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Preface

This report presents A-Stack, a communication protocol stack for reli-

able, real-time and high data-rate wireless sensor networks. The work

is done in Aalto University School of Electrical Engineering under Intel-

ligent Structural Health Monitoring (ISMO) and Reliable and Real-Time

Wireless Automation (RELA) projects. A-Stack development started in

2010 on top of an IEEE 802.15.4 stack. The main reason for developing

A-Stack was the lack of software that would support long term real-time

WSN deployments which require accurate time-synchronization and high

data-rates. In order to be able to use the same software platform in a

multitude of scenarios, special emphasis was put on the flexibility and

ease-of-use.

Aamir Mahmood and Emre Ilke Cosar developed time synchronized event

generation and handling on top of a MAC layer synchronization protocol

(μ-Sync). Then, Emre extended this work to cover initialization, routing,

MAC, multi-hop and multi-channel networks, scheduling and power con-

trol. Erkka Mutanen modified a tool that creates network schedules for

A-Stack. Development work is supervised by Prof. Heikki Koivo. This

report gives a detailed description of the stack, operation, internal issues,

and usage as well as test cases and example configurations. The report is

written by Emre and Aamir and edited by Mikael Björkbom.

Espoo, December 28, 2011,

Emre Ilke Cosar, Aamir Mahmood and Mikael Björkbom

i



Preface

ii



Contents

Preface i

Contents iii

1. Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Original Contributions . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. General Architecture 5

2.1 Hardware Components . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Operating System . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 A-Stack Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Tasks in A-Stack . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.1 MAC Task . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.2 Packet Manager . . . . . . . . . . . . . . . . . . . . . . 8

2.4.3 Service Manager . . . . . . . . . . . . . . . . . . . . . 8

2.4.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.6 Supplementary Tools . . . . . . . . . . . . . . . . . . . . . . . 9

3. A-Stack Design 11

3.1 Stack Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Main Data Structure . . . . . . . . . . . . . . . . . . . 11

3.1.2 Communication Pair Structure . . . . . . . . . . . . . 12

3.1.3 Timer Event Structure . . . . . . . . . . . . . . . . . . 13

3.1.4 Main Operation Structure . . . . . . . . . . . . . . . . 14

3.2 A-Stack States and Events . . . . . . . . . . . . . . . . . . . . 17

iii



Contents

3.2.1 Timer States . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.2 Event Types and Their Handling . . . . . . . . . . . . 19

3.3 Packet Handling and Routing . . . . . . . . . . . . . . . . . . 21

3.3.1 Packet Structure and Routing in Packet Manager . . 21

3.3.2 Packet Types and Their Handling . . . . . . . . . . . 22

3.3.3 Packet Reception in MAC . . . . . . . . . . . . . . . . 23

3.3.4 Packet Handling in Packet Manager . . . . . . . . . . 25

3.3.5 Packet Handling in Service Manager . . . . . . . . . . 27

4. Time Synchronization 29

4.1 Implementation of Synchronization Clock . . . . . . . . . . . 29

4.2 Synchronization Method . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Clock Offset Budget Analysis . . . . . . . . . . . . . . 30

4.3 Clock Skew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Time Synchronization Accuracy of MICRO.2420 Platform . . 33

4.5 Time Synchronization Service . . . . . . . . . . . . . . . . . . 33

4.5.1 Time Synchronization Interface . . . . . . . . . . . . . 34

4.5.2 Time Synchronization and Advertisement Beacons . 34

4.5.3 Scheduler Event Generation from Timer . . . . . . . 35

4.6 Known Problems and Enhancements . . . . . . . . . . . . . . 35

4.6.1 Clock Skew Estimation . . . . . . . . . . . . . . . . . . 35

4.6.2 Time-Stamping Error at Receiver Side . . . . . . . . . 35

4.6.3 Time Synchronization Service Reliability . . . . . . . 36

5. Operation Topics: Network Configuration and System Setup 39

5.1 PC to Sink Communication . . . . . . . . . . . . . . . . . . . 39

5.1.1 Sink Node Implementation . . . . . . . . . . . . . . . 39

5.1.2 PC Implementation using MATLAB . . . . . . . . . . 40

5.2 Network Configuration . . . . . . . . . . . . . . . . . . . . . . 40

5.2.1 PC Initialization . . . . . . . . . . . . . . . . . . . . . . 40

5.2.2 Operational Settings . . . . . . . . . . . . . . . . . . . 41

5.2.3 Serial Port . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2.4 Node Discovery . . . . . . . . . . . . . . . . . . . . . . 42

5.2.5 Routes . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.6 Communication Pairs . . . . . . . . . . . . . . . . . . . 42

5.2.7 Schedule Creation . . . . . . . . . . . . . . . . . . . . . 42

5.2.8 Configuration Packets . . . . . . . . . . . . . . . . . . 43

5.2.9 Sink and Network Initialization . . . . . . . . . . . . 43

5.3 Node Joining . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

iv



Contents

5.3.1 Re-Joining . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.2 Service Manager when Node Joining . . . . . . . . . . 44

5.3.3 Time Required for Node Joining . . . . . . . . . . . . 45

5.4 Setting Up A-Stack and Source Code . . . . . . . . . . . . . . 46

5.4.1 Platform Folder . . . . . . . . . . . . . . . . . . . . . . 46

5.4.2 Common Folder . . . . . . . . . . . . . . . . . . . . . . 46

5.4.3 Application Configuration . . . . . . . . . . . . . . . . 47

6. Examples and Tests 49

6.1 Example Schedules . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1.1 Single Hop Schedules . . . . . . . . . . . . . . . . . . . 49

6.1.2 3-Hop Schedule for Data Collection (Convergecast) . 50

6.1.3 3-Hop Schedule for Data Collection and Dissemination 50

6.1.4 Notes on A-Stack Schedule . . . . . . . . . . . . . . . 51

6.2 A-Stack Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2.1 Application and Development . . . . . . . . . . . . . . 53

6.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3 Structural Health Monitoring Deployment using A-Stack . . 57

7. Future Development and Conclusions 61

7.1 Future Development and Known Issues . . . . . . . . . . . . 61

7.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Bibliography 63

v



Contents

vi



1. Introduction

1.1 Background

A-Stack is a framework for developing reliable real-time Wireless Sensor

Network (WSN) applications and networking algorithms. A-Stack incor-

porates multi-channel Time Division Multiple Access (TDMA), dynamic

channel hopping, global time-synchronization, routing, network config-

uration and system reliability tools. These are implemented on a real-

time operating system, which enables easy development of application

and other layers.

This report presents the technical details and design decisions of A-

stack. It is written to make the user understand the mechanisms in A-

Stack. A widely used term in the document, also in the source code, is

WCP, which refers to Wireless Communication Protocol. A-Stack started

as a communication protocol development project but then extended to a

stack through which several algorithms and applications can be imple-

mented. In order to have full understanding of A-stack and its operation,

it is advised to follow the source code together with this document.

Researchers on the WSN field need an open source development envi-

ronment that will enable easy access to network and sensor data. Fur-

thermore, an open and reliable software platform with good documenta-

tion has the potential to make development on network layer, data link

layer, other services or applications affordable.

A-stack is developed considering the requirements of wireless automa-

tion and structural health monitoring applications. In the wireless au-

tomation field, the target is to collect data with high reliability and low

latency in real-time without comprising the low power operation. Wire-

less channels are non-deterministic and time-varying and suffer from the
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interference caused by coexisting wireless networks. These characteris-

tics can easily result in packet losses and increased packet delays and

energy consumption. Therefore, it is very hard to ensure high commu-

nication reliability and deterministic operation by using wireless nodes.

Carrier sense multiple access (CSMA) mechanisms have shown to be in-

efficient in comparison with time division multiple access (TDMA) based

approaches when communication reliability and latencies are concerned

[1]. Furthermore, TDMA approaches perform better in terms of energy

efficiency for real-time control applications by duty-cycling the nodes [2].

Structural health monitoring (SHM) applications require collection of

high fidelity data. Time-synchronized sampling is thus crucial for wire-

less SHM. In many cases, SHM applications require periodic data collec-

tion from the network to a common sink. Long data collection times result

in higher power consumption and lower monitoring frequencies and make

the WSN unfeasible. Time-slotted networks allow better accuracy for al-

locating the limited bandwidth among the nodes in the network and thus

increase throughput. TDMA networks also enable energy savings since

the nodes can sleep when there is nothing to send or receive. Reliabil-

ity of the monitoring system is another critical element, i.e. the system

should be functioning without problems for months and even years, in a

real-world scenario.

In general, requirements set for wireless monitoring applications are

diverse in their nature and it is not possible to provide generic solutions

that will fit in every situation and sensor network [3]. Instead, an envi-

ronment that enables easy development, prototyping and deployment is

needed. A-Stack aims at providing such an open source environment for

developing time-synchronized, slotted and multi-channel communication

that does not compromise reliability, low power operation and usability.

1.2 Related Work

Several communication protocol stack designs has in the past been pre-

sented and evaluated. These designs consider OS, MAC and tailored ap-

plications for specific optimization goals. In this section, we revise the

latest relevant approaches. Further review of previous communication

protocols can be found in [2] and [4].

There are several operating systems designed especially for WSN appli-

cations. Notable of these are TinyOS [5] and Contiki [6]. Even though

2
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it is possible to implement time-critical tasks by using these operating

systems, they are mainly designed for event-based operation. We use

a real-time operating system, FreeRTOS [7], which allows pre-emptive

scheduling and prioritization between tasks. Such an operating system

allows implementation of time-critical and best effort tasks separately,

which reduces code development effort.

SlotOS [9] is a programming approach that uses slotted programming

for temporal decoupling of the different tasks of a sensor node such that

at any time at most one task is active. With this approach, tasks can be

implemented as independent software modules which simplify coding and

enable code reuse.

The WirelessHART protocol [8] is an industrial standard for process and

automation applications. It utilizes Time Synchronized Mesh Protocol

(TSMP) [1] which combines TDMA with 10 msec slots, channel hopping,

channel blacklisting, and industry standard AES-128 ciphers and keys.

A centralized network manager is responsible for making the routes and

communication schedules. Commercial products that employ this stan-

dard are on the market. However, the network managers developed by

companies are closed and the operation is generic which does not allow

optimization for the task in hand.

GinMAC uses TDMA, off-line dimensioning, reliability control mech-

anisms and topology control mechanisms to ensure timely and reliable

data delivery [10]. PIP is a connection-oriented, TDMA-based, multi-

channel and centralized bulk transfer protocol [11]. In [2], transmis-

sion pipelining and multiple transceivers at the controller are used for

achieving low latency requirements of hard-real time discrete control ap-

plications. TREnD protocol [4], aims at dynamic adaptation of protocol

parameters for optimizing energy efficiency given a set of reliability and

latency constraints. TREnD includes a hybrid TDMA/CSMA MAC, rout-

ing, data aggregation and duty cycling for single channel scenarios.

1.3 Original Contributions

The original contribution of our work is a development framework for re-

liable real-time WSN applications and protocols. A-Stack incorporates

multi-channel TDMA, global time-synchronization, routing, network con-

figuration, and system reliability tools. These are implemented on a real-

time operating system, which enables easy development of application

3
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and other layers. In our approach emphasis is put on modularity and pro-

viding tools for realizing a multitude of real-time and reliable operation

scenarios in practice, instead of creating an optimized protocol for one

scenario.

An important characteristic is that the networks and schedules can be

optimized for an application or protocol and can be tested in practice over

long periods of time without need for extra effort. Channels can be in-

dependently assigned to the time-slots and can be changed in order to

adapt to the varying channel conditions. Time-slot length of a full length

packet is 8 msec which can be reduced for smaller packets. In the stack,

IEEE 802.15.4 addressees are used, and unicast packets are acknowl-

edged within one time-slot. Nodes are time-synchronized throughout the

operation. They can join and re-join the network at any time. Another

important advantage of the stack is that the code is open, which enables

conducting research on network, data link, service and application levels.

The capabilities of A-Stack are validated through tests and deployments

presented in this document. A brief description of the stack and test re-

sults can be found in [12].

1.4 Structure

This document is organized as follows. Chapter 2 presents the general ar-

chitecture of the stack. System design is described in Chapter 3. Time

synchronization is given in Chapter 4. Operation topics are given in

Chapter 5. System set-up, example configurations as well as tests and

deployments are explained in Chapter 6. Finally, conclusions are given in

Chapter 7 along with the known issues and future development.

4



2. General Architecture

In this chapter, we discuss the main building blocks of A-Stack architec-

ture. The radio transceiver, microcontroller unit (MCU), FreeRTOS real

time kernel, radio and timer interrupts, three stack tasks (Medium Ac-

cess Control (MAC), Packet Manager, and Service Manager) and Applica-

tion task(s) running on the operating system constitute the main building

blocks in A-Stack. Figure 2.1 shows these blocks in A-Stack.

Figure 2.1. Building blocks of A-Stack

Hardware drivers, data structures and some of the communication func-

tions used in the stack are based on NanoStackTM , a 6LoWPAN pro-

tocol stack for wireless sensing and control using low power devices [13].

NanoStack started as an open-source development but as of January 2009

the source code was closed and stopped to be actively developed and main-

tained as an open-source project.

5
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2.1 Hardware Components

The stack is implemented on Sensinode Micro.2420 nodes comprising of a

TI MSP430 core and a Chipcon CC2420 transceiver, operating on the 2.4

GHz band, having 250 kbps data-rate. The Microcontroller unit (MCU)

has 10 kB RAM and 256 kB flash memory. The nodes are running FreeR-

TOS, a real-time embedded operating system that supports both preemp-

tive and cooperative operation. Even though the current implementation

of A-Stack is on this hardware, it can be easily extended to other hardware

platforms in the future.

2.2 Operating System

A-Stack runs on FreeRTOS real-time kernel. FreeRTOS is an open-source,

real-time operating system designed for embedded systems. Preemptive

multitasking in FreeRTOS enables real-time operation by task switch-

ing that occur when a higher priority task is triggered. This character-

istic of the operating system (OS) ensures the time-critical tasks such as

handling of time-slots are done correctly within their critical time span.

FreeRTOS employs queues and semaphores for inter-task communica-

tion.

2.3 A-Stack Scheduler

It is useful to define here what is meant by a schedule and a scheduler. A

schedule in this context refers to a set of timer events within a network-

wide super frame. These events indicate the start or stop of a specific

task (e.g. transmission and reception slots) within the super frame. Every

node has a specific schedule. Timer interrupts, or events, in this schedule

are the heart of the operation in A-Stack. Their deterministic generation

ensures the continuity of the operation, and keeps the network schedule

running with transmission and reception slots. Here, "scheduler" refers

to the process of generating timer interrupts. When the scheduler is said

to be running, it means that the timer interrupts are generated period-

ically. When a timer interrupt occurs, the scheduler creates an event to

be processed and sets a new interrupt for the next occurrence based on

the timer event duration. The scheduler is activated in a node after all

the configuration packets are received and the node is time-synchronized
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with the network.

2.4 Tasks in A-Stack

Table 2.1 shows the tasks, their priorities and a brief description of their

responsibilities in A-Stack. The stack is designed to support time-slotted

communication, which brings the necessity to handle time-critical events

within deterministic times. This is achieved by prioritizing the stack

tasks.

Table 2.1. Tasks in A-Stack

Task Priority Responsibility

MAC Highest Communication and

timer events handling.

Packet Manager High Incoming and outgo-

ing packets handling,

routing.

Service Manager Medium Initialization, node

joining and reliability.

Application Low-High (App. dependent) Send/Receive packets,

data acquisition, con-

trol etc.

2.4.1 MAC Task

When A-Stack scheduler is active, the MAC task is responsible for han-

dling radio and timer interrupts. Once a packet is received in the radio,

an interrupt is triggered in the MCU. The handler function of this inter-

rupt creates an event to be handled in the MAC task and initiates a task

switch in the operating system. MAC task handles the packet right after

it is received since it is the highest priority task. Similarly, when a timer

event occurs, a timer interrupt is generated and the MAC task is acti-

vated. The MAC task then handles the timer event by changing channels,

turning on/off the radio or transmitting a packet from a queue, depending

on the timer event parameters.

7
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2.4.2 Packet Manager

The packet manager is responsible for managing the packets within the

node. When a transmission is successful, it erases the packet from the

transmission queue, and when a packet is received it handles the packet

according to the packet type. Packet routing operations are also done in

this task.

2.4.3 Service Manager

The service manager is responsible for providing additional services that

might be required in the node operation. In the current implementation,

it is responsible for node joining and checking whether the node is in the

network and hence increasing the network reliability. If a node restarts

or loses synchronization, the service manager helps the node to recover

and re-join the network.

2.4.4 Application

The application task is the place where abstraction from the stack is ob-

tained. A developer can use one or more application tasks for the code re-

quired to run the application. Data packets are formed and added to the

transmission queue. Additionally, the incoming application data packets

are handled in this task after being processed in the packet manager.

2.5 Interrupts

There are two sources of interrupts in A-Stack: radio interrupts and timer

interrupts. Radio interrupts are generated whenever a packet is received

in the radio module and this interrupt notifies the main microcontroller to

fetch the data from the radio module. Timer interrupts are generated at

the timeslot boundaries. The MAC task is responsible of handling these

two types of interrupts. The interrupts are handled in their respective

interrupt service routines (isr’s). Once an interrupt occurs, the operating

system tasks are halted and these isr’s are invoked. These isr’s should be

a brief portions of code in order not to interfere with the operating system

tasks. That is why isr’s are designed to do the minimum requirements of

the interrupt.

8
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2.6 Supplementary Tools

A-Stack is supplemented with tools for easy prototyping and reliable op-

eration. A sink node to PC communication tool interfaces the network

and the user/network manager. A simple node discovery tool records the

node-ids and MAC addresses. This information, together with the rout-

ing information, is then used to create the schedules. A schedule creation

tool creates the schedule of the network. This tool can use several algo-

rithms for scheduling based on the application requirements. We have

implemented a default scheduling algorithm which assigns dissemina-

tion and convergecast slots to all the nodes in the network. As an al-

ternative, we have integrated the WirelessTools software, developed by

KTH [14] [15], into A-Stack schedule generation process. Finally, node-

joining and re-joining tool ensures the network is reliable throughout the

operation by handling node-join requests, re-joining requests, changing

channels, changing duty cycles of the network etc.

9
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3. A-Stack Design

In this chapter, design decisions taken for A-Stack are introduced in de-

tail. Data stuctures, system states, timer events and packet handling are

explained.

3.1 Stack Structures

This section presents the structures used in A-Stack.

3.1.1 Main Data Structure

A-Stack uses the same data structure as NanoStack, buffer_t. The main

advantage of this structure is that it allows the packets to be passed

within tasks without actually moving the data, but by moving only the

pointer to this data. OS queues have limited storage and filling this stor-

age with the actual data to be transferred would consume large amounts

of space, instead NanoStack’s solution provides an efficient structure to

pass the data within resource limited embedded systems. A detailed ex-

planation of the main data structure can be found in [16].

A pool of buffer_t instances are created when the stack is initialized.

Allocation of this data structure is done through a ring buffer acting as a

pool for the buffer_t instances. Front end functions stack_buffer_get() and

stack_buffer_free() are used to take and free the buffers in the pool. For

efficient use of the stack, it is important to understand the mechanism of

the stack buffers, this is why reading related sections in [16] is strongly

encouraged. Figure 3.1 shows the ring buffer for buffer_t instances.

11
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Figure 3.1. Ring buffer for buffer_t instances [16]

3.1.2 Communication Pair Structure

A communication pair is a neighbor of a node, to which it may send and

receive packets. Every node in operation has communication pairs (cp)

and data to send to these communication pairs. The wcp_cp_t structure

(Fig. 3.2) is used to store wireless communication information needed for

data exchange between the nodes.

Figure 3.2. Communication Pair Structure

cp_id represents the id of the corresponding communication pair. tx_fail

is a parameter used for tracking how many consecutive transmissions

have failed of the corresponding communication pair. The tx_fail parame-

ter is used when managing buffers during operation.

Data transfer in the stack is done by using the buffer_t instances as

explained in the previous section. Every wcp_cp_t object has a circular

buffer of buffer_t instances. This circular buffer is used to store the buffers

to be transmitted when the right communication slot occurs. read_pointer,

write_pointer, no_of_buffers are the parameters used to manage the

buffer_index[MAX_CP_TX_BUFFERS].

dst is the destination address of the communication pair and its stored
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in a sockaddr_t structure, which is a native structure of NanoStack.

3.1.3 Timer Event Structure

In A-Stack, the wcp_timer_event_t structure (see Fig. 3.3) is used for stor-

ing the information regarding the timer events in the schedule.

Figure 3.3. Timer Event Structure

Timer interrupts are used to trigger timer events and hence time slots

in the network schedule. Whenever a timer interrupt occurs, an event is

sent to the MAC layer based on the type parameter. The duration param-

eter is used to set up the next timer event, right after one timer event

occurs. The radio_channel parameter shows which radio channel will be

used during the time slot. The cp parameter indicates the communication

pair targeted within the time slot.

Note that the duration parameter is defined to be unsigned 8 bit. It can

take values from 1 to 255, which then refers to slot lengths of 1 to 255

msec. However, in reality, length of a timeslot should not be larger than

65535 msec. This number is the maximum value a 16 bit counter can

count up to when clock is running at 1 MHz. Capture and compare reg-

ister of the MCU timer is also 16 bits, which means that longest interval

between two timer interrupts is 65535 msec. For regular communication

slots, 10 msec is enough for any transmission and reception, however for

idle slots (slots during which radio is in an idle state) slot length can be

larger than 65 msec depending on the schedule. Thus a separate mecha-

nism is needed for them. In an idle slot, radio is idle this is why cp pa-

rameter is not needed. This parameter is used to store how many times a

65 msec is needed for the idle slot. Idle slot handler in MAC task triggers

65 msec events as many as the cp parameter. Maximum idle slot length is

65x256 msec or 16.64 sec. When forming the schedules, consecutive idle

slots are combined in order to decrease the maximum number of events
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thus reducing the memory usage.

3.1.4 Main Operation Structure

The main structure of the stack is wcp_scheduler_t (see Fig. 3.4). It is

responsible for keeping all information regarding the operation, such as

communication pairs and timer events information.

Figure 3.4. Main Operation Structure of A-Stack

my_id is the ID number of the node. current_timer_event is the index

number of the current event. This number is used to point at the corre-

sponding event in timer_event_index[MAX_TIMER_EVENTS] array.

idle_counter, idle_original, idle_first are used to manage idle time-slots

as explained in Section 3.1.3.
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adv_freq indicates the frequency of advertisement beacons. When it is

set to 10 for example, an advertisement beacon is sent in every 10 super-

frames. A "superframe" in this case refers to a period that is equal to the

duration of all the timer events.

adv_check_freq determines when a node disconnects if it stops receiving

advertisements. It is calculated in PC and transferred to the nodes during

initialization. As an example, if this variable is 2, a node will go to the

node joining state after it sees that an advertisement is not received for 2

times consecutively . This check is done in service manager task and the

period of this check depends also on SERVICE_TASK_DELAY defined in

Section 5.4.3.

frame_freq determines how often a frame will be active. When it is 1, all

the frames are active frames and reception and transmission can be done

in that frame, but when this is for example 5, 1 every 5 frames is active.

The change in frame frequency is used to decrease the power consump-

tion.

frame_active parameter is used in MAC layer to check whether the node

is in an active frame.

adv_rx variable is used to track whether advertisement beacons are re-

ceived within their corresponding time slot. It is modified in MAC task,

MAC_RX_MES event. It is controlled in Service Task in order to deter-

mine whether a node is within the network, if service task notices that a

node is not receiving advertisements regularly, it will change the opera-

tion state to NODE_JOIN.

Every node creates wcp_advertise_buf once. This is the buffer used

when transmitting advertisement beacons. Note that synchronization in-

formation is also added to this buffer. In order to prevent creating the

same buffer over and over, wcp_advertise_buf is created once and used

throughout the operation. After these are created for the first time, ser-

vice_buffers_ready variable is set to 1 to ensure they are not created again

in case of re-joining to the network.

number_of_timer_events variable is used to keep track of the maximum

number of timer events generated in the node. Every time a timer event

is generated, malloc() function is called and a portion of the memory is

allocated for that event. This variable is controlled in order to prevent

unnecessary memory allocation, for example a schedule update.

no_of_current_timer_events variable stores the number of timer events

in the scheduler. This variable is used within the timer event interrupt
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service routine.

advertised_when_off parameter is used to change the state of the sched-

uler from WCP_OFF to WCP_JOIN. When a node re-starts, the initial

state is WCP_OFF and NanoStack is running. Once an advertisement

targeted to the node is received, this variable is set to 1 in MAC task.

Actual state change occurs in the service manager task.

route_back[MAX_HOPS-1] array stores the route to be used when the

node wants to send a packet back to the sink.

safe_operation indicates that the scheduler is running and frame num-

bers are in sync with the rest of the network. It does not refer to a safe

mode, but it represents that the node is working fine and any operation

can be done safely in upper layers.

state variable shows the state of the scheduler. These can be WCP_OFF,

WCP_JOIN or other timer states. They will be explained in Section 3.2.1.

current_channel parameter shows the current channel used by the node.

This variable is updated in every time-slot. The variables change_channels

and new_channel are used to change the channel for transmission (WCP_

TX_SLOT_START) and reception (WCP_RX_ SLOT_START) slots in the

node. Note that every time-slot can have a different channel and this

change occurs in the beginning of that particular slot. change_channels

in this case refers to what happens when the channels of the time-slots

are updated. The actual change takes place in the MAC task is in the

WCP_FRAME_SLOT_START event.

re_tx parameter indicates how many times a packet, which does not re-

ceive an ACK, is going to be transmitted before it is dropped. These re-

transmissions take place when the next time a transmission slot occurs

for the same communication pair. For example, if re_tx is 1, a packet is

dropped even though an ACK is not received after the first trial, but if it

is 2, it would be transmitted another time.

number_of_cp defines the number of active communication pairs.

change_frame_freq indicates a request for frame frequency change is re-

quested. This variable is checked in MAC task.

new_frame_freq indicates the new frequency to be set, whereas the vari-

able frame_to_change_frame_freq indicates at which frame the change is

going to take place. This is required in order to synchronize the entire

network when a major change is to occur.

start_sim_active a simultaneous start of an operation (sampling, actu-

ation, etc.) in the network. MAC layer handles this start by checking
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frame_to_start variable and eventually giving the semaphore, start_sim_smphr,

when the time comes. This semaphore can be used in the application to

trigger a certain operation.

app_queue is the queue used for WCP_DATA packets that are sent to

the application layer by packet manager.

service_queue is the queue used for handling service messages. These

are the messages received when the node is in WCP_JOIN state. This

queue is handled in service_manager task.

Besides the two queues explained above, there is another queue that is

actively used during the operation. This is wcp_queue, and it is handled in

the packet_manager task. When the scheduler is running, all the received

messages come here, and action is taken based on the packet type.

3.2 A-Stack States and Events

This section presents the states and events used in the A-Stack.

3.2.1 Timer States

Timer states are the main indicator of the scheduler state and they have

a major role on the communication settings at different phases of the op-

eration.

Figure 3.5. Timer States

Once a node is powered up, its initial timer state is WCP_OFF. In this

state, NanoStack is active and packets are handled as explained in [16].

In this state the communication can be either broadcast or unicast. Note

also that the default MAC implementation of NanoStack is IEEE.802.15.4

MAC, which utilizes clear channel assessment (CCA) when transmitting

a packet. In this MAC implementation, a node may back-off and try re-
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transmitting a packet after a pseudo-random time interval depending on

the channel conditions. In default NanoStack implementation, several

packet headers and footers are formed after a packet is sent to the stack

modules and these are memory operations including moving a certain

amount of data. Furthermore packets move between several modules. Be-

cause of above mentioned characteristics, it is hard to estimate at which

instant a packet is transmitted through the radio when NanoStack is ac-

tive.

If a node starts to receive advertisements targeted to it when it is in

WCP_OFF state, it will change its state to WCP_JOIN. In this state pack-

ets that are received in the MAC layer (or MAC task) are forwarded

to the service_queue, or service_task (note that this task is indicated as

WCP_Service_task in the source code). When a node is in this state, it

receives and transmits only broadcast messages. These messages employ

CCA and include IEEE802.15.4 headers, however, in case of a no clear

channel, there are no re-transmissions.

The rest of the timer states do not employ back-off after a not clear chan-

nel. Time synchronized operation ensures that all the nodes receive and

transmit at their corresponding time-slots. When state is not WCP_OFF

and WCP_JOIN, packets, as instances of buffer_t, are formed and added

to the corresponding communication pair buffer queue prior to their trans-

mission. Packet formation includes adding the addresses and MAC head-

ers. Once a transmission slot comes, these ready packets are transmitted

without any further delay. This is an important characteristic of the A-

Stack: packets are not modified any more in the MAC layer. This ensures

that the transmission takes place within the potentially short time slots.

An important issue in forming communication packets is MAC sequence

update. Normally, when the timer state is WCP_OFF, MAC sequence

is added to the frame and the sequence is updated when the function

rf_802_15_4_create_mac_frame(), is called. In other states, this function

creates the frames but does not update the sequence. The correct se-

quence is added to the frame and then updated when wcp_mac_tx_buf()

function is called. The reason for this difference in implementation is that,

when the scheduler is running, the packets are transmitted not based on

the time they are created, but based on the time slots. This is why, the

MAC sequence number is not added until the last moment.

RX_SLOT and TX_SLOT states indicate that the communication is uni-

cast and no clear channel assessment is done. In RX_SLOTs, radio is on,
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in TX_SLOTs radio is enabled if there is a packet to be transmitted. In

RX_TX_SLOTs CCA is done, and if channel is busy no transmission takes

place. Radio is always on in this timer state.

WAIT_FOR_ACK state indicates that a unicast transmission was done,

and a timer is set in MAC. Within this time if an ACK packet is received,

timer is stopped, the corresponding transmitted packet is removed from

the buffer queue of the corresponding communication pair, and the timer

is stopped. If an ACK is received when the timer is in another state, it is

not considered to be valid.

WAIT_FOR_SLOT state indicates that the timer is in an idle state wait-

ing for a communication slot to occur. In this state, the radio is off. Table

3.1 shows the Timer states and their functionalities.

Table 3.1. Timer States and their Functionalities.

Timer State Radio CCA

check

Transmission

functions

Mac sequence update Re-tx if

channel

busy

Active Stack

WCP_OFF ON by default Yes mac_tx_buf(),

rf_write()

rf_802_15_4_create_mac_frame() Yes NanoStack

WCP_JOIN ON Yes wcp_mac_tx_buf(),

rf_write_no_cca()

wcp_mac_tx_buf() No A-Stack (service

manager)

RX_SLOT ON - - - - A-Stack

TX_SLOT ON if tx No wcp_mac_tx_buf(),

rf_write_no_cca()

wcp_mac_tx_buf() Packet man-

ager decides

A-Stack

WAIT_FOR_ACK - - - - - A-Stack

RX_SLOT OFF - - - - A-Stack

RX_TX_SLOT ON Yes wcp_mac_tx_buf(),

rf_write()

wcp_mac_tx_buf() Packet man-

ager decides

A-Stack

3.2.2 Event Types and Their Handling

Table 3.2 shows the MAC events and their functionalities. Note that these

events start with "WCP". This is done in order to distinguish them from

native event types in NanoStack.

MAC_RX_MES is the event generated by the radio interrupt service

routine when a packet is received. Packet reception in MAC is further

explained in Section 3.3.3.

WCP_TX_SLOT_START event occurs when a transmission slot starts.

Timer state of the scheduler is changed to TX_SLOT. Radio channel is

changed if necessary. Buffer queue of the communication pair, which is

assigned to the slot, is checked. If a packet is ready, it is transmitted.

Otherwise radio is turned off.

WCP_RX_SLOT_START event occurs when a reception slot starts. Timer

state of the scheduler is changed to RX_SLOT. Radio channel is changed

if necessary.
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Table 3.2. MAC Events and Their Functionalities

Event type Timer State Source Functionality

MAC_RX_MES RX_SLOT Radio ISR A radio packet is received.

WCP_TX_SLOT_START (TX) TX_SLOT Timer ISR Change radio channel. Transmit

a packet to the communication

pair, if there is any.

WCP_RX_SLOT_START (RX) RX_SLOT Timer ISR Change radio channel, wait for a

packet.

WCP_FRAME_SLOT_START (FR) RX_TX_SLOT Timer ISR Indicates a global frame starts.

Update frame counter. Update

schedule if there is any changes.

WCP_RE_TX TX_SLOT Packet Mngr. Re-transmission within one time

slot.

WCP_IDLE_SLOT (IDLE) WAIT_FOR_SLOT Timer ISR Wait for next event.

WCP_SERVICE_TX_SLOT (S_T) TX_SLOT Timer ISR Change radio channel, broadcast

service messages or advertise-

ments.

WCP_SERVICE_RX_SLOT (S_R) RX_TX_SLOT Timer ISR Change radio channel.

WCP_SERVICE_IDLE (S_I) WAIT_FOR_SLOT Timer ISR Wait for next event.

WCP_FRAME_SLOT_START event occurs when a frame starts. The

variable frame_counter is incremented at the beginning of this event. All

updates related to the schedule should be done within this slot. In current

implementation the channels and frame frequency are updated, and si-

multaneous start command is given in this slot. Timer state of the sched-

uler is RX_TX_SLOT.

WCP_RE_TX event is generated by packet manager when a retrans-

mission is needed within one time slot. This should be used with care and

only when the time slots are long enough.

MAC_SYNC_MODULE is actually not an event, but it is an indicator

for buffer_t in from field. If a buffer has this in its from field, the packet is

transmitted by using rf_write() function instead of rf_write_no_cca() func-

tion.

WCP_IDLE_SLOT brings scheduler timer state to WAIT_FOR_SLOT,

which indicates that the radio is off. These slots include a mechanism to

handle time-slots longer than 65 msec as described in Section 3.1.3.

WCP_SERVICE_TX_SLOT event brings the scheduler timer state to

the RX_TX_SLOT. In this slot, radio channel is set and packets are broad-

cast. Advertisement beacons are generated at an interval determined by

adv_freq. Note that these beacons are used with the nodes that have chil-

dren. The end nodes, as known as leaf nodes, do not need to broadcast

service messages. When there is no advertisement beacon to transmit,

node checks whether there is any other service messages in the broadcast

queue. The broadcast queue is simply defined as a communication pair
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with broadcast address and its index number in every node is MAX_CP-1.

MAX_CP parameter is defined in app_config.c and it indicates maxi-

mum number of communication pairs one node can have. The broadcast

communication pair, with index number MAX_CP-1, stores the service

messages. As it will be explained in node joining Section 5.3, network

configuration packets are transmitted broadcast within these slots. If a

configuration packet with packet type WCP_JOIN_PERMISSION is to be

transmitted, the node adds the time of the next timer event. This is done

to enable the child to join the network at the right time. Details of this

operation can be found in Section 5.3.

WCP_SERVICE_RX_SLOT slot brings the timer state of the scheduler

timer to RX_TX_SLOT. In this slot, radio channel is set and node waits

for an incoming packet to be received.

WCP_SERVICE_IDLE event has the same implementation as that of a

WCP_IDLE_SLOT. This slot is defined separately for optimization pur-

poses during the node joining phase. Normally, all the idle slots are com-

bined together when schedules are being created. This is done to decrease

the number of timer events in one node. However, when a node wants

to join it should have a WCP_SERVICE_IDLE slot in its schedule, which

indicates the first event it will generate when it is joining the network.

3.3 Packet Handling and Routing

3.3.1 Packet Structure and Routing in Packet Manager

The packet structure is as shown in Fig. 3.6. Length of the "packet route",

depends on the MAX_HOPS variable defined in app_config.c file.

Figure 3.6. Packet Structure in Packet Manager

ID numbers are 8 bit fields and their assignment in A-Stack is shown in

Table 3.3.

A simple source routing is implemented in A-Stack for testing and val-

idating purposes. Routes are formed in MATLAB and distributed when

a node wants to join the network. Simply, every node knows their route

back to the sink node, and the sink node knows the routes to all the nodes.

Once a packet is received at a node, the node checks whether the packet
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Table 3.3. ID Assignment in A-Stack

ID Number Description

1 Sink

2-252 Network nodes

253 Network broadcast

254 Advertisement beacon

255 PC

is intended for it, if not, it has to forward the packet to the next desti-

nation. This is done in wcp_find_next_hop_index() function as described

below.

If packet type is WCP_SERVICE, and the node receiving the packet is

on the route, it will forward the packet using a service slot by inserting

the packet to the broadcast queue (MAX_CP-1). Else if the packet des-

tination is one-hop neighbor of the node, it will assign the packet to the

corresponding communication pair. Otherwise, the node will check the

"packet route" and find its own ID in the array, and then it would take the

next element in the array as the next hop ID and assign the packet to that

communication pair. If next hop id is not valid, the packet is dropped.

3.3.2 Packet Types and Their Handling

The packet types given in Fig. 3.7 are used in C code as well as the MAT-

LAB code.

WCP_DISCOVER packets are sent while the NanoStack is active. Nodes

receiving a broadcasted discover message reply with WCP_RESPONSE

type of packet. When sink node receives a response from a node, it prints

the node address, which is available in the packet, to the serial port and

MATLAB would store the node address as well as the node id.

WCP_ASSIGN_CP packets are used to assign communication pairs to

the nodes. WCP_SCHEDULAR_SET packets are used for setting the

schedules. These packets originate from PC, and they will first reach sink.

If the packet is intended for the sink, it updates the settings. Otherwise,

the sink forwards the packet. Note that network nodes first ask for their

communication pair, and only then the PC generates this packet as a re-

sponse to the node request.

WCP_SERVICE packets are used to broadcast settings during the A-

Stack operation such as updating channels used in the schedule, frame
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Figure 3.7. Packet Types

frequency, re-transmission parameter and start simultaneous command.

WCP_DATA packets are used to indicate data packets for the applica-

tion layer.

WCP_ADVERTISE packets indicate advertisement beacons. These bea-

cons are at the same time time-synchronization beacons.

WCP_ASK_CP, WCP_ASK_SCHEDULE and WCP_ASK_JOIN packets

are generated when a node tries to join the network. These packets are

generated in the service manager task.

WCP_JOIN_PERMISSION packet gives the join permission to a node.

The packet is generated by the PC and has the settings for node joining.

WCP_SINK_START packet gives an indication to the sink node to start

the scheduled operation.

WCP_SERVICE_DATA packets are used for transmitting application

layer data within service slots.

The packet types WCP_DISCOVER_RESPONSE, WCP_START_SYNC

and WCP_STATUS are not used in the current implementation.

3.3.3 Packet Reception in MAC

Packets are handled in MAC based on the timer state, packet type, and

frame type. Figure 3.8 shows the flowchart of packet handling in MAC.
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The MAC decides to which module to forward the incoming packet. It can

be packet manager, service manager, modules of NanoStack, or the packet

can be handled and cleared in MAC, as is done for advertisement beacons.

Note that synchronization information is located in advertisement pack-

ets, and it is handled in rf.c before the packet arrives to MAC.

Figure 3.8. Flowchart of packet handling in MAC.

MAC handles a packet based on the output of mac_header_analyze()

function. If the packet has a FC_SYNCHRONIZATION_FRAME (defined

in time_sync.c) or a FC_DATA_FRAME, MAC decides where to forward

the packet: NanoStack, Service Manager or A-Stack. When the scheduler

timer state is WCP_OFF, packets are forwarded to NanoStack. However

in this state, if the first byte of the data packet is WCP_ADVERTISE and

if the nodes own id is included in the advertisement, the scheduler timer

state is changed to WCP_JOIN. If the state is WCP_JOIN, packet is sent

to service_queue. In other states, the packet is sent to wcp_queue. When

the state is neither WCP_JOIN nor WCP_OFF, the packet type is checked

and if it is an advertisement, directed to the node and if the current timer

event type is WCP_SERVICE_RX_SLOT, adv_rx parameter is set to 1.

This parameter is used to track whether the node is in the network by

checking whether the advertisements are received within dedicated time-

slots. This is done in MAC to ensure that there is no delay between packet

reception and checking the time slot.

ACK Handling in A-Stack is designed for a smooth operation. Since

there are multiple transmission time-slots with transmission functional-

ity, there are more than one packet in the MAC at the same time. Thus

it is important to determine correct ACKs for every packet. If a packet
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has a FC_ACK_FRAME, and timer state is WCP_OFF, ACK handling

algorithm of NanoStack is followed. The ACK_OK indication is sent to

the wcp_queue if the state is WCP_WAIT_FOR_ACK and the last sent

buffer from the current timer event’s buffer queue. Handling the state

WCP_WAIT_FOR_ACK is extremely important for reliability in terms of

data transfer. Whenever, a packet that requires an ACK is to be trans-

mitted, a timer is launched by using the function timer_rf_launch() (in

wcp_mac_tx_buf(), or in mac_tx_buf() ).

If an ACK is not received within a pre-defined time interval, an event

is generated from the mac timer interrupt service routine. This event

is dedicated to MAC_TIMER_INT_CB. In MAC_TIMER_INT_CB, if ac-

tive state is WCP_OFF NanoStack routine is followed. If active state is

WCP_JOIN, an ACK_TIMEOUT event is sent to wcp_queue. When the

state is WCP_OFF, timer_rf_launch() function is used as

timer_rf_launch(8000/PLATFORM_TIMER_DIV)

which indicates a waiting interval of 8 msec. Otherwise it is used as

timer_rf_launch(WCP_ACK_WAIT*1000/PLATFORM_TIMER_DIV).

Parameter WCP_ACK_WAIT is set in app_config.h file. It is advised to set

this variable to 7 (which refers to 7 msec) for a 10 msec slot.

3.3.4 Packet Handling in Packet Manager

Packets arriving to the Packet Manager are handled based on the packet

type and destination. If the packet destination matches the node id, the

node handles the packet internally. If the packet is aimed at another node,

the node finds the next hop id from the routing part and forwards the

packet. If the packet has a broadcast message id, the required informa-

tion is fetched and the packet is broadcast when the SERVICE_TX_SLOT

occurs next time.

Broadcast messages are used when a packet, such as a service mes-

sage, is to be transmitted to all the nodes in the network. Direction of

these messages is from the sink to the network, and not the other way

around. Every node receiving these messages checks whether it has a

SERVICE_TX_SLOT. Absence of this slot means that the node is an end

node, and it has no other node to forward this service message. Thus end

nodes drop the broadcast messages after they fetch the required informa-

tion.

If the packet destination is different than that of the node id or the

broadcast id, next hop id is taken from the routing array included in the
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packet and the packet is added to the transmission queue of the commu-

nication pair corresponding to the next hop id. If the packet destination

is the same as the id of the node, it is handled based on the packet type as

explained below.

Service Packets

The service packets have the packet type WCP_SERVICE. These packets

are transmitted always in WCP_SERVICE_TX_SLOTs. In the current

implementation of the stack, there are four types of service messages.

Figure 3.9. Service message types

WCP_CHANGE_RE_TX service packet type is used to change re_tx pa-

rameter. re_tx parameter indicates how many times a packet, which does

not receive an ACK, is going to be transmitted before it is dropped.

WCP_CHANGE_CHANNEL service packet type is used to change radio

channel used for transmission and reception slots. Note that, in current

implementation, only the channels used in transmission and reception

slots are changed but channels used in service slots are not changed. The

reason is to preserve a link for service and configuration in case a problem

occurs during the update. Note that, a multi-channel schedule will change

the channels when switching between time-slots. For example a node can

have a RX slot at channel 15 and a TX slot at channel 14. MAC layer of

the node will change the channels between 15 and 14 at every superframe.

If the network manager decides to change the schedule of the node so that

the node has a TX slot at channel 11 and RX slot at channel 13, it will use

WCP_CHANGE_CHANNEL.

WCP_CHANGE_FRAME_FREQ service packet type is used to change

the frequency of the superframes. By changing the frequency, user can

choose to disable RX and TX slots when the operation does not require

high data-rates.

WCP_START_SIMULTANEOUS service packet type is used to start a
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network wide operation, such as simultaneous sampling.

Data Packets

The data packets types are WCP_DATA and WCP_SERVICE_DATA. The

WCP_DATA packets are sent within WCP_TX_SLOT whereas the packets

of type WCP_SERVICE_DATA are sent within WCP_SERVICE_TX_SLOT.

The WCP_SERVICE_TX_SLOT is available only for one direction: sink

to network. Thus WCP_SERVICE_DATA packets should not be used for

sending messages from the nodes to the sink. Data packets are forwarded

to the application layer, application queue, for further handling.

Configuration Request Messages

The configuration request packets have the packet types WCP_ASK_CP,

WCP_ASK_SCHEDULE, and WCP_ASK_JOIN. A joining node uses these

packets to ask for configuration packets. These packets are handled sep-

arately in the sink node. If the sink node receives either one of these

packets, it will print the request to the serial port, and MATLAB will take

the necessary action. If a node other than the sink receives any one of

these packets, it has to handle the request by preparing an appropriate

packet to be sent to the sink and putting this packet into the correspond-

ing transmission queue. Configuration messages corresponding to these

requests are handled in service manager once they are created in PC. A

more detailed explanation of the events is given in Section 5.2.

3.3.5 Packet Handling in Service Manager

When timer state is WCP_JOIN, packets received in MAC layer are for-

warded to the service manager. Packet types which are forwarded by sink

and handled in corresponding node’s service manager are; WCP_ASSIGN_

CP, WCP_SCHEDULER_SET, and WCP_JOIN_PERMISSION. The de-

tailed functionality of these packets can be found in Section 3.3.2.
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4. Time Synchronization

In order to enable time-slotted communication, all the nodes in a sensor

network must be synchronized to a common time reference. To achieve

this, A-stack integrates a time synchronization service. The time syn-

chronization in wireless sensor network has been widely addressed in the

literature. The readers interested in the details on other synchronization

protocols can refer to [17][18] and the references therein. The time syn-

chronization service in A-stack is built as an extension of our MAC layer

synchronization protocol (μ-Sync) [17]. The original implementation of

the μ-Sync protocol is for Sensinode Nano.2430 platform [17]. The μ-Sync

protocol is ported to the Sensinode Micro.2420 platform in a separate ef-

fort [18] since Micro.2420 platform offers better stability of the clock i.e.

oscillator. The underlying time-synchronization procedure along with the

differences from the original implementation of μ-Sync is outlined in this

report.

4.1 Implementation of Synchronization Clock

The MCU of Micro.2420 platform (TI MSP430F1611) provides two 16 bits

timers, namely Timer-A and Timer-B. Timer-B runs as a local clock of a

node for task scheduling and other MAC layer operations, e.g. random

back-off, acknowledgments expiry time, etc. Timer-A is free and can be

used for performing time-synchronization. This timer has one 16 bits

counter (TAR) and three 16 bits configurable compare/control registers

(TACCRx). The source of Timer-A is an 8 MHz clock derived from an ex-

ternal 16 MHz crystal oscillator which has an accuracy of ±40 PPM. The

8 MHz source is divided by 8 before being passed to Timer-A, resulting in

a tick resolution of 1 μsec. The value of TAR is constantly increasing with

1 μsec tick resolution, generating an interrupt at each overflow, i.e. every
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65.535 msec. The interrupt is acknowledged in an ISR and a low resolu-

tion logical clock counter keeps a track of the number of overflows. The

wrap-around time of each node can vary due to the accuracy, temperature

and aging of the oscillator. Therefore, even if two clocks are synchronized,

a time error is caused depending on the relative time error parameters of

the clocks which will be further discussed in Section 4.3.

4.2 Synchronization Method

The μ-Sync is a broadcast based synchronization protocol where a syn-

chronization beacon is generated at MAC layer by a reference node with

a predefined period. The synchronization beacon carries a frame control

field 0x05. The reference node timestamps the beacon just before the mi-

crocontroller is signaled to transmit the beacon. The one-hop recipient

nodes timestamp the received beacon as the microcontroller signals the

reception of the valid packet with an interrupt. By this method most

of the uncertainties in the sender-receiver path are eliminated except for

the delay in the packet reception interrupt time and the propagation time.

However, their impact is minimal as compared to the desired accuracy of

the time-synchronization service. Therefore, by carefully performing the

clock offset budget analysis in the sender-receiver path within the time-

stamping procedure of synchronization beacon, the nodes can be synchro-

nized to a common reference accurately.

4.2.1 Clock Offset Budget Analysis

The time offset between the reference node and a child node under one-

way sync beacons needs to be critically scrutinized. Figure 4.1 shows the

critical path from sender at level (n-1) time-stamping the sync beacon at

t1 till the receiver at level n time-stamping the received beacon at t2. The

time length of the critical path Δt as given below

Δt = ttx_ts + tencoding + tprop + tdecoding + tint_handling + trx_ts (4.1)

should be added in t1 in order to synchronize the receiver clock with that

of the sender of sync beacon.

The factors contributing to Δt are elaborated below.

• Timestamp read/insert time: at sender (ttx_ts), the time between the in-
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Figure 4.1. Critical path in one-way time synchronization

sertion of timestamp into a sync beacon and microcontroller signaling

to radio chip to transmit. At receiver (trx_ts), the time between the sync

beacon reception signaled by the microcontroller and timestamp inser-

tion.

• Interrupt handling time (tint_handling): the time between when an in-

terrupt is raised and pending for the CPU time and when the micro-

controller vectors through the interrupt. This time is less than a few

microseconds. However, the delay can grow longer if the interrupts are

temporarily disabled or a higher priority interrupt is in service.

• Encoding time/Decoding time (tencoding/tdecoding): the time taken to en-

code the frame and transform into radio waves. It starts when the radio

chip is signaled to transmit the frame. This time is deterministic and it

is in the order of hundreds of microseconds. Decoding time is the time

taken by the receiver to transform the radio waves and decode back into

the binary message, and the message reception interrupt to be signaled

to the microcontroller. This time is also deterministic and it is in the

order of hundreds of microseconds.

• Propagation time (tprop): the time taken by the radio waves from the

transmitter antenna to reach the receiver antenna. The propagation

time is less than one msec for distances smaller than 300 m [19].

We measured by configuring a reference node to send the sync beacons

periodically. The reference node toggles an I/O pin after time-stamping

the sync beacon while a child node toggles the I/O pin on receiving the

beacon before it is being time-stamped. The time difference between the
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two toggle events is measured with an oscilloscope. The mean value of

Δt is 825 msec, as tested for multiple nodes, with negligible variations as

compared to the tick resolution.

4.3 Clock Skew

The instability of the crystal oscillators causes relative clock skew. A time-

synchronization protocol only adjusts the current clock offset among the

clocks and with time they start deviating from each other. This necessi-

tates the periodic synchronization of the clock unless a clock skew esti-

mation mechanism is employed on the nodes. The upper bound on the

synchronization period depends on the clock skew rate. It must also take

care of the nodes experiencing worst skew as well as application require-

ments.

In the sequel of characterizing clocks inherited instability and skew, we

conducted similar experiments as described in [17] for Micro-nodes. To de-

termine the relative clock skew of the nodes, first, we loosely synchronize

a set of nodes with a reference node and later we let the clocks run undis-

ciplined. The nodes are configured to toggle an I/O pin every 65.535 msec

and the clock skew between the reference node and the nodes is measured

with a digital oscilloscope. The clock skew for five clocks is shown in the

Fig. 4.2.

It shows that the clocks deviate both in positive and negative direction

with respect to the reference clock. The skew in clock C is the lowest

whereas node A has the highest skew. We tested five nodes and found

skew in clock A to be worst, that is 3.83 μsec/sec. It also shows that the

relative skew in the clocks is linear but with small fluctuations across the

linear line.

For maintaining the synchronized operations in the network, the worst-

case synchronization error among the nodes, τworst−case, must be less than

the guard time, Tg, in each time-slot. This condition places an upper

bound on the synchronization period, Tsync.

Tsync <
Tg − τworst−case

ε
(4.2)

where ε is the clock accuracy normally specified in parts per million

(PPM). In our platform, ε = ±40 PPM, Tg = 3 msec and τworst−case = 5 μsec,

Tsync < 2.995msec/80PPM = 37 sec, that is the clocks must be synchro-

nized every 37 sec. Note this value depends on the selection of the guard
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Figure 4.2. The effect of clock skew on time-synchronization

time, Tg.

4.4 Time Synchronization Accuracy of MICRO.2420 Platform

We tested the accuracy time-synchronization at first hop. In the tests,

the sink node transmits a time synchronization beacon every 1 sec. At

the reception, the nodes adjust their local time as mentioned in Section

4.2. The synchronization error is measured by toggling an I/O pin every

65.535 msec. The results are depicted in Fig.4.3. The absolute average

synchronization error is 1.74 μsec. The absolute error is larger than the

average value in the 24.73 % of times however the absolute error remains

below 5 μsec in the 98.57 % of times. Figure 6 shows also the presence

of few points in which the absolute synchronization error is remarkably

higher (e.g. 12, 16, 18, 31, and 37 μsec). This fact is caused by the inherent

instability of the crystal oscillator found in the Micro.2420 platform.

4.5 Time Synchronization Service

The time-synchronization service provides the following interfaces to con-

trol the core functionalities of time-synchronization and generation of
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Figure 4.3. The 1-hop time synchronization accuracy of Micro.2420 nodes

scheduling events.

4.5.1 Time Synchronization Interface

The system clock as well as the time synchronization (if configured) is

initialized with xPortStartScheduler() by using the functions prvSetupTi-

merInterrupt() and prvSetupLogicalClockInterrupt(). The time synchro-

nization clock is setup such that the overflow of 16-bit TAR counter gener-

ates an interrupt which is handled in ISR prvTickISRSCLK() by reading

the TAIV interrupt vector. The TAR overflow appears as case 10 in this

ISR. At each overflow a low resolution tick counter, xTickCountSCLK, is

incremented. This low resolution tick counter is used as common counter

in the network for initializing the scheduler as explained in Section 4.5.3

. The synchronization information is added to the end of the advertise-

ment beacons. The advertisement beacon once created follows the routine

transmission procedure and it is time-stamped as mention in Section 4.2.

4.5.2 Time Synchronization and Advertisement Beacons

The distribution of time synchronization information is performed within

SERVICE_TX slots using advertisement beacons. The time synchroniza-

tion information includes 2 bytes representation of the source clock, i.e.

TAR counter. A node receiving this information updates its clock accord-
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ing to the procedure given in Section 4.2.

4.5.3 Scheduler Event Generation from Timer

The generation and indication of the time-slots to the user of the time syn-

chronization service is based on the TACCR0 compare/capture register of

Timer-A. TACCR0 is initially configured with the desired time-slot length

in prvTickISRSCLK() as the scheduler is started. Later on, TACCR0 re-

lated interrupt is handled in prvSLOT() ISR. prvSLOT() takes care of the

future time-slot generations by setting up TACCR0 according to the du-

ration variable defined in Section 3.1.3.

4.6 Known Problems and Enhancements

The current implementation of the time-synchronization procedure has

the following open issues. The enhancements are also suggested along

with these issues.

4.6.1 Clock Skew Estimation

An exchange of sync beacon achieves only instantaneous synchronization

as the clocks soon start deviating from each other. However, if the relative

clock drift is estimated from the past synchronization points it will reduce

the required communication overhead for a given clock synchronization

accuracy and hence save energy. Typically, the energy required to trans-

mit one bit is equal to that required to execute three million instructions

[20]. Hence, energy constraint sensor motes require as less frequent as

possible exchange of synchronization beacons in exchange of clock drift

estimation based on local computations. We plan to add the clock skew

estimation module to A-Stack based on our proposal [21].

4.6.2 Time-Stamping Error at Receiver Side

The time-synchronization procedure relies on the time-stamping at the

sender and receiver. The time-stamping method at sender is as good as it

can be, however, the time-stamping at receiver has a problem, described

next.

The time-stamping of a synchronization-beacon at the receiver is per-

formed at rf_isr. The rf_isr is a maskable interrupt and it can be disabled
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at the reception time of a synchronization beacon. When rf_isr is dis-

abled, it introduces inaccuracy in clock offset computation with respect to

the synchronization beacon sender. The time-synchronization procedure

compensates for the deterministic delay Δt at receiver side and adjusts

the clock. However, if rf_isr is not serviced as soon as a synchronization

beacon is received, it introduces inaccuracies. The examples in Table 4.1

and Table 4.2 shows the possible error in clock offset calculation.

Assuming that the reference and child clocks are synchronized, we con-

sider some cases demonstrating how the delay in service time in rf_isr can

affect the clock offset calculations. The clock is represented as X y, where

bold face letter (X) represents the low resolution tick count and small let-

ter (y) is the high resolution tick count. We also assume that the clocks

are synchronized every 1 second and the clock skew is 3 μsec/sec. Also,

the high resolution tick counter is 16 bit and low resolution tick count is

32 bit. The high resolution tick count runs at a speed of 1 MHz.

Table 4.1. Case-1: Assuming the child clocks runs faster than the root clock

Root Child Offset Comments

2 15 2 15 0 0 -

3 500 2 503 1 -3 rf_isr is serviced without delay

3 500 2 515 1 -15 rf_isr is delayed

Table 4.2. Case-2: Assuming the child clocks runs slower than the root clock

Root Child Offset Comments

2 15 2 15 0 0 -

3 500 2 497 1 3 rf_isr is serviced without delay

3 500 2 509 1 -9 rf_isr is delayed

Suggested Enhancement; The above-mentioned problem can be avoided

by time-stamping the synchronization beacon on SFD (start frame delim-

iter) detection. CC2420 generates a signal when a valid SFD is detected

and Timer-A can be configured to capture TAR ticks count at SFD detec-

tion of synchronization beacon. This method would improve the accuracy

of time-stamping on receiver side and hence synchronization.

4.6.3 Time Synchronization Service Reliability

The recent attempt in the integration of time-synchronization with TDMA

MAC has revealed the following problems in time-synchronization imple-
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mentation. The revivification of the procedure is important to ensure the

long term reliability of the synchronization service in a network.

• An unnecessary interrupt (overflow interrupt) is generated in addition

to compare register CCR0 interrupt. This is due to the wrong config-

uration of time-synchronization timer initialization function prvSetu-

pLogicalClockInterrupt(). An interrupt occurs when TAR is equal to

CCR0 whereas an unnecessary interrupt occurs as TAR wraps around

(becomes zero). In order to avoid that prvSetupLogicalClockInterrupt()

must be initialized as TS_TIMER_CTL = TASSEL_2 | MC_1 | ID_3.

• The naked function modifier attribute in ISR definitions must not be

used as well as the asm volatile("reti \ n\ t"\). The naked attribute

prevents the compiler from generating prologue and epilogue code for

an ISR. However, we are responsible for saving any registers that may

need to be preserved, selecting the proper register bank, generating the

reti instruction at the end, etc. Since, we do not possess the sufficient

knowledge on these details there is a possibly of mistakes and it is rec-

ommended that we stick to inline assembler.

Open Issue: The time-synchronization related ISRs must be optimized

such that only the necessary registers are saved.
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5. Operation Topics: Network
Configuration and System Setup

This chapter explains the network configuration and A-Stack system set-

up. PC and sink node implementations are given in Section 5.1. Network

configuration and node joining is explained in Section 5.2 and 5.3. Finally,

system parameters to be set are explained in Section 5.4.

5.1 PC to Sink Communication

Reliable data exchange between A-Stack sink node, or gateway, and PC is

established using PC to sink node communication protocol. In this proto-

col, the sink node employs a state machine to handle incoming data bytes.

MATLAB employs a callback function to handle incoming data from the

sink. The packet format used is given in Fig. 5.1. The ID assignments

sender and receiver are given as in Table 3.3.

Figure 5.1. Packet Format

5.1.1 Sink Node Implementation

Sink node handles the data coming from the PC in a task called "serial

task". This task is not implemented in source code of A-Stack, i.e. it is not

in wcp_functions.c, since it is used only by the Sink node. Furthermore, it

is easier to handle application specific commands at the application layer

by having the task at Sink node.

The sink node receives the packets coming from the PC byte by byte.

First it detects a Start Byte, which in this case is 7. Then it will receive

the packet length. Then it reads the data bytes to an array. Once all

the bytes are received, this array is handled according to the packet type.
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Packet types are the same as the ones presented in Section 3.3.2. How-

ever, additional packet types can be assigned just for the communication

between the sink node and the PC depending on the application.

A critical issue in the task reading the serial port is that it should not

block. Reading bytes from the USART and handling the data once a

packet is received is done one after another. If the data handling part

blocks, new bytes might be lost.

5.1.2 PC Implementation using MATLAB

MATLAB program is used for interfacing the sink node and therefore

the network. MATLAB initializes PC’s serial port using a function log-

main(PORT_NUMBER). This function assigns a serial_receive_callback

function for the messages received through the serial port. In the call-

back function, incoming data is received as strings. Incoming data is ei-

ther a request from the nodes in the network or the data to be collected.

MATLAB handles these data within the callback function.

wcp_send_array function is used in MATLAB for sending a packet to the

network nodes or to the sink node. Packets sent from MATLAB includes

packet type, source and destination ids.

5.2 Network Configuration

A series of MATLAB functions are implemented to configure networks

when A-Stack is used. The actions taken for configuration will be pre-

sented step-by-step below. These functions present the default configura-

tion of the network and the user can change the configuration to meet the

requirements.

5.2.1 PC Initialization

The main structure used in MATLAB code for storing data regarding A-

stack is named "WCP_APP". The initialize_wcp_object(WCP_APP) func-

tion is used to initialize the parameters used in the operation. These pa-

rameters include event types and packet types. An important character-

istic of this function is that it includes the application specific definitions

given in app_config.c file. If these parameters are changed in the source

code, they have to be changed also in here for correct operation.
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5.2.2 Operational Settings

The following fields in WCP_APP structure, defined in MATLAB, affect

the operation of A-stack.

WCP_APP.superframe_length: super frame length in milliseconds. Note

that length of the generated schedule can be greater than the length spec-

ified in here. In such case, the length of the generated schedule is used. If

this length is shorter than the length defined in here, idle slots are added

at the end of the schedule.

WCP_APP.superframe_freq: defines the superframe frequency as ex-

plained in Section 3.1.4.

WCP_APP.advertise_freq: this parameter indicates period of advertise-

ment beacons in terms of superframes.

WCP_APP.rx_tx_slot_length: length of rx_tx slots in milliseconds

WCP_APP.sync_slot_length: length of synchronization slots in millisec-

onds

WCP_APP.frame_slot_length: length of frame slots in milliseconds

WCP_APP.tx_offset: the offset (guard time) to be added in a TX slot in

order to make sure the receiver is listening, for reliable communication.

WCP_APP.service_slot_length: length of service slots in milliseconds

WCP_APP.pause_param: pause parameter used in MATLAB code be-

tween two consecutive message transmissions over serial port.

WCP_APP.re_tx: this parameter indicates number of retransmissions of

a buffer, in the network nodes, in case of ACK failure.

WCP_APP.use_wireless_tools: this parameter activates the wireless tools

schedule generation in create_schedule.m. If it is set to zero, a single

channel schedule that connects all the nodes to the sink is generated.

WCP_APP.wireless_tools_option: this option is used to tune the gener-

ated schedule by using wireless tools. [1] will add transmission slots to

children and reception slots to the parents, [2] will do vice versa, and

when [1 2 ] is selected, both transmission and reception slots are added to

the parents and children. Detailed information on wireless tools and its

implementation on A-Stack can be found from [14].

5.2.3 Serial Port

Serial port is opened by using logmain() function. The created serial object

is assigned to the WCP_APP parameter.
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5.2.4 Node Discovery

Nodes are discovered by sending a discover command to the sink node.

The sink node then broadcasts a discover message to the network and the

nodes reply. The sink node prints the addresses of these nodes to the serial

port together with node IDs. This information is then used when configur-

ing communication pairs and schedules. Currently, all the nodes need to

be close to the sink so that they can hear the discovery messages, however

in the future a more advanced discovery and initialization scheme is to be

implemented.

5.2.5 Routes

Routes are organized in the compair_table matrix that is stored in a pa-

rameter, WCP_APP. Currently, this matrix is organized semi automati-

cally; i.e. the user chooses the number of hops, and the nodes are arranged

to meet the targeted hop count. However, any combination of discovered

nodes can be given to the system by using the compair_table. Section 6.2

includes examples showing how compair_table is used to define hops and

routes.

5.2.6 Communication Pairs

Parent nodes and their children are set using organize_routes() function.

This function organizes the routes using the compair_table defined earlier.

Using the compair_table, parent nodes and their children are assigned

using the function organize_routes().

5.2.7 Schedule Creation

Schedules are created using the create_schedule() function. At first, a

FRAME_SLOT_START slot is added to all the nodes in the network.

Then optional TX_SLOT_START and RX_SLOT_START slots are gener-

ated for all the links. If a node has no transmission and reception for a pe-

riod, IDLE_SLOTs are assigned to it. In the end, the consecutive idle slots

are combined together to decrease the number of events. Finally SER-

VICE_TX_SLOTS, SERVICE_RX_SLOTS, and SERVICE_IDLE slots are

added. If the user defined superframe length is not reached, IDLE_SLOTS

are added to the end of the schedule.
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5.2.8 Configuration Packets

The number of communication pairs or the events might be greater than

that can be stored in a single packet. To deal with these, A-Stack supports

multi-part configuration packets and these packets are formed before the

scheduled operation starts. When the nodes try to join, these packets will

be forwarded to them.

At this stage WCP_APP.tx_offset parameter is used to update the sched-

ules, i.e. a guard time is added to the beginning of transmission slots so

that the receiving nodes are guaranteed to be ON when a node is trans-

mitting a packet.

5.2.9 Sink and Network Initialization

Once all the configuration packets are ready, the sink node is configured.

After sink node receives its configuration, it is given a start permission

command. Then the sink node starts advertising to its one hop neighbors.

Nodes that hear advertisements send requests to receive their configura-

tion packets if they hear advertisements targeted to them. Once a node

has all its configuration parameters, it will ask for the join permission,

and once that is received it will join the network. Nodes joining the net-

work will start to advertise down in the tree topology, and their children

will eventually join the network.

5.3 Node Joining

The configuration phase is critical when the size of the network is large.

In A-Stack, end to end reliability during configuration is obtained by using

a state machine in the network nodes. When a node intends to join, it will

go through 3 states: 1. take communication pairs information, 2. take

schedule information, and 3. take route, final settings and join permis-

sion. A node moves from one state to another only if all the configuration

packets in its current state have been received.

Configuration packets are requested by the nodes based on their join-

ing state. Note that the scheduled transmission slots are not employing

a CCA mechanism, thus it is important for all the nodes in the network

to transmit a packet only when they have a slot reserved for them. When

a node wants to join, it doesn’t know its transmission slots. In order to
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prevent joining nodes to interfere with the rest of the network, advertise-

ments are used as an indicator. A joining node transmits a packet only

after it hears an advertisement. Advertisements are transmitted by par-

ent nodes in SERVICE_TX_SLOTs at intervals defined by the user. These

slots are followed by SERVICE_RX_SLOTs for the joining nodes to reply

on. During the joining phase, nodes employ CCA and they do not trans-

mit a request if the channel is busy. This is critical as there might be

multiple children of a parent that want to join at the same time. If a node

cannot transmit a configuration request packet, it will wait for the next

advertisement.

Joining nodes receive synchronization information as they receive ad-

vertisement beacons during node joining phase, and adjust their clocks

accordingly. A critical issue is when exactly a node will join. Configura-

tion packets are transmitted as broadcast messages at the last hop. This

ensures that they are transmitted when a SERVICE_TX_SLOT occurs in

the parent. When there is a SERVICE_TX_SLOT at a parent node, it’s

children nodes have SERVICE_RX_SLOT in their schedule and this slot

is followed by a SERVICE_IDLE slot. A node will join at the end of this

SERVICE_IDLE slot.

5.3.1 Re-Joining

If a node stops receiving advertisements within its SERVICE_RX_SLOT,

it will try to re-join the network. The service manager task periodically

checks whether the advertisements are received in right slots. If not, it

will change the state of the node to JOIN. It will reset the scheduler but

keep the configuration information. It will also drop all the packets from

the previous state. In this case the node already has the configurations,

thus only the join request will be sent to the PC through the parent node.

5.3.2 Service Manager when Node Joining

The initial state of the nodes is WCP_OFF. When a node hears an adver-

tisement beacon that has the node’s ID, the MAC layer will notify the

service manager by changing the variable advertised_when_off to one.

The service manager task monitors this parameter and if this parame-

ter is one, it will start the node joining process by changing the state to

WCP_JOIN. In this state, the packets are forwarded to the service man-

ager from MAC.
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Normally the service manager task is implemented to run in relatively

longer intervals, in order not to consume MCU resources. In the current

implementation, it executes in a polling fashion, i.e. it wakes up after an

interval of 30 seconds. However, if the state is WCP_JOIN, it will enter a

loop, and continuously process the incoming packets in a callback fashion.

It will remain in the loop as long as the configuration phase is ongoing.

The last configuration packet is the join permission, which includes in-

formation on when exactly to start the schedule. Configuration packets

are transmitted in SERVICE_TX slots from the parent, and all the chil-

dren of a parent have SERVICE_RX slot corresponding to parent’s SER-

VICE_TX slot in their schedule. Every SERVICE_RX slot is followed by a

SERVICE_IDLE slot. A node will join the network at the end of this slot.

In order to join at the right time, a node should know the index number of

this event in its superframe. When preparing the join permission packet,

MATLAB adds this index number into the packet and service manager

uses this information for joining.

5.3.3 Time Required for Node Joining

Depending on the network configuration, time required for node joining

can be different, but it is in the scale of seconds for one node in the net-

work provided that the super frame is shorter than a second. Below is a

formula for calculating how long it would take for a node in the network

to join.

Time Required for Node Joining= A + B+ C+ D

A denotes the SERVICE_TASK_DELAY which defines how often the

service task is triggered. After the first time an advertisement is heard,

MAC notifies the service task for changing the state to JOIN. However

service task is triggered only when SERVICE_TASK_DELAY ends, which

causes the initial delay. SERVICE_TASK_DELAY parameter is used in

service task, which is mostly idle when A-Stack is running, thus this pa-

rameter is chosen to be large, currently 30 seconds, in order not to con-

sume MCU resources.

B denotes the time required for taking the communication pairs and it is

a function of the superframe length. It can be found by using the formula

below.

B= (2 + number_of_hops) x number_of_cp_packets x superframe_length

C denotes the time required for taking the schedule information.

C= (2 + number_of_hops) x number_of_sch_packets x superframe_length
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number_of_hops denotes the rank of the node in the hierarchy. Number

of schedule packets and communication pair packets varies depending on

the node and its configuration. If these packets are multi-part, B and C

are scaled with number_of_cp_packets and number_of_sch_packets.

Finally, D is the time required for taking the last packet, which is the

JOIN_PERMISSION.

D= (2 + number_of_hops) x superframe_length

Above formulas give the time required for node joining for one node in

the network. Network setup time can be estimated by using these for-

mulas. Note that nodes at different levels of the hierarchy require dif-

ferent times for node joining, thus the network initialization time varies

depending on the topology. However this initialization time is less than

10 minutes when there are less than 15 nodes.

5.4 Setting Up A-Stack and Source Code

A-Stack is implemented for Sensinode Micro.2420 nodes on top of NanoStack-

v1.0.3. This section presents the files modified or created for A-Stack.

5.4.1 Platform Folder

Platform/micro: time_sync.c

rf.c (replace)

port.c (replace)

platform.rules file, modified as below:

#Platform driver section

$(PLATFORM_DIR)/time_sync.c

#NanoStack section

$(COMMON_DIR)/wcp_functions.c

Platform/micro/include:

time_sync.h

rf.h (replace)

5.4.2 Common Folder

wcp_functions.c

common/include:

wcp_functions.h

wcp_defines.h
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rf_802_15_4.h (replace)

common/modules

rf_802_15_4.c (replace)

5.4.3 Application Configuration

Every application includes an app_config.h file which includes variables

needed for initialization of A-Stack. These variables are explained below.

HAVE_WCP variable is used in compile time to differentiate between

the default NanoStack code and the modified one. When set to one, this

variable enables changes related to A-Stack. If it is set to zero, default

NanoStack is active.

Variables MAX_CP, MAX_CP_TX_BUFFERS, MAX_TIMER_EVENTS,

WCP_QUEUE_SIZE, and MAX_HOPS are used for static memory alloca-

tion during initialization phase.

WCP_MAX_RE_TX variable indicates the maximum re-transmissions

within one slot. Note that slot lengths should be longer if multiple re-

transmissions are to be used. This is different than the re_tx variable

defined in Section 3.1.3.

PACKET_MANAGER_TASK_PRIORITY variable is used to set the pri-

ority of the packet manager task. This priority can be changed since it

is not time critical. Currently, it has a higher priority than the applica-

tion task, but for example if accurate sampling in application task is more

important than handling the packets, application task priority can be set

higher and packet manager task priority can be set lower.

SERVICE_TASK_DELAY variable indicates the waiting time before the

service task executes.
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6. Examples and Tests

6.1 Example Schedules

Schedules comprising of various network topologies can be realized by

modifying a network table, WCP_APP.compair_table. After this table is

formed, schedules are automatically generated by MATLAB tools of A-

Stack. A-Stack also provides an option to use Wireless tools software [14]

for schedule generation. Abbreviations used in figures can be found in

Table 3.2. Numbers below transmission (TX) and (RX) slots refer to the

channels used in these tests.

6.1.1 Single Hop Schedules

Figure 6.1 shows a single hop topology with six network nodes and a gate-

way. In this single hop case, only a single channel is used as all the nodes

are connected to the gateway which can handle only one channel at a

time. Table 6.1 shows the network table, or compair_table, used for creat-

ing the single hop schedule. This schedule assigns TX_SLOT (TX) only to

the network nodes and not to the sink node since only network nodes are

expected to deliver data. Commands and data from the sink node can be

disseminated within SERVICE_TX (S_T) slots.

Table 6.1. Single hop schedule, network table.

Parent Children

1 2 3 4 5 6 7
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Figure 6.1. Single hop network and its schedule. Schedule length is 100 ms.

6.1.2 3-Hop Schedule for Data Collection (Convergecast)

Figure 6.2 shows a 3 hop network topology and the schedule generated

for this network. There are 6 network nodes and a gateway. Note that

all the network nodes are assigned a link to the Sink node within one

superframe. This means that within the superframe length, which is 155

ms in this case, every node in the network can transmit a packet to the

sink. Table 6.2 shows the convergecast schedule network table. Note that

every event in the schedule is labeled according to Table 3.2. Channels

used in these slots are shown as numbers below the event type in the

schedule representation. Multi-channel operation can be seen in Fig. 6.2

by looking at different channels used in the simultaneous timeslots.

Table 6.2. 3 hop convergecast schedule network table

Parent Children

1 2 3

2 4 5

3 6

4 7

6.1.3 3-Hop Schedule for Data Collection and Dissemination

Figure 6.3 shows the network topology for both way data transport, i.e.

sink-to-network and network-to-sink. In this case every node in the net-
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Figure 6.2. 3 hop convergecast topology and schedule. Schedule length is 155ms.

work can transmit one packet to the sink and receive one packet from the

sink within one superframe, which is 245 ms in this case. The network

table for this case is the same as in Table 6.2.

6.1.4 Notes on A-Stack Schedule

There are many possibilities when forming A-Stack schedules. The re-

quired time-slots for scheduler to run are SERVICE_TX_SLOT, SER-

VICE_RX_SLOT, SERVICE_IDLE_SLOT, FRAME_SLOT_START. The

advertisements used for configuration, time-synchronization beacons and

configuration packets are transmitted within SERVIVCE_TX_SLOTs and

received within SERVICE_RX_SLOTs. Furthermore, commands and data

can be sent and received by only using these slots as long as the traffic is

not very high. When nodes are required to transmit data to a central lo-

cation, they would need transmission slots, and such an example is given

in Section 6.1.2. When the sink is also required to disseminate a large

amount of data, a schedule like in Section 6.1.3 can be used. Further-

more, if some nodes work as sensors, and some as actuators, transmission

and reception slots in the schedule can be set for them.

The duty cycles of the nodes can be calculated from these schedules. For
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Figure 6.3. 3 Hop network topology and schedule for data collection and dissemination.
Schedule length is 245 ms.

example in Fig. 6.3, Node 7 has one TX slot, one RX slot and one S_R slot.

Thus minimum duty cycle would be

(RX_slot_length+S_R_slot length)/superframe_length=(20/245)=8.2%

Maximum duty cycle would be

(RX_slot_length+TX_slot_length+S_R_slot length)/super_frame_length

=(30/245)=0.112=11.2%

If there is no packet to transmit, the radio is not turned on during TX

or S_T slots. This is why there is a minimum and maximum duty cycle.

Note also that the superframe frequency is another parameter that af-

fects the duty cycles. If it is set to 1, then all the superframes are active

superframes, but if it is set to 5, then the actual duty cycles would be one

fifth of what was calculated above.

6.2 A-Stack Tests

A-Stack is tested and verified by using a series of tests with varying con-

figurations. The aim of these tests is to show the operation, verify the

system reliability and to observe the achievable communication reliabil-

ity of time-synchronized and time-slotted communication over different

radio channels.
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6.2.1 Application and Development

Schedules generated for this application are given in Fig. 6.4 and Fig. 6.5.

These schedules utilize only one channel for the entire network, i.e. op-

eration is not multi-channel. However, throughout the tests the channel

used is updated in order to evaluate performance of different channels at

different links at different times. Same tests can be done with a multi-

channel schedule as well; however in this case we wanted to see the per-

formance of a single channel at different links at the same time and also

the variation of this performance over time.

A sample application is created for the tests. In these tests nodes are

assigned 10 msec communication slots. A guard time offset of 3 msec is

added to the transmission slots. Synchronization and advertisement bea-

cons are sent in every 10 super frames. Note that these tests were done

with an older version of A-Stack in which advertisement and synchro-

nization beacons are sent separately. In the current version, they are sent

together within SERVICE_TX slots. In this application, the sink node

polls all the nodes one by one by sending a 96 Byte packet. One packet is

sent from the sink to each node at every second. The node that receives a

packet will reply to the sink. Both way latency, received signal strength

indicator (RSSI), link quality indicator (LQI) and packet delivery ratio

(PDR) are saved for every node in the PC using MATLAB. Description of

the tests is given in Table 6.3.

Figure 6.4. Schedule for one-hop tests with a super frame length of 210 msec.

Deployments used in tests are given in Fig. 6.6. When creating multi-

hop schedules, transmission pipelining is used in order to decrease laten-

cies. A pipeline between sink node and node 6 is indicated in the schedule

given in Fig. 6.5. During the tests, channels used in TX and RX slots were

updated periodically by a service message created by controller in PC. Six
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Figure 6.5. Schedule used in multi-hop tests. Superframe length is 500 msec. (Last IDLE
slots in the schedule are not shown). Transmission pipelining is shown on the
schedule by using the arrows.

channels (13, 15, 18, 21, 24, and 26) out of 16 available channels (11-26)

are used in tests 2, 3 and 4. After polling all nodes 10 times, the network

shifts to a new channel and data collected in the previous round is saved

so that the wireless channels performance over time can be tracked.

Figure 6.6. Test deployments: Test 3 on the left hand side and Test 4 and on the right
hand side. Single room deployments, Test 1 and Test 2, are not shown here.

Table 6.3. Description of the tests

Test Length Polls # of Nodes Description

1 3 hours 1980 5 single room, multi-channel, one-hop

2 26 hours 2040 5 single room, multi-channel, one-hop

3 139 hours 11640 5 multi-room, multi-channel, one-hop

4 69 hours 6470 5 multi-room, multi-channel, multi-hop

6.2.2 Results

Table 6.4 shows the packet delivery ratios obtained during the tests. Best

performing channels are shown in boldface. Number of polls per node

and per channel can be found in Table 6.3. Note that when a node is
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polled, there are 2 packet transmissions (sink to node and node to sink)

and corresponding acknowledgements. PDRs are calculated by using this

two way communication results.

Table 6.4 shows that channel selection has a high impact (more than

10% in some cases) on the communication performance especially when

the nodes are not within line of sight such as in tests 3 and 4. In test 3,

node 5 ran out of battery which is the reason for low reception rates. In

all the tests, the best performing channels seem to vary for different links.

Figure 6.7 shows RSSI measurements of node 2 during test 3. Every mea-

surement point in the Fig. 6.7 is an average of 10 measurements. It is seen

that RSSI does not vary during the nights and weekends since the activity

in the laboratory environment is limited, but it varies considerably at day-

time due to Wi-Fi, Bluetooth interference and human movements. These

tests give an insight on how to choose and update channels for different

wireless links over long periods of time.

Table 6.4. Packet Delivery Ratios (PDRs) Achieved During the Tests

Node ID
Test No. CH 2 3 4 5 6

1

13 99.85 99.75 99.95 99.9 99.9

15 99.95 100 100 99.85 100
18 99.95 100 99.26 99.8 99.9

21 100 100 100 99.75 99.85

24 100 100 99.9 99.9 100
26 100 100 100 100 100

2

13 100 99.97 99.9 66.44 95.4
15 100 100 99.98 64.55 93.86

18 100 99.99 99.64 64.66 86.17

21 100 94.38 100 64.6 91.73

24 99.98 99.99 99.99 64.63 94.05

26 100 100 100 64.5 87.59

3

13 95.75 100 91.79 99.89 88.62

15 100 100 96.58 99.97 95.55

18 99.95 100 94.91 97.74 94.1

21 99.95 100 99.15 99.4 98.83

24 99.91 100 99.55 99.97 99.49

26 99.74 100 99.61 99.67 99.55

As explained in Section 5.3.1, nodes disconnect themselves by going to a

JOIN state when they stop hearing the advertisements within their SER-
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VICE_RX_SLOTs and they send a join request. During test 4, nodes 2,

4 and 6 could not receive synchronization packets for 1.5 minutes, and

they disconnected from the network, but they recovered after a short

while. This demonstrates that the long-term operation of the stack is

maintained, even though the individual nodes disconnect from the net-

work.

Figure 6.7. Node 2 RSSI measurements for different channels in test 3.

Table 6.5 shows measured latencies for node 5 in test 4. The unit used in

the table is super frame. "0" means that the packet is received within the

same super frame. As it can be seen from the schedule in Fig.6.5, Node

5 receives packets from sink through node 3 within 30 msec in the same

super frame. Sink to node latencies are higher since the sink node gen-

erates packets independent of the schedule, whereas the nodes respond

right after they receive a packet.

The PDR results can be improved by implementing an end-to-end trans-

port protocol; however, it is meaningful only if data is transferred within

a real-time deadline which is application dependent. In these test cases,

we wanted to see the system reliability, achievable PDRs and variation in

RSSI in different radio channels over time. Note that in the tests, chan-

nels are changed from a central controller, which means that a higher

level logic that takes into account the channel characteristics for updat-

ing the channels can easily be implemented.
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Table 6.5. Measured Latencies in Terms of Frames (For Node 5, Test 4).

Channel number
13 15 18 21 24 26

Sink to Node

Min. 0 0 0 0 0 0

Max. 2 1 2 1 1 1

Avg. 0.89 0.89 0.89 0.89 0.89 0.89

Node to Sink

Min. 0 0 0 0 0 0

Max. 1 1 1 1 1 1

Avg. ∼0 ∼0 ∼0 ∼0 ∼0 ∼0

6.3 Structural Health Monitoring Deployment using A-Stack

Civil structures deteriorate over time due to harsh environmental condi-

tions, hurricanes, earthquakes, corrosion and fatigue. Structural health

monitoring (SHM) can diagnose the structure’s condition during its life-

time using data collected from sensors. Intelligent Structural Health

Monitoring (ISMO) project in Aalto University aims at developing effi-

cient and effective monitoring systems that would provide reliable in-

formation about the structure’s condition and replace visual inspections.

Wireless sensor networks are a promising technology for SHM due to

their ease of installation and low costs. On the other hand, high data

rates, accurate and time-synchronized sampling required for SHM brings

challenges. Furthermore a wireless SHM system should consider energy

management, scalability, reliability and usability.

A-Stack has been used in a SHM deployment on a footbridge in Espoo,

Finland in November 2011. Figure 6.8 shows the footbridge and wireless

sensor nodes deployed. In this deployment, a 3-hop WSN consisting of

9 nodes are placed on the bridge, vibration measurements were collected

and evaluated at a central PC. Results are presented to a client applica-

tion running at a remote location.

3 axis digital accelerometers (LIS3LV02DQ by STMicroelectronics, 7 x

7 x 1.5 mm) were used for measuring vibrations. The 30 second measure-

ments at 125 Hz resulted in 3.75 MB data per node per session. Sampling

at the nodes is triggered from a timer callback function based on the syn-

chronized clock. Operation interval was set to 10 minutes. This interval

includes synchronous sampling, collection of 33.75 MB data from the net-
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work, recovering lost packets, and transferring collected data to a client

running on a remote PC. Schedule length was 235 msec.

A-Stack enables multiple data flows at the same time. All the nodes in

the network can send one packet within one superframe, which means

9 data packets would reach the sink node within 235 msec. One packet

includes 72 bytes of measurement data which results in 22 Kbps effec-

tive data transfer rate excluding MAC and application layer overheads.

Two types of schedules are used in the deployment: active and passive.

Active frames are used when collecting the data and all the communica-

tion slots were active during these frames. WCP_APP.superframe_freq

variable was set to 1 during active frames. In passive frames, frequency

of active slots was reduced 9 times, i.e. WCP_APP.superframe_freq vari-

able was set to 9, in order to reduce power consumption and increase the

network lifetime.

Operation flow is given in the Figure 6.9. Network topology and associ-

ated schedule is shown in Figure 6.10. A-Stack’s multi-hop synchronized

network enabled synchronous accelerometer sampling required for SHM.

A-Stack has shown to be a useful tool for SHM applications that require

high data rates, accurate sampling, low power consumption and long term

reliable operation.

Figure 6.8. Structural health monitoring system deployment on a footbridge using A-
Stack
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Figure 6.9. Operation flow of the structural health monitoring system

Figure 6.10. Schedule and network topology used in the structural health monitoring
system
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7. Future Development and
Conclusions

In this chapter, we present the open issues and future development of

A-Stack and summarize our contributions.

7.1 Future Development and Known Issues

When using A-Stack, as well as NanoStack, one has to be careful about

allocation and freeing of the buffers. If there is a mismatch in this dual

operation, nodes will get stuck eventually.

Task priorities should be chosen carefully. If one needs to give higher

priority to the application, packet manager, and service manager task pri-

orities can be decreased, and application task priority can be increased.

However, the MAC task is highly time-critical, and it is not recommended

to decrease its priority.

When running long term tests, debug lines should be commented as it

decreases robustness, due to non-deterministic behavior. This point was

mentioned also in NanoStack documentation.

In the current implementation, the sink node is quite resource limited

due to the overhead caused by the communication with the PC. On the

other hand, there should be plenty of coding space in the network nodes.

In case memory problems are faced when programming, one should opti-

mize the memory allocation parameters in app_config.h, as described in

Section 5.4.3.

Packets are using MAC headers, but there is no footer that would vali-

date the correctness of the packet after it is received in the radio. A CRC

check should be implemented to increase reliability.

In the communication between PC (MATLAB) and sink node, there is

no checksum implementation and this can be added in the future.
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7.2 Conclusions

This report presents the A-Stack, a real-time protocol stack for time-

synchronized multi-channel and slotted communication in multi-hop wire-

less networks. A-Stack is designed to provide flexibility when prototyping

reliable and real-time WSN applications. An important characteristic of

the stack is that multi-hop and multi-channel schedules can be formed in

a PC, making A-Stack adaptive to various network topologies and applica-

tion communication requirements. The real-time operating system used

in A-Stack enables application tasks to be easily developed and re-used.

The stack provides online configuration and network reliability tools such

as node joining and re-joining services as well as dynamic channel hop-

ping. Tests done under varying configurations shows that A-Stack pro-

vides a useful environment for developing low-latency and high reliability

real-time WSN applications and protocols.
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