s database of learned clauses will only contain the
resulting conflict clauses so the bounded number of slots for learned clauses
is used effectively. Also, unit propagation works faster when there are less
or-clauses to check. As a downside, possibly more justifying or-clauses are
computed when they are not stored.

2. Storing all or-clauses. This strategy is based on the assumption that jus-
tifying or-clauses of xor-implied literals may capture useful pieces of the xor-
part which, when combined with the cnf-part, may prune large parts of the
search space. It is also assumed that the benefit of storing justifying or-clauses
outweighs the cost of computing them. Whenever a xor-implied literal is re-
turned by the xor-reasoning module, a justifying or-clause is computed for it
and added to the SAT solver’s database of learned clauses. If a xor-implied
literal is needed in conflict analysis, its justifying or-clause is already avail-
able. When the xor-reasoning module operates effectively, the number of
xor-implied literals is high. This means that the number of stored or-clauses
gets high as well. The maximum number of stored or-clauses is bounded so
when the limit is reached, one of the unused or-clauses has to be removed.
For efficiency reasons, this can be done by removing a number of least active
or-clauses in batches. If the database of learned clauses is constantly flooded
by justifying or-clauses for xor-implied literals, it is possibly that potentially
useful or-clauses get removed. Also, keeping the number of learned clauses
near the allowed maximum may cause unit propagation to perform slower.

3. Storing useful or-clauses. If all justifying or-clauses for xor-implied literals
are stored in the database of learned clauses, this eventually performs trans-
lation of the xor-part to CNF. However, if no justifying or-clauses are stored,
more computation is done in the xor-reasoning module. The third proposed
strategy for handling justifying or-clauses for xor-implied literals is a com-
promise between the two strategies presented above: justifying or-clauses for
xor-implied literals that participate in conflicts are stored. Considering the
satisfiability of a xor-clause X , there are 2n−1 different truth assignments in-
volving variables of X that are not models for X . This implies that there
are many ways to derive a conflicting xor-clause. Due to the symmetry of xor-
clauses, xor-refutations from different xor-assumptions may include parts that
are identical and have the same xor-implied literals. That is why we consider
storing justifying or-clauses for xor-implied literals that participate in con-
flicts potentially advantageous. The preliminary performance tests suggested
that the third strategy is likely to perform well, so it is used in the empirical
evaluation in the next chapter.

4 CNF/XOR INTEGRATION 55

5 EXPERIMENTAL RESULTS

In this chapter, we present results of the experimental evaluation of our proof-
of-concept implementation and compare it to other SAT solvers that are de-
signed with xor-clauses in mind. We have evaluated the efficiency of our
approach by integrating the xor-reasoning module to minisat [12] (version
2.0 core), an efficient yet simple conflict-driven solver. We call the version
of minisat enhanced with xor-reasoning xor-minisat. We considered prob-
lem instances that contain a large number of xor-clauses in order to show
cases where the SAT solver enhanced with xor-reasoning outperforms the
unmodified solver, but also problem instances that have only a few equiva-
lences/XORs to demonstrate that enabling xor-reasoning does not hinder the
SAT solver’s performance in cases where it cannot reduce the number of de-
cisions. The three benchmarks are : known-plaintext attack (see e.g. Chapter
2 in [35]) on the block cipher DES [1], random generated linear problems
based on 3-regular bipartite graphs [13], and a known keystream attack on
the stream cipher Trivium [9]. Due to the heuristic nature of operation of
SAT solvers, variance in solving times can be very significant when solving
similar instances. This is why we generated a number of instances from each
benchmark. Different search methods can then be compared based on the
average performance with respect to two characteristics : solving time and
number of heuristic decisions needed to complete the search. All tests were
run on a Six-Core AMD OpteronTM with the CPU frequency of 2.60GHz
and 512 KB of cache memory running Linux as the operating system. The
tests had a hard memory limit of 2GB. A test was terminated if it did not stop
executing after four hours.

The attacks on the cryptographic ciphers were generated by first mod-
elling a Boolean circuit of the execution of the cipher leaving the input gates
corresponding to the key bits unspecified and then converting the Boolean
circuit into a cnf-xor-formula in a DIMACS-like format where constraints
can be expressed as xor-clauses, too. We generated also CNF-only versions of
the benchmarks for comparison. The CNF-only version was generated from
the cnf-xor-formula by substituting each xor-clause with a logically equivalent
conjunction of or-clauses without introducing new variables.

In addition to comparing xor-minisat to minisat, we included the following
solvers which employ some kind of equivalence-/xor-reasoning in the empir-
ical study : cryptominisat, EqSatz, march_eq, moRsat, and 2clseq.

In order to evaluate different xor-propagation strategies and alternative
ways for reasoning on the xor-part, we compare 16 variants of our solver
xor-minisat. A variant xor-minisatABCD is identified by a four-letter superscript
ABCD where:

• A tells the xor-propagation strategy

– A = e if the xor-propagation strategy is fully saturated or minimal

– A = p if the xor-propagation strategy is postponed.

• B tells how the xor inference rules are prioritized

– B = m if the (inner) xor-propagation strategy is minimal

56 5 EXPERIMENTAL RESULTS

– B = f if the (inner) xor-propagation strategy is fully saturated

• C tells if xor-internal variables are returned in reason sets

– C = i if the xor-internal variables are not returned in reason sets
computed by the xor-reasoning module

– C = s if all variables are treated as xor-shared

• D tells whether the reason sets are minimized

– D = t if the reason sets are minimized

– D = f if the reason sets are not minimized

The xor-minisat-variant xor-minisatemst solved most problems of all variants so
we compare it to other solvers.

5.1 Block Cipher DES

In this section, we present results of the evaluation of a known-plaintext at-
tack on a reduced yet challenging configuration of the block cipher DES :
4 rounds with 1 block. Only 1% of the constraints are xor-clauses in these
instances so we did not expect that xor-reasoning would contribute much to
the search. The xor-clauses are furthermore partitioned into small clusters
separated by large number of or-clauses (here a cluster means a non-empty,
minimal subset of xor-clauses such that if two xor-clauses share a variable,
then they belong to the same cluster). This benchmark is included in order
to show that the xor-reasoning module does not incur an unbearable compu-
tational overhead.

Table 28 contains a comparison of all solvers and xor-minisat-variants. The
solver xor-minisatefsf performs best on average of the variants so we included
it in comparison in the following figures.

Figure 29 illustrates the number of solved DES instances (4 rounds, 1
blocks) with respect to the solving time. Comparing the variants of xor-minisat
to the unmodified version minisat indicates that xor-minisatemst has a con-
stant overhead in solving time while xor-minisatefsf solves majority of the in-
stances comparably to minisat. The solver cryptominisat performs comparably
to the solver xor-minisatemst. The solver moRsat is the slowest solver to solve
all DES instances. The solvers march_eq, 2clseq, EqSatz, and lsat do not
solve any instances of the DES benchmark. Figure 30 shows the number
of solved DES instances as a function of heuristic decisions needed. The
solver xor-minisatemst using minimal xor-propagation strategy requires more
heuristic decisions to solve the DES instances than minisat while the solver
xor-minisatefsf using fully saturated xor-propagation requires less heuristic de-
cisions than minisat. Unit propagation can be performed in the similar way
in the xor-part as in the cnf-part so we suspect that the increase in the num-
ber of heuristic decisions (with xor-minisatemst) may be due to how the xor-
reasoning module computes reason sets for xor-implied literals (and con-
flicts). The way how reason sets are computed may affect decision heuris-
tics of the SAT solver and increase the number of heuristic decisions. The
solver xor-minisatemst computes reason sets based on first cnf-compatible cuts

5 EXPERIMENTAL RESULTS 57

Solver # Solved Time median (s) Decisions median
2clseq 0 - -
cryptominisat 32 1460.18 873556
EqSatz 0 - -
march_eq 0 - -
minisat 32 377.34 948662
moRsat 32 1391.42 4571775
lsat 0 - -
xor-minisatemif 32 669.81 1455312
xor-minisatemit 32 753.04 1455312
xor-minisatefsf 32 515.86 890447
xor-minisatefst 32 631.50 890447
xor-minisatefif 32 598.52 920702
xor-minisatefit 32 653.40 920702
xor-minisatemsf 32 782.22 1579648
xor-minisatemst 32 918.82 1579648
xor-minisatpmif 32 806.31 1867684
xor-minisatpmit 32 978.46 1867684
xor-minisatpfsf 32 567.31 1225031
xor-minisatpfst 32 523.84 1225031
xor-minisatpfif 32 541.43 1213144
xor-minisatpfit 32 593.07 1213144
xor-minisatpmsf 32 1149.86 2451015
xor-minisatpmst 32 1183.66 2451015

Figure 28: DES benchmark results (32 instances, 4 rounds with 1 block)

 0

 5

 10

 15

 20

 25

 30

 35

 10 100 1000 10000

#
 s

o
lv

e
d

time (s)

xor-minisat
emst

xor-minisat
efsf

cryptominisat
minisat
moRsat

Figure 29: Number of solved DES instances w.r.t time

58 5 EXPERIMENTAL RESULTS

 0

 5

 10

 15

 20

 25

 30

 35

 100000 1e+06 1e+07

#
 s

o
lv

e
d

decisions

xor-minisat
emst

xor-minisat
efsf

cryptominisat
minisat
moRsat

Figure 30: Number of solved DES instances w.r.t decisions

and the solver xor-minisatefsf computes reason sets based on cnf-compatible
first-UIP-cuts. The results agree with our intuition that the postponed xor-
propagation (the solver xor-minisatpfsf) is effective on instances where the
cnf-part dominates the search. The number of heuristic decisions is higher
when using postponed xor-propagation because less propagation can be done
when a model for the cnf-part is searched. Despite the higher number of
heuristic decisions, the decisions are computationally cheaper because xor-
propagation is not performed before a model for the cnf-part is found and
thus, the number of heuristic decisions is not directly comparable to other
xor-propagation strategies. There was only one xor-internal variable in each
instance so it is reasonable that whether xor-internal variables are returned to
the SAT solver or not has little significance. Fully saturated xor-propagation
performs clearly better than minimal xor-propagation based on the compari-
son of solving time medians in Figure 28.

5.2 Randomly Generated Linear Problems

In this section, we discuss the results of the second benchmark: regular XOR-
SAT [13] – artificial problem instances consisting only of xor-clauses based
on random generated 3-regular bipartite graphs. As the instances of regular
XORSAT are linear, they can effectively be solved as-such by Gaussian elimi-
nation, so when solved by variants of xor-minisat, the instances were modified
by selecting xor-clauses randomly and converting them to CNF until a spec-
ified proportion of xor-clauses is converted to CNF. The problem instances
included satisfiable and unsatisfiable instances with a number of variables
ranging from 96 to 240.

The representation of the constraints - whether they are expressed as xor-
clauses or as or-clauses - has an effect on the time spent in solving a reg-

5 EXPERIMENTAL RESULTS 59

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 1000

#
 s

o
lv

e
d

time (s)

XOR-ratio 0.2

XOR-ratio 0.4

XOR-ratio 0.6

XOR-ratio 0.8

XOR-ratio 1.0

Figure 31: Number of solved satisfiable regular XORSAT instances w.r.t time
(different XOR-ratios, e.g the XOR-ratio 0.2 meaning that 80% of the xor-
clauses are converted to CNF) by xor-minisatemst.

ular XORSAT instance, especially with unsatisfiable instances. Figure 31
shows how the time needed in solving an instances grows by a constant fac-
tor when the XOR-ratio, the proportion of xor-clauses of all constraints, is
increased. The tests were solved by xor-minisatemst. Figure 32 shows that the
number of heuristic decisions needed to solve an instance is smallest when all
constraints are expressed as xor-clauses (XOR-ratio 1.0). However, using the
current implementation techniques, the xor-reasoning seems to be computa-
tionally more expensive than unit propagation in the cnf-part so the smaller
the XOR-ratio is, the shorter the expected runtime of solving an instance is.
When a regular XORSAT instance is satisfiable, the use of the xor-reasoning
module reduces the number of heuristic decisions needed. With unsatis-
fiable regular XORSAT instances, the situation is different. The more the
constraints are expressed as xor-clauses, the harder it becomes for the SAT
solver to prove that an instance is unsatisfiable. This is shown in Figure 34.
The higher number of heuristic decisions needed is reflected in longer solv-
ing time in Figure 33. This may be caused by how the representation of
constraints decisions heuristics of the SAT solver. The smaller the cnf-part is,
the less information the SAT solver has to guide its decision heuristics.

We decided to use the XOR-ratio 0.4 for comparing xor-minisat to other
solvers because the xor-reasoning module is used to operate on a substantial
part of constraints and still performs reasonably well. Figure 35 shows how
other solvers and other xor-minisat-variants solved satisfiable regular XORSAT
instances. In Figure 36 there is a similar comparison but for unsatisfiable
regular XORSAT instances. The solvers 2clseq, cryptominisat, march_eq, and
moRsat did not perform comparably in this benchmark. The solver EqSatz
solved satisfiable regular XORSAT instances fast and with a small number of

60 5 EXPERIMENTAL RESULTS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1000 1e+06

#
 s

o
lv

e
d

decisions

XOR-ratio 0.2

XOR-ratio 0.4

XOR-ratio 0.6

XOR-ratio 0.8

XOR-ratio 1.0

Figure 32: Number of solved satisfiable regular XORSAT instances w.r.t de-
cisions (different XOR-ratios) by xor-minisatemst

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 1000

#
 s

o
lv

e
d

time (s)

XOR-ratio 0.2

XOR-ratio 0.4

XOR-ratio 0.6

XOR-ratio 0.8

XOR-ratio 1.0

Figure 33: Number of solved unsatisfiable regular XORSAT instances w.r.t
time (different XOR-ratios) by xor-minisatemst

5 EXPERIMENTAL RESULTS 61

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1e+06 1e+09

#
 s

o
lv

e
d

decisions

XOR-ratio 0.2

XOR-ratio 0.4

XOR-ratio 0.6

XOR-ratio 0.8

XOR-ratio 1.0

Figure 34: Number of solved unsatisfiable regular XORSAT instances w.r.t
time (different XOR-ratios) by xor-minisatemst

heuristic decisions, but performed poorly with unsatisfiable instances. The
solver lsat solved both unsatisfiable and satisfiable regular XORSAT instances
almost instantly. If xor-internal variables are not returned to the SAT solver,
this adds a significant overhead to both solving time and the number of
heuristic decisions needed when solving unsatisfiable regular XORSAT in-
stances and the performance decreases when solving satisfiable instances,
too. The number of solved regular XORSAT instances with respect to the
solving time are shown in Figures 37 (satisfiable instances) and 39 (unsat-
isfiable). The number of heuristic decisions needed to solve regular XOR-
SAT instances are shown in Figures 38 and 40. The unmodified minisat
still performs better with both satisfiable and unsatisfiable regular XORSAT
instances than any of the xor-minisat-variants. The use of the xor-reasoning
module does not reduce the number of heuristic decisions needed but does
not increase it either. This may be due to the highly regular and delinearized
structure of XORSAT instances.

5.3 Stream cipher Trivium

In this section, we present the results of the experimental of the third bench-
mark: a “known key-stream attack” on stream cipher Trivium modelled by
generating a small number of keystream bits (from one to twenty in the
benchmark) after 1152 initialization rounds. The 80-bit initial value vec-
tor is randomly generated and given in the problem instance. The 80-bit
key is left open. As the generated keystream bits are far fewer than the key
bits, a number of keys produce the same prefix with a high probability. The
structure of the Boolean circuit generated from Trivium suggests that xor-
reasoning may be beneficial. All Trivium instances contained either two or

62 5 EXPERIMENTAL RESULTS

Solver # Solved Time median (s) Decisions median
2clseq 37 - -
cryptominisat 7 - -
EqSatz 96 0.85 3451
lsat 96 0.00 0
march_eq 0 - -
minisat 96 10.06 549750
moRsat 0 - -
xor-minisatemif 96 17.08 624424
xor-minisatemit 96 17.12 624424
xor-minisatefsf 96 19.40 721610
xor-minisatefst 96 19.40 721610
xor-minisatefif 96 32.10 1162048
xor-minisatefit 96 32.13 1162048
xor-minisatemsf 96 15.97 609030
xor-minisatemst 96 15.93 609030
xor-minisatpmif 90 25.68 1433932
xor-minisatpmit 92 26.84 1525869
xor-minisatpfsf 79 33.14 1779888
xor-minisatpfst 79 33.20 1779888
xor-minisatpfif 89 26.80 1502614
xor-minisatpfit 89 26.76 1502614
xor-minisatpmsf 84 24.56 1353987
xor-minisatpmst 84 24.17 1294190

Figure 35: Regular XORSAT benchmark results (satisfiable, 96 instances)

5 EXPERIMENTAL RESULTS 63

Solver # Solved Time median (s) Decisions median
2clseq 0 - -
cryptominisat 15 - -
EqSatz 39 - -
lsat 96 0.00 0
march_eq 0 - -
minisat 96 24.71 6887774
moRsat 0 - -
xor-minisatemif 91 144.92 24605620
xor-minisatemit 91 145.24 24605620
xor-minisatefsf 96 34.55 6869888
xor-minisatefst 96 34.59 6869888
xor-minisatefif 91 127.06 21463326
xor-minisatefit 91 126.84 21463326
xor-minisatemsf 96 37.60 7253954
xor-minisatemst 96 37.61 7253954
xor-minisatpmif 90 146.75 38852266
xor-minisatpmit 90 146.70 38852266
xor-minisatpfsf 96 31.59 9433134
xor-minisatpfst 96 31.61 9433134
xor-minisatpfif 90 142.97 40543844
xor-minisatlfit 90 143.09 40543844
xor-minisatpmsf 96 29.90 8808420
xor-minisatpmst 96 30.03 8808420

Figure 36: Regular XORSAT benchmark results (unsatisfiable, 96 instances)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.1 1 10 100 1000 10000

#
 s

o
lv

e
d

time (s)

xor-minisat
emst

2clseq
cryptominisat

eqsatz
lsat

minisat

Figure 37: Number of solved satisfiable regular XORSAT instances w.r.t time

64 5 EXPERIMENTAL RESULTS

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 1000 1e+06

#
 s

o
lv

e
d

decisions

xor-minisat
emst

2clseq
cryptominisat

eqsatz
lsat

minisat

Figure 38: Number of solved satisfiable regular XORSAT instances w.r.t de-
cisions

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.1 1 100

#
 s

o
lv

e
d

time (s)

xor-minisat
emst

cryptominisat
eqsatz

lsat
minisat

Figure 39: Number of solved unsatisfiable regular XORSAT instances w.r.t
time

5 EXPERIMENTAL RESULTS 65

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 1000 1e+06 1e+09

#
 s

o
lv

e
d

decisions

xor-minisat
emst

cryptominisat
eqsatz

lsat
minisat

Figure 40: Number of solved unsatisfiable regular XORSAT instances w.r.t
decisions

three large clusters of xor-clauses. For instance, if the number of clusters
is three, each cluster had 2600–2900 xor-clauses involving 3500–3800 vari-
ables. The cnf-part contains typically 8000–8600 or-clauses involving 5250–
5700 variables. In Figure 41 there is a comparison of the solvers and xor-
minisat-variants. The solvers moRsat, march_eq and minisat perform best in
the comparison. The solvers 2clseq, EqSatz, lsat, and cryptominisat and all
xor-minisat-variants using postponed xor-propagation manage to solve fewer
instances. The number of solved Trivium instances with respect to solving
time is shown in Figure 42. Figure 43 shows the number of heuristic deci-
sions needed to solve Trivium instances with different solvers. It seems that
the hybrid approach of combining conflict-driven clause learning with look-
ahead decision heuristics employed by moRsat is effective in solving Trivium
instances. The preprocessing of the xor-part and look-ahead techniques done
by march_eq seem to work well in Trivium benchmark, too. In most cases,
minimizing reason sets does not have any effect on the length of the search.
However, some of the Trivium instances are big enough to demonstrate that
removing redundant literals from reason sets does make a difference. As the
xor-part is overwhelming in Trivium instances, postponed xor-propagation
performs poorly as expected. Minimal xor-propagation combined with hid-
ing xor-internal variables from the SAT solver works best with Trivium in-
stances. The unmodified version of minisat is faster with small instances, but
as bigger instances are solved, xor-minisat starts to perform better than regular
minisat.

66 5 EXPERIMENTAL RESULTS

Solver # Solved Time median (s) Decisions median
2clseq 101 - -
cryptominisat 554 25.69 10594
EqSatz 546 114.70 258
lsat 25 - -
march_eq 627 5.81 479
minisat 579 6.76 10290
moRsat 639 2.63 4108
xor-minisatemif 607 23.52 2198
xor-minisatemit 610 23.09 2142
xor-minisatefsf 594 59.12 3977
xor-minisatefst 597 60.55 3977
xor-minisatefif 587 42.67 3197
xor-minisatefit 589 42.83 3197
xor-minisatemsf 600 36.09 2905
xor-minisatemst 608 27.06 2184
xor-minisatpmif 343 57.31 3643179
xor-minisatpmit 342 66.43 4005323
xor-minisatpfsf 387 108.93 23756148
xor-minisatpfst 387 111.76 23756148
xor-minisatpfif 351 106.77 3688900
xor-minisatlfit 351 105.23 3688900
xor-minisatpmsf 392 94.51 22494246
xor-minisatpmst 390 95.10 22768119

Figure 41: Trivium benchmark results (640 instances)

 160

 320

 480

 640

 0.1 1 100 10000

#
 s

o
lv

e
d

time (s)

xor-minisat
emst

2clseq
cryptominisat

eqsatz
march_eq

minisat
moRsat

lsat

Figure 42: Number of solved Trivium instances w.r.t time

5 EXPERIMENTAL RESULTS 67

 0

 100

 200

 300

 400

 500

 600

 700

 1000 1e+06

#
 s

o
lv

e
d

decisions

xor-minisat
emst

2clseq
cryptominisat

eqsatz
march_eq

minisat
moRsat

lsat

Figure 43: Number of solved Trivium instances w.r.t decisions

6 CONCLUSIONS

The research problem studied in this report is to find an effective method
for solving an important class of the propositional satisfiability problem: to
decide whether the variables of a propositional formula consisting of a con-
junction of or-clauses and xor-clauses can be assigned in such a way that
the formula evaluates to “true”. Such problems, arising in application do-
mains such as logical cryptanalysis and circuit verification, make modern
SAT solvers scale poorly due to parity constraints (xor-clauses) occurring in
problem descriptions.

The research problem is addressed by a novel approach taking advan-
tage of the strengths of continuously improving SAT technology through
the use of a solver module that decides satisfiability of a conjunction of xor-
clauses. Such a solver module is integrateable to existing and future conflict-
driven clause learning SAT solvers through a minimal interface according the
DPLL(T) framework. In order to support conflict-driven clause learning, the
solver module has to be able to explain how truth values for variables are de-
duced. The use of DPLL-based search methods suggests that computational
operations of the solver module should be carried out in an incremental and
backtrackable fashion. In order to benefit from separating parity constraints
from CNF, the proof system of the solver module has to be stronger than unit
propagation in CNF. Due to extremely well fine-tuned algorithms and data
structures of modern SAT solvers, the solver module has to be fast in order to
enhance the performance of the SAT solver.

This report devises a xor-reasoning module for reasoning about satisfia-
bility of a conjunction of xor-clauses and develops alternatives for integrat-
ing the xor-reasoning module loosely according to the DPLL(T) framework
into a modern conflict-driven clause learning SAT solver minisat, resulting

68 6 CONCLUSIONS

in a hybrid solver xor-minisat. Due to the minimal interface presented, the
xor-reasoning module is likely to be easily integrated to many SAT solvers
with reasonable effort. The xor-reasoning module enhances the search by
inferring truth values for variables and explaining how the truth values are
deduced when necessary. The inference rules of the xor-reasoning module
and strategies for handling variables that occur only in the xor-clauses of the
problem instances are presented. Alternative ways for computing clausal ex-
planations for conflicts and a method for minimizing such explanations are
introduced. Various alternatives for integrating the xor-reasoning module to
a SAT solver are discussed ranging from computing all computable logical
consequences in the xor-reasoning module whenever possible to postponing
the use of the xor-reasoning module until a model for the cnf-part of the prob-
lem instance is found. Possibilities for using clausal explanations provided by
the xor-reasoning module in the SAT solver are presented.

We have developed a prototype implementation of the xor-reasoning mod-
ule and integrated it into minisat, a simple yet efficient conflict-driven SAT
solver. Computational operations of the xor-reasoning module are performed
incrementally. The state of the xor-reasoning module can be stored and re-
stored without significant computational overhead and unbearable increase
in the use of memory. We evaluated the applicability of our approach ex-
perimentally on three benchmarks: known-plaintext attack on the block ci-
pher DES, randomly generated linear problems based on 3-regular bipar-
tite graphs, and known-keystream attack on the stream cipher Trivium. The
benchmarks contain instances with a substantial amount of xor-clauses to
exhibit the potential benefits of xor-reasoning but also instances with few
xor-clauses to demonstrate that the xor-reasoning module does not hinder
the performance of the SAT solver even when it cannot reduce the number
of heuristic decisions in the search. The results are promising as the number
of heuristic decisions decreases with the help of the xor-reasoning module.
Also, even though we believe there is still potential for improvement in data
structures and algorithms of the proof-of-concept implementation, the solv-
ing times are comparable and on some larger instances the SAT solver minisat
enhanced with xor-reasoning performs better than the unmodified version of
minisat.

Our study on the research problem proposes further questions. The effect
of the use of the xor-reasoning module on the decision heuristics of the SAT
solver is an interesting subject. In principle, deduction performed by the SAT
solver can be simulated in the xor-reasoning module when the constraints are
encoded appropriately, so the number of heuristic decisions needed to solve
an instance should be lower on average when the xor-reasoning module is
used. This is the case typically, but on some instances our solver xor-minisat
requires more heuristic decisions than the unmodified solver minisat. We
believe that the decision heuristics employed by the SAT solver may cause
this phenomenon.

We have introduced two methods for computing clausal explanations for
conflicts in the xor-reasoning module that are likely to perform well. Com-
paring these to other methods like the method based on all-UIP-cuts pre-
sented in Section 3.7 is an interesting topic for future work.

An adaptive approach for performing xor-reasoning only when it is likely

6 CONCLUSIONS 69

to be beneficial according to a heuristic function could be a viable addition
to the xor-propagation strategies proposed in this report. The presented xor-
propagation strategies give an initial understanding of when xor-reasoning
is beneficial to be performed and work fairly well on average. However, ac-
cording to our experimental study, each xor-propagation strategy has a certain
class of problems in which it performs best, that is, the optimal xor-reasoning
strategy depends on the instance being solved.

Another interesting question is whether the search of the hybrid solver can
be enhanced further by preprocessing the problem description, in particular,
if more xor-clauses can be extracted from the problem description before the
actual search. The solver march_eq does extensive preprocessing on the xor-
clauses before starting the search. It is not evident whether preprocessing
contributes to the effectiveness of the search method, but march_eq performs
well with the Trivium benchmark so addressing how the xor-clauses could be
preprocessed in order to enhance the overall performance of xor-minisat is a
potential subject for future work.

Also, while performing promisingly well with regard to solving time, our
proof-of-concept implementation still leaves room for algorithmic improve-
ments which might make the approach presented in this report even more
appealing.

Acknowledgements
I wish to thank Prof. Ilkka Niemelä and Docent Tommi Junttila for their
insightful guidance. The report is based on my Master’s thesis [20]. The
financial support of the Academy of Finland (project 122399) is gratefully
acknowledged.

REFERENCES

[1] Data encryption standard. U. S. Department of Commerce, National
Bureau of Standards, 1977.

[2] Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time
algorithm for testing the truth of certain quantified boolean formulas.
Information Processing Letters, 8(3):121–123, 1979.

[3] Gilles Audemard and Lakhdar Sais. Circuit based encoding of CNF
formula. In Marques-Silva and Sakallah [24], pages 16–21.

[4] Fahiem Bacchus. Enhancing Davis Putnam with extended binary
clause reasoning. In Proceedings of the 18th AAAI Conference on Arti-
ficial Intelligence (AAAI-2002), pages 613–619. AAAI Press, 2002.

[5] Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli.
Satisfiability Modulo Theories, chapter 26, pages 825–885. Volume 185
of Biere et al. [8], February 2009.

[6] Peter Baumgartner and Fabio Massacci. The taming of the (X)OR.
In John W. Lloyd, Verónica Dahl, Ulrich Furbach, Manfred Kerber,
Kung-Kiu Lau, Catuscia Palamidessi, Luís Moniz Pereira, Yehoshua

70 REFERENCES

Sagiv, and Peter J. Stuckey, editors, Computational Logic, volume 1861
of Lecture Notes in Computer Science, pages 508–522. Springer, 2000.

[7] Armin Biere. Picosat essentials. Journal on Satisfiability, Boolean Mod-
eling and Computation, 4(2-4):75–97, 2008.

[8] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh,
editors. Handbook of Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications. IOS Press, February 2009.

[9] Christophe De Cannière. Trivium: A stream cipher construction in-
spired by block cipher design principles. In Sokratis K. Katsikas, Javier
Lopez, Michael Backes, Stefanos Gritzalis, and Bart Preneel, editors,
Information Security, 9th International Conference, ISC 2006, Samos
Island, Greece, August 30 - September 2, 2006, Proceedings, volume
4176 of Lecture Notes in Computer Science, pages 171–186. Springer,
2006.

[10] J. Chen. Building a hybrid SAT solver via conflict-driven, look-ahead
and XOR reasoning techniques. In Oliver Kullmann, editor, Theory
and Applications of Satisfiability Testing - SAT 2009, 12th International
Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceed-
ings, volume 5584 of Lecture Notes in Computer Science, pages 298–
311. Springer, 2009.

[11] Martin Davis, George Logemann, and Donald Loveland. A machine
program for theorem-proving. Communications of the ACM, 5(7):394–
397, 1962.

[12] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In En-
rico Giunchiglia and Armando Tacchella, editors, SAT, volume 2919
of Lecture Notes in Computer Science, pages 502–518. Springer, 2003.

[13] H. Haanpää, M. Järvisalo, P. Kaski, and I. Niemelä. Hard satisfiable
clause sets for benchmarking equivalence reasoning techniques. Jour-
nal on Satisfiability, Boolean Modeling and Computation, 2(1-4):27–
46, 2006.

[14] Marijn Heule, Mark Dufour, Joris van Zwieten, and Hans van Maaren.
March_eq: Implementing additional reasoning into an efficient look-
ahead SAT solver. In Hoos and Mitchell [17], pages 345–359.

[15] Marijn Heule and Hans van Maaren. Aligning cnf- and equivalence-
reasoning. In Hoos and Mitchell [17], pages 145–156.

[16] Marijn Heule and Hans van Maaren. Look-ahead based SAT solvers.
In Biere et al. [8], pages 155–184.

[17] Holger H. Hoos and David G. Mitchell, editors. Theory and Applica-
tions of Satisfiability Testing, 7th International Conference, SAT 2004,
Vancouver, BC, Canada, May 10-13, 2004, Revised Selected Papers,
volume 3542 of Lecture Notes in Computer Science. Springer, 2005.

REFERENCES 71

[18] Paul Jackson and Daniel Sheridan. Clause form conversions for
boolean circuits. In Hoos and Mitchell [17], pages 183–198.

[19] Matti Järvisalo and Tommi Junttila. Limitations of restricted branching
in clause learning. In Christian Bessiere, editor, Proceedings of the
13th International Conference on Principles and Practice of Constraint
Programming (CP 2007), volume 4741 of Lecture Notes in Computer
Science, pages 348–363. Springer, 2007.

[20] Tero Laitinen. Extending SAT solvers with parity constraints. Master’s
thesis, Aalto University School of Science and Technology, submitted,
2010.

[21] Tero Laitinen. XOR satisfiability solver module for DPLL integration.
Student Project in Theoretical Computer Science, Aalto University
School of Science and Technology, submitted, 2010.

[22] C. M. Li. Integrating equivalency reasoning into Davis-Putnam pro-
cedure. In Proceedings of the Seventeenth National Conference on
Artificial Intelligence and Twelfth Conference on Innovative Applica-
tions of Artificial Intelligence, pages 291–296. AAAI Press / The MIT
Press, 2000.

[23] Panagiotis Manolios and Daron Vroon. Efficient circuit to CNF con-
version. In Marques-Silva and Sakallah [24], pages 4–9.

[24] João Marques-Silva and Karem A. Sakallah, editors. Theory and Appli-
cations of Satisfiability Testing - SAT 2007, 10th International Confer-
ence, Lisbon, Portugal, May 28-31, 2007, Proceedings, volume 4501 of
Lecture Notes in Computer Science. Springer, 2007.

[25] João Marques-Silva. Practical applications of boolean satisfiability. In
Proceedings of the 9th International Workshop on Discrete Event Sys-
tems (WODES’08), pages 74–80. IEEE Press, 2008.

[26] Fabio Massacci and Laura Marraro. Logical cryptanalysis as a SAT
problem. Journal of Automated Reasoning, 24(1/2):165–203, 2000.

[27] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik. Chaff: Engineering an efficient SAT solver. In
Proceedings of the 38th Design Automation Conference, DAC 2001,
Las Vegas, NV, USA, June 18-22, 2001, pages 530–535. ACM, 2001.

[28] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving
SAT and SAT modulo theories: From an abstract Davis–Putnam–
Logemann–Loveland procedure to DPLL(T). Journal of the ACM,
53(6):937–977, 2006.

[29] Richard Ostrowski, Éric Grégoire, Bertrand Mazure, and Lakhdar Sais.
Recovering and exploiting structural knowledge from CNF formulas.
In Pascal Van Hentenryck, editor, Principles and Practice of Constraint
Programming - CP 2002, 8th International Conference, CP 2002,
Ithaca, NY, USA, September 9-13, 2002, Proceedings, volume 2470 of
Lecture Notes in Computer Science, pages 185–199. Springer, 2002.

72 REFERENCES

[30] Christos M. Papadimitriou. Computational complexity. Addison-
Wesley, Reading, Massachusetts, 1994.

[31] Mukul R. Prasad, Armin Biere, and Aarti Gupta. A survey of recent
advances in SAT-based formal verification. Journal on Software Tools
for Technology Transfer, 7(2):156–173, 2005.

[32] João P. Marques Silva and Karem A. Sakallah. GRASP - a new search
algorithm for satisfiability. In Proceedings of the 1996 International
Conference on Computer-Aided Design, November 10-14, 1996, San
Jose, CA, USA, pages 220–227. ACM and IEEE Computer Society,
1996.

[33] M. Soos, K. Nohl, and C. Castelluccia. Extending SAT solvers to cryp-
tographic problems. In Oliver Kullmann, editor, Theory and Appli-
cations of Satisfiability Testing - SAT 2009, 12th International Confer-
ence, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings,
volume 5584 of Lecture Notes in Computer Science, pages 244–257.
Springer, 2009.

[34] Niklas Sörensson and Armin Biere. Minimizing learned clauses. In
Oliver Kullmann, editor, Theory and Applications of Satisfiability Test-
ing - SAT 2009, 12th International Conference, SAT 2009, Swansea,
UK, June 30 - July 3, 2009. Proceedings, volume 5584 of Lecture Notes
in Computer Science, pages 237–243. Springer, 2009.

[35] William Stallings. Cryptography and Network Security: Principles and
Practice. Pearson Education, 2002.

[36] Endre Süli and David Francis Mayers. An Introduction to Numerical
Analysis. John Wiley & Sons, 1989.

[37] G. S. Tseitin. On the complexity of derivations in the propositional
calculus. Studies in Mathematics and Mathematical Logic, Part II:115–
125, 1968.

[38] Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad
Malik. Efficient conflict driven learning in boolean satisfiability solver.
In Proceedings of the 2001 International Conference on Computer-
Aided Design, November 4-8, 2001, San Jose, CA, USA, pages 279–
285. ACM, 2001.

[39] Lintao Zhang and Sharad Malik. The quest for efficient boolean sat-
isfiability solvers. In Andrei Voronkov, editor, Automated Deduction
- CADE-18, 18th International Conference on Automated Deduction,
Copenhagen, Denmark, July 27-30, 2002, Proceedings, volume 2392 of
Lecture Notes in Computer Science, pages 295–313. Springer, 2002.

REFERENCES 73

TKK REPORTS IN INFORMATION AND COMPUTER SCIENCE

TKK-ICS-R22 Antti E. J. Hyvärinen, Tommi Junttila, Ilkka Niemelä

Partitioning Search Spaces of a Randomized Search. November 2009.

TKK-ICS-R23 Matti Pöllä, Timo Honkela, Teuvo Kohonen
Bibliography of Self-Organizing Map (SOM) Papers: 2002–2005 Addendum.
December 2009.

TKK-ICS-R24 Timo Honkela, Nina Janasik, Krista Lagus, Tiina Lindh-Knuutila, Mika Pantzar, Juha Raitio

Modeling communities of experts. December 2009.

TKK-ICS-R25 Jani Lampinen, Sami Liedes, Kari Kähkönen, Janne Kauttio, Keijo Heljanko

Interface Specification Methods for Software Components. December 2009.

TKK-ICS-R26 Kari Kähkönen

Automated Test Generation for Software Components. December 2009.

TKK-ICS-R27 Antti Ajanki, Mark Billinghurst, Melih Kandemir, Samuel Kaski, Markus Koskela, Mikko

Kurimo, Jorma Laaksonen, Kai Puolamäki, Timo Tossavainen
Ubiquitous Contextual Information Access with Proactive Retrieval and Augmentation.
December 2009.

TKK-ICS-R28 Juho Frits

Model Checking Embedded Control Software. March 2010.

TKK-ICS-R29 Miki Sirola, Jaakko Talonen, Jukka Parviainen, Golan Lampi

Decision Support with Data-Analysis Methods in a Nuclear Power Plant. March 2010.

TKK-ICS-R30 Teuvo Kohonen

Contextually Self-Organized Maps of Chinese Words. April 2010.

TKK-ICS-R31 Jefrey Lijffijt, Panagiotis Papapetrou, Niko Vuokko, Kai Puolamäki

The smallest set of constraints that explains the data: a randomization approach. May 2010.

ISBN 978-952-60-3223-8 (Print)

ISBN 978-952-60-3224-5 (Online)

ISSN 1797-5034 (Print)

ISSN 1797-5042 (Online)

