The doctoral dissertations of the former Helsinki University of Technology (TKK) and Aalto University Schools of Technology (CHEM, ELEC, ENG, SCI) published in electronic format are available in the electronic publications archive of Aalto University - Aaltodoc.
|
![]()
|
|
Dissertation for the degree of Doctor of Science in Technology to be presented with due permission of the Department of Electrical and Communications Engineering for public examination and debate in Auditorium S4 at Helsinki University of Technology (Espoo, Finland) on the 3rd of September, 2004, at 12 o'clock noon.
Overview in PDF format (ISBN 951-22-7222-9) [1067 KB]
Dissertation is also available in print (ISBN 951-22-7186-9)
The single-phase and two-phase versions of AC motors can be modelled by means of the two-axis (d-q) theory with sufficient accuracy when the equivalent circuit parameters are correctly estimated. This work attempts to present a unified approach to the analytical prediction of the electromagnetic torque of these machines.
Classical d-q axes formulation requires that the reference frame should be fixed on the frame where the asymmetries arise, i.e. the stator and rotor. The asynchronous torques that characterize the induction motors are modelled in a stationary reference frame, where the d-q axes coincide with the physical magnetic axes of the stator windings. For the permanent magnet motors, that may exhibit asymmetries on both stator and rotor, the proposed solution includes: a series of frame transformations, followed by symmetrical components decomposition. As in single-phase and two-phase systems the homopolar component is zero; each symmetrical component – negative and positive – is further analysed using d-q axes theory. The superposition principle is employed to consider the magnets and rotor cage effects.
The developed models account for the most important asymmetries of the motor configuration. These are, from the stator point of view, different distribution, conductors' dimensions and number of effective turns, non-orthogonal magnetic axes windings and from the rotor point of view, asymmetrical rotor cage, variable reluctance, and permanent magnets effect. The time and space harmonics effect is ignored. Test data are compared with the computed data in order to observe how the simplifying assumptions affect the level of accuracy.
The analytical prediction methods make possible torque computation according to the nature of the torque being computed, namely, induction, reluctance and excitation (permanent magnet). The results are available for quasi steady-state, steady-state (rated or synchronous speed) and dynamic analyses. All the developed mathematical models can be used in preliminary design for further optimisation and accurate estimation in complex numerical models. Another important feature of the analytical models for single-phase and two-phase AC motors, is that they can be directly implemented in any suitable electrical drives control strategy.
This thesis consists of an overview and of the following 8 publications:
Keywords: single-phase, two-phase, induction motors, permanent magnet motors, electromagnetic torque, special windings
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
© 2004 Helsinki University of Technology