
9HSTFMG*aebeef+ 

ISBN: 978-952-60-4145-2 (pdf) 
ISBN: 978-952-60-4144-5 
ISSN-L: 1799-4896 
ISSN: 1799-490X (pdf) 
ISSN: 1799-4896 
 
Aalto University 
School of Science 
Department of Information and Computer Science 
www.aalto.fi 

BUSINESS + 
ECONOMY 
 
ART + 
DESIGN + 
ARCHITECTURE 
 
SCIENCE + 
TECHNOLOGY 
 
CROSSOVER 
 
DOCTORAL 
DISSERTATIONS 

A
alto-S

T 8
/2

011 

 

Department of Information and Computer Science 

New Developments 
of Nonlinear 
Projections for the 
Visualization of 
Structures in 
Nonvectorial Data 
Sets 
Teuvo Kohonen 

RESEARCH REPORT SCIENCE + 
TECHNOLOGY 





Aalto University publication series 
SCIENCE + TECHNOLOGY 8/2011 

New Developments of Nonlinear 
Projections for the Visualization of 
Structures in Nonvectorial Data Sets 

Teuvo Kohonen 

Aalto University 
School of Science 
Department of Information and Computer Science 
Adaptive Informatics Research Centre 



Aalto University publication series 
SCIENCE + TECHNOLOGY 8/2011 
 
© Teuvo Kohonen 
 
ISBN 978-952-60-4145-2 (pdf) 
ISBN 978-952-60-4144-5 (printed) 
ISSN-L 1799-4896 
ISSN 1799-490X (pdf) 
ISSN 1799-4896 (printed) 
 
Aalto Print 
Helsinki 2011 
 
Finland 
 

 
 
Publication orders (printed book): 
series@ics.tkk.fi 

The publication can be read at http://lib.tkk.fi/SCIENCE_TECHNOLOGY/2011/isbn9789526041452.pdf 



Abstract 
Aalto University, P.O. Box 11000, FI-00076 Aalto  www.aalto.fi 

Author 
Teuvo Kohonen 
Name of the publication 
New Developments of Nonlinear Projections for the Visualization of Structures in 
Nonvectorial Data Sets 
Publisher School of Science 
Unit Department of Information and Computer Science 
Series Aalto University publication series SCIENCE + TECHNOLOGY 8/2011 
Field of research Computer science 

Abstract 
New nonlinear projections for the visualization of structures in nonvectorial data sets are 
suggested. Since there exist problems with the convergence of the traditional 
multidimensional scaling (MDS) when the data are nonvectorial, a new version of the MDS, 
called the nearest-neighbors multidimensional scaling (NN-MDS), is introduced. While it 
represents the local data structures more accurately and converges fast, two amendments had 
to be added, in order to describe the global structures as well. A new initialization method 
called the GENINIT is also introduced. It is very fast and may be used as a nonlinear 
projection, too, but it is more suitable for the initialization of the more accurate learning 
algorithms. 

Keywords GENINIT, multidimensional scaling, nonlinear projection, similarity graph for 
string variables 

ISBN (printed) 978-952-60-4144-5 ISBN (pdf) 978-952-60-4145-2 
ISSN-L 1799-4896 ISSN (printed) 1799-4896 ISSN (pdf) 1799-490X 
Location of publisher Espoo Location of printing Helsinki Year 2011 
Pages 18 The publication can be read at 

http://lib.tkk.fi/SCIENCE_TECHNOLOGY/2011/isbn9789526041452.pdf





Preface

The nonlinear projections are used for the visualization of topological re-

lations between high-dimensional items, using a two-dimensional display

on which the projections are shown. They can be used to map nonvectorial

items, too, such as strings of symbols, into a two-dimensional order that

illustrates their mutual distances, i.e., their dissimilarities. Such non-

linear projections have been used to classify, e.g., protein sequences and

genetic codes of viruses.

In this work, new nonlinear projections for the visualization of struc-

tures in nonvectorial data sets are suggested. Since there exist problems

with the convergence of the traditional multidimensional scaling (MDS)

when the data are nonvectorial, a new version of the MDS, called the

nearest-neighbors multidimensional scaling (NN-MDS), is introduced.

While NN-MDS represents the local data structures more accurately

and converges fast, two amendments had to be added, in order to de-

scribe the global structures as well. A new initialization method called

the GENINIT is also introduced. It is very fast and may be used as a non-

linear projection, too, but it is more suitable for the initialization of the

more accurate learning algorithms.

Otaniemi, May 26, 2011,

Teuvo Kohonen
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1 Introduction

Unlike the clustering methods, which are used to classify data into dis-

crete sets, the nonlinear projective mappings have been meant to visu-

alize structures in data distributions by two-dimensional geometric dis-

plays. In most applications, the data to be visualized consist of high-

dimensional metric vectors, and the traditional nonlinear mappings are

different versions of multidimensional scaling (MDS) [1]. In addition, the

self-organizing map (SOM) [2] is used to display data structures.

It can be shown that both the MDS and the SOM can be constructed

for nonvectorial items, too, such as strings of symbols, if a distance matrix

for these items has been defined [2]. Tentatively it seems that the dis-

tance matrix D(∗, ∗) must define a metric, i.e., for any items A, B and C,

D(A,A) = 0, D(A,B) = D(B,A) ≥ 0, and D(A,B) +D(B,C) ≥ D(A,C).

This work discusses new developments of nonlinear projections, espe-

cially those intended to cope with nonvectorial items. It has turned out

that the traditional methods have problems with their convergence. It

is also known that the initialization of nonlinear projection algorithms is

a problem. This treatise introduces a new and extremely fast initializa-

tion method called the GENINIT ("general initialization") for nonvectorial

items. It does not involve any learning, but it could be used as a nonlin-

ear projective mapping, although its accuracy is not particularly good as

such. However, it seems to be effective in speeding up the convergence of

the other nonlinear projection methods.

2 The ordering initialization method GENINIT

In this subsection, the new ordering method called the GENINIT ("gen-

eral initialization") is defined. It is based on the distances of the items

from two pairs of properly selected fixed points. In order to understand

the motivation underlying it, one may first have a look into the metric-

vector case discussed in Sect.9 (Appendix).

1. The first pair of fixed points. Assume a finite set of sample items.

Find the two items that have the largest mutual distance. These points

are signified as the first pair of fixed points.

2. The first ordering sequence. All of the sample items can now be or-

dered one dimensionally according to their differences of distances from
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the first pair of fixed points.

3. The second pair of fixed points. In order to find two other fixed points,

one may compare all successive pairs of samples in the first ordering se-

quence. The pair, the mutual distance of which is largest, shall be re-

garded as the second pair of fixed points. The ordering of the items with

respect to this pair is to a large extent independent of the first ordering

sequence.

4. The second ordering sequence. Next, all of the original items are

ordered one dimensionally according to their differences of distances from

the second pair of fixed points.

5. Two-dimensional ordering. Let i be some running index that enumer-

ates the input samples in any order. Let ind1(i) be the index in the first

ordering sequence. Let ind2(i) be the index relating to the second order-

ing sequence, respectively. Then the simplest two-dimensionally ordered

plot of the samples is defined by the coordinates (ind1(i), ind2(i)). This

ordering is particularly effective as such for nonvectorial data, because no

two input items coincide in the map. Notwithstanding it is also possible

to use the sorted distance values in the two ordering sequences for the

coordinates of the items in the map.

A comment at this point may be due. The nonlinear projections dis-

cussed in this work are not independent of the metric used to represent

the input items. Therefore, in striving for good visualization, one is free

to experiment, e.g., with different powers of the standard distance values

in selecting a proper metric.

3 The Levenshtein distance for symbol strings

For string variables, various distance measures have been defined. The

most popular one may be the Levenshtein distance, also called the edit

distance [3]. A variant of it is the maximum posterior probability distance

[3]. In bioinformatics, the distances in large databases of long symbol

strings, such as the protein sequences [4] or genetic codes of viruses, are

usually described by partly heuristically defined distances such as the

FASTA measure [5]. In this work, for the simplicity of demonstration,

we shall use the basic unweighted Levenshtein distance, which defines a

metric.

The three basic types of error that occur in strings of symbols are the
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replacement error (change of a symbol into a wrong one), the deletion error,

and the insertion error, respectively. (The interchange of two successive

symbols is reduced, e.g., to two replacement errors.)

The basic unweighted Levenshtein distance LD(A,B) between the strings

A and B is defined as

LD(A,B) = min(a+ b+ c) , (1)

where string B is obtained from string A by a replacements, b insertions,

and c deletions of a symbol. There exists an indefinite number of combina-

tions of a, b and c to implement the transformation, and the minimum is

usually sought by a variational method called the dynamic programming

[2].

4 Example: Two-dimensional ordering of names of different
lengths by the GENINIT method

For a demonstration, 25 first names from the Author Index of the Proceed-

ings of the WSOM 2009 [6] were chosen. Their lengths varied between 7

and 9 letters.

The most regular GENINIT initialization for nonvectorial items has

been obtained using the indices of the two ordering sequences as the coor-

dinates x(i) and y(i) in the two-dimensional ordered graph. Such a graph

is shown in Fig. 1.

One has to emphasize that the ordering of the names in the horizon-

tal and vertical directions is determined by the global differences from the

two pairs of fixed points, whereas there is no reason for which the differen-

tial distances between adjacent names in the sequences should be correct.

Nonetheless one can notice that the most distant items, i.e., the items, the

sum of distances of which from all of the other items is largest, are mainly

located at the edges of the 2D display. A better differential similarity of

the mapping will be achieved in the fine tuning processes that follow.

Conclusion: The GENINIT method is very fast (the computing time in

the present example was less than a millisecond) and robust, and it de-

scribes the overall structures approximately. It is not satisfactory for a

nonlinear projection as such, but it is effective for the initialization of the

learning projective algorithms.
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Figure 1. Two-dimensional ordering of 25 first names by the GENINIT method. The
names are locatable according to the little points.

5 Nearest-neighbors multidimensional scaling (NN-MDS)

The previous approximative two-dimensional ordering does not yet guar-

antee that the global mutual distances in the two-dimensional map were

even closely the same as in the original distance matrix D. However, one

may use the GENINIT initialization as a starting point for learning algo-

rithms. One may try to continue, e.g., with the multidimensional scaling

(MDS) (cf., e.g., [1] or [2]). The basic objective in the latter is to minimize

the error function

E =
∑
i

∑
j<i

(D2(i, j) −D(i, j))2 , (2)

where D2(i, j) is the distance between the images of the items i and j on

the two-dimensional Euclidean plane, and D(i, j) is the distance selected

to describe the differences between these items (e.g., string variables).

The minimum can be sought by gradient computation.

This first experiment has been carried out using the unweighted Leven-

shtein distances.

However, although the basic MDS works well with metric vectors, espe-

cially when their dimensionality is not large, in our numerous attempts to
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use the MDS for nonvectorial items has not been successful. The conver-

gence of the algorithm has been slow and the learning process has usually

ended up in violent limit cycles. This is explainable by a few facts. The

distances in this example are integer-valued and their domain is narrow.

There are many equal distance values between the items. For these rea-

sons the corrections to the locations of the items in the 2D display are

often contradictory.

A variation of the MDS called the Sammon mapping [7] emphasizes

local structures. The squared error is divided by the original distance

D(i, j). Also the convergence is thereby improved.

In this work we introduce a variation of the MDS, called the nearest-

neighbors multidimensional scaling (NN-MDS), in which the correction,

relating to a particular item i, is computed only for i and its nearest neig-

bor (or neighbors, if the minimum is multiple). This variation of the MDS

has brought about a very effective stabilization of the learning process,

and the ordering criterion is more transparent than in the Sammon map-

ping. Let j(i) be the index of the item closest to item i. The new variation

of the algorithm is defined by:

if j(i) = argminj(D(i, j)) and j(i) < i,

E =
∑
i

∑
j(i)

(D2(i, j) −D(i, j))2 . (3)

One iteration cycle, in which the corrections to the coordinates are made

conditionally, is the following. Let i run over all of the 25 indices of the

words;

for i = 1 to 25 ,

if j(i) = argminj(D(i, j)) and j(i) < i ,

∆x(i) = −λ(D2(i, j) −D(i, j)) ∗ (x(i) − x(j))/D2(i, j) ,

∆y(i) = −λ(D2(i, j) −D(i, j)) ∗ (y(i) − y(j))/D2(i, j) ,

∆x(j) = −∆x(i) ,

∆y(j) = −∆y(i) .

(4)

Here λ is the learning rate such that 0 < λ < 1, and with the number n

of learning cycles, a useful expression for λ could be 0.2/(1 + An), where

A is a value that depends on the number of learning cycles. With 100,000

cycles, the value of A could be equal to .001.

The fine tuning episode consisted of 100,000 learning cycles. Fig. 2

shows the map after the NN-MDS fine tuning.
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Figure 2. The coordinates (x(i), y(i)) of the items after 100,000 iteration cycles of the
basic NN-MDS algorithm.

Notice that the new values x(i) and y(i) are no longer integers but real-

valued coordinates.

Conclusion: The convergence of the basic MDS algorithms is a severe

problem in the case of nonvectorial data. Since the representation of local

structures is usually most important for visualization, the NN-MDS al-

gorithm is preferred, also because its convergence is very good. However,

without any amendments, the mapping of large distances sometimes be-

comes erroneous.

6 The first amendment to the NN-MDS

Fig. 2 has still an unsatisfactory property. Although the items that have

a small mutual distance are usually located near to each other in the

display, the items may be close to each other in the map, although their

original distance is large. This is a usual flaw in all of the earlier MDS

methods and the SOM, too. Eq. (4), however, can be amended by alter-

nating two learning phases: first, the NN-MDS algorithm, and second, an

algorithm in which the corrections are

8



Figure 3. The coordinates (x(i), y(i)) of the items after 100,000 iteration cycles, when the
first amendment to the NN-MDS algorithm was applied.

for all i and j , if (i, j) = argmin(D2(i, j)) ,

∆x(i) = −λ(D2(i, j) −D(i, j)) ∗ (x(i) − x(j))/D2(i, j) ,

∆y(i) = −λ(D2(i, j) −D(i, j)) ∗ (y(i) − y(j))/D2(i, j) ,

∆x(j) = −∆x(i) ,

∆y(j) = −∆y(i) .

(5)

In other words, we are looking for the items that are closest in the 2D

display. We carry out a correction on them that is repulsive in the case that

their 2D distance is too small. This variation has a regularizing effect on

the map, without causing any instabilities in the convergence, or major

changes in the overall point density. Fig. 3 shows what happened to Fig.

2.

Conclusion: The errors in the largest distances, caused by the basic NN-

MDS algorithm, will be corrected to a large extent by the first amend-

ment.
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7 The second amendment to the NN-MDS

Since the nonlinear projection methods have been intended for visualiza-

tion purposes, it is the rank order of the items in the display that is more

important than their exact distances. The nonmetric MDS [8], [9] tries to

guarantee the best possible configuration of the 2D display by transform-

ing the original distances D(i, j) into a new scale f(D(i, j)), defined by a

monotonically increasing function f that best preserves the rank order.

The function f is usually determined experimentally.

The NN-MDS algorithm already abandoned the accurate metric dis-

tances by restricting the corrections to the items that are closest to each

other in the original space. However, when striving for the best rank order

in the 2D display, it will be possible to apply the nonmetric transformation

to the NN-MDS, too.

If we define the distanceD(i, j), say, as the third power of LD(i, j), we ac-

tually make a bigger distinction between small and large distances, which

improves the 2D visualization, as seen from Fig. 4.

In this experiment we had λ = .5/(1+.0001n) and the number of learning

cycles was 1,000,000.

There is only one pair of items, namely, (fernando, leonardo) that has

a mutual Levenshtein distance of three edit operations. The mutual dis-

tance of these names in the 2D diplay is smallest.The following five pairs

of names have the distance of four edit operations:

(erhardt, fernando),

(erhardt, leonardo),

(hiroshi, nicolai),

(hiroshi, takashi),

(roberto, rodrigo).

These pairs of names have small mutual distances and are located around

the middle of the display.

On the other hand, the following four names have the largest sums of

Levenshtein distances from the others. All of them lie at different edges

of the 2D display.

alexander guilherme toshiyuki francesco

It has now been demonstrated that the NN-MDS, with its two amend-

ments, is a viable alternative of the familiar MDS methods, especially for

nonvectorial items.
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Figure 4. The coordinates (x(i), y(i)) of the items after 1,000,000 iteration cycles when
both the first and the second amendment to the NN-MDS algorithm were ap-
plied.

Conclusion: A good agreement with both local and global structures will

be obtained by the NN-MDS algorithm, if the first and the second amend-

ment to it are introduced. The convergence is reasonably robust, although

not as fast as without the amendments.

At any rate, it is recommendable to use the GENINIT initialization with

all versions of the MDS algorithms.

8 How do we compute an SOM for general distance measures?

First of all it may be necessary to remark that the MDS and the SOM

have been meant for quite different problems.

1. If one wants to have a unique image for every unique input item in the

plot, as the case normally is in taxonomy, then one ought to resort to MDS,

where the projection errors have been minimized.

2. If, on the other hand, there are plenty of randomly scattered samples,

and one is mainly interested in the local averages of data and their cluster

structures, the usual nonlinear projection methods such as the MDS cannot

be used. The SOM display is the only realistic method for that purpose.
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This distinction relates to some other neural-network mappings, too, that

have been suggested for a replacement of the SOM.

3. The point density of the local averages on the SOM display is tending

to approximate the density function of the input items, at least some low

power p of it (0 < p < 1).

4. A few further comments to clarify the differences between the SOM

and the different MDS methods should be made. In the basic MDS, the

optimization of the 2D map was made by minimizing the distance errors

of the 2D projections vs. the original distances over all pairs of items, but

there may remain even large errors in the individual distances between

samples that are neighbors in the map. The Sammon mapping, the basic

NN-MDS, as well as the SOM tend to approximate the local topological

structures in subsets of samples that are neighbors in the map, and do not

pay attention to the correctness of longer distances.

In order to demonstrate the real capability of the SOM and the bene-

fit of the GENINIT initialization method for it, we need so much bigger

databases and more computation that it must be left to a further study.

Here we only delineate the method by which an SOM is constructed for

nonvectorial data items such as, for example, string variables.

The ordering criterion of an SOM, for which only the distance matrix of

its input items has been given, is that in the neighborhood set of nodes

around every node, the item associated with the node is the set median of

the items in the neighborhood nodes. The neighborhood of a node consists

of the set of nodes within a fixed radius from the node. The set median of

a set, on the other hand, is defined as the item that has the smallest sum

of distances from all members of the set [2].

Starting from any initial state of the SOM (in which some input item is

associated with every map node), a batch training procedure can be de-

fined. First, every training input is mapped into that map node ("winner

node"), from which it has the smallest distance. Thus one obtains a list of

selected input items associated with every node.

The updating of the SOM takes place by replacing the old item at every

node by the set median of the union of the lists in the neighborhood of this

node. The updating shall occur as a two-rank operation, i.e., the replace-

ment of all old items shall occur concurrently, after the lists have been

constructed. The mapping and updating operations are reiterated until

the map becomes steady, i.e., until no further changes in the above lists

occur.

12



To the knowledge of this author there does not exist any mathematical

proof for that the batch ordering with nonvectorial data converges. In

practice, one is always able to check whether the mapping is steady. This

has so far occurred in a finite number of updating cycles, if the neighbor-

hood sets of the SOM do not vary with time.

9 Appendix

Let us now consider coordinate systems that are defined by Euclidean

distances from fixed points. On a Euclidean plane, an ellipse is the set of

points, the sum of distances of which from two fixed points is constant.

With different sum values one obtains different ellipses.

A hyperbola is the set of points, the difference of distances of which from

two fixed points is constant. The two symmetric branches of a hyperbola

are defined by differences, the magnitudes of which are equal but which

have opposite signs.

By a family of elliptic and hyberbolic curves, one usually defines a bifocal

coordinate system on a 2D Euclidean plane.

It may now be intriguing to learn that on a Euclidean plane, the set of

points that has a constant difference of squares of distances from two fixed

points is a straight line. In a Euclidean space of arbitrary dimensional-

ity such a set of points defines a hyperplane that is orthogonal to the line

passing the fixed points. Relating to a set of such differences, the corre-

sponding hyperplanes are parallel, and their distance is a linear function

of the difference. This can be shown by simple analytic geometry.

Consider an n-dimensional Euclidean space and the point x = [x1, x2, ..., xn]

in it. Consider further two fixed points a = [0, 0, ..., 0] and b = [c, 0, 0, ..., 0].

The squared distance between x and a we write

D(x, a) = x1
2 +

n∑
i=2

xi
2 , (6)

and the squared distance between x and b is

D(x, b) = (x1 − c)2 +
n∑

i=2

xi
2 . (7)

The difference of D(x, a) and D(x, b), denoted d, is equal to 2cx1 − c2.

In other words, if d is constant, the set of the corresponding points is

described by x1 = (d+ c2)/2c. This is the equation of a hyperplane that is

orthogonal to the x1 axis and intersects it at (d+ c2)/2c.

13



It is deducible that if one has four fixed points that do not lie on the

same straight line, one can define two families of intersecting hyperplanes

that can be used for independent coordinate planes in the hyperspace. It

would be desirable that these two families of hyperplanes were orthogonal

to each other.

Motivated by the above finding, we introduced the GENINIT ordering

method. However, when the metric of the source data is not Euclidean,

there exist no grounds for using differences of squared distances in the

definition of the general GENINIT method. One is free to experiment

with other scale transformations.
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