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ABSTRACT: The quantitative steganalysis problem aims at estimating the
amount of payload embedded inside a document. In this paper, JPEG im-
ages are considered, and by the use of a re-embedding based methodology, it
is possible to estimate the number of original embedding changes performed
on the image by a stego source and to slightly improve the estimation regard-
ing classical quantitative steganalysis methods. The major advance of this
methodology is that it also enables to obtain a confidence interval on this
estimated payload. This confidence interval then permits to evaluate the dif-
ficulty of an image, in terms of steganalysis by estimating the reliability of the
output. The regression technique comes from the OP-ELM and the relia-
bility is estimated using linear approximation. The methodology is applied
with a publicly available stego algorithm, regression model and database of
images. The methodology is generic and can be used for any quantitative
steganalysis problem of this class.

KEYWORDS: Steganography, Steganalysis, OP-ELM, Quantitative Steganal-
ysis, Re-embedding, Inner Image Difficulty
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1 INTRODUCTION

The classical goal of steganalysis is to detect whether a document (considered
to be images, here) has been tampered with or not. While this detection is
important, one can wish to obtain more information about the actual payload
present in the image. This problem is addressed by quantitative steganalysis:
it estimates the embedded payload, usually by estimating directly the number
of embedding changes that have been made to the image in the first place.
An initial approach to this has been proposed in [6, 13]. Such a problem has
been addressed recently for example by the use of classical blind steganaly-
sis features such as [5]: the knowledge of the stego algorithm is supposed to
be given, following Kerckhoff’s principles [8] — or inferred by some usual
means of blind steganalysis [11, 12] for example —, and the problem of pay-
load estimation comes down to a regression problem, with the output being
the payload to predict and inputs being the blind steganalysis features. In a
recent paper, this regression has been achieved through the use of Ordinary
Least Squares (OLS) and Support Vector Regression (SVR) [13].

In such a setup, it is assumed that one can use the identified stego al-
gorithm in order to train an OLS or SVR model, for example on a known
dataset. Such a model can then be used on new unknown images (the in-
tercepted images on a specific channel) to estimate a possible embedded
payload.

Although this usually leads to a good estimation, it is interesting to also
have a confidence interval on such estimation, which gives information on
the quality of the estimation as well as the possible “difficulty” of the consid-
ered image (reliability), i.e. the reliability of the output.

This problem of image reliability is important for future steganography.
Indeed, in the case where a specific image is known to be “difficult”, a
steganographer will prefer using it, knowing that it is more likely to be mis-
classified or have a payload estimation that is unreliable. In [14], the authors
propose to estimate the embedding capacity of the image beforehand, in or-
der to embed the payload into the possibly most appropriate images. Such
an approach, combined with reliability estimation can lead to more secure
steganography. For example, the estimation of the difficulty of the image
could be a starting point to perform batch steganography by embedding a
payload function of the difficulty of the image.

This idea of image difficulty was first related to the error in steganaly-
sis in the work of Böhme [2]. In this paper, the authors define a two-error
model for the quantitative steganalysis setup, with a within-image error and
a between-image one. The between-image error relates to the possible inac-
curate assumptions made on the cover image and is thus related to images as
a whole.

The within-image error is highly related to the concept of difficulty used in
this paper and attempts to take into account the errors caused by the possible
dependencies between a cover image and the message embedded in it.

In the original paper, the authors illustrate through the use of numerous
types of steganalysis on a LSB replacement steganography scheme that the
between-image error and the within-image error are quite different in nature:
the between-image error follows rather closely that of a Student’s t distribu-
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tion, while the within-image error is similar to a Gaussian one. It also seems
that some of the steganalysis schemes tested by the authors are more prone
to one type of error than the other.

The within-image error is related in [2] to a measure of the local variance
of the image, introduced in the paper and computed over the original im-
age. The concept of difficulty and the measure for it proposed in section 2
are tightly related to the within-image error and uses multiple repetitions of
steganography with different messages on the same image. One main differ-
ence here is that a blind approach is used to determine it, i.e. it is assumed
that the original image is not available and it is only possible to rely on the
intercepted suspicious image.

In this paper, a methodology applicable to any stego algorithm is proposed
in order to devise a confidence interval on the provided estimation of the
original embedding rate, by using re-embeddings on the considered image.
Using this methodology, it is possible to obtain:

� A better estimate of the original embedding rate used on an intercepted
suspicious image which is tantamount to the number of embedding
changes or the initial number of non-zero AC coefficients;

� An estimate of the original number of non-zero AC coefficients of the
genuine image (and hence, from the embedding rate and this, the
number of embedding changes);

� An estimated confidence interval on the embedding rate and on the
number of non-zero AC coefficients;

� Using the confidence interval, a measure of the “difficulty” of the im-
age.

Follows a description of the methodology, in section 2, and a set of experi-
ments on 700 images in section 3.

2 METHODOLOGY

The following methodology is described for a single image, for the sake of
simplicity of notations.

In the following, the embedding rate is defined as the ratio R between
the number of embedding changes E and the number of non-zero AC coef-
ficients A: R = E

A
.

Assume that we have intercepted an image Io coming from a suspicious
source, as in Figure 2, with a payload embedded Po, which will be in the
following assimilated to the number of embedding changes Eo performed on
Io.

8 2 METHODOLOGY



Suspicious Image

Multiple 
re-embeddings
methodology

Inner Image Di�culty

Original Embedding Rate

Figure 1: Suspicious image Io with unknown payload Po, assimilated to the
number of embedding changes made in the image Eo, by a stego algorithm
S. The proposed methodology gives an estimate of Eo and of the inner image
difficulty.

According to Kerckhoffs’ principle [8], the stego algorithm S can be con-
sidered known; if not, it can be devised by the means of blind steganalysis,
using multi-class classifiers [5], for example.

A model M that estimates the embedding rates R is first trained on a
given training set for which the embedding rates are known. This model is
supposed to be available in the following.

2.1 Re-embedding concept

In this paper we propose to use the re-embedding idea to embed again some
information inside the considered image Io. The rationale here is to assume
that the reliability of the estimation of the initial embedding rate is function
of the reliability after multiple re-embeddings. Multiple such re-embedding
with different sizes provide images with a larger embedding rate, of which a
part is known. The global idea of the re-embedding and its use in this paper
is illustrated in Figure 2.1.

Features Estimates
Emb. RateUnknown

Embedding
Rate

Model

Model

Model

Figure 2: The Re-embedding concept: the original image Io supposedly hav-
ing a payload with embedding rate Ro is duplicated N times (N = 3 here)
and payloads with number of embedding changes Ei are embedded in it.
Features are extracted from each duplicate image (with additional embed-
ding changes) and the previously built modelM is used on these features to
devise the final embedding rate R̂i.

Consider the intercepted image Io; the idea is to make a known amount Ei

of new embedding changes to Io. This process is repeated N times {Ei, 1 ≤
i ≤ N} on the image Io, in order to obtain a set of images {Ii, 1 ≤ i ≤ N}
for each of which Ei re-embedding changes are performed.
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After this re-embedding procedure, the actual embedding rate for image
Ii is approximated as

Ri =
Eo + Ei

Ao

= Ro +
1

Ao

Ei, (1)

with Eo and Ao the number of embedding changes and the number of non-
zero AC coefficients in the considered image Io, respectively (the sender of
the suspicious image Io has caused Eo embedding changes). It is assumed in
this context that the number of non-zero AC coefficients A might vary due
to an embedding. Some stego algorithms attempt to not modify this quantity,
though.

In order to illustrate that Eq. 1 is a good approximation for low Eo and
Ei, let us introduce two additional notations: the total number of pixels in
the image I , Npix(I) and the real total number of embedding changes E tot

i ,
measured between the original “clean” image I and the image Ii for which
re-embedding with Ei embedding changes has been performed.

If the stego algorithm S is assumed to modify directly LSBs of pixels for
each embedding change to perform (no matrix encoding, for example), it is
possible to estimate the probability Ppix of a pixel to be modified by both the
first embedding (by the sender) and the re-embedding. Using these notations,
it is straightforward,

Ppix =
Eo

Npix(I)
× Ei

Npix(I)
. (2)

Figure 3 illustrates the validity of the approximation made by Eq. 1, for
small Eo + Ei (the experiment uses the nsF5 algorithm [15, 7]and Fridrich’s
extended DCT calibrated features [5]). Note that the plot of Eo + Ei −
Ppix (Eo + Ei) would be barely distinguishable from that of Eo + Ei here,
due to Ppix � 1. This is the case when the assumptions on Eo and the
range of Ei made in this paper are met: "low" Eo (compared to Npix) and a
controlled small range for Ei. In the event of a careless steganographer (Eo

exceptionally large) for example, this result might not hold as well as here.
In addition, the absolute error made by the approximation of Eq. 1 ver-

sus the number of re-embedding changes Ei is depicted on Figure 4 for one
image (the behavior is the same for all 700 images used in this paper). Con-
sequently, the larger Ei, the more probable it is that some “overlap” happens,
between the initial embedding changes Eo and the re-embeddings Ei, which
is expected from Eq. 2.

The rationale in this paper is that the sender is not careless about the
embedding rate used and that the number of re-embedding changes Ei are
controlled in a certain range. With these assumptions, Eq. 1 is a reasonable
approximation.

Then, in the very same way as that of the quantitative steganalysis, it is pos-
sible to obtain an estimation of the Ri, using a previously trained regression
model M. Denoting Xi = (x1

i , . . . , x
d
i ) the d-dimensional feature vector

extracted for image Ii, one gets the predicted embedding rate R̂i = M(Xi).
From Eq. 1 comes

R̂i = Ro +
1

Ao

Ei + εi, (3)
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Figure 3: Approximated number of total embedding changes by Eq. 1, Eo +
Ei, versus the real total number of embedding changes Etot. The solid line
denotes the case where (Eo + Ei) = Etot exactly. The plot of Eo + Ei −
Ppix (Eo + Ei) is not distinguishable from that of Eo + Ei and is not depicted
here. This experiment uses the nsF5 stego algorithm [15, 7].
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Figure 4: Absolute Error on the total number of embedding changes
abs (Etot − (Eo + Ei)) versus the number of re-embedding changes Ei.
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with εi the error made in the estimation of Ri. It is assumed in the fol-
lowing that the εi are independent from each other and from the Ei, for
simplicity.

2.2 Confidence interval estimation

Since both quantities R̂i and Ei are known, the confidence interval and the
estimation of the original embedding rate R̂o can then be obtained by solving
the linear system

Eo

Ao

+
1

Ao

E = R̂, (4)

with R̂ = (R̂1, . . . , R̂N)T the vector holding the estimations made by model
M and E = (E1, . . . , EN)T the vector of the embedding changes performed.

This system is solved in a Least Squares sense, by minimizing ‖ ε ‖2,
where ε = (ε1, . . . , εN)T , which comes down to the problem

min
α,β

∥∥∥α + β · E− R̂
∥∥∥2

, (5)

with α = Eo

Ao
and β = 1

Ao
. This is solved by a classical pseudo-inverse

formulation.
The constant term in the minimization problem is the original rate Ro

for which we will obtain “an estimate” R̂o , along with a confidence interval
on the value R̂o, denoted

[
R̂INF

o , R̂SUP
o

]
. This confidence interval is obtained

using the Matlab® function regress, which uses a Student’s t score, as
described in [4]: R̂INF

o is obtained by

R̂INF
o = R̂o − tα/2,ν σ̂

(
R̂o

)
, (6)

where tα/2,ν is the t score (inverse Student t cdf) with parameter α/2 (for a
100(1−α)% confidence interval) with ν degrees of freedom (here ν = N−2),
and σ̂(R̂o) is the estimated standard deviation of R̂o. The upper bound R̂SUP

o

is computed similarly, and the confidence interval for the first order term also
(please refer to [4] for the derivations). One can also obtain the number of
non-zero AC coefficients Ao when solving the system, and hence recover the
original number of embedding changes Eo.

This is illustrated on a set of images in the experiments section 3.

2.3 Estimation of the inner image difficulty

The inner difficulty of the image can be represented as the variation of the
predictions for a given original embedding rate Eo when the embedding key,
or the embedded message fluctuates (similarly to [2]). Note that this variation
is solely due to the characteristics of the cover image. Consequently our
rationale is to measure the image difficulty as the standard deviation of the
error performed for various embeddings on this image (no re-embeddings).

12 2 METHODOLOGY



That is, for a genuine image I , L different embeddings are performed
with different number of embedding changes {EO

i , 1 ≤ i ≤ L}. The error
εO

i between the estimated value of the embedding rate R̂O
i (by model M)

and the true value RO
i is then defined as εO

i = RO
i − R̂O

i .
The standard deviation of this quantity over the L different realizations is

the proposed measure of the inner image difficulty D for image I :

DI = std
(
εO

)
, (7)

with εO =
(
εO
1 , . . . , εO

L

)T .
In order to show that the estimated confidence interval gives information

on the inner image difficulty, through the re-embeddings, the quantity DI in-
herent to each image I , is compared to the width of the estimated confidence
interval for R̂o.

A dependence between the two proves the width of the estimated confi-
dence interval can be used as an indicator of the image difficulty measured
by DI .

Note that the calculation of DI for an image requires the use of the gen-
uine image, which is not accessible in practice. In the following, these L
embeddings on the cover image are referred to as “original embeddings”.

The following section presents results for this methodology with publicly
available algorithms and images.

3 RESULTS

For the following experiments, 700 images picked at random from the BOWS2
database have been used [1], with L = 100 repetitions for the estimation of
the image difficulty DI and N = 1500 repetitions for the re-embeddings.

For each of the 700 images, initial embedding rates (supposed to be the
embedding rate in the intercepted suspicious image) uniformly selected be-
tween 0 and 30% are used.

Re-embeddings follow the same range of rates, leading to final embedding
rates Ri between 0 and about 50% for the Ii. The stego algorithm used in the
experiments is nsF5 [15, 7].

In this paper, the model M used for the regression is an OP-ELM [10]
(the toolbox from http://www.cis.hut.fi/projects/eimlwas used), which
is a feedforward neural network using random projections. It has the advan-
tage of performing very well (with similar performances to state of the art Ma-
chine Learning techniques such as Support Vector Machines) while keeping
a rather low computational time. The OP-ELM optimizes the Mean Square
Error. Default parameters (Linear, Sigmoid and Gaussian kernels, 300 max-
imum number of kernels) have been used for the experiments.

The OP-ELM modelM is used on the 274 DCT-based features extracted
from image Io [5] augmented by the number of non-zero DCT coefficients
of the image Io.

3 RESULTS 13
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Figure 5: Plot of the estimated embedding rate R̂i versus the number of
embedding changes Ei, for one image. From Eq. 5, the slope gives the
β = 1

Ao
term while the value for Ei −→ 0 gives the α = Eo

Ao
term.

3.1 Estimation of the original embedding rate R̂o

First, Figure 5 illustrates the solution of Eq. 5 for one image only (the behav-
ior is the same for all images): by solving the linear system in a Least Squares
sense, the values of β = 1

Ao
(the slope) and α = Eo

Ao
(estimated embedding

rate for Ei −→ 0) are devised. Here, all N = 1500 values obtained for each
re-embedding are plotted.

In order to show that the minimization problem is correctly solved for the
whole range of embedding rates and for all 700 images, Figure 6 represents
the estimated value of the original embedding rate R̂o versus the real value
Ro. The actual Normalized Mean Square Error (NMSE) for the 700 im-
ages in this figure using the re-embeddings is 0.0330, while using the same
model M directly on each image (classical quantitative steganalysis, no re-
embedding) leads to a 0.0346 NMSE in this case.

Hence, using this methodology on the 700 images yields on average an
improvement of 5% of the NMSE for quantitative steganalysis.

It can be noted that the OP-ELM already performs very well [9] and the
nsF5 stego problem is easy enough, hence the difficulty to improve “radi-
cally” the performances obtained in the first place.

To investigate the influence of the number of re-embeddings N , a variable
number of re-embeddings has been used to establish Figure 7. It illustrates
the evolution of the NMSE using the re-embedding approach, with a varying
number of re-embeddings N . It is interesting to note that the error decreases
dramatically with the number of re-embeddings N in the beginning, until
the improvement becomes statistically insignificant, beyond N = 1000.

In fact, once there are enough samples (equations) in the system to solve
Eq. 4, new re-embeddings (and hence, new equations in the system) do not
provide sufficient additional information for the regression problem. Hence

14 3 RESULTS
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Figure 6: Plot of the estimated original embedding Rate R̂o through the re-
embeddings versus the original Ro, for all 700 images.
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the NMSE using the OP-ELM for classical quantitative steganalysis (no re-
embedding), and the straight dashed line the NMSE for an OLS model.
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(
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)
versus the width of the estimated confidence
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o − R̂INF

o .

the rather small improvement between 1000 and 1500 re-embeddings.

3.2 On the use of the width of the confidence interval

The confidence interval for the experiments has been set to 95% [3], and
calculated using the Matlab©regress function [4].

Following results make use of the width of the confidence interval on the
estimation of R̂o. The goal of this experiment is to establish a dependence
between the estimated confidence interval

[
R̂INF

o , R̂SUP
o

]
for the embedding

rate R̂o and the inner difficulty DI of the image I considered, in the first
place.

Figure 8 is a graph of the standard deviation of the error made on the
“original embeddings” DI = std

(
εO

)
versus R̂SUP

o − R̂INF
o .

There appears to be a dependence between the “difficulty” (as estimated
by the original embeddings), and the width of the confidence interval esti-
mated by the re-embedding approach. Indeed, one can say that the larger
is the estimated confidence interval for R̂o, the larger the probability of the
error and therefore the more probable the image is a difficult one.

The high correlation between the difficulty and the confidence interval
is not very easy to notice on Figure 7 because of the non-uniform distribu-
tion of the samples along the abscissa. In order to overcome this visualisation
drawback, a local average using the 30 nearest neighbors regarding the x-
coordinate is computed, the y coordinate being computed by the average of
y-coordinates the corresponding points. The result is depicted on Figure 9
where the relation between the estimated confidence interval and the diffi-
culty of the images is straightforward.

Figure 9 shows the evolution of this average versus the width of the esti-
mated confidence interval. In fact, if one considers the cloud of points of
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Figure 9: Plot of the mean of DI for the 30 nearest neighbors (with respect
to DI) versus the width of the estimated confidence interval.
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Figure 10: Plot of the variance of DI for the 30 nearest neighbors (with re-
spect to DI) versus the width of the estimated confidence interval.

Figure 8 as a “flat cone”, Figure 9 plots the evolution of the center of the
cone. It is then obvious that the larger the estimated confidence interval, the
more difficult is the image to handle in steganalysis, in terms of the criterion
DI (inner difficulty).

Finally, Figure 10 shows the evolution of the variance of DI for the 30
nearest neighbors for each image. The growth shows that the larger the con-
fidence interval, the more difficult it is to have an accurate estimation of the
difficulty. From Figures 9 and 10, we can conclude that the probability to get
a large DI is increasing with respect to the width of the calculated confidence
interval.
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4 CONCLUSION

In this paper, an approach based on multiple re-embeddings is used to esti-
mate in terms of quantitative steganalysis, the original embedding rate (and
the number of embedding changes) in an intercepted image. The proposed
methodology makes it possible to obtain a reliable estimation of this embed-
ding rate — with a small improvement in terms of accuracy —, along with a
confidence interval on this value.

The estimated confidence interval in turn enables the steganalyzer to mea-
sure the inherent difficulty of the image (reliability estimation), in terms of
classical quantitative steganalysis. Through the width of this confidence in-
terval, it becomes possible to rank the images of a database in terms of their
probability of difficulty for quantitative steganalysis, without possessing the
genuine images nor having any information on their being stego or genuine.

The proposed methodology has the advantage of being usable for any
stego algorithm (given the assumptions made in section 2) and any regres-
sion model. Future work will apply this methodology to other stego algo-
rithms (MMX, JPHS, Outguess, StegHide. . . ), a larger image database and
other regression models, such as SVR. Also, an analysis of the error εi (in
its relation to the embedding changes Ei and on the assumed independence
between the εi) could lead to a better modelisation and a more accurate esti-
mation of the embedding rate and hence of inner image difficulty.
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