
ISBN 978-952-60-4526-9 (pdf)
ISSN-L 1799-4896
ISSN 1799-490X (pdf)

Aalto University
School of Science
Department of Computer Science and Engineering
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-S

T 4
/2

012

Department of Computer Science and Engineering

Classifying and
Recognizing
Students' Sorting
Algorithm
Implementations in
a Data Structures
and Algorithms
Course
Ahmad Taherkhani, Ari Korhonen, Lauri Malmi

RESEARCH REPORT SCIENCE +
TECHNOLOGY

Aalto University publication series
SCIENCE + TECHNOLOGY 4/2012

Classifying and Recognizing Students'
Sorting Algorithm Implementations in
a Data Structures and Algorithms
Course

Ahmad Taherkhani, Ari Korhonen, Lauri Malmi

Aalto University
School of Science
Department of Computer Science and Engineering
Learning + Technology Group, LeTech

Aalto University publication series
SCIENCE + TECHNOLOGY 4/2012

© Ahmad Taherkhani, Ari Korhonen, Lauri Malmi

ISBN 978-952-60-4526-9 (pdf)
ISSN-L 1799-4896
ISSN 1799-490X (pdf)

Unigrafia Oy
Helsinki 2012

Finland

Abstract
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Author(s): Ahmad Taherkhani, Ari Korhonen, Lauri Malmi
Name of the publication
Classifying and Recognizing Students' Sorting Algorithm Implementations in a Data
Structures and Algorithms Course
Publisher School of Science
Unit Department of Computer Science and Engineering

Series Aalto University publication series SCIENCE + TECHNOLOGY 4/2012

Field of research Software Systems

Abstract
We discuss an instrument for recognizing and classifying algorithms (Aari) in terms of white-
box testing. We examined freshmen students' sorting algorithm implementations in a data
structures and algorithms course in two rounds: at the beginning of the course before the
students received any instruction on sorting algorithms, and after taking lectures on sorting
algorithms. We evaluated the performance of Aari with the implementations of each round
separately. The results show that the sorting algorithms (in Java), which Aari has been trained
to recognize (Insertion sort, Selection sort, Bubble sort, Quicksort and Mergesort), are
recognized with an average accuracy of about 90%. When considering all the submitted sorting
algorithm implementations (including the variations of the standard algorithms), Aari achieved
an overall accuracy being 71% and 81% for the first and second round, respectively.

The manual analysis of the implementations revealed that students have many

misconceptions related to sorting algorithms. For example, they include unnecessary swaps in
their Insertion or Selection sort implementations. Based on the data, we present a
categorization of these types of variations. We also discuss how these categories can be used to
improve education of sorting methods, and to further develop Aari as a white-box testing tool,
which gives feedback to the students on their inappropriate solutions and asks them to correct
the problem; something black-box testing is not capable of doing.

Keywords Algorithm recognition, classifying students' sorting implementations, roles of
variables, automatic assessment tools, white-box testing

ISBN (printed) ISBN (pdf) 978-952-60-4526-9

ISSN-L 1799-4896 ISSN (printed) 1799-4896 ISSN (pdf) 1799-490X

Location of publisher Espoo Location of printing Helsinki Year 2012

Pages 21

A

Classifying and Recognizing Students’ Sorting Algorithm
Implementations in a Data Structures and Algorithms Course

AHMAD TAHERKHANI, ARI KORHONEN, and LAURI MALMI
Aalto University
Department of Computer Science and Engineering
P.O.Box 15400, FI-00076 AALTO, Finland
{ahmad, archie, lma}@cs.hut.fi

We discuss an instrument for recognizing and classifying algorithms (Aari) in terms of white-box testing.
We examined freshmen students’ sorting algorithm implementations in a data structures and algorithms
course in two rounds: at the beginning of the course before the students received any instruction on sorting
algorithms, and after taking lectures on sorting algorithms. We evaluated the performance of Aari with the
implementations of each round separately. The results show that the sorting algorithms (in Java), which
Aari has been trained to recognize (Insertion sort, Selection sort, Bubble sort, Quicksort and Mergesort), are
recognized with an average accuracy of about 90%. When considering all the submitted sorting algorithm
implementations (including the variations of the standard algorithms), Aari achieved an overall accuracy
being 71% and 81% for the first and second round, respectively.

The manual analysis of the implementations revealed that students have many misconceptions related
to sorting algorithms. For example, they include unnecessary swaps in their Insertion or Selection sort
implementations. Based on the data, we present a categorization of these types of variations. We also discuss
how these categories can be used to improve education of sorting methods, and to further develop Aari as a
white-box testing tool, which gives feedback to the students on their inappropriate solutions and asks them
to correct the problem; something black-box testing is not capable of doing.

Categories and Subject Descriptors: K.3.2 [Computers and Education]: Computer and Information Sci-
ence Education – Computer science education

General Terms: Algorithms, Design, Human factor

Additional Key Words and Phrases: Algorithm recognition, classifying students’ sorting implementations,
roles of variables, automatic assessment tools, white-box testing

1. INTRODUCTION
Many automatic assessment systems are based on black-box testing, that is, with cer-
tain input the output is tested by comparing it with an output produced by a model
solution. This approach cannot say anything about the quality of the solution algo-
rithm. For example, novice programmers can often implement a working algorithm
that passes the black-box testing, but includes problematic implementation choices
that make the solution impractical or inefficient. We will demonstrate these in the
case of sorting algorithms. In addition, black-box testing cannot force using a certain
algorithm.

White-box testing is supposed to say something about the internal structure of an
algorithm. In mixed methods, both black-box and white-box testing are used. We can,
for example, first test the functionality in terms of black-box testing. If the solution
works, then white-box testing techniques can be applied to give feedback about the
problematic design choices. In the following, we address only the white-box testing
part assuming that the functionality of the algorithm is already tested in terms of
black-box testing.

In this paper, we discuss and evaluate a prototype instrument to inspect students’
programming exercises in terms of white-box testing. The instrument is based on static
analysis of program code, and its current version can classify student submissions for
a sorting algorithm exercise. Our aim is to develop this instrument further so that
it could be used as a part of automatic assessment system to give meaningful feed-

A:2 Ahmad Taherkhani et al.

back for both students and teachers on a wide variety of programming tasks involving
implementing algorithms. For the rest of the paper, we call this instrument Aari (an
Automatic Algorithm Recognition Instrument).

In order to test the new tool we collected freshmen students’ submissions in a task
where they were requested to write a simple program to sort an array of integers. The
submitted programs were evaluated both manually and with Aari, which allowed us
to compare the results and evaluate the performance of Aari. Repeating the assign-
ment later, after the course lectures had covered sorting algorithms, also enabled us to
compare the changes in students’ implementations.

Our research questions are:

(1) How can we classify students’ implementations of sorting algorithms and what kind
of variations of well-known sorting algorithms they use?

(2) How well can Aari recognize five basic sorting algorithms that it has been trained to
recognize (Insertion sort, Selection sort, Bubble sort, Quicksort and Mergesort) and
their variations among the students’ submissions?

The manual analysis revealed that students have many misconceptions related to
sorting algorithms. We believe that the same also holds for other topics in basic pro-
gramming courses, especially related to data structures and algorithms (see, for exam-
ple, [Seppälä et al. 2006]). One of our future objectives concerning Aari is to detect such
misconceptions automatically so that the system could give feedback on the problem
and ask the student to correct the solution. For example, when implementing Insertion
or Selection sort, many students include unnecessary swaps in their code. This makes
the code more inefficient and more complicated to understand and maintain. Existing
automatic assessment systems are based on black-box testing and they are not capable
of detecting such problems due to the fact that the code still works correctly and sorts
the given input as specified. Based on this and similar observations which emerged
from the analysis of the student implementations and will be presented in this paper,
we will further develop Aari as a white-box testing tool to classify such incorrect imple-
mentations and separate them from correct implementations. This classification can
be used to give feedback to the students on inappropriate solutions.

It is notable that even some of the textbooks introduce the aforementioned problem-
atic versions of the algorithms (e.g., Insertion sort with swapping elements instead of
shifting the elements). We would like to provide feedback that could make the stu-
dent think his solution anew. Blindly copying an algorithm from a textbook or a web
resource is not necessarily the best option. Many textbooks introduce only the very
basic version of an algorithm. This can lead to serious performance problems. For ex-
ample, Quicksort requires very well-aimed modifications, and the typical basic version
in textbooks have its well-known O(n2) worst-case performance with already sorted
input. These are just examples of problems that might occur in students’ solutions and
that need to be addressed in all data structures and algorithms courses. Automatic
feedback in case of large courses is essential to make sure that students learn this also
in practice.

Aari has its limitations. One of the consequences of the Rice’s theorem (and undecid-
ability of the halting problem) is the fact that there cannot be a general algorithm that
decides whether two algorithms compute the same function. Thus, even though we had
a “model solution” for all the possible sorting algorithms, we cannot always (in general)
decide whether the student’s implementation corresponds to the same method or not.
However, in our case, infinite exactness of the decision is not required. Even humans
make errors, and cannot give feedback with 100% accuracy. Thus, having an instru-
ment that can classify the solutions in a reasonable precision is sufficient. Thus, one of
the objectives in this paper is to measure the accuracy of Aari.

Recognizing Algorithms in a Data Structure Course A:3

The rest of the paper is divided into the following sections. We briefly discuss related
work in Section 2. We present Aari in Section 3, where we also discuss the recognition
process and the code characteristics used in the recognition process. In Section 4 we
describe the data structures and algorithms course and the data collection and prepa-
ration process. Section 5 presents the categories of sorting algorithms emerged from
the student’s implementations. Different algorithm implementations submitted by the
students as well as the results of evaluating Aari with these implementations are pre-
sented in Section 6. We discuss the results in more detail in Section 7. Finally, Section
8 presents some conclusions and explains the directions for future work.

2. RELATED WORK
A number of automatic assessment systems have been introduced for assessing differ-
ent types of programming exercises. We first present some of the functionalities these
systems have. Then we discuss a study conducted on what students know about sorting
algorithms before they have been formally instructed.

Automatic assessment tools
Automatic assessment systems are widely used by instructors for grading student
works in large programming and data structure courses. They reduce the workload
of instructors and support learning by giving quick feedback to students.

These systems have several different functionalities varying from checking the cor-
rectness and functionality of programs to analyzing program structure (see, for exam-
ple, WebCat [Edwards 2003], CourseMarker [Higgins et al. 2002] and BOSS [Joy et al.
2005]).

Some systems can analyze and check how well the program has been tested [Ed-
wards 2003], the programming style [Elenbogen and Seliya 2007], the use of various
language constructs [Saikkonen et al. 2001], memory management [Ala-Mutka and
Järvinen 2004], and run time efficiency [Saikkonen et al. 2001].

An overview of the field and information about these functionalities can be found in
[Ala-Mutka 2005].

The existing automatic assessment systems, however, cannot perform white-box
testing in the sense of analyzing how the given problem has been solved, that is, they
are not able to check whether students have implemented the required algorithm, or
the quality of the solution. Aari has been developed to address this deficiency.

Students’ knowledge of sorting algorithms
A series of studies have been conducted to investigate what students already know be-
fore they have been formally taught by instructors. One of these studies is about stu-
dents’ knowledge of sorting algorithms [Simon et al. 2006], where Simon et al. asked
the students on the first day of a CS1 course, a sub-population of this CS1 students
after ten week of instruction, and the students of an introductory economic course, to
describe in English how they would sort a set of 10 numbers in ascending order. They
found that a majority of computer science students provided a logical description to the
problem, while only less than a third of the other students did so. They divided the de-
scribed algorithms into six categories. They found that most of the students described
algorithms that processed the numbers as strings of digits and dealt with them digit
by digit. The second most common descriptions were similar to Selection sort. Some
of the provided descriptions were like Insertion sort and a few students gave Bubble
sort algorithms as the answer. Furthermore, three students described an algorithm
which Simon et al. call the “pessimal algorithms” (select the number closest to 1 as
the first number and keep adding 1 until the next number is reached and so on) and
three students gave an algorithm which the authors call “the number line algorithm”

A:4 Ahmad Taherkhani et al.

(place each number on its correct location on the number line and read them from left
to right). We will get back to this in Section 7 where we compare our findings with
those of Simon et al.

3. AARI
We have previously developed Aari for recognizing algorithms. Aari and the recogni-
tion method is described in [Taherkhani et al. 2011] and [Taherkhani 2011]. In this
section, we briefly outline the recognition method. The reader is encouraged to read
our aforementioned previous articles for more information.

The method we have used in algorithm recognition is based on static analysis of
source code. Several characteristics of source code are analyzed, including various
statistics of language constructs, software metrics as well as roles of variables ap-
pearing in the target program code. Once these characteristics are computed, they are
stored in a database and are used for building a decision tree that guides the recog-
nition process. The C4.5 decision tree classifier algorithm is used to build the tree by
identifying those characteristics that can best distinguish between the analyzed algo-
rithms.

Computed characteristics
The characteristics computed for each algorithms are shown in Table I. The charac-
teristics are divided into numeric characteristics, descriptive characteristics, and other
characteristics. The numeric characteristics are those that can be measured as inte-
gers, whereas the descriptive characteristics reveal those kind of features of imple-
mentations of algorithms that cannot be measured as integers. In order to be used
in the analysis, after being computed, the descriptive characteristics are converted
into 0 or 1 indicating the existence or absence of the corresponding characteristics.
Other characteristics, shown in the third part of Table I are used to computed differ-
ent patterns that can be used in the recognition process. For example, the last two
characteristics in the table, OIID (Outer loop Incrementing Inner Decrementing) and
IITO (Inner loop counter Initialized To Outer loop counter), are computed using the
characteristics Loop counter information, Dependency information and NoNL (Num-
ber of Nested Loops). These characteristics illustrated at the end of the table are used
in the process of recognizing sorting algorithms, which is the topic of the experiment
described later in this paper.

Roles of variables. Roles of variables (RoV) [Sajaniemi 2002] are specific patterns how
variables are used in source code and how their values are updated during program ex-
ecution. RoV are tacit programming knowledge [Sajaniemi and Prieto 2005]. Although
RoV were originally introduced to help students learn programming, the concept can
offer an effective tool to analyze programs with different purposes. As also discussed in
our previous work [Taherkhani et al. 2011; Taherkhani 2011], we use RoV in algorithm
recognition. RoV can be analyzed automatically using data flow analysis and machine
learning techniques (see [Bishop and Johnson 2005] and [Gerdt and Sajaniemi 2006]).

Sajaniemi identified nine roles that cover 99% of all variables used in 109 novice-
level procedural programs [Sajaniemi 2002]. Currently, based on a study on applying
the roles in object-oriented, procedural and functional programming [Sajaniemi et al.
2006], the following 11 roles are recognized1. Note that the three last roles in the list
are related to data structures.

(1) Stepper: goes through a succession of values.

1See the RoV Home Page http://www.cs.joensuu.fi/∼saja/var roles/ for a more comprehensive infor-
mation on roles

Recognizing Algorithms in a Data Structure Course A:5

Table I. The numerical, descriptive and other related characteristics computed from algorithms. The last five descriptive charac-
teristics are specific to the sorting algorithms

Numerical characteristics Description
NAS Number of assignment statements.
LoC Lines of code.
MCC McCabe complexity (i.e., cyclomatic complexity) [McCabe 1976].
N1 Total number of operators.
N2 Total number of operands.
n1 Number of unique operators.
n2 Number of unique operands.
N Program length (N = N1 + N2).
n Program vocabulary (n = n1 + n2).
NoV Number of variables.
NoL Number of loops. Supported loops are for loop, while loop and do while loop.
NoNL Number of nested loops.
NoB Number of blocks.
Descriptive characteristics Description
Recursive Is the algorithm recursive.
Tail recursive Is the algorithm tail recursive.
Roles of variables Roles of the variables used in the implementation of the algorithm.
Auxiliary array For the implementations of algorithms that use array, is an auxiliary array used?
Other characteristics Description
Block/loop information Information about blocks and loops, including starting and ending lines, length and

interconnection between them (how they are positioned in relation to each other).
Loop counter information Information about how the value of loop counters are initialized and updated.

This is used to determine incrementing/decrementing loops (the value of the
loop counter increases/decreases after each iteration).

Dependency information Direct and indirect dependencies between variables (variable i is directly dependent
on variable j, if i gets its value directly from j. If there is a third variable k on which
j is directly or indirectly dependent, i also becomes indirectly dependent on k.
A variable can be both directly and indirectly dependent on another one).

Characteristics for Description
sorting algorithms
MWH Does the implementation of the algorithm use a most-wanted holder variable.
TEMP Does the implementation of the algorithm use a temporary variable.
In-place Does the algorithm need extra memory.
OIID (Outer Incrementing Inner Decrementing) Whether from the two nested loop used in

the algorithm, the outer is an incrementing loop and the inner is a decrementing loop.
IITO (Inner Initialized To Outer) Whether from the two nested loop used in the algorithm,

the inner loop counter is initialized to the value of the outer loop counter.

(2) Temporary: holds a value for a short period of time.
(3) Most-wanted holder: holds the most desirable value that is found so far.
(4) Most-recent holder: holds the latest value from a set that is being gone through, or

holds the latest input value.
(5) Fixed value: keeps its value throughout the program.
(6) One-way flag: can have only two values and once its value is changed, it cannot get

its previous value back.
(7) Follower: always gets its value from another variable, (i.e., its new values are the

old values of other variables).
(8) Gatherer: collects the values of other variables.
(9) Organizer: stores data elements that can be rearranged.

(10) Container: stores data elements to be added or removed.
(11) Walker: traverses data structures.

For automatic detection of roles of variables in this and our previous studies, we used
a tool developed by Bishop and Johnson [Bishop and Johnson 2005]. We did several im-
provements to the tool before using it. As an example, for each variable appearing in
the target program, the tool requires that special tags along with the name of the vari-

A:6 Ahmad Taherkhani et al.

�
�
�
� � ������������������� ����������������������� � �
�
�
�
�
�
�
� ������������������� ������������� � �������������������
�
�
�
�
�
� �� � � ���������������� ��������
�
�

����
��
����

���
�����

����

���������� ��
��� ����������

����
����� ������

Fig. 1. Decision tree used in the experiment. The tree is built by the C4.5 algorithm and is described in
more detail in our previous paper [Taherkhani 2011]

able and some string as the role is provided by the user, otherwise the tool will ignore
the variable. We further developed the tool so that the name of all the variables of the
program along with the required tags and the required string are provided automati-
cally. We also tuned up the tool in order to improve its performance. See [Taherkhani
2011] for more information about these improvements. For more information on how
the role detector works see [Bishop and Johnson 2005].

Recognition process
After computing the aforementioned characteristics and storing them in a database,
each algorithm can be presented as a characteristic vector in the database. These char-
acteristic vectors can be analyzed by a suitable decision tree classifier to generate an
automatic decision tree that can be used for classifying algorithms. We have previously
reported a study in [Taherkhani 2011], where we used 209 Java implementations of
five types of sorting algorithms (Selection sort, Insertion sort, Bubble sort, Quicksort
and Mergesort) as learning data to build a decision tree that can be used in recogni-
tion of these sorting algorithms. The decision tree was built using the C4.5 algorithm.
In [Taherkhani 2011], we also presented the results of evaluating the average classi-
fication accuracy using leave-one-out cross-validation technique and showed that us-
ing the instances of the data set of 209 sorting algorithms, the average accuracy was
98.1%.

For recognizing the student works in the experiment presented in this paper, we
applied the same algorithm and used the same data set as presented in [Taherkhani
2011] to build the decision tree of Figure 1. Note that since the algorithms of the data
set are used as learning data to build the decision tree, each algorithm in the database
is labeled by its correct type.

As can be seen from the figure, the tree has four internal nodes (with the root in-
cluded). These nodes are illustrated as ellipses and include the tests based on which
the splits are performed. In other words, from the computed characteristics discussed
above, the values of four characteristics are used for building the decision tree. There
are five leaves in the tree, which correspond to the number of different types of the
sorting algorithms and are labeled with the appropriate algorithm. From each internal

Recognizing Algorithms in a Data Structure Course A:7

node, there are arcs labeled with 0 or 1 to its children. Each value of an arc illustrates
the outcome of the corresponding test performed in the internal node in question. As
an example, the arc labeled with 1 goes from the internal node Tail recursive to the
left and the other one labeled with 0 goes to the right; the former indicating that tail
recursive algorithms belong to the leaf labeled with “Quick”, and the latter indicating
that algorithms that are not tail recursive belong to the leaf labeled with “Merge”.

The aforementioned characteristics of the student works are computed and stored in
the database. These algorithms constitute the testing data, and thus they are labeled
as unknown in the database. Once all the algorithms of the testing data are stored as
the characteristic vectors in the database, they are classified and assigned a type by
the decision tree classifier one by one.

At present, the decision tree of Figure 1 has a mechanism to recognize only the
five aforementioned sorting algorithms. Recognizing other sorting algorithms or other
fields of algorithms requires building a more complex decision tree that is trained
to classify those algorithms. This is left for future work. An algorithm that does not
belong to the set of the five sorting algorithms will be falsely classified as one of these
algorithms. We will discuss this in detail when presenting the results in Section 6.

4. EXPERIMENT
Course description
Aari was tested in a first year Data Structures and Algorithms course. The course is a
theoretically-oriented, programming language independent follow-up course for CS1,
lectured concurrently with our CS2 course, and directed for CS majors. However, at the
beginning of this course, some programming assignments were given to the students
to make sure they achieve reasonable practical way of implementing algorithms. CS1
was taught in Java, thus the programming exercises were submitted in Java as well.

125 students enrolled in this course. Most of them participated this experiment. We
will come back to these figures in Section 6. We collected student submission for a
sorting algorithm assignment in two phases.

Data collection
In the very first week (among other assignments), the students were given an as-
signment to design and implement an algorithm that sorts an array of integers into
ascending order. They were asked to describe the algorithm verbally, and implement
a method that would conform to the following Signature 1. The implementation was
submitted to our automatic assessment system.

public static int[] mySort(int[] data) (1)

Sorting algorithms were lectured in week 3. In the consequent weekly exercises, the
students were reminded about their previous sorting algorithm design and implemen-
tation in week one. We asked them to analyze which of the lectured sorting algorithm
their design resembled the most, and describe how the implementation was different
from the course material. In addition, they were asked to implement and submit one of
the algorithms described in the course material. Presumably one that is more efficient
than the previous submission. Finally, they were asked to analyze and compare the
two implementations with each other.

Each submission was tested automatically in an automatic assessment system that
gave feedback about the correctness of the solution (black-box testing only). There was
1 submission in the first phase and 1 submission in the second phase that did not
pass the tests. We analyzed only those implementations that passed the tests (112

A:8 Ahmad Taherkhani et al.

implementations in the first phase and 80 implementations in the second phase), thus
we were reasonably sure that the implementations were error-free.

Data preparation
Aari was used to classify the students’ solutions later. Thus, this time the students did
not receive any feedback about the white-box testing phase.

For the analysis purposes, we added each student’s user name as a prefix to the
class name and the aforementioned method name in his/her submitted programs. This
helped us find the students implementations in the first and second round from the
database. A few implementations used enhanced for statement introduced in Java 5.0
for iteration through collections and arrays. Aari does not support this form of for
statement and thus these for statements were replaced with the ordinary ones.

5. CATEGORIZING ALGORITHMS
The sorting assignments did not ask student to implement any specific algorithm, thus
we got a wide variety of submissions. We analyzed the submitted algorithms and cate-
gorized them manually as well as automatically. We needed the results of the manual
analysis in order to assess the accuracy of Aari. Furthermore, we need the manual
analysis to see what kind of variations of sorting algorithms students implement. This
analysis could also reveal what kinds of misconception they have related to sorting
algorithms. We need these observations in order to further develop Aari to give appro-
priate feedback to students about their implementations.

It was straightforward to categorize most of the submitted implementations. How-
ever, it was difficult to fit some of the implementations into any type of standard al-
gorithms. In the following, we briefly discuss what types of student submissions we
considered as standard algorithms in our analysis. Based on this discussion, we will
introduce two categories that we call “Inefficient variations” and “Others”, and ex-
plain how the implementations of these categories differ from standard algorithms.
To keep the number of the main categories small, we included the few implementa-
tions of Shellsort and Heapsort as a subcategory of “Others”. The aim of the following
discussion is not to give an exact definition to the algorithms, but rather outline and
emphasize the essential features of the algorithms that were used as a guideline in
the categorization of the student implementations. Although some of the remarks may
seem obvious, expressing them explicitly helps to understand the reasoning behind the
categorization.

5.1. Bubble sort
Implementation of an in-place Bubble sort includes two nested loops and a swap op-
eration performed in the inner loop. An essential feature of Bubble sort is that the
two items compared in each pass are adjacent. This feature is emphasized by all the
descriptions of Bubble sort we studied, including textbooks and articles (see, e.g., one
of the earliest description in [Friend 1956], where Bubble sort is referred to as “Ex-
changing Sort”, as also explained in [Astrachan 2003]). Some sources introduce an
optimized version of Bubble sort where a boolean value is used as a one-way flag to
indicate whether a swap is performed in the inner loop. If no swaps are performed,
the list is sorted, and the algorithm can terminate. We consider both implementations,
with or without a one-way flag, to be Bubble sorts because of the history of sorting algo-
rithms. In his study of Bubble sort, Astrachan concludes that “Perhaps early concerns
with allocating registers and using memory led to the adoption of bubble sort which in
its primitive form (no early stopping) requires no storage other than the array and two
index variables.” In addition, there is no point to separate these two versions of Bubble

Recognizing Algorithms in a Data Structure Course A:9

sort (e.g., the non-flag version to be included in the Inefficient variation category) as
neither of these are recommended in textbooks.

5.2. Insertion sort
Implementation of an in-place Insertion sort consists of two nested loops and a shift
operation performed by the inner loop. Implementations that use swap operation in
the inner loops instead of shift are surprisingly more common than one could expect.
Even some textbooks introduce Insertion sort algorithm with swap operation; see for
example [Dale et al. 2002] and [Shaffer 1998]. [Sedgewick 2002] gives an example of
both versions and introduces the version with shift operation as an improved version
of the one that uses swap.

However, we do not consider implementations with swap (which we call “Insertion
sort with swap”) as a pure Insertion sort in our analysis, but rather as a variation
of it. We discuss this variation in more detail later when presenting these “Inefficient
variations”. In addition, it should be noted that in Insertion sort, the items of the given
list are handled in a successive manner, that is, the second item is compared with the
first item, the third item is compared with the second and the first item, and so on (see,
e.g., [Friend 1956; Knuth 1998]). We will use this definition to differentiate between
the implementations of Insertion sort and the other non-recursive borderline cases.

5.3. Selection sort
Implementation of an in-place Selection sort consists of two nested loops as well. In the
inner loop, the position of the smallest (or largest) item is stored in each pass and in the
outer loop, this element is exchanged with the item pointed by the loop counter of the
outer loop. In addition to the position of the smallest (or largest) item, some students’
implementations store the value of the item as well and use it in the swap operation
in the outer loop. We consider all these kinds of implementations to be Selection sorts.

On the other hand, some implementations exchange the smallest (or largest) item
found so far during one single pass in the inner loop with the item pointed by the loop
counter of the outer loop and thus may perform several unnecessary swap operations
within the inner loop during one pass instead of storing the position of the wanted
item and exchange it only once in the outer loop (see Figure 2). We call these imple-
mentations “Selection sort with inner loop swap” and consider them as a variation of
Selection sort, and similar to the Insertion sort variations, these are considered to be
a subtypes of the category “Inefficient variations”.

5.4. Mergesort
Implementations of the submitted Mergesorts followed the typical algorithm described
in textbooks: dividing the given array of items into two halves, sorting each half using
recursion and merging the sorted halves into one sorted array. Although the submitted
implementation codes varied greatly, for example, in terms of the number of the used
auxiliary arrays, we did not discern clear variations within the implementations.

5.5. Quicksort
The submitted implementations of in-place Quicksort followed the same basic idea:
partitioning the given array and calling the method recursively for both partitions.
Some implementations selected the pivot item from the left or right end and some from
the middle of the given array. Moreover, some implementations used extra array(s).
However, we did not divide the implementations to different subcategories based on
the pivot selection strategies or using extra arrays.

A:10 Ahmad Taherkhani et al.

5.6. Inefficient variations
A common feature in some of the Insertion and Selection sort variations was that they
did unnecessary swaps in the inner loop, and thus are somewhat inefficient. There
is always room for (quite an obvious) optimization. We selected the name “Inefficient
variations” to reflect this fact. Although Bubble sort and its variations can also be in-
cluded in this category, we classified it as its own category as it is a standard algorithm
that is widely covered in textbooks. In addition, in case of Insertion and Selection sort,
at least some of the implementations are a consequence of misconception related to the
original algorithm. Thus, in order to give automatic feedback of such misconception in
the future, we need to develop an instrument for recognizing these variations.

����������	���
���
����������������������
��
��������������
���� �����	�������	�������
��
�����	������
� �� ��������
!�"�#�����
!	"����
�$�� �
���������
!�"�
�%� ����
!�"�������
!	"�
�&� ����
!	"����
���
�'�� (�
�)�� (�
���(�

�
Fig. 2. An example of a variation of a Selection sort in the students’ implementations that uses swap in the
inner loop

Figure 2 shows the most common variation within the students’ implementations.
As can be seen from the figure, the iterations of the outer and inner loops, the compari-
son of the two items and exchanging the items are different from those discussed above
for Selection and Insertion sorts. Some of these variations may store the index of the
smallest item, but they leave it unused and do the swap in the inner loop. While clas-
sifying algorithms, we have ignored all unused variables, and consider the algorithm
to be the one without those code lines including redundant code.

The second common variation in student implementations are variations of Insertion
sort that use swap instead of shift.

5.7. Others
This category consists of the implementations that cannot be included in the algo-
rithms discussed above. The following subcategories can be discerned.

The first subcategory is called “Other standard algorithms” and includes the im-
plementations of Shellsort, Heapsort and hybrid Quicksort-Selection sort algorithm.
These implementations were quite similar to those discussed in textbooks. and we will
not discuss them further here.

The second subcategory, which we have called “Other variations”, consists of those
algorithms that have an established name, but are not usually covered in textbooks
nor taught in a CS class because of their pathological or poor worst and average case
performance. These include Bogosort (a sorting algorithm that randomly shuffles the
items of a list until they are in order), Bozo sort (a random sort like Bogosort, but picks
two items at random and exchanges them until the list is sorted) and Gnome sort (a
single loop algorithm that exchanges the two out-of-order adjacent items and checks
the items which are positioned before the exchanged items and continues this until the
list is sorted). The variations of Gnome sort are the most common of these types of vari-
ations in the students’ implementations. Figure 3 shows an example implementation
of a Gnome sort.

The third subcategory includes “Own method” implementations. This category con-
sists of the solutions that we found difficult to include in any category or subcategory

Recognizing Algorithms in a Data Structure Course A:11

��������������������
��
����������
���� �������
!�"�����
!���"���
���� ��������������
!�"�
� �� ����
!�"�������
!���"�
�$�� ����
!���"������
�%� ����#���
�&� ��������
�'�� (�
�)�(�

Fig. 3. An example of the variations of a Gnome sort in the students’ implementations

discussed above. Typical solutions try to follow an idea from some of the in-place al-
gorithms, but use an unnecessary auxiliary array. By this we mean an array that is
used tightly coupled with the input array in order to do the sorting. However, if the
items are just copied into an auxiliary array, and the sorting is done in this new array
without the need of the original one, we did not consider this alone to constitute an
Own method. In addition, other common characteristics in Own methods are the ex-
cessive use of loops and variables. For example, the algorithm in Figure 4 inserts each
item from the original array data into the appropriate position in an auxiliary array
numbers, and afterwards moves the items toward the end of the auxiliary array one by
one in the third loop in line 11. Although it works similar to the idea of insertion sort,
it is difficult to consider it to be a variation of insertion sort. Not because of the use of
the auxiliary array, but because of three loops used in the implementation.

Finally, the fourth subcategory contains solutions in which no algorithm was de-
signed nor implemented by the student. That is, the solutions used the implementation
provided by the Java standard library.

������!"��*��
�+����
,����!-�����
����"�
����������	����+�.
�-������������
�����������������-�����
�����������
� �� ��+�.
�-���-���!�"�
�$�� ����	�����	������	�����
�%�� ���	�������
�&�� � �*��
�+!	"�����+�.
�-�
�'� ����*��
�+!	"�#����+�.
�-���
�)�� �������*��
�+!	"�

������������������������ �*��
�+!	"�����+�.
�-�
������������������������ ������������	����������������
������������������������ ��������*��
�+!�"�
������������������������ �*��
�+!�"�������
��������������������� �� �����������
���������������������$�� (�
���������������������%�� ��
�/�
���������������������&�� (�

�'�� (�
�)�(�

Fig. 4. An example of an “Own Method” in the students’ implementations

6. RESULTS
We analyzed the implementations manually and automatically. In the following, we
first present the results of the manual analysis and then the results of the automatic
recognition of the implementations by Aari.

Results of manual analysis
112 students submitted their solutions to the sorting problem in the first round and 80
students in the second round (all the students who submitted a solution in the second

A:12 Ahmad Taherkhani et al.

round also did so in the first round). Figure 5 shows the distribution of the algorithms
submitted by the students in each round and compares the number of each algorithm
in the first and second round. In the first round, most of the students implemented
Selection sort (30 students, 27 percent of all the submissions of the first round). The
second most common implemented algorithm is Bubble sort (25 students, 22 percent).
Not surprisingly, the implementations of the more efficient sorting algorithms are not
common in the first round, since the deadline for this round was before the lectures
on sorting algorithm started. For example, there were only 4 Mergesort (4 percent)
and 2 Quicksort (2 percent) implementations among the submissions. On the other
hand, Quicksort and Mergesort algorithms are the most common implementations in
the second round (32 and 16 implementations, i.e., 40 and 20 percent, respectively).
Again, as one could expect, “Inefficient variations” and “Others” implementations are
much more common in the first round (20 students, 18 percent and 23 students, 21
percent, respectively) than in the second round (3 students, 4 percent and 10 students,
13 percent, respectively).

��

�

� �

��

	
�

	

�

��

��

�

��

�

�

�

��

��

��

��

��

��

�
�

��
���

���

��
�

��
��
���
��

������ ��������� ��������� ��� � !���" �����������
#���������

$�%���

&'�������� ����%

(���)�� (���)��

�

Fig. 5. All the students’ implementations of sorting algorithms in the first and second round

�

�

�

�

	

� �

�

�

�

�

	

��

��

��

�
�

��
���

���

��
�

��
��
���
��

$�%�������)��)
�� ����%�

$*����%�) $�%���#��������� +�#����%�)�

&'�������� ����%

(���)�� (���)��

�

Fig. 6. Students’ implementations of sorting algorithms classified as “Others” in Figure 5.

Table II summarizes these results and shows the number (the first number in the
columns) and percentage (the second number in parentheses) of the implementations
of each submitted algorithm. The results are presented separately for the first round,
second round and in total. Note that the percentage show the results with respect to
the number of algorithm in the corresponding round. For example, the number of the
implementations of Bubble sort algorithm in the first round is 25 (i.e. 22 percent of

Recognizing Algorithms in a Data Structure Course A:13

Table II. The number and percentage of each type of sorting algorithm
submitted by the students in the first and second round

Algorithm Round 1 (%) Round 2 (%) Total
Bubble sort 25 (22) 4 (5) 29 (15)
Insertion sort 8 (7) 9 (11) 17 (9)
Selection sort 30 (27) 6 (8) 36 (19)
Mergesort 4 (4) 16 (20) 20 (10)
Quicksort 2 (2) 32 (40) 34 (18)
Inefficient variations 20 (18) 3 (4) 23 (12)
Others 23 (21) 10 (13) 33 (17)
Total 112 80 192

Table III. The number and percentage of sorting algorithms categorized as
“Others” in the first and second round

Algorithm Round 1 (%) Round 2 (%) Total
Other standard algorithms 2 (9) 4 (40) 6 (18)
Own method 13 (56) 3 (30) 16 (49)
Other variations 6 (26) 1 (10) 7 (21)
Java methods 2 (9) 2 (20) 4 (12)
Total 23 10 33

the overall data in the first round which is 112), and in the second round 4 (which is 5
percent of the overall implementations submitted in the second round, i.e., 80).

Figure 6 illustrates the number of different subcategories in “Others”. The largest
subcategory in the first round is “Own method” (13 implementations), whereas the
largest subcategory in the second round is “Other standard algorithms” (4 implemen-
tations).

Distribution of different subcategories of “Others” (in number and percentage) is
shown in Table III. As in Table II, the numbers in parentheses show the percentage of
the algorithms in the corresponding round. For the column Total, the percentage show
how frequent each subcategory category is with respect to the all implementations of
“Others” in the first and second round.

We also investigated the performance of each student in the two rounds to see how
many of them improved their solutions. From the 80 students who submitted a so-
lution in the second round, two students implemented the same algorithm as in the
first round (different implementations of Selection sort). 19 students implemented a
Bubble, Selection or Insertion sort in the first round and changed to another algorithm
from this group on the second round (includes also the variations of these algorithms).
Three students who had implemented an efficient algorithm in the first round did
so also in the second round. Two Mergesort implementations in the first round were
changed to the implementation provided by the Java standard library and an imple-
mentation of an Insertion sort with swap in the second round. One student changed
from “Own method” to Java standard library and one from Bubble sort to Bozo sort.
The rest of the students (i.e., 52 students) implemented a more efficient algorithm in
the second round than in the first round.

Results of automatic recognition
The results of evaluation of the accuracy of Aari are depicted in Figures 7 (for the first
round) and 8 (for the second round). Aari has a mechanism to recognize five sorting al-
gorithms: Bubble sort, Insertion sort, Selection sort, Mergesort and Quicksort. As can
be seen from the figures, these algorithms are generally recognized very accurately
in both rounds. For example, all the implementations of Selection sort and Quicksort
algorithm are correctly recognized. However, not surprisingly, Aari does not perform

A:14 Ahmad Taherkhani et al.

that well with the algorithms that it has not been trained to recognize. All the im-
plementations of “Other standard algorithm”, that is, 1 Shellsort, 4 Heapsorts and 1
hybrid algorithm of Quicksort and Selection sort, as well as the implementations of
“Other variations” and “Java methods” subcategories are recognized falsely. From the
16 implementations of “Own method” category, 4 implementations of Selection sort
and 1 implementation of Quicksort (which were categorized as Own method because
they do not sort in place) were recognized as Selection sort and Quicksort.

The number and percentage of correctly and falsely recognized implementations for
each type of submitted algorithm are shown in Table IV, for each round separately,
as well as for all the implementations in total. Again, it should be noted that the
percentage show the results with respect to the number of specific algorithms in the
corresponding round. For example, the number of the implementations of Bubble sort
algorithm in the first round is 25, from which 24 algorithms are correctly recognized,
that is, 96 percent of the 25 algorithms.

�� ��

� �

�� ��

�

 � �

��

��

�

�

�

��

��

��

��

��

�
�

��
���

���

��
�

��
��
���
��

������ ��������� ��������� ��� � !���" ����� ������
#���������

$�%���

&'�������� ����%

,� ����% -�������'����� ��.�)

�

Fig. 7. The number of different sorting algorithms implemented by the students in the first round (gray
column) and recognized by Aari (green column)

� �

� �
	 	

	

�� ��

� �

�

�

�

�

��

��

��

��

��

��

�
�

��
���

���

��
�

��
��
���
��

������ ��������� ��������� ��� � !���" �����������
#���������

$�%���

&'�������� ����%

,� ����% -�������'����� ��.�)

�

Fig. 8. The number of different sorting algorithms implemented by the students in the second round (gray
column) and recognized by Aari (green column)

In the case of category “Inefficient variations”, 13 out of 23 are recognized correctly
(i.e., as Selection and Insertion sorts) in total, that is, 57 percent of all the “Inefficient
variations” in both rounds. From the 20 “Inefficient variations” in the implementations
of the first round, there were 12 variations of Selection sort and 8 variations of Inser-
tion sort. In the second round the numbers were 1 and 2, respectively. Furthermore,
the subcategory “Other variations” in “Others” included 1 variation of Bogosort and 5

Recognizing Algorithms in a Data Structure Course A:15

Table IV. The number and percentage of each type of sorting algorithm correctly recognized by Aari. Columns Round
1 and Round 2 show the number of submitted algorithms

Algorithm Round 1 Correct (%) Round 2 Correct (%) Total Correct (%) False (%)
Bubble sort 25 24 (96) 4 4 (100) 29 28 (97) 1 (3)
Insertion sort 8 8 (100) 9 8 (89) 17 16 (94) 1 (6)
Selection sort 30 30 (100) 6 6 (100) 36 36 (100) 0 (0)
Mergesort 4 1 (25) 16 11 (69) 20 12 (60) 8 (40)
Quicksort 2 2 (100) 32 32 (100) 34 34 (100) 0(0)
Inefficient variations 20 11 (55) 3 2 (67) 23 13 (57) 10 (43)
Others 23 3 (13) 10 2 (20) 33 5 (15) 28 (85)
Total 112 79 (71) 80 65 (81) 192 144 (75) 48 (25)

Table V. The confusion matrix showing the classification accuracy of Bubble sort,
Insertion sort, Selection sort, Mergesort and Quicksort implementations

Class Bubble Insertion Selection Merge Quick
Bubble sort 28 1 0 0 0
Insertion sort 1 16 0 0 0
Selection sort 0 0 36 0 0
Mergesort 4 0 0 12 4
Quicksort 0 0 0 0 34

variations of Gnome sort in the first round, and 1 variation of Bozo sort in the second
round.

We use a confusion matrix to look at the accuracy of the classification on the overall
data. A confusion matrix is an N × N matrix, where each instance Iij indicates the
instance that belongs to class Ii, but is classified as class Ij [Tan et al. 2006]. As the
decision tree used for classifying algorithms has mechanism to recognize Bubble sort,
Insertion sort, Selection sort, Quicksort and Mergesort algorithms (see Figure 1), we
use a 5 × 5 confusion matrix to see how accurately the implementations of these algo-
rithms were recognized. The resulted confusion matrix is shown in Table V. Note that
the variations of Selection and Insertion sort are not included in the confusion matrix.
As the confusion matrix shows, from the 20 instances of Mergesorts in the first and
second round, 4 are recognized as Bubble sorts and 4 as Quicksorts. This is because
either the falsely classified implementations of the Mergesort are falsely detected as
non-recursive or as tail recursive algorithms, respectively. Other four types sorting
algorithms are recognized with high accuracy.

Finally, we can present the accuracy of the decision tree of Figure 1 for the five
types of sorting algorithms in terms of true positive (TP, correctly recognizing an im-
plementation that belongs to the target set), false negative (FN, falsely recognizing an
implementation of the target set as another one) and false positive (FP, falsely recog-
nizing an implementation which does not belong to the target set, as a member of the
target set) metrics. Moreover, based on these metrics, we can also express the follow-
ing metrics for the five sorting algorithms: true positive rate (TPR, the proportion of
the positive case implementations that are correctly recognized, i.e., TPR = TP/(TP
+ FN)), false negative rate (FNR, the proportion of the positive case implementations
that are not recognized correctly, i.e., FNR = FN/(TP + FN)) and precision (the propor-
tion of the actual positive case implementations to all the implementations recognized
as positive, i.e., precision = TP/(TP + FP)). Table VI summarizes these results. The
implementations of Bubble sort algorithm have the largest number of FP cases (19
samples), and as a result, they have the poorest result of precision. This is because the
implementations of Bogosort, Bozo sort and Gnome sort as well as the implementa-
tions that use standard Java library methods are recognized as Bubble sort.

A:16 Ahmad Taherkhani et al.

Table VI. The value of true positive (TP), false negative (FN), false positive (FP),
true positive rate (TPR), false negative rate (FNR) and precision for the implemen-
tations of the five types of sorting algorithms

Class Total TP FN FP TPR FNR Precision
Bubble sort 29 28 1 19 96.6% 3.4% 59.6%
Insertion sort 17 16 1 4 94.1% 5.9% 80%
Selection sort 36 36 0 6 100% 0% 85.7%
Mergesort 20 12 8 0 60% 40% 100%
Quicksort 34 34 0 6 100% 0% 85%

7. DISCUSSION
We first discuss our observations on manual analysis of the students’ implementations
and see what they suggest in terms of further developing Aari as a white-box testing
instrument. This is followed by a discussion on the results of evaluating Aari in its
current state as an automatic assessment tool to check student submissions.

Analyzing student implementations
As Knuth puts it, “the classification of sorting methods into various families such as
“insertion,” “exchange,” “selection,” etc., is not always clear-cut.” [Knuth 1998]. This is
especially true when classifying novices’ implementations. For example, we have cate-
gorized the algorithm depicted in Figure 2 as a variation of a Selection sort because of
the steps taken in the two nested loop. In this type of variation, the notion of selection
is embedded in the swaps (i.e., selecting the value lesser than that shown by the loop
counter of the outer loop and swapping them). However, one can argue that since the
position of the min/max element is not explicitly stored or used, it cannot be consid-
ered as a Selection sort. This is a perfectly legitimate argument. The question remains,
however, what algorithms does it represent? For example, it cannot be regarded as a
Bubble sort neither, because unlike in Bubble sort, the two compared items are not
adjacent (see the features of a Bubble sort outlined in Section 5. In fact some websites
name this algorithm as an Exchange sort, while others use this name interchangeably
with Bubble sort). We have introduced the category “Inefficient variations” for these
kind of variations that do unnecessary swaps in the inner loop and should not be used.
It clarifies the categorization.

One objective of this study is to investigate what types of misconceptions students
have about sorting algorithms (note that since the students had no formal instruc-
tions in the field of sorting algorithms when doing the assignment of the first round,
misconception in this round refers to what they have not fully understood when read-
ing/thinking about sorting problem, rather than misunderstanding what they have
been taught by the teacher). We therefore did not ask the students to implement a
particular sorting algorithm, because this could have resulted in submitting “perfect
implementations”, presumably by getting help from some sources, and thus would not
have served our purposes. Our goal is to apply the gathered information to further
develop Aari to give feedback to students about these misconceptions and to suggest
how they can improve their implementations.

In the analysis, we found many misconceptions/shortcomings in student work. Two
of these misconceptions relate to the implementations of Insertion sort and Selection
sort algorithm: these implementations use unnecessary swaps that make them inef-
ficient. We have classified these implementations as “Inefficient variations” and as
Table II shows, these implementations constitute 12 percent of the total submissions
in the first and second round. We can give feedback to the students to avoid these un-
necessary swaps. Other common shortcomings include using unnecessary variables,
assignment statements and auxiliary arrays. Although we did not consider the issues

Recognizing Algorithms in a Data Structure Course A:17

like using auxiliary arrays (see Section 4), etc., as a basis to classify the algorithm in
question as a variation, it is clearly beneficial to give feedback to the students on these
shortcomings, as well.

In case of Bubble sort implementations, in addition to giving feedback on the inef-
ficiency of the algorithm in general, we can provide feedback for optimization in the
case of the implementations that do not use a boolean variable as a one-way flag to
check whether to continue iterations (surprisingly, more than half of the all submitted
Bubble sort implementations [i.e., 55%] use this optimization, although most textbooks
and other sources do not discuss it widely). For the more efficient sorting algorithms
such as Quicksort, an improvement suggestion can include using more efficient pivot
selection strategy as well as not using unnecessary auxiliary array. From the 32 im-
plementations of Quicksort in the second round, 12 used the leftmost or rightmost
element as the pivot, while 22 implementations used the middle element. In the exam-
ple of the handout of the course, the rightmost element of the given array is selected
as the pivot. However, more efficient strategies for selecting the pivot are discussed.

Implementations of efficient algorithms were much more common in the second
round than in the first round (see Figure 5 and Table II). As an example, the num-
ber of Bubble sort implementations was much higher in the first round than in the
second round (25 and 4, respectively), while the number of Quicksort implementations
increased significantly in the second round (2 in the first round and 32 in the second).
Similarly, the students submitted much more implementations of “Own method” and
“Other variations” of category “Others” in the first round than in the second round.
(See Figure 6 and Table III). A straightforward conclusion would be the impact of the
instruction, but drawing any conclusion requires further investigation of the material
(students’ descriptions, analyses, etc.).

In Section 2, we discussed the study of Simon et al. [Simon et al. 2006] on students’
knowledge of sorting algorithms before they start a CS1 course. In that study the stu-
dents were asked to describe a sorting algorithm in English, whereas the assignment
in our study was an implementation assignment. Furthermore, our subjects were stu-
dents starting a course on data structures and algorithms and had completed a CS1
course (although sorting algorithms are not covered in the CS1 course). However, we
can find the following differences and similarities in the observations of our study in
the first round compared to the Simon et al. findings. Unlike the observation of Si-
mon et al., all of the implementations in our study treated numbers as primitive types
rather than strings of digits. Selection sort and Bubble sort were the most popular al-
gorithm in our data, while in the Simon et al. study, the most popular algorithms were
Selection sort and Insertion sort. Furthermore, we had a few submissions that im-
plemented more efficient sorting algorithms (such as Mergesort and Quicksort), while
there were no descriptions of the more efficient algorithms in the Simon et al. study.
With regard to the similarities, like in the Simon et al. study, implementation of Selec-
tion sort algorithm was the most popular solution in our study as well. Finally, Simon
et al. conclude that although most of the beginners treated numbers as strings of dig-
its, they were “very likely to provide a correct solution to the problem” [Simon et al.
2006]. Based on our observations, we can also conclude that the students were able to
submit working solutions to the sorting problem before being formally taught by an
instructor.

Validating Aari
Another reason for giving a general implementation task to the students rather than
asking them to implement a particular sorting algorithm was to test the performance
of Aari more comprehensively. The five algorithms that Aari is trained to recognize are
recognized with high accuracy (see Table VI). Except the implementations of Merge-

A:18 Ahmad Taherkhani et al.

sort, the implementations of other four algorithms are recognized with more than 94%
true positive rate (the average accuracy for all the five algorithms is about 90%). Aari
is not trained to recognize the other algorithms, hence the results of recognizing the
algorithms other than these five types of sorting algorithms are poor. However, a mech-
anism for recognizing other types of sorting algorithms as well as other fields of algo-
rithm can be added to Aari to address this limitation.

Category “Inefficient variations” includes the implementations of Insertion sort with
swap and Selection sort with inner loop swap. The decision tree of Figure 1 does not
recognize these variations as their own class, but rather as Insertion and Selection
sorts. Therefore, we have considered the implementations of this category as recog-
nized correctly, if they are recognized as Insertion and Selection sorts, respectively.
Based on the category emerged from the data, we will further develop Aari to rec-
ognized these variations as their own types. This will make it possible to give more
accurate feedback on students’ implementations.

From the implementations of category “Inefficient variations”, all the variations of
Insertion sort (10 implementations) were recognized correctly, while most of the vari-
ations of Selection sort (10 out of 13 implementations) were recognized falsely. The
reason is that as the decision tree of Figure 1 illustrates, in order to recognize an im-
plementation as an Insertion sort, the implementation must have the characteristic
IITO (Inner loop counter Initialized To Outer loop counter). Like the implementations
of a “pure” Insertion sort, all of the variations of Insertions sort had this characteristic
and thus are recognized as Insertion sort. However, an implementation of a Selection
sort is recognized by its MWH (most-wanted holder) role. While some of the imple-
mentations of the variations of Selection sort do store the position (and some the value
as well) of the so far found smallest/largest item (although leave it unused and do
unnecessary swaps in the inner loop), most of them do not store it. For those imple-
mentations that store the position, the role detector detects a MWH role and thus they
are recognized as a Selection sort. For the rest, no MWH role is detected and as the
result, they are not recognized as a Selection sort. All of these latter implementations
are recognized as an Insertion sort, since they have the characteristic IITO.

These variations can be recognized more accurately and these kinds of errors can
be eliminated by further developing Aari and integrating schema recognition mecha-
nism into it. Schema recognition will, as an example, detect a swap operation within
the inner loop and result in a correct recognition of the implementations of those vari-
ations of Selection sort that do unnecessary swaps in the inner loop. To summarize,
Aari performs much better with the implementations of the second round (accuracy
of 81%) than with the implementations of the first round (accuracy of 71%). This is
because the first round includes more implementations of “Own method” and “Ineffi-
cient variations”, in other words, the implementations of the second round are closer
to standard algorithms.

Implications for education
Sorting algorithms is one core topic in a data structures and algorithms course. Even
though in real-life programming projects sorting can often be implemented using li-
brary functions, all computer science students should learn at least some of key sim-
ple algorithms, such as Insertion or Selection sort, as well as more efficient algorithms
like Quicksort and Mergesort. Equally important is understanding their run time per-
formance analysis, and which aspects of the algorithms are the key factors for perfor-
mance.

We do not claim that covering such a wide set of sorting methods and their vari-
ations, in such details as we have discussed in this paper, is worthwhile education
considering the totality of topics that students need to learn on their programming

Recognizing Algorithms in a Data Structure Course A:19

courses. We, however, want to emphasize other aspects that our analysis revealed, and
which should be addressed in general programming education. Inefficient versions of
simple algorithms can be used as cases which demonstrate several aspects how the
code could and should be made more clear and efficient. We can discuss topics such as:
Why we should aim at keeping code simple? Why should we avoid using extra variables
and operations (like swaps in this context) that could be avoided by small refinements
of the algorithm? Is there any sense of tuning our algorithms manually, when current
compilers often do similar optimizations? Or, what is the role code readability vs. effi-
ciency? With such discussion we could urge our students to take a critical view of their
code.

Automating the feedback on algorithms in the context of automatic assessment with
the Aari system has its pros and cons. For a teacher, such information would be a
welcome assistance when checking manually students’ code. This would allow giving
better personal comments for the students and pick up interesting examples to dis-
cuss with students. In such cases, where students have been requested to implement
a specific algorithm, the automatic analysis/feedback would allow the teacher to con-
centrate only on such cases which did not fit the specification, instead of checking all
codes. From students’ perspective, getting some feedback of algorithm implementation
would provide new information and point of view to look when compared with what
existing automatic assessment tools can provide. As the analysis is, however, not fool-
proof, the feedback must be phrased so that it suggests something the student should
look at, instead of making a summative evaluation that something is right or wrong.
The current evaluation results, however, indicate that the accuracy of the analysis is
rather high, which is promising.

Points of Validity
The results of the analyzed data set are from a specific course, and may not generalize
to other settings. In our case, sorting algorithms are not covered in our CS1 course,
while in many other institutes at least some basic methods are covered. Available
course resources and textbooks might have a major effect on the results, if a similar
open task of implementing any sorting algorithm would be set up. What is interesting
in our case is that so many students did not solve the problem by Googling and copying
available code from the net but only implemented some of their own solutions.

8. CONCLUSION AND FUTURE WORK
In this paper, we have validated Aari, the previously introduced instrument for algo-
rithm recognition [Taherkhani 2011] with authentic students’ implementations. For
the five types of sorting algorithm implementations that Aari has been trained to rec-
ognize (see Figure 1), the results are very promising (see Table II and Figures 7 and
8). Furthermore, more than fifty percent of the variations of these algorithms are also
recognized correctly. However, as expected, all of the other types of algorithms are
recognized falsely.

Checking students’ work in large courses is a difficult and time-consuming task. In-
structors use automatic tools to assess the correctness of these works. Aari can provide
help in checking that the works implement the required algorithm. As the recogni-
tion method described in section 3 is statistical by nature, it may not recognize algo-
rithms with 100% of accuracy. However, human inspectors make errors as well and
thus reasonable accuracy could be sufficient. Furthermore, instructors can use Aari as
a semi-automatic tool as well: it is of great help if the major part of the assignments
are correctly recognized by Aari and an instructor has to check only the rest of them
manually.

A:20 Ahmad Taherkhani et al.

Our next plan is to further develop Aari as a white-box instrument. Based on the
data and analyses presented in this study, we have observed a set of variations of stan-
dard algorithms that can be considered in the future development of Aari. This mainly
includes the category “Inefficient variations” introduced in Section 5. The variations of
standard algorithms, especially Insertion and Selection sort, were very common within
the students’ implementations and this suggests that giving feedback on these kind of
implementations can be beneficial and help students understand the target algorithm
better. In addition, feedback on avoiding unnecessary variables, assignments state-
ments, auxiliary arrays, etc., that also improve students’ general programming skills
can be given to them. These features make Aari a helpful white-box instrument that
along with checking functionality (black-box testing), not only assist instructors in
their assessment task, but also help students in learning task by providing appropri-
ate feedback on their misconceptions and bad solutions.

To implement the above plan, our next step of future work is to integrate schema
recognition mechanism into Aari. This will help us not only identify the algorithm-
related code from non-relevant application data and select it for further analysis, but
also detect those features of the code that in its current state, Aari is not capable
of detecting. As an example, in order to differentiate between an implementation of
a standard Selection sort and an implementation of a Selection sort with inner loop
swap, it is essential to detect whether a swap operation is performed in the inner loop
or in the outer loop. Schema recognition mechanism will make such detections possible.

We have demonstrated the performance of Aari in the case of sorting algorithms.
As another direction of future work, we need to cover other fields of algorithms and
show the performance of Aari with a more comprehensive set of different algorithms
using the appropriate empirical experiments. In addition, we believe that students
have similar misconceptions on other fields of algorithms as well (see, e.g., [Seppälä
et al. 2006]). We should conduct similar studies as presented in this paper to find out
these misconceptions and further develop Aari to give feedback also on them. Finally,
we need to evaluate students’ responses to the added feedback on their algorithms.

9. ACKNOWLEDGMENT
We would like to thank Lasse Hakulinen for helping us with collecting the student
submissions from the automatic assessment system.

REFERENCES
ALA-MUTKA, K. 2005. A survey of automated assessment approaches for programming assignments. Com-

puter Science Education 15, 2, 83–102.
ALA-MUTKA, K. AND JÄRVINEN, H.-M. 2004. Assessment process for programming assignments. In Pro-

ceedings of the 4th IEEE International Conference on Advanced Learning Technologies (ICALT’04), Joen-
suu, Finland, August 30–September 01. 181–185.

ASTRACHAN, O. 2003. Bubble sort: An archaeological algorithmic analysis. In Proceedings of the 34th
SIGCSE technical symposium on Computer science education(SIGCSE ’03), Reno, Nevada, USA, Febru-
ary 19–23. ACM New York, NY, USA, 1–5.

BISHOP, C. AND JOHNSON, C. G. 2005. Assessing roles of variables by program analysis. In Proceedings
of the 5th Baltic Sea Conference on Computing Education Research, Koli, Finland, 17–20 November.
University of Joensuu, Finland, 131–136.

DALE, N., JOYCE, D., AND WEEMS, C. 2002. Object-Oriented Data Structures Using Java Second Ed. Jones
and Bartlett Publishers.

EDWARDS, S. H. 2003. Rethinking computer science education from a test-first perspective. In Companion
of the 18th annual ACM SIGPLAN conference on Object-oriented programming, systems, languages, and
applications, Anaheim, California, USA, 26–30 October. ACM, New York, NY, USA, 148–155.

ELENBOGEN, B. S. AND SELIYA, N. 2007. Detecting outsourced student programming assignments. Com-
puting Sciences in Colleges 23, 3, 50–57.

FRIEND, E. H. 1956. Sorting on electronic computer systems. Journal of the ACM 3, 3, 134–168.

Recognizing Algorithms in a Data Structure Course A:21

GERDT, P. AND SAJANIEMI, J. 2006. A web-based service for the automatic detection of roles of variables.
In Proceedings of the 11th annual SIGCSE conference on Innovation and technology in computer science
education, Bologna, Italy, 26–28 June. ACM, New York, NY, USA, 178–182.

HIGGINS, C., SYMEONIDIS, P., AND TSINTSIFAS, A. 2002. The marking system for CourseMaster. In Pro-
ceedings of the 7th annual conference on Innovation and Technology in Computer Science Education,
Aarhus, Denmark, 24–26 June. ACM, New York, NY, USA, 46–50.

JOY, M., GRIFFITHS, N., AND BOYATT, R. 2005. The BOSS online submission and assessment system. ACM
Journal on Educational Resources in Computing 5, 3, 1–28.

KNUTH, D. E. 1998. The Art of Computer Programming: Sorting and Searching Second Ed. Vol. 3. Addison-
Wesley, New Jersey, USA.

MCCABE, T. J. 1976. A complexity measure. IEEE Transactions on Software Engineering SE-2, 308–320.
SAIKKONEN, R., MALMI, L., AND KORHONEN, A. 2001. Fully automatic assessment of programming exer-

cises. In Proceedings of the 6th Annual SIGCSE/SIGCUE Conference on Innovation and Technology in
Computer Science Education, ITiCSE’01. ACM Press, New York, Canterbury, UK, 133–136.

SAJANIEMI, J. 2002. An empirical analysis of roles of variables in novice-level procedural programs. In
Proceedings of the IEEE 2002 Symposia on Human Centric Computing Languages and Environments,
Arlington, Virginia, USA, 3–6 September. IEEE Computer Society Washington, DC, USA, 37–39.

SAJANIEMI, J., BEN-ARI, M., BYCKLING, P., GERDT, P., AND KULIKOVA, Y. 2006. Roles of variables in
three programming paradigms. Computer Science Education 16, 4, 261–279.

SAJANIEMI, J. AND PRIETO, R. N. 2005. Roles of variables in experts programming knowledge. In Pro-
ceedings of the 17th Annual Workshop of the Psychology of Programming Interest Group (PPIG 2005).
University of Sussex, U.K, 145–159.

SEDGEWICK, R. 2002. Algorithms in Java, Parts 1-4 Third Ed. Addison-Wesley.
SEPPÄLÄ, O., MALMI, L., AND KORHONEN, A. 2006. Observations on student misconceptions – a case study

of the build-heap algorithm. Computer Science Education 16, 3, 241–255.
SHAFFER, C. A. 1998. A Practical Introduction to Data Structures and Algorithm Analysis. Prentice Hall

Inc, New Jersey, USA.
SIMON, B., CHEN, T.-Y., LEWANDOWSKI, G., MCCARTNEY, R., AND SANDERS, K. 2006. Commonsense

computing: what students know before we teach (episode 1: sorting). In Proceedings of the 2006 Inter-
national Workshop on Computing Education Research (ICER 06). 29–40.

TAHERKHANI, A. 2011. Using decision tree classifiers in source code analysis to recognize algorithms: An
experiment with sorting algorithms. The Computer Journal 54, 11, 1845–1860.

TAHERKHANI, A., KORHONEN, A., AND MALMI, L. 2011. Recognizing algorithms using language constructs,
software metrics and roles of variables: An experiment with sorting algorithms. The Computer Jour-
nal 54, 7, 1049–1066.

TAN, P.-N., STEINBACH, M., AND KUMAR, V. 2006. Introduction to Data Mining. Addison-Wesley, USA.

ISBN 978-952-60-4526-9 (pdf)
ISSN-L 1799-4896
ISSN 1799-490X (pdf)

Aalto University
School of Science
Department of Computer Science and Engineering
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-S

T 4
/2

012

Department of Computer Science and Engineering

Classifying and
Recognizing
Students' Sorting
Algorithm
Implementations in
a Data Structures
and Algorithms
Course
Ahmad Taherkhani, Ari Korhonen, Lauri Malmi

RESEARCH REPORT SCIENCE +
TECHNOLOGY

