The doctoral dissertations of the former Helsinki University of Technology (TKK) and Aalto University Schools of Technology (CHEM, ELEC, ENG, SCI) published in electronic format are available in the electronic publications archive of Aalto University - Aaltodoc.
|
![]()
|
|
Dissertation for the degree of Doctor of Science in Technology to be presented with due permission of the Faculty of Electronics, Communications and Automation for public examination and debate in Auditorium S4 at Helsinki University of Technology (Espoo, Finland) on the 21st of August, 2009, at 12 noon.
Overview in PDF format (ISBN 978-952-248-011-8) [254 KB]
Dissertation is also available in print (ISBN 978-952-248-010-1)
An r-perfect binary code is a subset of ℤ2n such that for any word, there is a unique codeword at Hamming distance at most r. Such a code is r-error-correcting. Two codes are equivalent if one can be obtained from the other by permuting the coordinates and adding a constant vector. The main result of this thesis is a computer-aided classification, up to equivalence, of the 1-perfect binary codes of length 15.
In an extended 1-perfect code, the neighborhood of a codeword corresponds to a Steiner quadruple system. To utilize this connection, we start with a computational classification of Steiner quadruple systems of order 16. This classification is also used to establish the nonexistence of Steiner quintuple systems S(4, 5, 17).
The classification of the codes is used for computational examination of their properties. These properties include occurrences of Steiner triple and quadruple systems, automorphisms, ranks, structure of i-components and connections to orthogonal arrays and mixed perfect codes.
It is also proved that extended 1-perfect binary codes are equivalent if and only if their minimum distance graphs are isomorphic.
This thesis consists of an overview and of the following 6 publications:
Keywords: classification, exact cover problem, extended perfect code, isomorph rejection, minimum distance graph, perfect code, Steiner system
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
© 2009 Helsinki University of Technology