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ABSTRACT: We consider the evaluation of approximate top-k queries from
relations with a-priori unknown values. Such relations can arise for example
in the context of expensive predicates, or cloud-based data sources. The task
is to find an approximate top-k set that is close to the exact one while keeping
the total processing cost low. The cost of a query is the sum of the costs of
the entries that are read from the hidden relation.

A novel aspect of this work is that we consider prior information about the
values in the hidden matrix. We propose an algorithm that uses regression
models at query time to assess whether a row of the matrix can enter the top-k
set given that only a subset of its values are known. The regression models
are trained with existing data that follows the same distribution as the relation
subjected to the query.

To evaluate the algorithm and to compare it with a method proposed pre-
viously in literature, we conduct experiments using data from a context sensi-
tive Wikipedia search engine. The results indicate that the proposed method
outperforms the baseline algorithms in terms of the cost while maintaining a
high accuracy of the returned results.

KEYWORDS: Query Processing, Nearest Neighbor Search, Machine Learn-
ing, Information Search and Retrieval
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1 INTRODUCTION

Databases are traditionally concerned with the task of efficiently retrieving a
set of tuples that match a given query. However, we can also rank the result
set according to some scoring function. Often especially the top-scoring tu-
ples of this ranking are of interest. A typical example of this are information
retrieval systems, as the user of a search engine is unlikely to be interested in
the entire ranking of results, but the first few items only. The idea of top-k
processing (see e.g. [6, 13, 22, 26, 21, 4, 20]) is to retrieve the k first results
of this ranking without computing the score for every matching document.
Most of existing work on top-k search focuses on the task of retrieving tuples
with the highest score according to a given scoring function f from a known
relation. In general f is assumed to be monotonic [6], and usually it is a
convex combination of the attribute values. Moreover, since the relation is
known, various indexing techniques can be applied to speed up the process-
ing. For a more in-depth discussion, see [15] for an excellent survey on the
topic.

In this paper we consider the top-k problem in a somewhat different sce-
nario that can be explained as follows. Suppose we have two people, A and
B. The personA has a vector ofm elements, while the personB has a matrix
of n rows and m columns. The task of person A is to find those k rows of this
matrix that have the highest inner product with her vector. However, B will
not reveal the matrix to A. Instead, A has to ask for the values of individual
cells one by one. Moreover, to each cell is associated a cost that A has to pay
before B reveals the value. These costs are known to A. How should A pro-
ceed in order to find the k highest scoring rows while keeping the total cost
of the process low? We also give A some additional information in the form
of examples of matrices that B has had in the past. Using these as training
data A can employ machine learning techniques to find out what elements
of the matrix to ask for.

In other words, we must apply a known linear ranking function (the vector
of person A) to a hidden relation (the matrix of person B) given knowledge
about the distribution of the values in the hidden relation. This is in contrast
to most of existing work where the relation is assumed to be known, and the
ranking function may vary. We also assume that the access costs are high:
reading the value of an entry in the matrix is computationally expensive. In
this paper we propose an algorithm that will find an approximate answer to a
top-k query while keeping the cost of the query low.

Since the contents of the hidden relation are unknown at the time the
query is issued, a solution can not rely on pre-built index structures. We do
assume, however, that all relations that we will encounter follow the same dis-
tribution, and that we can sample training data from this distribution. The al-
gorithm that we propose makes use of regression models to estimate whether
or not a row can belong to the top-k set after having observed only a subset
of its entries. Moreover, we can decrease the cost of the query by allowing
a small number of errors in the results. That is, we allow the algorithm to
return a set of documents that is not the exact top-k set. The results may miss
some high scoring documents, and respectively contain other documents
that do not belong to the exact top-k set.
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In practice this top-k problem can be motivated by the following design
of a context sensitive search engine [27], where a query is assumed to con-
sist of a set of terms and a context document. The context document can
be e.g. the page currently viewed by the user. To process the query we first
retrieve all documents that contain the query terms, and then describe each
of these by a feature vector that is a function of the context. The final score of
a document is given by the inner product of the feature vector with a scoring
vector. A context dependent feature could be e.g. a measure of textual simi-
larity between the context document and the document that is being ranked.
These context dependent features could be implemented as expensive pred-
icates. We can thus think that person B is hiding the feature vectors, and by
computing a feature we are asking for its value. The total cost we have to pay
reflects the computational overhead associated with finding out the values of
the features.

1.1 Related Work

We discuss related work from a number of different angles: databases, ap-
proximate nearest neighbor search, and learning theory.

Databases
A considerable amount of literature has been published about top-k process-
ing in the past years. For a thorough review we refer the reader to the survey
by Ilyas et. al. [15]. Usually the basic setting in these is slightly different than
the one taken in this paper. A common assumption is that the data is fixed,
and various pre-processing methods can be applied. Most well known of this
line of research is bound to be the work by Fagin and others related to the
threshold algorithm [6, 11, 23], and its variants, see e.g. [26, 4, 20]. The idea
is to sort each column of the relation in decreasing order of its values as a pre-
processing step. As a consequence tuples that have a high total score should
appear sooner in the sorted lists. We cannot make use of this approach, as it
requires reading all values of the input relation in order to do the sorting, or
alternatively data sources that directly provide the columns in sorted order,
neither of which we do not have at our disposal.

Considerably more related to this paper is the work of Marian et. al. [21],
where the problem of aggregating several web-based data sources is con-
sidered. They too assume that probing values from the relation(s) is time-
consuming and therefore the algorithm should aim to minimize the total
execution time of the query. Another important reference to the current
work is the MPro algorithm discussed by Hwang and Chang [14], to which
the algorithm in [21] is closely related. The crucial difference to our work is
that neither [21] nor [14] consider a similar use of training data, and require
an exact top-k list as the result.

In addition to top-k processing, we also briefly mention work on classical
database query optimization. Especially of interest to us is research on opti-
mizing queries with expensive predicates [12, 18]. Of course [14] falls to this
category as well, as it considers top-k processing under expensive predicates.
Here the fundamental question concerns finding a query plan to minimize
the total execution time given that some (restriction) predicates used in the
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query are computationally expensive. These expensive predicates can be e.g.
arbitrary user defined functions. Our work can be seen in this framework as
well. We consider the processing of a query (a type of SELECT) that must
return all rows of the hidden relation that belong to an approximate top-k set
defined by the given scoring function. We can assume that reading one entry
of the hidden relation on a particular row corresponds to evaluating one ex-
pensive predicate for this row. While the value of an entry does not directly
specify whether or not the row belongs to the top-k set, the algorithm that we
propose later in Section 4 gives a probabilistic estimate of this based on the
known entries of a row.

Approximate nearest neighbors
Since our ranking is based on the inner product between the rows and a scor-
ing vector, the top-k set is equivalent to the set of k nearest neighbors of the
scoring vector if everything is normalized to unit length. Algorithms for k-
NN queries (in high-dimensional Euclidean spaces) have been widely stud-
ied. In particular, papers related to approximate nearest neighbor search [16]
are of interest in the context of our work. The usual approach in these is to
reduce the number of required distance computations by pre-processing the
set of points that is being queried. In locality sensitive hashing [8] the under-
lying relation is indexed using a number of hash functions so that collisions
indicate close proximity. A query vector is only compared to vectors mapped
to the same bucket by the hash function. Kleinberg [19] takes a similar ap-
proach but uses random projections instead of hash functions. A somewhat
different pre-processing technique are low dimensional embeddings [1] that
aim to speed up the processing by representing the set of points in a lower
dimensional space where distance computations can be carried out faster.
Singitham et. al. [25] propose a solution based on clustering of the database,
where the query vector is only compared to points that reside in clusters
whose centroid is close to the query vector. Recently Goel et. al. [9] pro-
pose another technique based on clustering that uses the query-distribution
together with a variant of the threshold algorithm [6].

However, the basic assumption in [8, 19, 25, 1, 9] and related literature is
that the data being queried is known a-priori so that indexing techniques can
be applied to quickly find points that are close to an arbitrary query vector.
To see the problem that we discuss in this paper as k-NN search, we have
to turn the setting upside down, so that the query vector (i.e. our scoring
weights) is fixed, and the set of points (i.e. the rows of our hidden relation)
are sampled from a known distribution. Moreover, an elementary property
of our problem are the costs associated with reading values from the hidden
relation. Such assumptions are to the best of our knowledge not made in any
of the existing work on k-NN search.

Learning theory
Unlike methods for approximate nearest neighbor search, some models in
computational learning theory take costs for accessing input items into ac-
count [2, 17, 3, 10]. In general this line of work considers ways to evaluate a
(boolean) function when the inputs are obtained only by paying a price. An
algorithm is given a representation of the function (e.g. a boolean circuit),
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and the costs associated with each input. The algorithm must learn the value
of the function while keeping the cost of the process low. In the simplest case
the algorithm is merely an ordering of the variables. That is, the function is
evaluated by reading values of the variables according to a specified order.
This approach is studied e.g. in [17, 10], while more complex algorithms are
considered in [2] and [3].

On a high level our problem is similar. We too are concerned with eval-
uating a function (the top-k query) while trying to minimize the overall cost.
Especially the problem of finding a good order in which to read the attribute
values that we discuss in Section 5.2 is related. This order is important as it
can have a considerable effect on the performance of our approach. It would
be of interest to see if any of the previous results [2, 17, 3, 10] can be applied
in this case, but we consider this to be worth a discussion of its own in future
work.

1.2 Our contributions

We conclude this section with a structure and summary of the contributions
of this paper.

• Section 2: We describe (to the best of our knowledge) a novel top-k
search problem. The main characteristic of the problem is that instead
of applying pre-processing techniques on the items that we are ranking,
we have a sample from the same distribution to be used as training data
for machine learning methods.

• Section 4: We propose a simple algorithm that finds a set of k rows
from a given matrix with a high score according to a fixed linear scoring
function. The algorithm uses two parameters. The first parameter is a
threshold value that is used to prune items that are unlikely to belong
to the top-k set. The second parameter is an ordering of the attributes.

• Section 5.1: We propose an algorithm for learning a good value of the
threshold parameter based on training data.

• Section 5.2: We propose an algorithm for learning a good ordering of
the attributes based on training data.

• Section 6: We conduct a set of experiments to demonstrate the per-
formance of our algorithm(s). We compare our algorithm to a simple
baseline, and another algorithm presented previously in [14].

2 BASIC DEFINITIONS

Input matrix Let X be an n ×m matrix, an element of which is denoted
by Xij . The ith row of X, denoted Xi·, represents the ith item that we are
ranking. Let A1, . . . , Am be a set of m attributes. The values of attribute
Aj appear on the jth column of X, denoted X·j . For the rest of this paper
we will assume that Xij ∈ R+

0 for all i and j. That is, all entries of X are
non-negative real numbers.
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Cost of a query To each attribute Aj is associated a cost C(Aj) that repre-
sents the effort of examining the value Xij . We assume that this computation
is equally hard for all cells in X·j . The cost of a top-k query is simply the sum
of the costs of all entries that our algorithm has to inspect in order to return
its output, normalized by the cost of the trivial algorithm that computes all
entries of X. We have thus

costk(X) =

∑
ij C(Aj)I{Xij is inspected}

n
∑

j C(Aj)
, (1)

where I{X} is 1 if the statement X is true, and 0 otherwise.

Scoring and top-k sets Let w = (w1, . . . ,wm) be a (row) vector of weights.
The prefix of a vector, denoted w1:h, is a h-dimensional vector consisting of
the elements w1, . . . ,wh. Likewise, we denote by Xi,1:h the prefix of the ith
row of X. The prefix score of the ith item is given by the product Xi,1:hw

T
1:h.

When we have h = m, the prefix score is the full score Xi·w
T . The exact

top-k set of X given w, denoted T kw(X), consists of the indices of the k items
with the highest full scores. More formally, we have

T kw(X) =
{
i
∣∣ |{i′ 6= i : Xi′·w

T > Xi·w
T}| < k

}
.

The schedule All algorithms that we consider in this paper have the com-
mon property that attributes on row Xi· are examined sequentially in a cer-
tain order, and this order is the same for all i. That is, the entry Xij will be
read only if all entries Xij′ , with j′ < j, have already been read. We adopt
the terminology used in [14] and call this order the schedule. This resembles
the order in which a database system would apply selection predicates in a
serial (as opposed to conditional) execution plan. However, in our case the
benefit of using one schedule over another is not associated with selection
efficiency, but having better estimates of the full score given a prefix score.
In Section 5.2 we discuss a number of simple baseline schedules, and also
present a method for finding a good schedule using training data. Different
choices for the schedule are compared in the empirical section.

Accuracy of an approximate result The algorithm we propose in this pa-
per is not guaranteed to return the exact top-k set. Denote by T̃ kw(X) the k
highest scoring items returned by an inexact top-k algorithm. We report the
accuracy of such an approximate top-k list as the fraction of items in T̃ kw(X)
that also belong to the exact set T kw(X). More formally, we have

acck(X) =
|T kw(X) ∩ T̃ kw(X)|

k
. (2)

Problem setting The basic objective of this paper is to devise an algorithm
that finds an approximate top-k set with high accuracy at a low cost. This can
be formalized as a computational problem in a number of ways. The simplest
approach is to assume there is an external constraint in the form of a budget
x on the costs, or a requirement y on the accuracy. Then we could devise
algorithms that maximize accuracy given that the cost can be at most x, or
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minimize the cost given that the accuracy has to be at least y. The approach
we take in this paper is more pragmatic, however. We discuss an algorithm
that uses two parameters, both of which affect accuracy and cost. While we
give no analytical guarantees about the performance, we develop methods
to systematically find good values for these parameters, where goodness is
measured by using accuracy and cost as defined above.

3 BASELINE ALGORITHMS

We compare the algorithm presented in this paper with two baseline meth-
ods. The first one makes use of a simple branch-and-bound strategy, while
the second one is the MPro algorithm [14]. Unlike the proposed algorithm,
they do not need training data and can be applied in a traditional top-k set-
ting. Instead they rely on upper bounds, denoted U(Ai), for the values of
each attribute Ai. These can be based either on prior knowledge of the at-
tribute domains, or alternatively on a separate training data. Combined with
the prefix score of the row Xi·, we can use these to upper bound the full
score of Xi·. More formally, denote by Uh(i) an upper bound for the full
score Xi·w

T given the prefix score Xi,1:hw
T and the upper bounds for the

attributes outside the prefix. We have thus

Uh(i) = Xi,1:hw
T
1:h +

m∑
i=h+1

U(Ai).

3.1 Simple upper bounding

A very straightforward approach to our top-k problem is the following: con-
sider the upper bound Uh(i) for the row i after computing the values in a
prefix of length h. If this upper bound is below the full score of the lowest
ranking item of the current top-k list, we know that Xi· can not belong to
the final top-k list. Therefore it is not necessary to compute the remaining
values, and we can skip the row.

To apply this heuristic, we need to first get a candidate top-k set. This
we obtain by reading all values of the first k rows of X, and computing their
full scores. Denote by δ the lowest score in the current top-k set. For the
remaining rows of X, we start computing the prefix score, and each time a
new attribute is added to the prefix, we check the value of Uh(i). If it is below
the current value of δ, we skip the rest of Xi·, if not, we examine the value
of the next attribute. Once all attributes for a row have been computed, we
know its full score, and can determine whether or not it enters the current
top-k list. If it does, we update δ accordingly. In the remaining of this paper
we call this algorithm the UB algorithm.

The performance of this method depends on how rapidly δ reaches a level
that leads to efficient pruning. Obviously when δ is small the value of Uh(i)
will always be larger. We can improve the efficiency of the method with the
following heuristic: Note that the value of A1 is always computed for every
row. This is because U0(i) is always larger than any possible δ, so nothing
will be pruned at this point. We can thus compute all values in the column
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X·1, and rank the rows of X in decreasing order of this without sacrificing
anything in the final cost. After sorting our initial top-k list will contain rows
that have a high value at least in the first attribute. They are thus somewhat
more likely to have a high full score than randomly chosen rows.

3.2 The MPro algorithm

The MPro algorithm of [14] can be seen as the well known A∗ algorithm [24,
p.97ff] adopted for the top-k query problem. Like the UB algorithm, it also
computes entries in X in a left-to-right fashion, i.e., the algorithm does not
access Xij unless the value Xij′ has been read for all j′ < j. For every row
Xi· the algorithm maintains the upper bound Uh(i). The rows are stored in
a priority queue Q with Uh(i) as the key, i.e., the the first row in the queue
is the one with the highest upper bound. The algorithm pops rows from Q
one by one, computes the next unknown entry, updates the upper bound and
inserts the row back into Q, or outputs it as a member of the top-k set if all
values have been computed. When the output size reaches k, the algorithm
terminates. As with the UB algorithm, as a first step the value of the attribute
A1 is computed for all rows to compute the initial values of the upper bounds.
These are used to initialize Q. In the remaining of this paper, we call this
algorithm the MP algorithm.

4 AN ALGORITHM BASED ON PRIOR KNOWLEDGE

In this section we describe a method that finds k high scoring rows of a given
matrix X using a fixed scoring vector w. A difference to the baseline methods
is that the algorithm requires prior knowledge of the distribution of the values
in X. In practice this means we need training data in form of one or several
matrices X′ that are drawn from the same distribution as X. The algorithm
has two parameters that can be adjusted to tune its performance. We also
provide algorithms for finding good values for these parameters from training
data.

4.1 Algorithm outline

On a high level the algorithm is based on the same basic principle as the
UB algorithm. We scan the rows of X one by one and incrementally compute
the prefix score for each row. This is done until we can discard the remaining
entries of the row based on some criterion, or until we have computed the
full score. If we decide to skip the row based on a prefix score, we never
return to inspect the remaining entries of the same row. However, unlike
with the UB or MP algorithms, we are not using simple upper bounds for the
remaining attributes. Instead we use the training data X′ to learn a model
that allows us to estimate the probability that the current row will enter the
current top-k set given the prefix score. If this probability is below a given
threshold value, we skip the row.

Suppose that we currently have a candidate set of top-k rows. Denote
by δ the lowest score in the candidate set, and let Xi· be the row that the
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Algorithm 1 (The PR algorithm)
Input: the n×m matrix X, parameter α ∈ [0, 1]
Output: an approximate top-k set

1: Compute all values in column X·1 and sort the rows of X in decreasing
order of this value.

2: Ck ← {X1·, . . . ,Xk·}
3: δ ← minx∈Ck

{xwT}
4: for i = k + 1 to n do
5: h← 1
6: while h < m and Pr(Xi·w

T > δ | Xi,1:hw
T
1:h) > α do

7: h← h+ 1
8: Compute the value Xih.
9: end while

10: if h = m and Xi·w
T > δ then

11: Ck ← Ck \ arg minx∈Ck
{xwT}

12: Ck ← Ck ∪Xi·
13: δ ← minx∈Ck

{xwT}
14: end if
15: end for
16: return Ck

algorithm is currently considering. Given a prefix score of Xi·, we can give
an estimate for the full score Xi·w

T , and make use of this together with δ
to decide whether or not it is worthwhile to compute the remaining, still
unknown values of Xi·. More precisely, we want to estimate the probability
that Xi· would enter the current top-k set given the prefix score Xi,1:hw

T
1:h,

that is
Pr

(
Xi·w

T > δ | Xi,1:hw
T
1:h

)
. (3)

If this probability is very small, say, less than 0.001, it is unlikely that Xi·
will ever enter the top-k set. In this case we can skip Xi· without computing
values of its remaining attributes. Of course this strategy may lead to errors,
as in some cases the prefix score may give poor estimates of the full score,
which in turn causes the probability estimates to be incorrect. The details of
estimating Equation 3 are discussed in Section 4.2.

An outline of the PR algorithm we propose is given in Algorithm 1. It
uses a parameter α that determines when remaining entries on the row Xi·
are to be skipped. Whenever we have Pr(Xi·w

T ≥ δ | Xi,1:hw
T
1:h) < α we

proceed with the next row. Selecting an appropriate value of α is discussed
in Section 5.1. As with the baseline algorithms, we also need an order, the
schedule, in which to process the attributes. This is the 2nd parameter of our
algorithm. In Section 5.2 we describe a number of simple baseline schedules,
and also propose a method that uses training data to learn a good schedule
for the PR algorithm.

4.2 Estimating the probabilities

The most crucial part of our algorithm is the method for estimating the prob-
ability Pr

(
Xi·w

T > δ | Xi,1:hw
T
1:h

)
. In short, the basic idea is to estimate
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the distribution of Xi·w
T given the prefix score Xi,1:hw

T
1:h. We do this by

learning regression models that predict the parameters of this distribution as
a function of the prefix score. Together with δ the desired probability can be
found out using this distribution. The details of this are discussed next.

The basic assumption of this paper is that the distribution of the full score
Xi·w

T given a fixed prefix score is Gaussian. We acknowledge that this may
not be true in general. However, according to the central limit theorem,
as the number of attributes increases, their sum approaches a normal distri-
bution as long as they are independent. (The attributes need not follow the
same distribution as long as they are bounded, see the Lindeberg theorem [7,
page 254].) Of course the attributes may not be independent, and also their
number may not be large enough to fully warrant this argument in practice.
Nonetheless, we consider this a reasonable first step.

By convention, we denote the parameters of the normal distribution by µ
and σ, where µ is the mean and σ the standard deviation. Furthermore, we
assume that both µ and σ depend on the prefix score, and we must account
for prefixes of different lengths. Denote by sh a prefix score that is based
on the first h attributes. The assumption is that Xi·w

T ∼ N
(
µ(sh), σ(sh)

)
.

Once we have some estimates for µ(sh) and σ(sh), we simply look at the
tail of the distribution and read the probability of Xi·w

T being larger than a
given δ. To learn the functions µ(sh) and σ(sh) we use training data. For
every possible prefix length h, we associate the prefix score of the row Xi·
with the full score of Xi·. That is, our training data consists of the following
set of (“prefix score”, “full score”) pairs for every h:

Xh = {(Xi,1:hw
T
1:h,Xi·w

T )}ni=1. (4)

Now we have to estimate µ(sh) and σ(sh). One approach is to use bin-
ning. Given sh and Xh, we could compute the set

B(sh) = {b | a ∈ Bin(s) ∧ (a, b) ∈ Xh}

that contains full scores of objects that have a prefix score belonging to the
same bin as sh. The bins are precomputed in advance by some suitable
technique. Now we can define µ(sh) and σ(sh) simply as their standard
estimates in B(sh). This approach has some drawbacks, however. First, we
need to store the sets Xh for every h. This might be a problem if n and m
are very large. Whereas if n is small, we either have to use large bins, which
leads the estimates being only coarsely connected to sh, or use narrow bins
with only a few examples in each, which will also degrade the quality of the
estimators.

To remedy this we use an approach based on kernel smoothing [28]. In-
stead of fixed bins, we consider all of Xh when computing an estimate of
µ(sh) or σ(sh). The idea is that a pair (a, b) ∈ Xh contributes to the esti-
mates with a weight that depends on the distance between the prefix scores a
and sh. The pair contributes a lot if a is close to sh, and only a little (if at all)
if the distance is large. Denote by K : R × R → R a kernel function. For
the rest of this paper we let

K(x, y) = e−
||x−y||

β , (5)
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where β is a parameter. Other alternatives could be considered as well, the
proposed method is oblivious to the choice of the kernel function.

UsingK we can define the kernel weighted estimates for µ(sh) and σ(sh).
We let

µ(sh) =

∑
(a,b)∈Xh

K(a, sh)b∑
(a,b)∈Xh

K(a, sh)
, (6)

that is, any full score Xi·w
T contributes to µ(sh) with the weightK(Xi,1:hw

T
1:h, sh).

The nice property of this approach is that it can be also used to estimate the
standard deviation of the full score at sh by letting

σ(sh) =

√∑
(a,b)∈Xh

K(a, sh)b2∑
(a,b)∈Xh

K(a, sh)
− µ(sh)2. (7)

The above equation is a simple variation of the basic formula Var[X] =
E[X2]− E[X]2, where the kernel function is taken into account.

One problem associated with kernel smoothing techniques in general is
the width of the kernel that in this case is defined by the parameter β. Small
values of β have the effect that the prefix score a of a pair (a, b) ∈ Xh must
be very close to sh for the full score b to contribute anything to the final
estimates. Larger values have the opposite effect, even points that are far
away from sh will influence the estimates. Selecting an appropriate width for
the kernel is not trivial. We observed that setting β to one 5th of the standard
deviation of the prefix scores for h gives good results in practice.

While this technique lets us avoid some of the problems related to the
binning approach, it comes at a fairly high computational cost. We have
to evaluate the kernel n times to get estimates for µ(sh) and σ(sh) for one
sh. These estimates must be computed potentially for every possible prefix of
every row in X. This results in O(n2m) calls to K(x, y) for one single query
(assuming both the training data and the input matrix have n rows), which
clearly does not scale. Hence, we introduce approximate estimators for µ(sh)
and σ(sh) that are based on simple linear regression models. This way we do
not need to evaluate K(x, y) at query time at all. We let

µ̂(sh) ∼ qµ1 sh + qµ0 , (8)

and
σ̂(sh) ∼ qσ1 sh + qσ0 . (9)

The parameters qµ0 , qµ1 , qσ0 , and qσ1 are the standard estimates for linear regres-
sion coefficients given the sets

Tµ = {(Xi,1:hw1:h, µ(Xi,1:hw1:h)}ni=1, (10)

and
Tσ = {(Xi,1:hw1:h, σ(Xi,1:hw1:h)}ni=1, (11)

where µ(Xi,1:hw1:h) and σ(Xi,1:hw1:h) are based on equations 6 and 7, re-
spectively. We thus compute the kernel estimates only for the training data.
Given Tµ and Tσ we learn linear functions that are used at query time to
estimate the parameters of the normal distribution that we assume the full
scores are following.

Our method for estimating the probability Pr
(
xwT > δ | x1:hw

T
1:h

)
can

be summarized as follows:
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1. Given a training data (a matrix X with all entries known), compute
for each row the full score, and associate this with the prefix scores for
each possible prefix length h. That is, for each h compute the set Xh
as defined in Equation 4.

2. Using the definitions for µ(sh) and σ(sh) given in equations 6 and 7,
compute the sets Tµ and Tσ defined in equations 10 and 11, respec-
tively.

3. Learn the models in equations 8 and 9 by fitting a regression line to
the points in Tµ and Tσ, respectively.

4. At query time, use the cumulative density function ofN
(
µ̂(Xi,1:hw

T
1:h), σ̂(Xi,1:hw

T
1:h)

)
to estimate the probability of Xi·w

T being larger than δ.

5 PARAMETER SELECTION

In this section we discuss systematic methods for choosing the parameters
required by the algorithm presented above.

5.1 Choosing the right α

We start by describing a method for learning an “optimal” value of α given
training data X. This can be very useful, since setting the value of α too low
will decrease the performance of Algorithm 1 in terms of the cost. When
α increases, the algorithm will clearly prune more items. This leads both
to a lower cost and a lower accuracy. Conversely, when alpha decreases,
the accuracy of the method increases, and so does the cost as less items are
being pruned. The definitions of accuracy and cost in equations 2 and 1,
respectively, thus depend on α. We denote by acck(X, α) and costk(X, α)
the accuracy and cost attained by the PR algorithm for a given value of α.

Due to the trade-off between cost and accuracy, we should set α as high
(or low) as possible without sacrificing too much in accuracy (or cost). While
a very conservative estimate for α, say 0.001, is quite likely to result in a high
accuracy, it can perform sub-optimally in terms of the cost. Maybe with
α = 0.05 we obtain an almost equally high accuracy at only a fraction of the
cost.

Consider a coordinate system where we have accuracy on the x-axis and
cost on the y-axis. In an ideal setting we would have a accuracy of 1 at zero
cost, represented by the point at (1, 0) on this accuracy-cost plane. Obviously
this is not attainable in reality, since we always have to inspect some of the
entries of X, and this will lead to a nonzero cost. But we can still define the
optimal α in terms of this point.

Definition 1 Let

distk(X, α) = ||
(
acck(X, α), costk(X, α)

)
− (1, 0)||.

The optimal α∗ given the matrix X satisfies

α∗ = arg min
α∈[0,1]

distk(X, α),
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where || · || denotes the Euclidean norm.

That is, we want to find an α that minimizes the distance to the point (1, 0) on
the accuracy-cost plane. Clearly this is a rather simple definition. It assigns
equal weight to accuracy and cost, even though we might prefer one over the
other, depending on the application. However, modifying the definition to
take such requirements into account is easy.

Next we discuss how to find α∗. In the definition we state that it has to
belong to the interval [0, 1]. However, first we observe that there exists an
interval [αmin, αmax], so that when α ≤ αmin we have acck(X, α) = 1, and
when α ≥ αmax we have acck(X, α) = 0. Clearly the the interesting α in
terms of Definition 1 lies in [αmin, αmax]. We can analyze the values in this
interval even further. Consider the following set of possible values for α:

Q(X) = {min
h

Pr(xwT > δ | x1:hw
T
1:h)}x∈Tk

w(X), (12)

where δ = minx∈Tk
w(X){xwT}. That is, for each x ∈ T kw(X), Q(X) contains

the value a so that when α > a, Algorithm 1 will prune x. More precisely,
if we order the values in Q(X) in ascending order, and let ai denote the
ith value in this order, we know that when α ∈ [ai, ai+1) the algorithm will
prune exactly i rows of the correct top-k set of X. (Assuming that all ai
are different.) By letting α vary from a1 = αmin to ak < αmax, acck(X, α)
decreases from 1 to 1/k in steps of 1/k. Likewise, costk(X, α) decreases as
α increases. Now we can systematically express costk(X, α) as a function of
acck(X, α), since each a ∈ Q(X) is associated with a certain accuracy.

This makes finding the optimal α easy. We solve the optimization problem
of Definition 1 by only considering values inQ(X). In fact, we can show that
an α∗ obtained this way is the same as the one we would obtain by having
the interval [0, 1] as the feasible region.

Lemma 1 Let α∗ = arg minα∈[0,1] distk(X, α). We have α∗ ∈ Q(X), where
Q(X) is defined as in Equation 12.

Proof We show that for all αs that lie between any two adjacent values in
Q(X), the distance distk(X, α) is larger than when α is chosen from Q(X).
Consider any ai and ai+1 inQ(X). We show that within the interval [ai, ai+1]
the distance distk(X, α) is minimized for either α = ai or α = ai+1. As α
increases from ai to ai+ε for some small ε > 0, acck(X, α) decreases by 1/k,
and distk(X, α) increases by

(
distk(X, ai + ε) − distk(X, ai)

)
= ∆1 > 0.

When we further increase α from ai+ε to ai+1, acck(X, α) stays the same, but
costk(X, α) may decrease. Therefore, distk(X, α) decreases until α = ai+1.
We let

(
distk(X, ai + ε)− distk(X, ai+1)

)
= ∆2 > 0. If ∆1 > ∆2, we have

distk(X, ai) < distk(X, ai+1), otherwise distk(X, ai) > distk(X, ai+1).

5.2 Choosing a schedule

So far we have not considered the order, the schedule, in which the columns
of X should be processed. This order has a considerable impact on the per-
formance of the algorithms. Processing the attributes in a certain order will
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lead to a tighter upper bound on the full score in case of the UB and MP algo-
rithms. With the PR algorithm the probability estimates will be more accu-
rate with some permutations of the attributes than others. A similar problem
was considered in [14] for the MP algorithm. The approach is different, how-
ever, as training data is not used and an optimal schedule must be found at
query time.

Baseline schedules
Given the ranking vector w, and the cost C(Ai) for each attribute Ai, we
consider four simple baselines for the schedule:

A: Read the attributes in random order. This is the simplest possible way
of choosing a schedule. We pick a random total order of m items uni-
formly from the set of all permutations and use this as the schedule.

B: Read the attributes in decreasing order of the absolute values in w.
This can be motivated by the fact that attributes with a larger weight
(the important attributes) will have a bigger impact on the full score
wTXi·. In some cases we might have a fairly accurate estimate of wTx
already after a very short prefix of the row Xi· has been computed This
in turn will lead to better pruning, since the estimates of the probability
Pr

(
wTXi· > δ | wT

1:hXi,1:h

)
are more accurate. The downside of this

approach is that the costs are not taken into account. It is possible that
the important attributes have almost the same absolute value in w, but
considerably different costs.

C: Read the attributes in increasing order of the cost C(Ai). This is based
on the assumption that by computing the “cheap” features first, we
might be able to prune objects without having to look at the expensive
attributes at all. However, this time we may end up computing a long
prefix of Xi·, because it is possible that some of the “cheap” attributes
have a low weight in w, and thereby do not contribute so much to the
full score.

D: Read the attributes in decreasing order of the ratio |wi|/C(Ai). By this
we try to remedy the downsides of the previous two approaches. The
value of an attribute is high if it has a large weight in w, and a small
cost. Conversely, attributes with a small weight and a high cost are
obviously less useful.

Learning a schedule from training data
In addition to the baselines above, we can also try to find a schedule by using
available information. In general we want to find a schedule that minimizes
the cost of finding the top-k set in the training data. One difficulty here is
the selection of α. The cost of a given schedule ψ depends on the value of
α, and the optimal schedule might be different for different values of α. One
option would be to fix α in advance. However, we want to avoid this, because
the α we use for finding the schedule might be different from the α that is
used when running Algorithm 1. (After learning the schedule ψ, we can
use the method described in Section 5.1 to find an optimal value of α given
ψ.) Another option would be to simultaneously learn an optimal schedule
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ψ and the optimal α. This does not seem trivial, however. Instead, we take
an approach where we try to find a schedule that is good independent of the
final choice of α.

If α were fixed, we could define a cost for the schedule ψ in terms of
acck(X, α) and costk(X, α). However, instead of considering a particular
value of α, we define the cost as a sum over all possible meaningful values of
α. Recall that the set Q(X) (see Equation 12) contains all “threshold” values
so that when α crosses these, acck(X, α) decreases by 1/k. We define the
cost of the schedule ψ given X as

costk(X, ψ) =
∑

α∈Q(X(ψ))

costk(X(ψ), α), (13)

where X(ψ) denotes the matrix X with permutationψ applied to its columns.
Note that costk(X, ψ) can be interpreted as the “area” below the curve of
costk(X(ψ), α) in the accuracy-cost plane for α ∈ Q(X). For example, if
the curve corresponding to permutation ψ is below the curve corresponding
to ψ′ 6= ψ, we know that independent of α, the schedule ψ always has a
smaller cost for the same value of acck(X(ψ), α). The score in Equation 13
is a heuristic that attempts to capture this intuition. The scheduling problem
can thus be expressed as follows: Given an integer k and the matrix X, find
the schedule

ψ∗ = arg min
ψ
{costk(X, ψ)},

where cost(X, ψ) is defined as in Equation 13. In this paper we propose a
simple greedy heuristic for learning a good schedule. Denote by a partial
schedule a prefix of a full schedule. The algorithm works by adding a new
attribute to an already existing partial schedule. The attribute that is added is
the best one among all possible alternatives.

Since we’re dealing with partial schedules that are prefixes of a full sched-
ule, we can not evaluate costk(X, ψ) exactly as defined above. This is be-
cause some rows are not pruned by looking only at their prefix. However,
they may be pruned at some later stage given a longer prefix. When evaluat-
ing a partial schedule, we assume that any row that is not pruned incur the
full cost. That is, we must read all of their attributes before knowing whether
or not they belong to the top-k set. This means that the cost of a prefix of
the final schedule is an upper bound for the cost of the full schedule. More
formally, we denote the upper bound by dcost(X, ψ)e, and let

dcost(X, ψ)e =
∑

α∈Q(X(ψ))

n∑
i=1

cost(Xi·, ψ, α),

where the row-specific cost is

cost(x, ψ, α) =

{ ∑m
j=1C(Aj) if I(x, ψ, α) = ∅,∑I(x,ψ,α)

j=1 C(Aψ(j)) otherwise.
(14)

Above I(x, ψ, α) is the index of the first attribute (according to ψ) that will
prune the remaining attributes of x, that is,

I(x, ψ, α) = min{h | Pr(xwT > δ | xψ(1:h)w
T
ψ(1:h)) < α}.
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Algorithm 2
Input: the matrix X, the set of attributes A
Output: a permutation ψ of A

1: ψ ← []
2: while A 6= ∅ do
3: A′ ← arg minA∈Adcost([ψA],X)e
4: ψ ← [ψA′]
5: A ← A \ A′

6: end while
7: return ψ

For convenience we let min{∅} = ∅. Equation 14 simply states that the cost
of a row is the sum of all attribute costs if the row is not pruned, otherwise we
only pay for the attributes that are required to prune the row. The scheduling
algorithm, shown in Algorithm 2, always appends the attribute to the pre-
fix that minimizes the upper bound dcost(X, ψ)e. We denote by [ψA] the
permutation ψ appended with A.

6 EXPERIMENTS

In the experiments that follow we compare the performance of our proposed
method with the baseline algorithms using different schedules. Our basic
criteria for evaluation are the cost and accuracy measures. We with to re-
mind the reader that our notion of accuracy is not a measure of relevance,
but simply a comparison with the exact top-k set. In addition to the baselines
described earlier, it is good to compare the numbers with a sampling ap-
proach, where we randomly select, say, 50 percent of the rows of the matrix,
and run the trivial algorithm on this. This will have a cost of 0.5, and also the
expected accuracy will be 0.5. Any reasonable algorithm should outperform
this.

The upper bounds for attribute values used by the UB and MP algorithms
are based on training data as well. The upper bound for attribute Aj is the
largest value of Aj observed in the training data. We acknowledge that this
is a rather rudimentary approach, but we want to study how these algorithms
perform under the same conditions as the PR algorithm. In each of the tables
that follow, the numbers in parenthesis denote the standard deviation of the
corresponding quantity.

6.1 Datasets

We conduct experiments on both artificial and real data. Random data is
generated by sampling each Xij from a normal distribution with zero mean
and a unit variance. To enforce that Xij ∈ R+

0 we replace each entry with
its absolute value. In every experiment we use one random X as the training
data, and another random X as the test data. The results are averages over a
number of such training-testing pairs. Also, the vector w and the costs C(Aj)
are chosen uniformly at random from the interval [0, 1].
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Table 1: Estimated attribute costs and their scoring weights for the Wikipedia
data.

BM25 GPR TXT SUCC PRED SPCT LPR
C(Aj) 1.43 2.23 10.02 5.49 4.06 5.42 1.72
wj 0.047 0.003 0.636 0.479 0.353 0.008 0.588

The real data consists of a set of queries from a context sensitive Wikipedia
search engine [27]. For each query q we have the matrix Xq where each row
corresponds to a document that contains the query term(s). The documents
are represented by 7 features. We split the data randomly to a training and
test part. The training data consists of 25 matrices, each corresponding to a
set of documents matching a different query. The test data consists of 100
matrices, each again corresponding to a different query. (There is no overlap
between queries in the training data and the test set.) The training part is
used to learn the weight vector w as described in [27]. Also the algorithms
for finding a good schedule and optimizing the value of α are run on the
training data.

The attribute costs C(Aj) for the Wikipedia example were measured by
computing features for 400 queries. For each query the result set is restricted
to 1000 topmost documents according to one of the features (BM25). In
every case we measure the time spent computing each feature. The costs
shown in Table 1 are logarithms of the averages of these. The numbers are
not intended to be fully realistic, but we consider them reasonable for the
purposes of this paper.

6.2 Schedule comparison

First we compare the different schedule selection heuristics. With MP and
UB we only use the baseline schedules A, B, C, and D. In case of the PR al-
gorithm we also study how a schedule learned using the method described
in Section 5.2 compares to the baselines. With the PR algorithm we use the
method described in Section 5.1 to learn a good value of α. We also study
the effect of the heuristic described in Section 3.1. That is, do we gain any-
thing by reordering the rows of X in decreasing order of the value of the first
attribute in the schedule before running the algorithms. Note that this affects
only the UB and PR algorithms. The MP algorithm has this heuristic built-
in as the next element of X it reads is selected from a priority queue that is
initialized with the upper bounds based on only the first feature.

Upper part of Table 2 shows the average cost for each algorithm and sched-
ule for k = 10 over 50 random inputs when the row reordering heuristic is
in use. As can be seen, the PR algorithm outperforms both UB and MP by a
clear margin independent of the choice of the schedule. When comparing
the schedules, both D (the weight-cost ratio heuristic) and a learned sched-
ule outperform the others. The difference between D and a learned schedule
is very small. The bottom part of Table 2 shows the same quantities for the
UB and PR algorithms when the rows of the input matrix are not sorted in
decreasing order of the value on the first attribute (according to the used
schedule). Clearly both algorithms perform considerably worse in this case.
Hence, with random data the row reordering heuristic is useful.
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Table 2: Costs for different schedules using random data (k = 10) with (top)
and without (bottom) the row reordering heuristic.

A B C D learned
UB 0.83 (0.12) 0.85 (0.09) 0.88 (0.09) 0.88 (0.07) -
MP 0.69 (0.14) 0.69 (0.15) 0.60 (0.14) 0.66 (0.13) -
PR 0.44 (0.17) 0.25 (0.10) 0.31 (0.15) 0.23 (0.10) 0.22 (0.10)
UB 0.86 (0.10) 0.89 (0.08) 0.91 (0.07) 0.91 (0.06) -
PR 0.56 (0.14) 0.37 (0.10) 0.43 (0.12) 0.35 (0.09) 0.34 (0.09)

Table 3: Accuracies for different schedules using random data (k = 10) with
(top) and without (bottom) the row reordering heuristic.

A B C D learned
UB 0.87 (0.21) 0.99 (0.01) 0.99 (0.01) 1.00 (0.00) -
MP 0.55 (0.21) 0.88 (0.10) 0.62 (0.20) 0.88 (0.11) -
PR 0.84 (0.14) 0.84 (0.14) 0.84 (0.14) 0.85 (0.16) 0.81 (0.14)
UB 0.89 (0.19) 0.99 (0.01) 0.99 (0.01) 1.00 (0.00) -
PR 0.90 (0.09) 0.91 (0.08) 0.89 (0.10) 0.90 (0.10) 0.88 (0.10)

The accuracies for random data are shown in Table 3. Also here the upper
and lower parts of the table show results with and without the row reordering
heuristic, respectively. In general there is a correlation between cost and
accuracy; the more entries of the matrix you inspect, the more accurate are
the results. In terms of accuracy the UB algorithm gives the best results, with
nearly 100 percent accuracy in almost every case. The PR algorithm has
an average accuracy of 0.85 with schedule D, which is a very good result
considering that the algorithm inspected on average only 23 percent of the
entries of X. With the learned heuristic accuracy drops to 0.81, however.

Cost and accuracy for the Wikipedia data are shown in Tables 4 and 5, re-
spectively. The numbers are averages over 100 different queries that belong
to the test set. In terms of the cost the PR algorithm is again a clear win-
ner. The best schedules for PR are A, B, and D, with the learned schedule
having problems. When accuracy is considered, we observe that schedule A
performs considerably worse than the others. Overall the best choice is D
(order attributes in decreasing order of the ratio wj/C(Aj)), however. With
this schedule the PR algorithm attains a accuracy of 0.83 and pays only 43
percent of the maximum cost. As with random data, the costs increase for
PR when the row reordering heuristic is not used. Interestingly UB performs
better with schedules A and C without row reordering. In fact, with schedule
C the UB algorithm attains a rather nice result by having a accuracy of 1.00
with an average cost of 0.62.

Table 4: Costs for different schedules using Wikipedia data (k = 10) with
(top) and without (bottom) the row reordering heuristic.

A B C D learned
UB 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.91 (0.05) -
MP 0.95 (0.00) 0.81 (0.06) 0.67 (0.00) 0.82 (0.00) -
PR 0.43 (0.27) 0.43 (0.09) 0.64 (0.28) 0.43 (0.22) 0.66 (0.32)
UB 0.76 (0.20) 0.99 (0.01) 0.62 (0.23) 0.99 (0.01) -
PR 0.50 (0.24) 0.50 (0.09) 0.71 (0.24) 0.50 (0.20) 0.74 (0.25)
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Table 5: Accuracies for different schedules using Wikipedia data (k = 10)
with (top) and without (bottom) the row reordering heuristic.

A B C D learned
UB 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) -
MP 0.76 (0.20) 0.99 (0.01) 0.62 (0.23) 0.99 (0.01) -
PR 0.63 (0.30) 0.81 (0.22) 0.81 (0.25) 0.83 (0.23) 0.83 (0.23)
UB 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) -
PR 0.64 (0.29) 0.84 (0.20) 0.82 (0.25) 0.83 (0.24) 0.85 (0.21)

Table 6: Cost (top) and accuracy (middle) in random data with the PR algo-
rithm for different α.

A B C D learned
α∗/2 0.46 (0.19) 0.26 (0.10) 0.37 (0.13) 0.27 (0.11) 0.27 (0.11)
α∗ 0.40 (0.18) 0.24 (0.09) 0.32 (0.12) 0.24 (0.10) 0.23 (0.10)
2α∗ 0.34 (0.16) 0.22 (0.08) 0.25 (0.10) 0.20 (0.08) 0.19 (0.08)
α∗/2 0.87 (0.10) 0.88 (0.11) 0.90 (0.09) 0.91 (0.09) 0.88 (0.11)
α∗ 0.82 (0.14) 0.84 (0.13) 0.85 (0.11) 0.86 (0.11) 0.84 (0.13)
2α∗ 0.74 (0.16) 0.79 (0.15) 0.75 (0.14) 0.80 (0.14) 0.75 (0.17)
g↓ 0.92 0.97 0.91 0.94 0.89
g↑ 1.06 1.02 1.13 1.11 1.08

6.3 Sensitivity to the parameter α

We continue by studying the sensitivity of the PR algorithm to the value of α.
A method for selecting a good value of α was proposed in Section 5.1. We
compare this value, denoted α∗, with the values 2α∗ and 1

2
α∗. In addition

to the actual values of cost and accuracy, we also show two other quantities,
denoted g↓ and g↑. These indicate the ratio of the relative change in accuracy
to the relative change in the cost when α is halved or doubled, respectively.
We let g↓ =

Aα∗/2/Aα∗

Cα∗/2/Cα∗
, and g↑ = A2α∗/Aα∗

C2α∗/Cα∗
. When g↓ < 1 the relative increase

in accuracy is less than the relative increase in costs. Respectively, when
g↑ > 1 the relative decrease in accuracy is larger than the relative decrease
in costs. On the other hand, when either g↓ > 1 or g↑ < 1 it would be more
efficient to use α∗/2 or 2α∗ instead of α∗.

Results for random data are shown in Table 6. Costs are shown in the
top part of the table, while accuracy is shown in the middle part. As ex-
pected, halving (doubling) the value of α∗ increases (decreases) both cost
and accuracy. However, as indicated by g↓ and g↑, the increase (decrease)
in accuracy is never large (small) enough to warrant the corresponding in-
crease (decrease) in the cost. Table 7 shows the results for Wikipedia. The
behavior is the same as with random data, with the exception that now g↑ is
below 1 for schedules A and B, indicating that in this case the relative gain in

Table 7: Cost (top) and accuracy (middle) in Wikipedia with the PR algo-
rithm for different α.

A B C D learned
α∗/2 0.46 (0.30) 0.47 (0.10) 0.73 (0.24) 0.55 (0.23) 0.73 (0.28)
α∗ 0.30 (0.24) 0.42 (0.08) 0.60 (0.27) 0.48 (0.22) 0.63 (0.30)
2α∗ 0.19 (0.01) 0.37 (0.05) 0.28 (0.29) 0.35 (0.22) 0.42 (0.29)
α∗/2 0.81 (0.21) 0.89 (0.17) 0.88 (0.21) 0.92 (0.18) 0.92 (0.16)
α∗ 0.62 (0.27) 0.82 (0.21) 0.79 (0.24) 0.88 (0.22) 0.84 (0.21)
2α∗ 0.37 (0.25) 0.69 (0.23) 0.46 (0.33) 0.76 (0.27) 0.64 (0.28)
g↓ 0.85 0.97 0.92 0.91 0.95
g↑ 0.94 0.96 1.25 1.18 1.14
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Table 8: Costs (top) and accuracies (bottom) for the algorithms when
C(Aj) = wj for k = 10.

A B C D learned
UB 0.86 (0.04) 0.81 (0.03) 0.91 (0.04) 0.85 (0.04) -
MP 0.72 (0.07) 0.78 (0.03) 0.64 (0.05) 0.72 (0.07) -
PR 0.47 (0.10) 0.37 (0.05) 0.62 (0.12) 0.46 (0.11) 0.44 (0.10)
UB 1.00 (0.00) 1.00 (0.00) 0.99 (0.03) 0.99 (0.01) -
MP 0.69 (0.23) 0.92 (0.10) 0.36 (0.15) 0.67 (0.23) -
PR 0.82 (0.12) 0.83 (0.13) 0.80 (0.15) 0.82 (0.14) 0.78 (0.17)

decreased cost is larger than the relative loss in decreased accuracy. Indeed,
using schedule B (rank attributes in decreasing order of the absolute value
of wj) with α is set to 2α∗ we obtain an average cost of 0.37 with an average
accuracy of 0.69, which can still be considered a reasonable performance.

6.4 Correlated weights and costs

This experiment is only ran using random data. We want to study how the
relationship of w and C(Aj) affects the performance of the algorithms. We
are interested in the case where the most important attributes according to
w, i.e. those with the highest absolute values, also have the highest costs. In
this case the baseline schedules B and C (see Section 5.2) disagree as much
as possible. The experiment is ran in the same way as the one in Section 6.2,
with the exception that we let C(Aj) = wj . The row reordering heuristic is
being used.

Results are shown in Table 8. Costs are given in the upper part of the
table, while accuracies are shown in the lower part. Clearly the PR algorithm
still outperforms both baselines with every schedule. However, when the
numbers are compared with those in tables 2 and 3, we observe a noticeable
decrease in performance. The average costs of C, D, and the learned sched-
ule are twice as high when the most important features also have the highest
costs. But even now the average cost of a query is less than 50 percent of the
full cost with the PR algorithm.

6.5 Effect of k

The performance of the algorithms may also depend on the size of the top-k
set. For smaller k we expect the pruning to be more efficient, as the threshold
δ is larger. In addition to k = 10 that was used in the previous experiments,
we also run the algorithms with k = 5 and k = 20 to see how this affects the
results. In this test we only consider the weight-cost ratio heuristic (D) for the
schedule.

Table 9 shows results for random data. Clearly the cost increases as k in-
creases. Especially for the PR algorithm the effect is considerable. However,
accuracy is not really affected for any of the algorithms. Results for Wikipedia
are shown in Table 10. Here we do not see any significant effect on either
the cost or accuracy.
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Table 9: Costs (top) and accuracies (bottom) with random input, schedule
D and different k.

k = 5 k = 10 k = 20
UB 0.85 (0.08) 0.88 (0.07) 0.93 (0.05)
MP 0.64 (0.17) 0.66 (0.13) 0.68 (0.12)
PR 0.19 (0.09) 0.23 (0.10) 0.29 (0.10)
UB 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
MP 0.87 (0.20) 0.88 (0.11) 0.89 (0.12)
PR 0.87 (0.14) 0.85 (0.16) 0.86 (0.09)

Table 10: Costs (top) and accuracies (bottom) with Wikipedia, schedule D
and different k.

k = 5 k = 10 k = 20
UB 0.83 (0.00) 0.91 (0.05) 0.84 (0.00)
MP 0.82 (0.00) 0.82 (0.00) 0.83 (0.00)
PR 0.41 (0.22) 0.43 (0.22) 0.43 (0.22)
UB 0.98 (0.05) 1.00 (0.00) 0.99 (0.01)
MP 0.99 (0.03) 0.99 (0.01) 1.00 (0.00)
PR 0.83 (0.28) 0.83 (0.23) 0.79 (0.25)

7 CONCLUSION AND FUTURE WORK

We have discussed an algorithm for approximate top-k search in a setting
where the input relation is initially hidden, and its elements can be accessed
only by paying a (usually computational) cost. The score of a row is defined
as its inner product with a scoring vector. The basic task is to find an ap-
proximate top-k set while keeping the total cost of the query low. Although
we consider linear scoring functions in this paper, the proposed approach
should yield itself also to other types of of aggregation functions.

Since the contents of the relation are unknown before any queries are is-
sued, indexing its contents is not possible. This is a key property of our setting
that differentiates it from most of existing literature on top-k as well as k-NN
search. Instead we have access to training data from the same distribution as
the hidden relation. The algorithm we propose is based on the use of this
training data. Given the partial score of an item, the algorithm estimates the
probability that the full score of the item will be high enough for the item to
enter the current top-k set. The estimator for this probability is learned from
training data. The algorithm has two parameters. We also propose methods
for learning good values for these from training data. The experiments in-
dicate that our proposed algorithm outperforms the baseline in terms of the
cost by a considerable margin. While the MPro [14] algorithm attains a very
high accuracy it does this at a high cost.

The work presented in this paper is mostly related to databases and ap-
proximate nearest neighbor search. However, we also want to point out some
connections to classification problems, and especially feature selection. Our
approach can be seen as a form of dynamic feature selection for top-k prob-
lems with the aim to reduce the overall cost of the query. Similarly we can
consider cost-sensitive classification (see e.g. [5]), where the task is to classify
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a given set of items while keeping the total cost as low as possible. Based on a
subset of the available features the classifier makes an initial prediction, and
if this prediction is not certain enough, we read the value of a yet unknown
feature and update the prediction accordingly. Decision trees already imple-
ment this principle in a way, but it might be interesting to extend it to other
classification algorithms, such as SVMs.

Conversely, a potentially interesting approach to extending the work of
this paper is to replace the linear schedule with something more complex,
such as a decision tree. In this case the next attribute to be read would depend
on the value(s) of the previous attribute(s). The results of [2, 17, 3, 10] might
provide a fruitful starting point for studying the theoretical properties of the
problem. Further studies include the use of more complex models than
linear regression for estimating µ and σ. Also, using other distributions than
a Gaussian for the full score given a prefix score may be of interest.
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